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Abstract. The numerical simulation of multiscale and multiphysics problems requires efficient tools for spa-
tial localization and model reduction. A general strategy combining Domain Decomposition and Nonuni-
form Transformation Field Analysis (NTFA) is proposed herein for the simulation of nuclear fuel assemblies
at the scale of a full nuclear reactor. The model at subdomain level solves the full elastic problem but with
a reduced nonlinear loading, based on simplified boundary conditions, reduced creep flow rules, projected
sign preserving contact conditions, and a NTFA like reduced friction law to get the evolution of each slipping
mode. With this loading reduction, the local solution can be explicitly obtained from a small set of precom-
puted elementary elastic solutions. The numerical tests indicate that considerable cost reduction (a factor of
50 to 1000) can be achieved while preserving engineering accuracy.

Résumé. La simulation numérique de problèmes multi-échelles et multi-physiques nécessite des outils per-
formants de localisation spatiale et de réduction de modèle. Une stratégie générale combinant la décompo-
sition de domaine et l’analyse de champ de transformation non uniforme (NTFA) est proposée ici pour la si-
mulation d’assemblages de combustible nucléaire à l’échelle d’un réacteur nucléaire complet. Le modèle au
niveau du sous-domaine résout le problème élastique complet mais avec un chargement non linéaire réduit,
basé sur des conditions aux limites simplifiées, des règles d’écoulement de fluage réduites, des conditions
de contact préservant le signe projeté et une loi de frottement réduit de type NTFA pour obtenir l’évolution
de chaque mode de glissement. Avec cette réduction de chargement, la solution locale peut être obtenue ex-
plicitement à partir d’un petit ensemble de solutions élastiques élémentaires précalculées. Les tests numé-
riques indiquent qu’une réduction considérable des coûts (un facteur de 50 à 1000) peut être obtenue tout
en préservant la précision du calcul.

Keywords. Model reduction, Domain decomposition, Nuclear fuel assemblies, creep, contact.

Mots-clés. Réduction de modèle, Décomposition de domaines, Assemblage de combustible, fluage, contact.

Funding. This work has been partly finalized during a stay of the second author at the Oden Institute of
University of Texas at Austin.

ISSN (electronic) : 1873-7234 https://comptes-rendus.academie-sciences.fr/mecanique/

https://doi.org/10.5802/crmeca.168
mailto:bertrand.leturcq@cea.fr
mailto:patrick.letallec@polytechnique.edu
https://comptes-rendus.academie-sciences.fr/mecanique/


2 Bertrand Leturcq and Patrick Le Tallec

Published online: 15 May 2023

1. Introduction

Multiscale and multiphysics simulation becomes a necessity. On one hand, there is often a
strong coupling between the global response of a system of interest and local dimensioning
nonlinear phenomena such as nonlinear creep, multiscale friction, change of phases, molecules
unfolding, liquid crystals microstructure evolution and so on. On the other hand, large amount of
experimental data originating from different sources and scales must be used in the construction,
validation and optimisation of the different components. Such issues occur for example in large
scale industrial systems as encountered in nuclear industry [1], in the development and use of
microstructured soft materials or architectures in transport industry, or in the development of
patient specific medical models [2].

These problems have been central in the career of Roland Glowinski and his approach was
based on basic fundamentals which proved to be successful in many important applications.
He has introduced powerful localisation techniques based on operator [3] or on domain split-
ting [4], he has outlined the importance of properly specifying and controlling the boundary and
interface conditions [5], and of respecting and exploiting the constitutive non linearities [6, 7].

Following these principles, the simulation of real life multiscale and multiphysics problems
combines two basic ingredients. The first one concerns the data transfer strategy between the
global model and the local problems. The notion of imposed averaged deformation as proposed
in standard homogeneization techniques is not adequate when local models deal with molecular
or fibril networks as in [8] or in [2]. Additional work is therefore needed to better understand and
expand the microsphere models which are used in those directions. Averaged deformation is also
not sufficient when the scales are not well separated. Domain decomposition based strategies
can then be a possible solution, especially in situations like in [9, 10] where the construction of
subdomains is very straightforward.

The other issue deals with the necessary model reduction which must be performed at the
local scale. An accurate treatment of all nonlinearities and multiphysics microscale phenomena
occurring at that local scale is often out of reach. The Nonuniform Transformation Field Analysis
(NTFA) strategy of [11] proposes an approximation of the local nonlinear fields by projecting
them on an orthogonal basis of precomputed modes. The challenge is then to project the
nonlinear constitutive law on these modes without using exact local integration at each time
step, which would be of the same complexity as the original multiscale problem. Extending this
approach to more complex situations also requires to build sign preserving modal expansion of
contact forces or of other positive internal variables.

The particular problem on which we would like to illustrate these fundamentals is the study
of the progressive deformation of nuclear fuel assemblies that occurs during a succession of
irradiation cycles within a nuclear reactor [12, 13]. The engineering challenge is to limit the fuel
assemblies permanent bows which can be at the origin of costly incidents during the pull out or
of poor functioning of the reactor’s control safety bars. The collective response of the hundreds
of fuel assemblies inside the core couples the global effect of the hydraulic loading, the localized
creep of the structural elements and the local evolution of the friction force inside each holding
spring. This multi-body multi-physics calculations involves something like 4 million contact
surfaces and up to sixty thousands fuel rods. The time scale is of the order of one year and
corresponds to a reactor loading cycle. The spatial scale ranges from a rod length of 5m to spring
fixing sizes of 1mm. A full model would require more than 300 millions degrees of freedom and
a considerable effort in the local integration of creep, contact and friction. Model reduction is
thus needed. In order to improve the representativeness of the core model without penalizing
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the computational cost of the coupled simulations, this model reduction is proposed herein at
the scale of each of the 241 fuel assemblies present inside the reactor core. It borrows the concepts
of both domain decomposition [14] and of non-linear homogenization as proposed in [11].

The first idea herein is thus to consider a single fuel assembly as the Representative Volume
Element (RVE) classically used in multiphase homogenization. In this framework, the solution
within a RVE in presence of creep and friction is historically obtained by Transformation Field
Analysis (TFA) as introduced by [15] and [16]. In their construction, these authors have selected a
limited number of phases within the RVE, each nonlinear phase being supposed to be uniform in
space. This crude approximation allows to apply the original constitutive law (creep or friction) to
predict the evolution of the constitutive variable inside the phase p at the scale of each nonlinear
phase. For a RVE with elasticity tensor C, given history of irreversible strain εin

p
and subjected to

a given macro deformation ε̄ imposed in average to the RVE, the resulting stress field to be used
in equilibrium equations can be explicitly given at all points by

σ= C : A : ε̄+∑
p

C :
(
Dp − Ip

)
εin

p

with localisation and influence tensors A and Dp obtained a priori by solving elementary elastic-
ity problems at the scale of the RVE. The NTFA strategy of [11, 17, 18] proposes a more accurate
approximation of the inelastic strain fields εin by replacing the constant fields by a linear expan-
sion on an orthogonal basis of strain modes obtained at a controlled accuracy by Proper Orthog-
onal Decomposition (POD) [19] based on a collection of precomputed snapshots. A simple but
efficient averaging rule is also used for projecting nonlinear viscoplastic constitutive laws on to
the selected modes.

Extending this approach to nonlinear industrial structures requires additional ingredients in
order to extend the notion of imposed deformation to a complex substructure and to build a
sign preserving modal expansion of the contact forces. For the first point, we use a domain
decomposition strategy. A substructure like a fuel assembly is a natural subdomain of the full
structure, and its motion can be accurately controlled by the rigid body motions of each of its
interface with the global structure. On the other hand, the modal expansion of the contact forces
uses positive modes obtained through a Nonegative Matrix Factorisation (NMF) of contact forces
snapshots as proposed in [20]. The local contact conditions are then transferred to the reduced
model through a simple projection of the contact constraints on these positive modes. Last, a
modal basis of slip displacements is obtained by POD, to be combined to averaged stick slip
criteria to be directly written in terms of slipping modes.

Altogether, the reduced model solves the full elastic problem but with a reduced nonlinear
loading, based on simplified boundary conditions, reduced creep laws (as in standard NTFA) to
get the evolution of the creep modes, reduced (NMF projected) contact conditions to get the
reduced normal forces, and a NTFA like reduced friction law to get the evolution of each slipping
mode. With this loading reduction, the local solution can be explicitly obtained from a small set
of precomputed elementary elastic solutions.

The paper is organized as follows. The full problem is described in Section 2, where it is
decomposed in local subproblems, with adequate reduction of the local nonlinear fields using
POD like strategies. The formalism for the construction of reduced modal constitutive laws and
its application to nonlinear creep, contact and friction are presented in Section 3. Numerical
results are presented in Section 4, before drawing conclusions in Section 5.
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2. Description and decomposition of the full model

2.1. The mechanical problem

We consider the long term mechanical evolution of fuel assemblies within the core of a pressur-
ized water nuclear reactor. A typical reactor contains more than 200 fuel assemblies that will bow
and deform under the combined action of hydraulic forces, thermal loads, irradiation growth and
irradiation creep.

Figure 1. The pressure vessel of a nuclear reactor core, containing approximately 240 fuel
assemblies. taken from [21].

Figure 2. The loading environment of the fuel assemblies inside a reactor core [13].

A typical fuel assembly is 5m high, 0.21m wide, contents more than 250 thin fuel rods which
are maintained on 10 spacing grids assembled together through 25 guide tubes. The fixings of
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the fuel rods onto the spacing grids is achieved by small holding springs working in compression
and friction, involving in each fuel assembly 17 000 contact surfaces between the rods and the
holding springs, at a cm scale. This holding system controls the lateral motion of the fuel rods
while allowing for their irradiation growth. It is also at the origin of a global hysteretic response of
the structure.

Figure 3. Bowed fuel assembly [22]. A typical map of fuel assemblies bows inside a nuclear
core as reported in [22].

In this framework, it is important to monitor and limit the permanent bows of fuel assemblies.
The internal forces which are at the origin of permanent deformation of this otherwise elastic
structure include non uniform irradiation growth, irradiation creep, trapped friction forces and
local relaxation of the holding springs.

The existence of irradiation creep transforms the elastic constitutive law into

σ(x) = C(x) :
(
ε(x)−εin(x)

)
(1)

while the evolution of the creep strain is governed by a flow rule of the type

ε̇i n = 3

2

∂ψ
(
σeq

)
∂σeq

σ′

σeq
. (2)

Above C denotes the local elasticity tensor, σeq =
√

3
2σ

′ :σ′ the local equivalent Von Mises stress,

σ′ the local deviatoric stress, and ψ(σeq ) the local viscoplastic potential. A typical potential
properly describing the creep flow of metals under irradiation is

ψ
(
T,σeq

)= 1

τ(x)
σ0(x)

(
σeq

σ0(x)

)m

(3)

with a material dependent exponent m close to two in many cases, and characteristic creep time
τ and yielding stress σ0 functions of the local temperature and of the local amount of cumulated
irradiation.

As for contact, each holding spring J acts in compression with a negative contact force given
by

τN (J ) = kN (J )min
(
0,δuN (J )−εN (J )

)
. (4)
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Figure 4. Mechanical description of a fuel assembly [23].

Above kN (J ) denotes the stiffness of the holding spring, δuN (J ) the difference of normal displace-
ment between the spring extremities, and εN (J ) denotes the positive or negative prestrain of the
holding spring which can vary in time due to spring relaxation under irradiation. Introducing the
local gap defined by

gap(J ) = δuN (J )−εN (J )−τN (J )/kN (J ), (5)

this constitutive law rewrites as a set of complementary inequalities

gap(J ) ≥ 0, −τN (J ) ≥ 0, −gap(J )τN (J ) = 0. (6)

As for the friction force at a given fixation point, it is supposed to be governed by a regularized
Coulomb friction law relating this friction force to the local sliding velocity u̇t by

τt =−min

(
µt ,µ

|τN |∥∥u̇t

∥∥
)

u̇t . (7)

2.2. Subdomain decomposition and loading reduction

A fuel assembly is a natural subdomain of the full structure. Moreover, we know from domain
decomposition studies [14] that a subdomain motion can be accurately controlled by the rigid
body motions of each of its interface with an error of at most O(r 2/H 2) in energy norm, with r the
diameter of the interface, and H the distance appearing when estimating the norm of the lifting
operator building an equilibrium solution from an imposed trace, distance which will be here
the distance between two consecutive interfaces. The mechanical interfaces of a fuel assembly
are the spacing grids, which are subjected to the hydraulic forces applied by the local flow of the
pressurized water and to potential contact forces with neighboring assemblies. Conversely these
loads are mostly controlled by the average position of the spacing grids. In this framework, the
“global deformation” of a fuel assembly is thus defined by the three translational modes of each
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of its 11 spacing grids. Its evolution is then characterized by its elastic response to the imposed
external and nonlinear internal forces. In view of the large dimension of this loading space, a
model reduction is then needed at that level. To account for hydraulic forces, nonlinear creep,
contact and friction, we need to introduce in the spirit of NTFA [11]

(1) the field of external forces { f ext
jg }jg applied in average on each spacing grid g and along

each direction j ;
(2) an orthonormal basis {εin

i
}i=1,Ni of small dimension Ni in the space of irreversible creep

strain fields on which to develop the local creep strain fields

εin(x) =∑
i
αiε

in
i

(x)

at each material point x of the structure. This basis is to be constructed by Proper
Orthogonal Decomposition [19] on a large collection of snapshots of creep strain fields
εin(x) obtained by performing series of direct simulations of the local problems;

(3) an orthonormal basis {us
m}m=1,Nm of small dimension Nm on which to develop the

slipping velocities at all fixation points J into u̇t (J ) = ∑
m α̇mus

m(J ), basis to be also
constructed by Proper Orthogonal Decomposition on a large collection of snapshots
of slipping velocity fields u̇t (J ) obtained in the same direct simulations of the local
problems;

(4) a positive decomposition of a matrix of P contact forces snapshots X on Nk positive
modes using a Nonnegative Matrix Factorisation X ≈ Λ̂H obtained by least squares
minimization of the approximation error ∥X −Λ̂H∥2

l 2 using alternating directions [24,25].
The result is a modal matrix Λ̂ of Nk positive columns Λk (typically P ≫ Nk ≈ 10) on
which to decompose the local contact forces τN (J ) ≈−∑

k fkΛk (J ).

The strain modes εin
j

(x) are unit free, the slipping modes us
m(J ) will be properly normalized

in order to be adimensional, and the local values of the contact modes Λk (J ) are expressed in
Newtons. With such a modal decomposition of the external and internal forces, the subdomain
problem can be explicitly solved at low cost by solving the weak form of the equilibrium equations
tested against any kinematically admissible test function U∗ = u∗(x) ∈ V. In our framework, the
space V of kinematically admissible displacement corresponds to displacement fields which are
zero on the part of boundary where the assembly is potentially clamped and which present zero
slipping. On the other hand, such fields allow for arbitrary normal overlaps at contact points.
They are thus “free contact modes”. The local equations of equilibrium write then

〈
KU,U∗〉− Ni∑

i=1
αi

〈
Fin

i ,U∗
〉
+

Nk∑
k=1

fk
〈

FN
k ,U∗〉 =∑

j g
f ext

jg

〈
Fext

jg ,U∗
〉

, ∀ U∗ ∈ V. (8)

The notation here are rather standard. The fuel assembly elastic stiffness matrix is given by〈
KU,U∗〉= ∫

V
Cε(U)(x) : ε

(
U∗)

(x)dV ,

the term 〈Fext
jg ,U∗〉 characterizes the virtual power developed by a unit force in the corresponding

averaged translational grid motion〈
Fext

j g ,U∗
〉

:= 1

Sg

∫
grid−g

û j (xext)dS

with Sg = ∫
grid−g dS the section of the corresponding grid, the term 〈Fi n

i ,U∗〉 corresponds to the
virtual power developed by the internal creep strains (in modal form)〈

Fi n
i ,U∗

〉
=

∫
V

Cεi n
i

(x) : ε
(
U∗)

(x)dV ,
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the elementary contact loads 〈FN
k ,U∗〉 correspond to the virtual power developed by the contact

modeΛk 〈
FN

k ,U∗〉=∑
J
Λk (J )δ

(
u∗)N (J ).

As for the unknown displacement field, for a known slipping motion
∑

mαsmUs
m , it is by construc-

tion given by U = Û+∑
mαsmUs

m with Û obtained by solving (8) and Us
m the nodal representation

of the displacement field obtained by zero extension of the tangential slip mode us
m . Above V

denotes either the domain occupied by one assembly, or its volume.
Observe that as usual in such frameworks the solution of (8) can be obtained as an explicit

linear combination of Ni + N j + Nk + Nm precomputed elementary elastic solutions. In more
details, we have

U =∑
jg
αjgÛext

jg +∑
i
αi Ûin

i +∑
k

fk ÛN
k +∑

m
αsm

(
Ûs

m +Us
m

)
(9)

with α j g = f ext
j g and under the notation

Ûext
j g = K−1Fext

j g , Ûi n
i = K−1Fi n

i , ÛN
i k = K−1FN

k , Ûs
m = K−1Fs

m .

The last term Fs
m in the above equilibrium equations corresponds to the elastic internal force

induced by slipping 〈
Fs

m ,U∗〉=−〈
KUs

m ,U∗〉
.

The expression (9) translates into a similar decomposition of the deviatoric stress field σ′ and of

the normal overlap δuN .

Remark 1. When dealing with a collection of fuel assemblies inside a reactor core, the forces
f ext

jg applied on the grids of the different assemblies include hydraulic forces and potential inter
assembly contact forces which are given as a nonlinear function of the relative positions of
neighboring grids in the spirit of (4) and the equation αjg = f ext

jg becomes an implicit nonlinear
equation in {αkh}kh

α j g = f ext
j g

(
{αkh}kh

)
. (10)

3. Reduced nonlinear laws

3.1. Basic principle

The problem at local level will be specified if we can find a proper way to construct a reduced
viscoplastic flow rule controlling the evolution of the modal creep coefficients αi as function of
their dissipation work (in Joules)

σ j :=
∫

V
σ : εin

j
dV , (11)

a reduced contact law relating the (adimensionalized) modal contact forces fk to the penetration
work (expressed in Joules)

δU N
k =∑

J
δU N (J )Λk (J ), (12)

and a reduced friction law F s
m({α̇l }l ) relating the virtual power of the friction forces Ss

m in the slip
mode Us

m (measured in Watts) to the modal coefficients {α̇m}m (expressed in meter per second)
of the slipping velocity

Ss
m :=∑

J
τt (J ) ·us

m(J ) = F s
m

(
{α̇l }l

)
, (13)

where τt (J ) denotes the friction force applied on the J th contact. The problem is to compute
at low cost the evolution of these reduced nonlinear loadings while respecting as much as
possible the power dissipated by these loadings. This is achieved by Galerkin projection of the
nonlinear constitutive laws onto the reduced space of internal loadings. For the contact law, this
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projection must respect the sign of the contact forces. For creep and friction, this projection
must be complemented by a reduced integration hence by a further approximation, otherwise
the projection would have the same complexity as the full problem which would not be efficient.

3.2. Reduced contact law

The projection strategy to be used to construct a reduced contact law must respect the sign
constraint on the projected contact force. In terms of energy and in presence of contact, the
detailed model formally has a saddle point structure

inf
û(x)∈V

sup
τ̂N (·)≤0

{
W (û)+∑

J

((
δuN (J )−εN (J )

)
τ̂N (J )− τ̂2

N (J )

2kN (J )

)}
with W (û) denoting the elastic and potential energy of the structure. Indeed the optimality
conditions in terms of the normal reaction force τN take the form (4) while the equilibrium
equations would correspond to the optimality conditions in displacement. The reduced contact
law is then simply obtained as in [20] by reducing the set of admissible contact forces to the
negative cone built from the selected modal forces

Vτ :=
{
τ̂N =−∑

k
f̂ kΛk , f̂ k ≥ 0,∀ k = 1, Nk

}
.

The corresponding optimality conditions in { f̂ k }k now formally become∑
J

(
1

kN (J )

(∑
l

flΛl (J )

)
Λk (J )+ (

δuN (J )−εN (J )
)
Λk (J )

)
−gapk = 0,∀ k = 1, Nk , (14)

where the Lagrange multipliers gapk of the positivity constraint fk ≥ 0 satisfy the complementary
conditions

gapk ≥ 0, fk ≥ 0, gapk fk = 0, ∀ k = 1, Nk . (15)

Observe that, in difference with [20], we do not reduce the displacement space in the lagrangian
writing of the contact problem, which guarantees that the classical Inf-Sup stability condition will
be satisfied after reduction. The modal contact conditions keep the exact form of the local ones,
within the projection of the local gaps gap(J ) = δuN (J )−εN (J )−τN (J )/kN (J ) onto the local modes
{Λk }k . As before, the sum

∑
J δuN (J )Λk (J ) is an explicit function of the expansion coefficientsα j g ,

αi , fk and αsm in (9), namely∑
J
δuN (J )Λk (J ) =∑

j g
α j g

∑
J
δN Ûext

j g (J )Λk (J )+∑
i
αi

∑
J
δN Ûi n

i (J )Λk (J )

+∑
k

fk

∑
J
δN ÛN

k (J )Λk (J )+∑
m
αsm

∑
J

(
δN Ûs

m +δN Us
m

)
(J )Λk (J ) (16)

where all lengthy summation on J can be precomputed, which enables a fast solution of (14).

3.3. Reduced creep law

For the creep part, we need to find the evolution
∑

i α̇iε
in
i

of the projected creep strain which will
dissipate the same energy as the one dissipated by the exact creep strain rate

ε̇i n = 3

2

∂ψ
(
σeq

)
∂σeq

σ′

σeq
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in any stress field σ0ε
in
j

defined on our reduced space of nonlinear viscoplastic loading. Above,

we have kept the notation of (2) with σ′ denoting the local deviatoric stress σ′ =σ− 1
3 Tr(σ)1 with

norm σeq . The reduced flow rule should thus be solution of the projection problem∫
V
σ0

(∑
i
α̇iε

in
i

)
: εin

j
dV =

∫
V
σ0ε̇

i n : εin
j

dV ,

=
∫

V

3m

2τ(x)

(
σ2

eq (x)

σ2
0(x)

)m/2−1

σ′(x) : εin
j

(x)dV , ∀ j = 1, Ni .

(17)

The presence of the nonlinear term (
σ2

eq (x)

σ2
0(x)

)m/2−1 in the above integral makes it impossible to

precompute the right hand side integral independently of the values of the modal coefficients of
the internal loading. For situations with uniform coefficients τ andσ0, the idea of [11] is to replace
the local value of σ2

eq (x) by the volume average s2
r = 〈σ2

eq 〉 of the square of the local Von Mises
equivalent stress as computed after orthogonal projection onto the reduced space of viscoplastic
loading. If the basis vectors εin

j
are properly scaled in the sense that

∫
V ε

in
i

: εin
j

dV = V δi j , we

would simply get

s2
r = 3

2V 2

∑
i
σ2

i with σi =
∫

V
σ′(x) : εin

i
(x)dV

yielding as flow rule

α̇i = 3m

2τV

(
s2

r

σ2
0

)m/2−1
1

σ0
σi .

The function s2
r is a quadratic function of the stress field, hence from (9) it reduces to a quadratic

form directly computed in terms of modes with no need of an element wise integration of the
detailed model at each time step. This results in a considerable gain of computing time and turns
out to be very efficient for mildly nonlinear creep.

The nonuniform case is more complex. The correct energy based scalar product is now defined
by the mass matrix

Mi j =
∫

V
σ0(x)εin

i
(x) : εin

j
(x)dV (18)

and the accessible projected quantity is the volume average s2
r = 〈σ

2
eq

σ0
〉 of the square of the local

Von Mises equivalent stress after division by the yield stress σ0 and orthogonal projection onto
the reduced space of viscoplastic loading. Indeed the coefficients α′

i of the projection of 1
σ0
σ′ on

to the reduced space for the above scalar product are solution of∫
V
σ0

(∑
i
α′

iε
in
i

)
: εin

j
dV =

∫
V
σ′(x) : εin

j
(x)dV =σ j ,∀ j = 1, Ni ,

which gives α′
i =

∑
j M−1

i j σ j . Within the projection onto the reduced space, we then get〈
σ2

eq

σ0

〉
:= 3

2V

∫
V

1

σ0
σ′ :σ′dV

= 3

2V

∫
V
σ0

1

σ0
σ′ :

1

σ0
σ′dV

≈ 3

2V

∫
V
σ0

(∑
i
α′

iε
in
i

)
:

1

σ0
σ′dV

= 3

2V

∑
i j

M−1
i j σ jσi .
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In matrix form, denoting by Σ the column vector having σ j as coefficient in line j , we get〈
σ2

eq

σ0

〉
= 3

2V
Σt M−1Σ.

We can then simplify the right hand side of (17)∫
V

3m

2τ(x)

(
σ2

eq (x)

σ2
0(x)

)m/2−1

σ′(x) : εin
j

(x)dV

≈ 3m

2

〈
σ1−m/2

0

τ

〉(〈
σ2

eq

σ0

〉)m/2−1 ∫
V
σ′(x) : εin

j
(x)dV

≈ 3m

2

〈
σ1−m/2

0

τ

〉(
3

2V
Σt M−1Σ

)m/2−1

σ j .

From (17), the resulting reduced flow rule is then

α̇i = 3m

2

〈
σ1−m/2

0

τ

〉(
3

2V
Σt M−1Σ

)m/2−1 (
M−1Σ

)
i (19)

which perfectly respects the variational structure of the original flow rule α̇i = ∂Ψ
∂σi

with a global
dissipation potential given by

Ψ(Σ) =V

〈
σ1−m/2

0

τ

〉(
3

2V
Σt M−1Σ

)m/2

.

Observe also that in (19), because of the constitutive law (1), the jth line σ j := ∫
V σ : εin

j
dV of Σ is

an explicit function of the expansion coefficients αjg, αi , fk and αsm in (9), namely

σ j =
∑
jg
αjg

∫
V

Cε
(
Ûext

jg

)
: εin

j
dV +∑

i
αi

∫
V

Cε
(
Ûin

i

)
: εin

j
dV

+∑
k

fk

∫
V

Cε
(
ÛN

k

)
: εin

j
dV +∑

m
αsm

∫
V

Cε
(
Ûs

m +Us
m

)
: εin

j
dV. (20)

All integrals in this expression can be precomputed which results in considerable cost reduction.

3.4. Reduced friction law

The power developed by the friction force in the slipping mode us
m , as predicted by the friction

law (7), is

Ss
m :=∑

J
τt (J ) ·us

m(J ) =−∑
J

min

(
µt ,µ

|τN (J )|∥∥u̇t (J )
∥∥

)
u̇t (J ) ·us

m(J ).

We will temporarily omit the local minimization. But, even then, we still need to handle at each
slipping contact point a division by the local value of the slipping velocity. To get rid of this
division, we first consider the case where the slipping velocity is unimodal u̇t = α̇l us

l . The power
developed by friction in such a slipping mode is then

Ss
m

(
α̇l us

l

)=−∑
J
µ |τN (J )| 1∥∥us

l (J )
∥∥us

l (J ) ·us
m(J ).

For multimodal slipping velocities u̇t =
∑

l α̇l us
l , we then proceed by “spherical interpolation”

Ss
m

(∑
l
α̇l us

l

)
≈−∑

l

α̇l

∥α̇∥Ss
m

(
α̇l us

l

)
.
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Taking now the minimum value (in norm) between the sticking and the slipping case at the
modal level and developing the normal force τN along the given normal modes, we arrive to our
proposed approximate friction law

Ss
m

(∑
l
α̇l us

l

)
≈ F s

m

(
{α̇l }l

)
:=−min

(
µt α̇m ,µ

∑
l

α̇l

∥α̇∥
∑
k

fk

[∑
J
Λk (J )

us
l (J ) ·us

m(J )∥∥us
l (J )

∥∥
])

. (21)

The terms between the square brackets can be precomputed which results in considerable
savings. On the other hand, by writing the local equilibrium equations in weak form against all
slipping modes, we must have

Ss
m = 〈

KU,Us
m

〉
.

After linear expansion of U by (9), the modal nonlinear friction law becomes〈
K

(∑
j g
α j g Ûext

j g +∑
i
αi Ûi n

i +∑
k

fk ÛN
k +∑

m
αsm

(
Ûs

m +Us
m

))
,Us

m

〉
+µt α̇m = R s

m (22)

with a nonlinear relaxation of slipping modes given by

R s
m := F s

m

(
{α̇l }l

)+µt α̇m . (23)

4. Numerical results

4.1. Global algorithm

After reduction, the problem to solve at all time t is given by the reduced nonlinear laws ((19),
(14)-(15), (22)-(23)) controlling the time evolution of the internal variables αi , fk and αsm

characterizing the creep strains, contact forces, and slipping displacements, respectively, and
generating a displacement field and stress field given by (9).

This problem is solved by an implicit time integration algorithm, where at each time step
nested prediction corrections algorithms are used to identify the nonlinear components in these
laws. In more details, the proposed algorithm at each time step is as follows.

(1) External loop on creep variables
(2) Predict the values of the modal creep variables {αi (t )}i

(a) Internal loop on the slipping relaxation
(b) Predict the value of the slipping relaxation {R s

m(t )}m

(c) Solve ((14)-(15), (22)) with respect to { fk }k and {αsm}m with given values {αi (t )}i

of creep modal coefficients and of slipping relaxation {R s
m(t )}m using an active set

strategy.
(d) Correct the value of the slipping relaxation {R s

m(t )}m by (23), and repeat the internal
loop until reaching convergence of this field.

(3) Integrate the evolution equation (19) in {αi (t )}i from time t −d t to time t by an implicit
Runge Kutta algorithm with given values of {αjg}jg, { fk }k and {αsm}m , correct the pre-
dicted value of {αi (t )}i , and repeat the external loop until reaching convergence of this
field.

This algorithm can be applied to situations involving many interacting fuel assemblies. In
this case, the grid forces become a nonlinear function of the averaged grid displacements αjg

and step (2c) complemented with (10) become a global system of equations to be solved in all
assemblies for all unknowns {αjg} j g , { fk }k and {αsm}m .
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4.2. Results for a fuel assembly creep

A total of 88 long-term creep simulations were performed offline with the fuel assembly de-
tailed model under realistic neutron flux and for different force loadings applied constantly on
grids [26]. A total of 176 snapshots were collected for creep strain and as many for the mean grids
displacements. Two truncated POD then generate the 18 macroscopic modes and the 18 inelas-
tic tensor modes, partly displayed in Figure 5. Now considering a central core position for the
fuel assembly, the modal creep characteristics are determined from the corresponding neutron
flux map. The grid displacement are evaluated with both models and compared in Figure 6 for
7 arbitrary load cases, which represent in plane loadings on grids. The inelastic deformation fields
are also recombined for the load case number 6 and compared, in Figure 7, to those of the refer-
ence model. In this case, the ROM shows an excellent mapping although a slight deficit in axial
creep intensity. Creep bending of the rods at the passage of each grid presents greater values and
correlates very well. We obtain a speed-up of around 50 for this Fuel Assembly (FA) creep simula-
tion. The reason for this modest speed-up is that the FA detailed reference model is already highly
optimized and uses exclusively generalized finite elements, such as pipes and shells. Obviously,
the same geometry represented by a classical mesh of linear or quadratic brick elements would
display a much better time ratio in favor of the reduced model.

Figure 5. The 18 macroscopic FA displacement modes (3D) and the 5 first inelastic tensor
modes.

4.3. Results for a 3D contact problem with friction

A first test considers a contact problem between two elastic slender three-dimensional structures
of 100 meters high, of 15 meters and 10 meters deep respectively, and of 5 meters wide [26].
They are embedded at their base (Figure 8) and are initially in contact on their interface, where
friction is controlled by a Coulomb’s law with coefficient µt = 0.5. The displacement units in this
section are also in meters (m). Two forces F1 and F2 apply respectively at mid-height and at
the top of the left structure in order to impose a given in plane or out of plane displacement
at these points. The elastic solution induced by these six elementary imposed displacements
without contact conditions between the two structures define six boundary modes modes Ûext

jg .
In addition, 10 positive modes of contact forces are extracted by NMF from 200 simulations
previously performed offline. Similarly 6 interface slipping modes are extracted by POD and are
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Figure 6. Displacements comparison between the ROM and the detailed FA model for 7
load cases. ROM in red, reference in blue. Magnification x200.

Figure 7. Creep comparison for the load case number 6. Left: axial creep strain. Right: creep
curvature in the rods (rad/m).

represented on Figure 8(b), with the 3D extension of the first slipping mode being represented
on Figure 8(c).

Figures 9 and 10 display the results of the full and of the reduced order model for an
imposed displacement u1 = (0.0,0.0,0.0),u2 = (1.0,0.0,0.0) and u1 = (0.661,0.47,0.825),u2 =
(−0.237,−0.975,1.393), respectively. The first loading induces a large opening between the struc-
tures while the second one generates significant transversal slipping. The penetration is negligi-
ble and the displacements are superposed while the slipping and contact forces are well repre-
sented.
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Figure 8. 3D-contact problem with friction, from left to right a) face and side view of the
structure, b) the 6 slipping modes, c) 3D extension of the first slipping mode.

Figure 9. Loading 1: u1 = (0.0,0.0,0.0),u2 = (1.0,0.0,0.0). From left to right, superposition
of recombined displacements, interface contact forces and interface slipping from the
reduced model (red) and the reference model (blue) [26].

Figure 10. Loading 2: u1 = (0.661,0.47,0.825),u2 = (−0.237,−0.975,1.393). From left to
right, superposition of recombined displacements, interface contact forces and interface
slipping from the reduced model (red) and the reference model (blue) [26].
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4.4. Results with a fuel assembly with contact and friction

In order to extract the elementary loading modes defined in Section 2.2, a series of 60 calculations
are performed offline with the detailed 3D model of a fresh fuel assembly. In these calculations, a
constant friction coefficient is set at µt = 0.5 and creep is not allowed. Different sets of forces
are progressively imposed onto the grids with realistic values, so that the deformed shape of
the fuel assembly stays in a range compatible with power plant experimental observations.
From the results obtained, a truncated POD defines 11 modes uext

j g , 21 sliding modes us
m and

a NMF decomposition builds 10 positive modes Λk for internal contact forces. The resulting
reduced order model is then used to simulate a load case where grid 6 is subjected to imposed
displacements following 2 cycles of increasing amplitude up to +/-20mm. The grid 6 force-
displacement curve of the reduced contact-friction model is then compared with that of the
detailed model in Figure 11. It can be seen that the reduced order model reproduces very well the
stiffness and hysteresis due to the sliding of the rods in the grids. Concerning the computation
time, the speed-up establishes to 200.

Figure 11. Bending test, force-displacement comparison of the reduced order model (red)
with the 3D-reference model (blue) [26].

5. Conclusion

The numerical tests indicate that considerable cost reduction (a factor of 50 to 1000 for a single
assembly) can be achieved by the present strategy of domain based model reduction while
preserving engineering accuracy.

The proposed strategy is quite general. It embeds an error control in the modal construction of
the boundary displacements and of the creep modes. The open problems concern on one hand
the error analysis of the NTFA averaged material law and on the other hand the combined control
of the modal expansion of the contact forces and of the slipping modes in order to improve
robustness and accuracy.
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