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Abstract 
Progressive deformation of nuclear fuel assemblies that occurs during a succession of irradiation cycles 

within PWR is at the core of numerous interactions. Progresses in the study of this phenomenon resulted 

from more and more complex models. To date, in the more advanced models, a mechanical model is 

combined to a hydraulic model of the core to address the fluid-structure interaction. A complete 

mechanical model of the core is generally built with a simplified finite element representation of each 

assembly using beam or simpler elements. The simplifying approach is required due to the high complexity 

of the multi-body multi-physics calculations. In order to improve the representativeness of the core model 

without penalizing the computational cost of the coupled simulations, a new method of model order 

reduction is proposed. It is specially adapted to this context and borrows the concepts of NTFA non-linear 

homogenization. The theoretical foundations and the application to a slender structure are presented. 

First, the method is validated on a simple case with spatially homogeneous characteristics. Finally, the case 

of the creep response of a fuel assembly under realistic heterogeneous loads is demonstrated. 

Highlights 
 The fuel assembly bow is calculated rapidly with a physics-based reduced model 

 This new a posteriori model reduction is inspired from non-linear homogenization NTFA 

 It takes into consideration the creep heterogeneity and its variation in time 

 The aim is to replace advantageously simplified beam models in FSI coupled core simulation 

Keywords 
PWR assembly bow, model reduction, NTFA, creep 
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1. Introduction 
 

Industrial context 

The fuel assemblies (FA), initially straight, deform within the core of a pressurized water nuclear reactor 

(PWR), see Fig. 1. A strong curvature of the guide thimbles can lead to an important friction when the 

control bars fall. As a result, the travel time of the bars may be increased and no longer acceptable from a 

safety point of view. Over time, several design improvements were performed, with positive effects on rod 

insertion and operation of the plant. In this regard, (Gabrielsson et al., 2018) noticed that these 

modifications led to a change in the shape of assembly bow, from a mainly S-shape to a C-shape, with 

consequences on the radial neutron flux distribution (Saeed et al., 2016). This phenomenon is studied on 

different axes, like neutronics, FA bow (De Lambert et al., 2019) or moderator temperature during power 

ramp-up strategy (Gabrielsson et al., 2018). 

  
Fig. 1. View of a bowed PWR fuel assembly(Fernandes, 2010), grid damaged during handling operations (IAEA, 2010). 

The quasistatic deformation of the FA increases during the several irradiation cycles of its stay in the 

reactor core due to the complex interaction of a number of phenomena. The main cause of the assembly 

bow are the lateral forces, both the contact forces with the four neighbors and the hydraulic forces. The 

lateral hydraulic forces vary with the position in the core and during the irradiation time (Wanninger, 2018). 

They are coupled to the FA bow pattern in the core, the reciprocal fluid structure interaction phenomenon 

being now widely studied (Horváth and Dressel, 2013; Wanninger et al., 2018). The vertical component of 

the hydraulic force can reach levels capable of lifting the FA if it were not maintained axially. Some studies 

point that the flow is also influenced by the upstream (Fournier et al., 2007) and downstream boundary 

conditions (Sheng and Seidl, 2015). Additionally, due to the slender geometry of the FA, an aggravating 

factor is the axial compression maintained by the holdown spring. Intricate internal mechanisms lead to the 

FA deformations under such loading conditions. The most important contributor is the irradiation creep 

and growth (Scholz and Matera, 2000) of zirconium alloys (Fidleris, 1988; Gharbi, 2015; Gilbon et al., 2000). 

Its rate is almost linear with both stress and fast neutron flux and depends on temperature (Kecek et al., 

2016). Another significant phenomenon is the evolution of the interaction between the fuel rods and the 

supporting grids. The trapped efforts due to friction contribute to the irreversible macroscopic deformation 

of the FA. These effects decrease with time because of the progressive relaxation of support springs. To a 

lesser extent, the fast decrease of neutron flux in the peripheral positions of the core also plays a role. It 

tends to curve the FA towards the center of the core because the inward fuel rods grow axially faster. 

Consequently to capture the complexity of the FA response in PWR conditions at the scale of the entire 

core, it is necessary to encompass a wide range of phenomenons and, at the same time restrict the total 

number of degrees of freedom of the core model to keep the computational cost within a feasible range. 

The main objective of the core model is to be both accurate and computationally economic. 
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The first core studies consisted of simplified FA models arranged in two dimensional rows to limit the 

model size. The FA simplified model represents one or more guide thimbles connected to one or more rods 

at every grid levels (Jeon, 2009). They rely on beam or pipe elements for the structures and on discrete 

elements to represent the connections, including the multiple contacts. These relatively economical 

mechanical models dedicated to quasi-static evolution (Horváth and Dressel, 2013; Lamorte et al., 2021; 

Wanninger et al., 2018) and those more oriented for dynamic simulation (Elbanhawy et al., 2021; Hassan 

and Rogers, 2005; Ricciardi, 2017) now make it possible to perform calculations coupling hydraulics and 

mechanics. The main phenomena involved in the mechanical deformation of assemblies are often well 

represented. However, by construction, these models contain simplifying assumptions that alter the 

accuracy of the simulation. For example, the grids are non-deformable, the lateral gradient of neutron flux 

is omitted and, above all, the curvatures, elongations, and slippages of the rods in grids are homogenized 

for a large number of rods. Moreover, it remains impossible to validate experimentally these models at the 

scale of one FA subjected to irradiation. The correlations at the full core scale seem to give good qualitative 

results but are not completely predictive on a series of cycles (Lascar C., 2015; Wanninger et al., 2018, 

2016). 

The focus of this paper is to obtain through adequate model reduction techniques a prediction of better 

quality compared to the one accessible with the FA simplified finite element models, in particular with 

regard to the spatial distribution of non-linear quantities. At the same time, this enhancement should not 

increase the computing time. This paper restricts to the model reduction of a single FA subjected to 

heterogeneous creep. The other influent phenomena, such as contact and friction are not presented here. 

A reduced order model (ROM) always relies on a detailed numerical model. This one needs to represent 

accurately the thermomechanical behavior of a FA under the wide range of loads representative of in-core 

operating conditions. This detailed model corresponds to a quasi-static irradiation creep problem using up 

to millions degrees of freedom, to describe the components and their structural details (rods, grids, 

nozzles, grid springs, dimples). It is also important to notice that the creep is proportional to irradiation, 

which may be heterogeneous in a FA, especially one at the periphery of the core. The irreversible FA bow is 

associated with rods sliding into grids and with creep strains, which typically develop over a period of one 

year. That is why other phenomena, like small vibrations, are neglected since they are not supposed to 

influence significantly the irreversible bow. Operating experience suggests that a limited number of shape 

modes may be sufficient to represent the macroscopic deformation of a FA (Andersson et al., 2005), 

(Gabrielsson et al., 2018). Therefore, model reduction techniques using modal representations seem to be 

the best candidate to approach this problem.  

Model reduction 

There are three main classes of model reduction techniques, namely Proper Orthogonal Decomposition 

(POD), Proper Generalized Decomposition (PGD) and hyper-reduction (HR). 

The proper orthogonal decomposition is widely used in a number of applications. It is also known as 

Karhunen-Loeve decomposition (Karhunen, 1946), or principal components analysis. It is an efficient data 

analysis technique that approximates a high-dimensional system by a much lower-dimensional one. 

Essentially, this method is a linear procedure, which consists in looking for the eigenvectors of a spatial or 

time (Lumley, 1967) correlation operator. It is represented by definition of the most probable realizations. 

It is an a posteriori method, since a set of data coming from numerical simulations or experiments, called 

the snapshots, must be available before producing the eigenvectors and eigenvalues. In details, the method 

constructs the space modes   
       that give the optimal projection of all the snapshots            in 

the sense of the least square, modes which turn to be the eigenvectors of the snapshots correlation matrix. 

Such a POD basis (1) can be used in a Galerkin POD projection to reduce the size of any linear or linearized 

problem. It primarily targets linear problems, with an excellent speed-up. However, in the creep problem, a 

linearization of the complete model at each time step would be much too expensive. 
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PGD stands for Proper Generalised Decomposition (Ladeveze, 1985). It is a method of construction of an 

orthonormal or non-orthonormal basis for the decomposition of a solution in separate space-time or space-

time-parameter form. PGD is a recent method that has been used in many disciplines: for homogenization 

problems (Metoui et al., 2014), for structural computations with viscoelastic behavior (Hammoud et al., 

2011), in fluid mechanics (Dumon et al., 2011), and even for solving the Schrödinger equation (Ammar and 

Chinesta, 2008). It is a priori method since the reduced basis is built progressively during the computation 

and not a posteriori as in the POD, where a set of results are already available. This progressive 

construction of the reduced basis means that one will use the initial high-dimensional model each time it 

will be necessary to enrich the basis, which is a guarantee of the quality of the solution as much as a price 

to pay to obtain it. PGD is naturally adapted to treat a creep problem. However, it is significantly more 

complex to implement than Galerkin POD. Finally, there is a major doubt as to its ability to achieve a 

computation time of the reduced model in accordance with our objective of less than one minute. 

Hyper reduction is used in the APHR (a priori hyper-reduction) method. It is an incremental two-level 

adaptive basis reduction method developed by (Ryckelynck, 2009). A first reduction, called APR, concerns 

the global linear problem in space. It uses the snapshot POD principle several times during the computation 

in order to enrich the basis during the evolution. This enrichment takes place when it is required by an 

error indicator and calls for a complete resolution on the full scale model. The second reduction is 

performed for the integration of the local nonlinear behavior by means of the selection and use of a 

reduced number of integration points of the initial model, chosen with the discrete empirical interpolation 

method (DEIM) (Barrault et al., 2004). The hyper-reduction seems the best candidate at first sight, thanks 

to its double reduction of the balance and the number of integration points to be treated. Nevertheless, 

the announced time savings of the APHR, between 40% and 90%, are very far from our objective. 

(Hernández et al., 2017) recently proposed a new integration method limiting the size of the reduced 

integration domain. When used in a posteriori hyper-reduction, they obtain a much better speed-up, 

superior to 100. Unfortunately, in the near future, the authors intend to add contact and friction between 

rods and grids in the reduced model and, although (Fauque et al., 2018) have shown the feasibility to use 

hyper-reduction with contact, they obtained a speed-up far behind our present objective. 

In the present model order reduction framework, our objective of being able to carry out numerous 

simulations of the core deformations in a very short time leads us towards a posteriori model reduction 

methods, where modal basis are fixed. The second observation is that an order reduction of the spatial 

problem is more advisable than a reduction of the temporal problem, because the number of degrees of 

freedom of the problem largely exceeds its temporal discretization. Time compression is unnecessary. The 

third point is again relative to the speed-up. In the a posteriori hyper-reduction, a significant part of the 

computing time is related to the number of integration points in the reduced integration domain. Reducing 

their number even more would be beneficial to the speed-up. 

These three observations led us to define a new type of reduced order model by adapting a non-linear 

homogenization method to the case of a slender structure. This method is called the NTFA, for Nonlinear 

Transformation Field Analysis (Michel and Suquet, 2003). The NTFA is a scaling up method that uses two 

levels of reduction, with only one basis of tensor functions to represent the non-linear transformations. The 

first level considers the localization of the mean strain imposed by the upper scale and the second one 

permits to integrate the non-linear behavior directly as if there were only one integration point. The speed-

up is therefore excellent. 

In order to obtain the speed-up of the NTFA, the idea is to adapt this homogenization method to a slender 

structure instead of a representative volume element (RVE). In this regard, the principles of the NTFA will 

first be recalled in paragraph 2, before explaining its adaptation to the reduction of a slender structure 

model in section 2. Section 3 applies the proposed technique to a simple structure with nonlinear creep 

while section 4 treats the case of a creep of a PWR FA in heterogeneous conditions.  
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2. A new model order reduction for structures subjected to creep 
2.1 The NTFA homogenization method 

In the field of homogenization of nonlinear composite materials, the mean field approaches prove to be 

usually insufficient since they fail to consider the intraphase heterogeneity of the mechanical fields. 

Considering the almost infinite number of variables which describe the state of a representative volume 

element, (Dvorak, 1992) proposed to separate each phase in a limited number of subvolumes affected with 

a homogeneous plastic strain. Each subvolume obeys the phase constitutive relation. The quality of this 

piece-wise uniform approximation of the internal variables fields is controlled by choosing the number of 

subdomains. He also introduced the influence tensors, characterizing the stress perturbation induced in 

every subdomain by a unit stress-free transformation in a given subdomain. He named this method the 

Transformation Field Analysis (TFA). It permits to solve numerically a macroscopic constitutive relation with 

a number of averaged internal variables proportional to the number of subdomains. (Fish and Shek, 1999), 

(Chaboche et al., 2001) then extended the TFA use to more complex behaviors including damage 

mechanics. This approach effectively accounts for the nonlinear mechanical behavior of the RVE. However, 

the convergence of the method with the number of subdomains to the actual behavior of the medium is 

sometimes slow due to the function space used and may tend to an over-stiffening of the effective 

response of the volume element. (Michel and Suquet, 2003) have improved the TFA method, first by using 

a finite set of higher order, non-uniform function basis, hence the name of their method: Non-uniform 

Transformation Field Analysis (NTFA). Hereafter are presented the main elements of this method.  

Let us consider a heterogeneous medium constituted of N phases with a linear or nonlinear behavior. The 

first operation is to define a representative volume element of the medium (RVE), statistically 

representative of the proportions and distributions of the different phases, in order to study the effective 

behavior of the composite medium. The second operation is to specify the constitutive laws of the different 

phases. The NTFA authors worked in the framework of standard generalized materials which covers a large 

variety of material responses. For example, (Roussette et al., 2009) explored the spherical as well as the 

deviatoric creep occurring in nuclear fuel, before (Largenton et al., 2013) add the hydrostatic swelling 

induced by an intense neutron flux. More recently (Michel and Suquet, 2016) also applied the NTFA to 

complex polycristalline materials such as ice.  

For the sake of simplicity, let us consider a dissipative material, characterized by a free energy potential   

and a force potential  , involving a fourth order elasticity tensor  . The creep rate tensor      is deduced 

from   as follows, with    , the Von Mises equivalent stress, and   , the stress deviator. The notation   in 

the formulas is for the double contraction of the tensors. 

 
 

   
  

  
          

     
  

  
 

 

 

  

    

  

   

  ( 1 ) 

 

An orthonormal basis of   functions           , called modes is introduced typically using a proper 

orthogonal strategy (POD) on a given set of snapshots. Each mode is a symmetric field of tensor of order 2 

defined in a single phase of the composite. The set of modes covers all non-linear phases. The projection    

of any second order tensor field   onto a mode   is defined by: 

   
 

 
        ( 2 ) 

The basis of functions    is orthonormal and normalized such that each mode is homogeneous to a plastic 

strain: 



6 
 

 
 
 

 
                

 

 
          

 

 

  ( 3 ) 

where     is the Kronecker symbol. Moreover, the support of each mode is entirely contained in a single 

material phase. In our case, the modes will also be purely deviatoric.  

The first major approximation of the NTFA method is to assume that the inelastic tensor     can be 

developed on this modal basis: 

         
   

 

   

 

The local solution of the equilibrium problem inside a Representative Volume Element with constitutive law 

(9) and imposed averaged deformation    is then given explicitly by: 

                     
   

 

   

 

where the localization tensor field   and influence tensor    can be computed a priori by solving the same 

equilibrium problem respectively with a unit imposed average deformation or inelastic component. The 

projection of the local stress field onto a given mode is then given by: 

    
 

 
                 

 

 
                     

  

 

   

 ( 4 ) 

The terms in square brackets can be calculated a priori by performing a single elastic calculation over the 

RVE for each mode k.    is supposed to be known but the inelastic components   
  , which are subject to 

time evolution are not determined. 

The standard homogenization method requires updating the inelastic components   
   in each phase to 

compute the local stress. In the so-called "hybrid" method, it is possible to perform an exact integration of 

the constitutive relations at any point of the RVE but at the expense of simulation time. In order to 

drastically reduce the cost of the calculations, the evolution problem of the internal variables needs to be 

solved directly in the basis of modes   . (Rice, 1970) and (Michel and Suquet, 2004) have shown that, when 

the constitutive  laws derive as above from two potentials, their structure can be transposed in the reduced 

basis. More precisely, the original flow rules projected on the modal basis is given by: 
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To obtain a relationship between the reduced internal variables    
   and the   , it is necessary to make an 

approximation of     in order to simplify ( 5 ). A possible approximation is given by (Michel and Suquet, 

2003) who estimate a global reduced stress    for the phase   by the Euclidian norm of the      modal 

stresses  

       
 

    

   

 ( 6 ) 

By replacing ( 6 )into ( 5 ) they finally obtain the approximate coupled reduced evolution law that enables 

to update the inelastic state variables   
   by: 

   
   

 

 

      

    

  

  

 ( 7 ) 
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This strategy has been validated by (Michel, Suquet, 2004) looking at the load-displacement curves of a 

four-point bending case simulated on half a composite beam comparing a reference model to an 

homogenized result based on NTFA. 

2.2 Adaptation of the NTFA method to a slender structure 

Following the NTFA approach, the main idea is to consider that a fuel assembly (FA) constitutes a 

representative volume element (RVE) of the core. The main difficulty comes from the fact that the 

envelope of this RVE has a slender shape whose average deformation cannot be reduced to a classical 

symmetric deformation tensor   . Indeed, the FA is likely to deform according to a large number of shapes 

including elongations, C-curvature, S-curvature, W-curvature and this, in different directions. The main 

adaptation with respect to the NTFA is therefore to define the average deformed shape of this structural 

RVE using a basis of macroscopic displacement modes.  

Obviously, there is a compromise to find on the number of these macoscopic modes, willingly minimal to 

lower the computational cost of the model, and high enough to represent the FA bows with sufficient 

precision.  

Once this point of determining the macroscopic displacement modes is acquired, one must then construct 

the orthogonal basis of the inelastic strains within the RVE. By considering each of these internal strain 

mode or macroscopic displacement modes as individual loadings, one can reconstruct the local stress field 

everywhere. First, this allows to check the static equilibrium on the displacement modes, then to derive the 

thermodynamic forces that guide the evolution of the inelastic deformations, namely the amplitude of the 

creep modes in our case. For this, the projection of the local evolution law leads to a direct modal 

approximation in which the thermodynamic forces appear in a coupled way. Finally, the number of internal 

variables of the reduced model is no more than the size of the orthogonal basis used for the inelastic 

deformation tensors and, therefore, guarantees an excellent order reduction. 

2.3 Modal basis of a slender structure 

A slender structure is often represented as a beam, subject to elongation and different possible curvatures. 

The description of its movement is limited to the displacement of the neutral fiber. In this case, only are 

necessary the displacements of all the grids and nozzles, represented in Fig. 2. 

 

Fig. 2. Components of a PWR fuel assembly (Pramuditya, 2009). 
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That is why the averaged displacement         of any grid   is first described, where      is the surface of 

the grid number   and    is the maximum number of grids and nozzles in the FA.  

        
 

    
         

   

           ( 8 ) 

Practically it means that the support of the macroscopic displacement modes is a line of    nodes 

(                                ), see Fig. 3 for an example with 3 grids. Accordingly, in a 3D space, a 

maximum of 36 modes is then sufficient to project all the possible deformed shapes of such a line with 12 

points.  

Of course, a smaller basis is valued if it is relevant. In order to construct such an optimal basis of 

displacement modes, it is then natural to apply a Karhünen-Loeve transformation (Karhunen, 1946), also 

called Proper Orthogonal Decomposition (Sirovich, 1987), on a representative set of deformation results 

expressed on the support of the displacement modes (here, the 12-nodes line). They might be obtained 

from in situ measurements, when possible and from detailed calculations otherwise.  

Finally is obtained an orthonormal basis of   displacement modes   
  supported by a line of    nodes. It 

enables to decompose the averaged displacement of the grids   at instant    into a collection of orthogonal 

modes: 

 
 
 
 

 
 
            

       
    

     

   
    

               

  

 

                  

         
 
 

   
 
   

   
     
   

     

  ( 9 ) 

 

with    the eigenvalue of the grid displacement correlation matrix and   a given tolerance. 

As seen in section 5, the local scalar product used for displacements can be weighted in order to decrease 

the relative influence of the axial displacement.  

Following the NTFA method, the inelastic strain tensor field are developed on an orthonormal basis of   

space functions   
          , called inelastic modes, where each mode is a deviatoric symmetric tensor 

of order 2: 

 
 
 

 
             

        
     

     

   
     

       
        

       

   

     

  ( 10 ) 

 

Above,   
   is the ith inelastic tensorial mode of the basis and   

     , its scalar magnitude at time t. As well 

as for the displacement modes, this basis of inelastic modes can be determined by a snapshot POD applied 

on a collection of inelastic strain fields obtained with the detailed model.  

2.4 Mechanical fields associated to the different modes 

It is now necessary to determine the elastic and inelastic strain fields and the stress field associated to the 

different modes. For this, each mode is applied to the detailed model as an elementary loading and, then, 

identify the associated stress and strain fields.  
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For the macroscopic displacement modes, the averaged grid displacement   
  is imposed at the boundaries 

of the slender structure, assuming that it behaves elastically (     ). The goal is to characterize the 

elastic response of the FA to any external loadings, decomposed on the displacement basis, and to identify 

the associated local stress and strain fields, as well as the resulting forces. This is achieved by solving the 

system of equations (11) with the detailed model of the system, where   and   are the stress and strain 

tensors, respectively,   is the 4th order tensor of elasticity,     is the surface of the grid number   and 

     , its averaged displacement.  

 
 
 

 
 

      

     

  
     

 

  

       

   

        

     

  ( 11 ) 

 

The solution enables to identify, at any point of the detailed model: 

-   
      , the stress field associated to the elastic response of the FA to the macroscopic 

displacement mode j, 

-   
      , the associated strain field, 

-   
      , the associated displacement field. 

For the inelastic strain modes, the same type of operation is done. The difference is that zero displacement 

is maintained at the boundary of the slender structure (averaged displacement of the grids       blocked) 

while imposing an inelastic strain   
  . The corresponding local detailed elementary problems writes: 

 
  
 

  
 

      

           

      
 

  

       

   

          

      
  

  ( 12 ) 

 

The solution enables to identify, at any point of the detailed model: 

-   
       , the stress field associated to the elastic response of the FA to the inelastic mode   

  , 

-   
       , the associated strain field, 

-   
       , the associated displacement field. 

Thanks to the linearity of the elasticity operator  , one can sum these elementary solutions. The local state 

of the system then appears as a linear combination of the aforementioned associated fields: 

          
        

          

     

    
       

         

     

 ( 13 ) 

 

          
        

          

     

    
       

         

     

 ( 14 ) 

 

          
        

          

     

    
       

         

     

 ( 15 ) 
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By replacing   with its modal expression in the principle of virtual power, and successively choosing all the 

  displacement modes   
       as virtual displacement, shows that each internal force   

   , identified as the 

projection of stresses onto   
      , must balance the external force   

   , projection of the external forces 

onto mode   
 . 

 
 
 
 

 
 
 

 
 
     

 
            

 
 
       

     
        

   

  
        

     

     
    

       

   

  
        

     

 
 
            

              

   

   
        

    

      

  

   

      
    

  ( 16 ) 

 

Above,       is the mechanical loading applying on the FA in the reactor core due to contact between FA, 

fluid pressure or drag forces, and      are volume forces such as gravity. It is worth noting that the external 

forces are often aggregated at each nozzle/grid level. So, in practice, one can directly apply the scalar 

product between these external forces      and the boundary average displacement    
  to obtain the   

external modal forces   
   . 

In the end, the force equilibrium (16) gives a linear system of   equations with the reduced state variables 

  
   and   

 . Therefore, this system must be completed by   independent equations that derived from the 

constitutive equations in the two following sections. 

 

2.5 Thermodynamic forces 

  thermodynamic forces   
   are defined as the conjugate of the inelastic strains   

   when computing the 

total dissipation. 

                 
     

  

 

   

          

   

 ( 17 ) 

 

Getting      from (10) and replacing   by (13), this thermodynamic force appears as an explicit linear 

function of the reduced state variables   
   and   

  at time    

   
        

    

   

    
     

          
    

        

    
    

         
    

        

 ( 18 ) 

 

Here   
   appears as the local stress projection (19) onto the inelastic strain mode   

  , very similar but not 

exactly equal to the reduced stress    of the NTFA defined in (4). 

2.6 Reduced evolution law 

Let us consider a Norton creep law  ( 19 ), whose flow velocity depends on a power law of the stress. 

 
 
 

 
   

  

  
          

          
 

     
  

  
 

 

 
     

   
  

   

  ( 19 ) 
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The purpose is to determine the values of the modal rates    
   for any state of the reduced system 

characterized by the values of   
   and   

 . Now that the modal forces   
  are explicitly determined, 

similarly to (Michel and Suquet 2003) and (Michel and Suquet 2004), the aim is to use these reduced forces 

to directly express the evolution of the reduced internal variables. Wishing to do like Michel and Suquet in 

the projection of the evolution law onto the mode   
  , when they suggested to replace     in (5) by    (6), 

the norm of the reduced stresses of the r phase. By analogy, based on the normalization (10), we propose: 

 
 
 
 
 

 
 
 
    

  
         

      
 

 

  

    

     
  

  

  

        
 

 
 

 

 

         
 
   

 

   

  ( 20 ) 

 

Applied to the Norton creep law, and now considering that the creep characteristic      is no longer 

homogeneous, the reduced evolution law becomes (21). 

 
  
 

  
    

  
            

 
 
  

     

         
 
   

 

   

  ( 21 ) 

 

The modal characteristic    is a function of the local creep characteristic   and depends on the volume   as 

detailed in the next section. Lest us observe that this relation takes a variational form in the reduced basis, 

with a dissipative function     
    defined by: 

 
 
 

 
      

 

  
 

 
     

 
 
             

   

 

   

  

     ( 22 ) 

 

The reduced potential    is not an intensive potential but an extensive one, controlling the total dissipation 

of the phase considered in the structure. In addition,   being a convex scalar function,     
    is a lower 

bound of the exact integral of the potential over the volume of the considered phase. 

 
 
                         

   

 ( 23 ) 

 

In practice, vector     (18) is composed of   components which are linear combinations of the     state 

variables with precomputed coefficients. Again, the greatest interest of the method lies in the fact that this 

evolution of the internal variables is calculated only once for the full structure, just as if there were only 

one integration point. 
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2.7 Handling local heterogeneity 

Usually in classical homogenization, the RVE is small and the influent factors such as temperature are 

homogeneous at this scale. In the present case, the RVE is a large structure that undergoes spatial 

variations of temperature      and neutron flux     . Consequently, the material characteristics are 

heterogeneous. This is particularly the case for the creep characteristic     , which depends strongly on 

the local fast neutron flux that is more intense in the middle of the FA than at its extremities. One should 

also note that these characteristics are subject to evolution over time, thus might need an update at a 

proper frequency. Therefore, the modal characteristics    of (21) must be determined in accordance with 

these parameters at current time   and in relation with the spatial distribution of the considered mode. 

A first technique is to evaluate    in the particular case of a stress field     
   aligned with mode  . This 

generates a thermodynamic force   
     , oriented exactly in the     direction       

     . When 

equalizing in this case the reduced and full dissipations in (24): 

        
    

 

 
    

 

 
  

     
   

   

  
     

   

 ( 24 ) 

which leads to: 

       
 

 
  

     
   

 

  

   

 ( 25 ) 

 

Eq. (25) clearly shows how the local characteristic  , variable in space and time, is weighted by the local 

amplitude of mode   
   through the Norton potential. One can notice that, even when   is homogeneous, 

this modal characteristic is possibly different from   and provides a correction to the reduced evolution law 

(21). 

A second technique for evaluating    is to consider instead    
  

  , that is a strain rate field of the form 

       
  . A direct calculation of dissipation in a reduced basis yields then : 

              
 
     

    
 
 

 
  

 
    ( 26 ) 

that is: 

     
 
                  

 ( 27 ) 

 

Calculating the local dissipation      
  from the flow rule (20) used with        

   yields then: 

   

 
 
 
 
           

 

 
  

     
   

  

   

  

 
 
 
 
   

 ( 28 ) 

 

The approximate modal characteristics (25) and (28) arise from imposed stress or strain rate fields that are 

possibly more prescriptive than reality. Thus, they constitute bounding values. These bounds become closer 

one from another when   becomes homogeneous over the structure. Moreover, they are exactly equal in 

the particular case of linear homogeneous creep (              ). Of course, one can take the 

geometric average of these two bounds for a better assessment.  
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2.8 Reduced problem and solution algorithm 

From the force balance equation, the state deduced thermodynamic forces   and the above approximate 

evolution law of the modal rates    
   lead to our reduced order model of FA: 

 
 
 
 
 

 
 
 
 

  
       

    
 

      

  

   

      
             

             

   
  

            
 

 
  

     
                

 
   

 

   

  ( 29 ) 

 

with the unknown vector   and influence matrices         ,        given by: 

 
 
 
 

 
 
      

      
    

       
   

 

        
     

       
                           

   

          
     

       
                               

   

  ( 30 ) 

 

The reduced problem (29) is a conventional quasi-static creep problem that can be solved by different 

methods. The authors chose a simple prediction-correction algorithm to solve the equilibrium at the 

different calculation times, which are taken identical to those used for the reference model. First, the 

prediction is computed by solving the linear system defined by matrix          restricted to the   
  

unknowns, noted  , and the external forces projected on the displacements basis. Second, the correction 

phase consists in solving the reduced evolution law. For this, an implicit Runge-Kutta algorithm is used to 

integrate creep over the time step. These two operations are repeated until convergence of the relative 

force residue under a prescribed value of     . Since   is inverted only once and stored, this method is 

usually fast except when the inelastic deformation becomes large. When the convergence is too slow, a 

Richardson method (Richardson and Glazebrook, 1911) is used to provide an acceleration almost 

comparable to that of the Newton-Raphson method. 

3. Validation on a simple case study with non-linear creep 
3.1 Description of the reference model 

This section presents the results of a first application of our model to a simple slender structure. The 

structure considered for the case study is represented by its finite element mesh in Fig. 3. It represents a 

simplified skeleton model of a FA. The structure is made of a base and of 3 grids connected together by 4 

vertical legs of square section. It is 3m high, 0.4m wide. The thickness of the legs, base and last grid is 

0.05m. The thickness of grid 1 and grid 2 is doubled to 0.1m. The reference mesh contains 2136 hexahedral 

quadratic finite elements and 14748 nodes. 

The possible load cases are external forces applied either on grid 1, 2 or 3, or on a combination of them. 

The forces remain constant in all load cases, which duration is 108 seconds, similar to the total irradiation 

duration of a FA. Forces are distributed homogeneously on each grid and oriented in the 3 space directions. 

Concerning the boundary conditions, the lower face of the base is fixed to the ground.  
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The constitutive law is elastic and viscoplastic following a Norton law (19) with a stress exponent equal to 

1.4 (     ), as frequently proposed for irradiation secondary creep of Zirconium alloys (Fidleris, 1988; 

Gharbi, 2015) in PWR conditions. The creep parameter   is arbitrary fitted to generate creep strains of the 

same order of magnitude as those affecting the guide thimbles of the FA in a PWR.  

Table 1: material characteristics for the test case. 

Norton creep law Young modulus 
   

Poisson coefficient 
  

Creep sensitivity 
  

Stress exponent 
  

         
  1010 0.3 4.10-21 1.4 

 

 

Fig. 3. Mesh of the simplified fuel assembly defined for the case study (left) and symbolic line supporting the boundary displacement 
modes of the reduced model (right). 

3.2 ROM identification 

3.2.1 Displacements modes and associated fields 
In order to build the ROM, the first operation to conduct is to identify the displacement modes of the case 

study. As exposed in paragraph 3.2, only the mean displacement of each grid are looked for. Considering 

this, a line made of 4 nodes is defined:   ,   ,    and    (see Fig. 1). Node    represents the basis and 

remains motionless. Nodes   ,    and    represent the grids. 

Here, a numerical characterization of the displacement modes is unnecessary since the canonical basis of 

all the displacements modes   
  consists in only three vectors: 3 grids   3 translations. The first three 

modes are thus the unit displacement of    according to       and   , respectively, with no 

displacement on    and   . The other six modes are obtained by permuting the roles of    with    and   , 

respectively. 

For each displacement mode   
 , the determination of the three associated fields   

      ,   
      ,   

       

requires the resolution of only one elastic problem, with a fixed base, the modes   
 being applied to the 

grid nodes of   ,   ,   , respectively. Eq. (12) provides the necessary relation to transfer this Dirichlet 

condition onto the detailed model’s mesh by means of Lagrange multipliers. The nine associated   
       

modes obtained are displayed on Fig. 4. 

Ux 

Uy 

Uz 
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Fig. 4. Elastic mode shapes   
       (x10

-2
) associated to the 9 macroscopic displacement modes   

  controlling the lateral and 

vertical average grid displacements. Isovalues are for the corresponding Von Mises stress fields (Pa). 

3.2.2 Inelastic modes and associated fields 
The characterization of the creep behavior of this structure is approached by applying different load cases 

to the reference model described in 3.1. For this purpose, a small number of numerical experiments, 

namely 11 creep calculations were run with arbitrarily imposed grid forces, chosen to project on the 9 

displacement modes   
  in a linearly independent manner. Fig. 5 shows the amplified deformed shapes 

obtained at the end of these creep calculations. The final inelastic strain fields obtained form a collection of 

snapshots. The identification of the inelastic strain modes is operated thanks to a proper orthogonal 

decomposition (POD) on these snapshots. Of course, out of the context of this simple test, a more complex 

non-linear behavior law would require more load cases to explore the space of the creep fields generated 

by external varying forces on grids. 

 

Fig. 5. Final static deformed shape (x50) of the case study when submitted to 11 arbitrary load cases defined to characterize its 
creep response and later identify dominant inelastic modes by means of a POD made on these snapshots. 

Since the number of snapshots realized was relatively small compared to the number of displacement 

modes   
 , it was chosen arbitrarily not to restrain the quality of the POD basis and kept 10 modes to build 

the reduced basis of inelastic strains. Of course, a higher number of snapshots would better characterize 

the creep behavior of the case study. 

The associated fields   
       ,   

        and   
        then come as the solutions of the elastic problems, 

defined by (16).  
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3.3 Comparison of reference and reduced model solutions 

In order to evaluate the identified reduced model, a new arbitrary load case is computed. It is designed to 

be significantly different from the loadings of the snapshots used to identify the inelastic strains basis. For 

example, one can consider a random linear combination of these previous loadings. Table 2 presents the 

values of the forces applied during a period of 108 seconds on the three grids for this load case. 

Table 2: values of the forces applied on the grids for the test case of evaluation of the reduced model. 

Applied forces (N) Fx Fy Fz 

Grid 1 543 -247 200 

Grid 2 0 682 400 

Grid 3 -321 -90 300 

 

Fig. 6. presents the time-evolution of the creep modal amplitudes of the ROM and Fig. 7 presents the 

deformed shapes of the case study for the reduced and the reference models, which superpose quite well. 

This last figure fairly shows the good agreement between the two models. 

 

Fig. 6. Time evolution of the 10 creep amplitudes over 10
8
 s of constant loading. 

 

Fig. 7. Superposition of the final deformed shapes for the reference (black lines) and reduced model (red lines). 
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The final displacements of the grids are recorded and compared in table 3. Their time-evolution in Fig. 8 

shows that the reduced elastic matrix gives a good prediction and that the final relative error on the 

displacements is due to the approximation of the creep law in the reduced model. This prediction level in a 

creep simulation is comparable to that originally obtained by the NTFA authors for an elastoplastic bending, 

see (Michel and Suquet, 2004). 

 

Fig. 8. Comparison of the time – displacement curves of the grids between the reference model (solid line) and the ROM (dashed 
line). 

Table 3: comparison of the displacements of the grids between the ROM and the reference model. 

 Ux (ref.) / Ux (ROM) Relative error Ux Uy (ref.) / Uy (ROM) Relative error Uy 

Grid 1 1.40/1.37mm -2,2% 2.67/2.83mm 6% 

Grid 2 -1.66/-1.43mm -13,8% 7.70/7.53mm -2,2% 

Grid 3 -4.60/-4.64mm 0,8% 7.66/7.48mm -2,3% 

 

Table 4 presents the computing time for the load case defined in table 2. The reference and the reduced 

models use identical time discretization, which includes 11 time steps. The results show that the reduced 

model is more than 100 times faster than the reference one, a finite element model using (CEA, 2020). This 

speed-up was obtained for a small size test simulation and it is expected to maintain or to improve this 

speed up with larger simulations involving many FA. 

Table 4: typical computing time (1 processor). 

Reference model (Cast3M) ROM: 9 displacement modes / 10 creep modes 

41953ms 359ms 

 

4. Creep of a PWR FA in heterogeneous conditions 

In the previous section, a simple case showed that the NTFA is transposable to a slender RVE and confirms 

the expected speed-up. The objective is now to apply it to our industrial target, which is a FA, whose 

reference model has a larger size and is far more complex. First, unlike the previous example using only 

massive finite elements, our reference model for the FA uses pipe generalized finite elements for the rods 

or guide-tubes, and shell elements for the grids. This imposes an adaptation of the operators to the 

generalized coordinates. Second, contrary to the homogenization approach, the creep characteristic      
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becomes heterogeneous, since it depends on the fast neutron flux, which is itself heterogeneous and 

slightly variable with time. Finally, the structure is multiphase, with some areas of the structure not 

creeping at all, such as the massive steel nozzles that are located outside the neutron flux. 

4.1 Reference model  

Considering a FA whose dimensions and characteristics are close to, but different from, those of the French 

1300MW PWR FA. The FA has a total height of about 5 m and a width of 21 cm. It includes 10 square grids 

of 17x17 cells. There are 24 guide thimbles and the 265 rods are pinched by small leaf springs at the 

passage of each grid. The upper and lower nozzles are made of steel and are connected to the guide 

thimbles by rigid links. 

The discretization for rods and guide thimbles uses generalized pipe elements (beam with parameters 

corresponding to an annular section). The grids and the end caps are represented by shells while all the 

connections use discrete elements similar to springs. 

The goal here is to validate the model reduction for creep, the other phenomena will be integrated later. 

Therefore, focusing in this study on the creep of the rods and guide thimbles. The relaxation of the grid 

springs is not taken into account. Similarly the contacts between rods and grid are kept closed in all 

circumstances and sliding is forbidden. Moreover, the mechanical influence of the presence of fuel pellets 

is deliberately neglected whatever the burn-up of the rods.  

The behavior law adopted for the rods and the guide thimbles is the irradiation creep law used in FRAPCON 

3.4 (Geelhood et al., 2011), recalled in table 5, with   denoting the fast neutron flux. 

Table 5: irradiation creep law parameters. 

Irradiation creep law                                  

           
     

       1.874E-24 0.85 1 -3.18562+0.00699T 

 

The boundary conditions are defined to represent the mechanical conditions in a PWR core. They consist in 

blocking the base of the bottom nozzle and in prescribing an axial guidance of the top nozzle. The 

mechanical loadings are a constant axial compression force of 5000N applied by the holdown system on the 

top nozzle, together with axial or transverse forces distributed on the grids (hydraulic forces and possible 

contact force with a neighbor FA). As for the fast neutron flux, a maximum intensity of 

                  in the middle of the FA is considered, with a conventional decrease to zero when 

reaching the nozzles, see Fig. 9. A lateral gradient of neutron flux is also applied for the external positions in 

the core. 
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Fig. 9. Deformed (red) and undeformed (green) mesh of a FA, fast neutron flux (>1MeV) (n/m².s). 

4.2 Parameter space and design of numerical experiments 

In order to construct the macroscopic and inelastic modes, the priority is to define the parameter space 

describing the different loadings and then construct a reasonable filing using detailed model realizations. 

For a given FA design, the main parameters that influence the deformation are the lateral forces that apply 

on the grids and their vicinity, as well as the position of the assembly in the core. Indeed, an assembly 

positioned in the center of the core presents a power distribution that varies only in the vertical axis, see 

Fig. 9, while a FA at the outer edge of the core also undergoes a significant lateral flux gradient. The outer 

face of such a FA commonly has a flux approximately twice as low as the one facing the core. 

For the hydraulic forces applied to the FA, in order to synthesize the information, the geometry is divided 

into 10 zones, each encompassing a grid and segments of rods and guide thimbles on either side of the grid. 

The sum of all the hydraulic and contact forces in a zone constitutes a mechanical loading brought back on 

the grid. Table 6 gives the different profiles LAT1 to LAT9 defined to study the response of the FA under 

lateral loading. LAT1, LAT2, LAT3 and LAT5 are realistic sets of forces coming from hydraulic simulations (De 

Lambert et al., 2021). LAT4 figures a contact force at mid height without hydraulic lateral forces. LAT6 to 

LAT9 are purely hypothetic sets of lateral forces added to complete the representation of the forces up to 

mode 5, also to represent possible contacts with a neighbor FA at different heights. Forces beyond mode 5 

are considered unlikely and are not observed during measurements on deformed assemblies (Andersson et 

al., 2005; Gabrielsson et al., 2018). 

Table 6: 9 lateral force fields (N) to be applied on the 10 grids of a FA in the detailed simulations. 

Grid LAT1 LAT2 LAT3 LAT4 LAT5 LAT6 LAT7 LAT8 LAT9 

1 -30 0 90 0 0 0 0 -100 -100 

2 -72 -5 60 0 -20 0 -100 0 0 

3 -150 20 30 0 -40 -100 0 100 100 

4 -30 70 0 0 -100 0 0 0 0 

5 36 100 0 0 -30 0 100 0 -100 

6 18 45 0 150 0 0 0 -100 0 

7 9 25 0 0 20 100 0 0 100 
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8 0 10 0 0 80 0 -100 0 0 

9 0 3 30 0 20 0 0 100 -100 

10 0 0 60 0 0 0 0 0 0 

 

A test plan has been designed for the construction of the different modal basis. It is built with three types 

of detailed reference calculations.  

The first part of the test plan is the most consequent. It considers a FA in a central position (most of the FA 

are defined as such), meaning that the neutron flux is homogeneous in any horizontal section. Using the 

force profiles of table 6, 68 combinations of lateral forces for X and Y directions are computed with the FA 

detailed model.  

The second part of the test plan considers a FA positioned outside, on the west side. This means that the FA 

is subject to a neutron flux gradient in the X direction. Lateral forces of table 6 are only applied in this 

direction because the feedback shows that the deformations are more pronounced in the core radial 

direction. Moreover, an information on the coupling effects induced by combination of lateral forces in 

different directions was already obtained in the first part of the test plan, although not with the same 

neutron flux. 

 

The last part of the test plan copies the second one but considers a FA in the north external position, i.e. 

with a rotation of 90 degrees of the mechanical and neutron flux loadings. 

4.3 Scalar product adaptation for beam and pipe generalized elements 

To construct the inelastic modes, a POD is applied on the inelastic strain snapshots using the scalar product 

(31). 

   
     

       
        

       

   

 ( 31 ) 

However, within generalized elements of the pipe or Euler beam type, inelastic deformations are only 

accessible in the form of generalized deformations of axial strain   , curvatures   ,   . It is therefore 

necessary to express the local deformations at any point   of the beam or pipe section in terms of these 

generalized deformations, before integrating them over the volume of the element. The point   is 

characterized by its radius      and its angular position      in the section. The creep deformation being 

considered isochoric, a Poisson's ratio       is introduced, and after neglecting the shear strain, it is 

possible to construct an underlying 3D strain tensor as: 

 

                                        

      
      

      

   

          
  ( 32 ) 

 

After integration on the volume of the beam element, with      its external radius, the scalar product with 

the generalized coordinates becomes (33). 

         
  

 
         

                
  

      

 
 

      

 
     ( 33 ) 

 

After integration on the volume of the pipe element, with      and      its internal and external radiuses, 

the scalar product with the generalized coordinates becomes (34). 
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    ( 34 ) 

 

The same reasoning applies to other generalized elements such as shell for example. 

4.4 Modified POD for macroscopic displacement modes 

In section 3.2.1, an arbitrary orthogonal basis of macroscopic displacement modes with 9 modes was 

chosen since there were 3 grids only. A FA has 10 grids and a top nozzle, leading to 33 elementary modes in 

3D, if considering the bottom nozzle motionless. In order to use less modes, it is still possible to perform a 

POD on the displacements of the grids obtained by running the test plan. By carrying out such an exercise, 

the POD particularly highlights the axial thermal expansion modes, which are particularly visible because of 

the great length of the FA. However, these are less interesting to us than the lateral displacements of the 

grids. The authors therefore choose to weight the POD by a stiffness matrix        in (35) that favors the 

modes involving bending of the FA over the axial modes.  

 
 
 

 
                      

        

     

   
    

     
            

                   

         
 
 

   
 
   

   
     
   

     

  ( 35 ) 

 

In practice,        is built as a stiffness matrix of a beam passing through the twelve nodes of the grid and 

nozzle, with a plain square section of 20x20cm², thus stiff enough in flexion to let the first ten modes 

present minor axial values. Fig. 10 pictures the 18 3D modes obtained with such a weighted POD, for a 

projection error   limited to 1%. 

 

Fig. 10. 18 macroscopic displacement modes (3D), from a weighted POD on grid displacements with a truncation at 99%. 

4.5 Inelastic modes  

From the 88 simulations performed during the test plan, 176 creep strain snapshots were collected. A POD 

is applied using (34) to account for generalized strains in pipe elements. Fig. 11 displays the component CY 

of inelastic curvature for the 5 first tensor modes. This basis is truncated after 18 modes following the same 

criterion as for the macroscopic modes. 
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Fig. 11. Out of plane inelastic curvature CY of the 5 first inelastic tensor modes, POD eigenvalues of the 176 creep strain snapshots. 

4.6 ROM verification on the points of the design of experiments 

The 88 previous calculations that permitted to identify the modes and the operators were simulated using 

the ROM. For each calculation, the grid forces are projected onto the macroscopic displacement modes 

(16) and the modal creep characteristics (25,28) are determined from the considered neutron flux mapping 

(central or peripheral position). The grid displacement results are then compared in Fig. 12 for the first 7 

calculation cases, which represent the LAT1 to LAT7 force loadings with a neutron flux corresponding to a 

central core position. 

 

Fig. 12. Displacement comparison between the ROM results and the results of detailed FA model for the 7 load cases LAT1 to LAT7. 
ROM in red, reference in blue. Magnification x200. 

Fig. 13. displays the same type of comparison for different cases but, this time, with forces applied in both 

horizontal directions at the same time. The precision is similar to the uncoupled loadings case. 
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Fig. 13. ROM grids displacements (red) compared to reference (blue) for coupled force loadings in horizontal directions X and Y. Left: 
forces LAT1/LAT2 – middle: LAT2/LAT3 – right: LAT2/LAT5. Magnification x200. Viewpoint chosen to maximize the visible 
displacement. 

The inelastic deformation fields are also recombined and compared, in Fig. 14, to the creep fields of the 

reference calculation number 6. In this case, the ROM shows a good mapping and a slight deficit in axial 

creep intensity. Creep of the rods in curvature at the passage of each grid is larger and well correlated. 

 

Fig. 14. Creep comparison for loading LAT6. Left: axial creep strain. Right: creep curvature in the rods (rad/m). 

In order to give a more statistical view of the error committed with the FA ROM, one can define an 

indicator (36) for the creep flow error on one given trajectory. This indicator relies on the local dissipation 

difference between the reference model and the recombined fields of the ROM, integrated over space and 

time 

                    
  

     
    

       

 

   

    
    

      

 

   

       
  

 

   

  
         

 

 

 

 

   

 ( 36 ) 

 

The global relative flow error       
   , evaluated for all the 88 realizations of the experimental design, takes 

the form (37) and establishes to 14%. 
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Concerning the calculation time, table 10 shows a speed-up of around 50 for this FA creep simulation, 

comparable to the speed-up of 110 realized with the lighter prototypic FA model, see table 4 in 3.3. The 

reason for this lower speed-up is that the FA reference model is already highly optimized and uses 

exclusively generalized finite elements, such as pipes and shells. Obviously, the same geometry represented 

by a classical mesh of linear or quadratic brick elements would have displayed a much better time ratio. 

Table 10: typical computing time (1 processor) for a FA creep calculation. 

Reference model (Cast3M) ROM: 18 displacement modes / 18 creep modes 

866s 16s 

 

4.7 Validation outside the characterization points 

The objective of this section is to verify that the results of the ROM remain valid outside the points used for 

its construction. For this, a completely new test case is defined and simulated with both the detailed and 

the reduced models.  

The test conditions consider a FA in a near peripheral core position, subjected to new lateral forces 

summarized in table 11. These forces are not collinear with any of the loadings used to identify the ROM. 

The axial compression value, which was 5000N in all the previous calculations, is now increased to 6000N. 

Table 11: new lateral loading definition for interpolation test case 1, the neutron flux remains unchanged. 

Grid 1 2 3 4 5 6 7 8 9 10 

Force Fx (N) 40 20 0 -10 -60 -70 -35 0 13 20 

Force Fy (N) 0 -28 -56 -32 0 12 44 42 23 0 

 

Concerning the neutron flux field, lateral gradients of neutron flux are added, respectively of 30% in the   

direction and 20% in the   direction. These lateral gradients can be seen as an interpolation of the 3 

neutron flux maps previously used. In addition, a small extrapolation of the parameter space is also 

operated, resulting in an axial power offset, see Fig. 15, whereas no sensitivity was performed on this axis 

in the initial realizations. In fact, the modal creep characteristics are affected by this new neutron flux field 

through Eq. (25,28) , which precisely capture its influence on every mode individually. 

 

Fig. 15. Axial rod power profiles, standard case in blue, axial offset in orange as used in test case 2. 

The results of the ROM are compared to those of the detailed model in Fig. 16, for displacements, axial 

creep and curvature creep. The final deformed shape, recombined from the ROM solution, is close to the 

reference model and so are the axial and curvature creep fields. However, when looking precisely at the 
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creep curvature comparison at the right in Fig. 16, one should note that the ROM slightly underestimates 

the intensity at the bottom of the FA and slightly overestimates it at the top. This is due to the basis of 

creep modes that was built on snapshots obtained with symmetric axial flux only (see Fig. 15). 

 

Fig. 16. Test case with light extrapolation, on the left, comparison of the deformed shape of ROM, in red, with reference model, in 
blue (magnitude 200). In the middle, comparison of axial creep strain of the rods. On the right, comparison of creep curvature of the 
rods (rad/m). 

These results confirm the expected ROM ability to interpolate in the parameter space and, to some extent, 

extrapolate. Of course, any extrapolation should be done with caution since a completely different neutron 

flux could possibly generate very different creep modes.  

5. Conclusions and perspectives 
The authors have proposed a new method for model reduction in structural mechanics with nonlinear 

behavior laws. This method results from an adaptation of the NTFA homogenization method to complex 

slender structures considered as a unique RVE. Compared to the classical simplified FE models of FA, it 

gives access to local quantities at any point in the structure for additional post-processing. Above all, many 

simplifying assumptions are avoided here, in particular on the rigidity of the grids and on the neutron flux 

gradients. 

It has been successfully applied to a detailed model of a PWR FA in a quasi-static framework. Necessary 

adaptations are developed to match with the pipes and shell elements used in the reference FA model. A 

second improvement was introduced to account for the heterogeneous creep characteristics by weighting 

the inelastic modes individually. This allows taking into account the effect of neutron flux mapping on 

creep, including at an intra-assembly scale, which is particularly useful for assemblies at the core periphery. 

The accuracy obtained during the tests is very satisfactory, including for cases of force interpolation and 

reasonable axial flow extrapolation, thanks to the modal creep characteristic definition tailored to the 

heterogeneous material characteristics. 

The speed-up obtained allows the prospect of fast simulations. This is due to the definition of global modes 

directly on the structure (only one RVE per FA) and to the fact that only one integration of the nonlinear 

behavior is performed for a whole phase of the structure.  

In accordance with the final objective, the developments carried out and to come at the scale of a FA will 

make it possible, in the near future, to set up calculations of complete core, coupling hydraulic with 

mechanics. The reduced model of a FA will be repeated as many times as necessary, allowing for a good 

compromise between accuracy and computing cost at the core scale. 
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Future work will introduce the consideration of heterogeneous thermal expansion. For this, it is only 

necessary to define a new transformation following the thermal expansion rules. Like (Roussette et al., 

2009) did to treat the isotropic fuel swelling with the NTFA approach, it appeals for compressible modes, 

obtained by POD, and the resulting associated stress fields will have a non-zero projection on the inelastic 

creep modes.  

Finally, the authors are currently developing a reduction of the contact-friction problem inside the fuel 

assembly, based on (Balajewicz et al., 2016). It is formulated in coherence with the creep reduction method 

that was just presented and shows promising results. The combination of these two methods will soon 

allow representing with a good spatial definition the sliding between rods and grids as well as the long term 

creep strains.  

Although not intended for this purpose, this type of lightweight thermomechanical model could also 

potentially provide the basis regarding non-linear dynamics. The main difficulty would then lie in the 

accurate prediction of the fluid-structure interaction between the different assemblies within the PWR 

core, which remains a very open subject (Divaret et al., 2014; Faucher et al., 2021; Ricciardi, 2022). 
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