

The Revision of ISO 8529 - Neutron reference radiation fields

Roberto Bedogni, Jovica Atanackovic, D. Bartlett, jean-marc bordy, S. Domanski, Jose-Maria Gomez-Ros, J.F. Herrold, Oliver Hupe, Nelson Magalotti, Yoshihiko Tanimura, et al.

▶ To cite this version:

Roberto Bedogni, Jovica Atanackovic, D. Bartlett, jean-marc bordy, S. Domanski, et al.. The Revision of ISO 8529 - Neutron reference radiation fields. Im22 Neudos14 - International Conference on Individual Monitoring of Ionising Radiation (IM2022) and Neutron and Ion Dosimetry Symposium (NEUDOS-14), Apr 2022, cracovie, Poland. 2022. cea-04153436

HAL Id: cea-04153436 https://cea.hal.science/cea-04153436

Submitted on 6 Jul2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The Revision of ISO 8529 Neutron reference radiation fields

<u>R. Bedogni ¹</u>, J. Atanackovic ², D. Bartlett ³, J.-M. Bordy ⁴, S. Domanski ⁵, J.-M. Gomez-Ros ⁶, J.F. Herrold ⁷, O. Hupe ⁸, N. Magalotti ⁹, R. Méndez ⁶, Y. Tanimura ¹⁰, R. Tanner ¹¹, C. Thiam ⁴, D.J. Thomas ¹², A. K. Thompson ¹³, Andreas Zimbal ⁸

¹ INFN, Laboratori Nazionali di Frascati, via Enrico Fermi 40, 00044, Frascati, Italy

² Ontario Power Generation, Whitby, ON, Canada, L1N 9E3

³ ISO / BSI consultant, UK

- ⁴ CEA Laboratoire National Henri Becquerel (LNE-LNHB) Gif sur Yvette cedex France
- ⁵ National Centre for Nuclear Research (NCBJ) Świerk Poland
- ⁶ CIEMAT, Av. Complutense 40 28040, Madrid, Spain
- ⁷ University of Wyoming 1000 E. University Ave. Laramie, WY 82071 USA

⁸ PTB, Bundesallee 100, D-38116 Braunschweig, Germany ⁹ Institut de Radioprotection et de Sûreté Nucléaire (IRSN) France ¹⁰ JAEA Tokai, Naka, Ibaraki 319-1195, Japan ¹¹ UKHSA, Chilton, Didcot, Oxon 0X11 0RQ, UK ¹² NPL, Hampton Road, Teddington, TW11 0LW, UK ¹³ NIST, 100 Bureau Drive MS 8461, Gaithersburg, MD 20899-8461, USA

Abstract

ISO Series 8529 provides guidance on neutron metrology for both primary and secondary calibration laboratories. It consists of three parts:

- Part 1: "Characteristics and methods of production" [1];
- Part 2: "Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field" [2];
- Part 3: "Calibration of area and personal dosimeters and determination of response as a function of energy and angle of incidence" [3]

The revised Part 1 was published in November 2021 as a Second Edition [4]. Changes with respect to 2001 version are discussed. Part 3 is currently under revision by ISO TC85/SC2/WG2 and is implementing new spectrum-average conversion coefficients due to the revised spectra in Part 1.

ISO 8529-1: 2021 vs. 2001 editions

Reference radionuclide sources

²⁵²Cf (Annex B)

The new spectrum coincides with the ENDF/B-VIII.0 group data above 35 keV (69 groups). Below 35 keV the two groups of the ENDF/B-VIII.0 group data were replaced by 20 groups assembled by rebinning the point data with 3 bins per decade, down to 10 meV. The total number of energy groups is now 89.

- ✓ Fluence-averaged energy unchanged (2.13 MeV);
- \checkmark Very little changes in the spectrum.

²⁵²Cf(D₂O) (Annex C) A new spectrum ([5], Fig. 1) was obtained by simulating an idealized assembly formally identical to that assumed by Ing and Cross [6] and reported in ISO 8529-1:2001, but using MCNP6.2 with ENDF/B-VIII.0 cross sections. Recommendation is given in the Standard to characterize each specific assembly as it is constructed.

✓ Fluence-averaged energy changed (0.57 MeV (2021) vs. 0.55 MeV (2001));

Fig. 2. ²⁴¹Am-Be spectrum: "small", "large" and "8529-1:2001".

Conversion coefficients The Table shows the impact of the revised ²⁵²Cf and ²⁴¹Am-Be spectra on the fluence to dose equivalent conversion coefficients. Data have been proposed for the revision of ISO 8529-3.

Fig. 1. 252 Cf(D₂O) spectrum and construction.

²⁴¹Am-Be(α,n) (Annex D) Measurements with high-resolution

spectrometers combined with Bonner spheres [7] indicate that the spectrum and spectrum-integrated quantities vary slightly as a function of the source encapsulation and amount of active material. It is recommended that the spectrum of any 241 Am-Be(α ,n) source used for calibration should be measured. To facilitate users, two spectral categories have been introduced: "small" (activity typ. 37 GBq) and "large" sources (typ. 370 GBq and 555 GBq) - See Fig. 2.

✓ Fluence-averaged energy changed (4.17 MeV "small" and 4.05 MeV "large" vs. 4.16 MeV from 8529-1:2001) ✓ Revised photon / neutron *H**(10) ratio: 3.5 % (2001) vs. 5 % (2001).

Source	$h_{\mathrm{p}\phi}(10;\alpha)$ in pSv cm ²						$h^*_{\phi}(10)$
	0°	15°	30°	45°	60°	75°	
$^{252}Cf(D_2O)$	119	118	119	111	95,0	60,6	114
²⁵² Cf	400	397	409	389	346	230	385
²⁴¹ Am-Be "small"	412	410	426	416	385	294	393
²⁴¹ Am-Be "large"	406	404	419	409	377	287	387
²⁴¹ Am-Be 2001	411	409	424	415	383	293	391

Monoenergetic fields

• More recent data on the methods of production were included. The following fields were added: 8 keV from ⁴⁵Sc(p,n)⁴⁵Ti; 22.8 keV from 124 Sb-Be(γ ,n); 17 MeV.

MeV	Method of production		
0.002	Sc-filtered reactor beam or ⁴⁵ Sc(p,n) ⁴⁵ Ti		
0.008	⁴⁵ Sc(p,n) ⁴⁵ Ti		
0.024	 Fe/Al filtered reactor beam ⁴⁵Sc(p,n)⁴⁵Ti (0.0274 MeV at 0°, 0.0246 MeV at 35°) ⁷Li(p,n)⁷Be 0.0228 MeV from ¹²⁴Sb-Be(γ,n) 		

 $^{241A}Am-B(\alpha,n)$ was eliminated but the Standard says: "sources such as ²⁴¹Am-B(α ,n), Pu-Li(α ,n), Pu-Be(α ,n), ²⁴¹Am-F(α ,n), ²⁴¹Am-Li(α ,n) and ²⁴⁴Cm are also used but are not addressed specifically in this document".

References

- ISO 8529-1:2001. Neutron reference radiation fields Part 1: Characteristics and methods of production. [1]
- ISO 8529-2:2000. Reference neutron radiations Part 2: Calibration fundamentals of radiation protection [2] devices related to the basic quantities characterizing the radiation field
- ISO 8529-3:1998. Reference neutron radiations Part 3: Calibration of area and personal dosimeters and [3] determination of response as a function of energy and angle of incidence.
- ISO 8529-1:2021. Neutron reference radiation fields Part 1: Characteristics and methods of production. [4]

y Tecnológicas

Si-filtered reactor beam or T(p,n)³He or ⁷Li(p,n)⁷Be 0.144 $T(p,n)^{3}$ He and 7 Li $(p,n)^{7}$ Be 0.25, 0.565 1.2, 2.5 $T(p,n)^{3}He$ $D(d,n)^{3}He$ 2.8, 5.0 14.8, 17.0, 19.0 $T(d,n)^4$ He

- Méndez, R., Gómez-Ros, J.M., Thomas, D.J., Thompson, A. K and Bedogni, R. Rad. Phys. Chem. 2021, 184 [5] 109433
- Ing, H. and Cross, W.G. Health Phys. 1984, 46 (1) 97–106. [6]
- Bedogni, R., Domingo, C., Roberts, N., Thomas, D.J., Chiti, M., Esposito, A., Garcia, M.J., Gentile, A., Liu, Z.Z., De-[7] San-Pedro, M. Nucl. Instrum. Methods. 2014, 763 547–552.

