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Evaluated cross sections of beam-monitor reactions are expected to become the de-facto standard
for cross-section measurements that are performed over a very broad energy range in accelerators in
order to produce particular radionuclides for industrial and medical applications. The requirements
for such data need to be addressed in a timely manner, and therefore an IAEA coordinated research
project was launched in December 2012 to establish or improve the nuclear data required to charac-
terise charged-particle monitor reactions. An international team was assembled to recommend more
accurate cross-section data over a wide range of targets and projectiles, undertaken in conjunction
with a limited number of measurements and more extensive evaluations of the decay data of spe-
cific radionuclides. Least-square evaluations of monitor-reaction cross sections including uncertainty
quantification have been undertaken for charged-particle beams of protons, deuterons, 3He- and 4He-
particles. Recommended beam monitor reaction data with their uncertainties are available at the
IAEA-NDS medical portal www-nds.iaea.org/medical/monitor reactions.html .
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I. INTRODUCTION

A. Mission of IAEA: Importance of Medical and
Industrial Applications of Radionuclides

Within Article II, Objectives, of the IAEA Statute:
“The (International Atomic Energy) Agency shall seek to
accelerate and enlarge the contribution of atomic energy
to peace, health and prosperity throughout the world”.

The IAEA document on “Medium Term Strategy 2012–
2017”stated clearly: The Agency will seek to support the
safe and effective use of radiation medicine for the diagno-
sis and treatment of patients. . . In the area of utilisation
of research reactors and accelerators for radioisotope pro-
duction and radiation technology, the Agency will support
Member States in building capacity for sustainable pro-
duction and related quality assurance systems, and ensure
accessibility to products and techniques that have a unique
added value . . .

Hence, development and optimisation of radionuclide
production both for industrial and medical applications
are of considerable and indisputable interest to the IAEA.
Cyclotrons and other particle accelerators, available in re-
cent years in an increasing number of countries, often with
support of the IAEA, are being used for the production
of radioisotopes for both diagnostic and therapeutic pur-
poses. The physical basis of their production is described
through interaction of charged particles, such as protons,
deuterons and alphas, with matter. These processes have
to be well understood in order to produce radioisotopes
to high-purity in an efficient and safe manner.

Deficiencies, however, still exist in:

• knowledge of optimal production routes,

• minimisation of contaminants/impurities,

• decay data: half-lives, energies and emission proba-
bilities for α, β, γ and X-rays.

Optimisation involves a selection of the projectile en-
ergy range that will maximise the yield of the product and
minimise that of the radioactive impurities. Whereas the
non-isotopic impurities produced can be mostly removed
by chemical separations, the level of isotopic impurities
can be suppressed, or at least decreased significantly, only
by using enriched isotopes as target materials and/or by
a careful selection of the particle energy range effective
in the target. Besides commercial or in-house medical ra-
dionuclide production, reactions with low- energy charged
particles are of primary importance for several industrial
and scientific applications. Some examples are (see also
Ref. [1]):

• ion-beam analysis techniques use many specific re-
actions to identify material properties, surface anal-
ysis in industrial applications, thin layer and on-line
activation analysis,
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• dose rate estimations around nuclear installations,

• production of radionuclide sources for industry, re-
search and agriculture (calibration sources, tracers,
high intensity sources for irradiations),

• understanding of nucleo-synthesis and reaction rates
in nuclear astrophysics and cosmochemistry.

A common characteristic of all above-mentioned applica-
tions is the need for accurate and reliable cross-section
data consistent over a wide energy range.

B. Needs for Evaluated Data – Start of
Programmes

During the second half of the 20th century, many labora-
tories reported a large body of experimental cross-section
data relevant to radionuclide production, and the Nuclear
Reaction Data Centres (NRDC) network compiled most
of these data into EXFOR [2]. Although in the 1980s
the production methods were well established for about
a dozen commercially available medical radionuclides, no
evaluated or recommended nuclear datasets were avail-
able. The need for standardisation was pointed out at two
pioneering IAEA meetings:

• Consultants’ Meeting on Nuclear Data for Medical
Radioisotope Production, IAEA Headquarters, Vi-
enna, April 1981 [3],

• Consultants’ Meeting on Data Requirements for
Medical Radioisotope Production, Institute of Phys-
ical and Chemical Research (RIKEN), Tokyo, April
1987 [4].

Based on the recommendations made at these meetings,
the first modest attempt was made by the IAEA to collect
the available information on monitor reactions [5]. Further
discussions occurred at a larger Advisory Group Meeting
on Intermediate Energy Data for Applications held in
October 1990 in Vienna [6]; as a consequence a Working
Group on Nuclear Data for Medical Applications was set-
up. However, no systematic effort had been devoted to
the standardisation of available cross-section data.

Such a task would be too ambitious for any single
national laboratory, implying a need for well-focused in-
ternational effort. Under these circumstances, the IAEA
decided to undertake and organise a Co-ordinated Re-
search Project (CRP) entitled “Development of Reference
Charged Particle Cross-section Database for Medical Ra-
dioisotope Production” . The project was initiated in 1995.
Focus was placed on the radionuclides most commonly
used for diagnostic purposes and on the related beam mon-
itor reactions in order to meet data needs at that time.
That project represented the first major international ef-
fort dedicated to the standardisation of cross-section data
for radionuclide production through light charged-particle
nuclear reactions and for monitoring the characteristics

of the particle beams used in these productions (protons,
deuterons, 3He and α-particles). This CRP involved eleven
experts from nine institutes and national radionuclide pro-
duction centres. The participants met at three Research
Co-ordination Meetings held in Vienna, Austria in 1995
[7], Faure (Cape Town), South Africa in 1997 [8], and Brus-
sels, Belgium in 1998 [9]. Although the major emphasis in
the CRP was on the energy region up to 30 MeV, higher
energy data up to 60–80 MeV were also considered.

The methodology to obtain recommended data in-
volved:

• compilation of published experimental production
cross-section data for the radioisotopes most com-
monly used in diagnostic nuclear medicine (SPECT
procedures and β+ emitters) and for the most im-
portant monitor reactions (data cut-off 1999),

• evaluation and selection of the datasets,

• fitting by different theoretical nuclear reaction codes
and statistical methods. Choice of best fit,

• development of calculation tools for predicting un-
known data.

In addition to the cross sections, yields of the radionu-
clides calculated from the recommended data were pro-
vided for users. However, the evaluation methodology
for charged particle data was not yet well developed,
and some teach-in effort was initially necessary. The
CRP produced a much needed database and an IAEA-
TECDOC-1211 handbook was published in 2001 [1]. An
on-line version was made available at the medical portal
www-nds.iaea.org/medical/monitor reactions.html . This
database was partly updated by inclusion of new exper-
imental data, corrections of factual errors and a system-
atic spline fit in 2007 [10–12]. Although the recommended
cross sections were believed to be accurate enough to
meet the demands of all current applications, further de-
velopment of the evaluation methodology and more ex-
periments were needed for determination of the uncertain-
ties and their correlations. Also the growing number of
emerging radionuclides, especially for β+ imaging [13] and
therapeutic applications (see CRP on “Nuclear Data for
Production of Therapeutic Radionuclides” [14]) necessi-
tated a widening of the scope of the existing database.

The IAEA Nuclear Data Section has sponsored various
meetings to discuss possible nuclear data requirements
for medical applications up to 2025–2030. Specific rec-
ommendations from three meetings [15–17] were brought
together in June 2011 to formulate the scope, work pro-
gramme and deliverables of a CRP designed to focus on
further improvements to specific charged-particle monitor
reactions and nuclear data for medical radionuclides.

This paper has been prepared to serve as the final doc-
umentation of an International Atomic Energy Agency
(IAEA) Coordinated Research Project that began in 2012
and terminated in 2016 with the following objectives:

3

https://www-nds.iaea.org/medical/monitor_reactions.html


Charged-particle Monitor Reactions ... NUCLEAR DATA SHEETS A. Hermanne et al.

• update and broaden the cross-section database
given in IAEA-TECDOC-1211 [1],

• undertake a full survey of new literature data and
earlier experiments,

• perform dedicated experiments,

• correct (if needed) published datasets for up to date
monitor cross sections or nuclear decay characteris-
tics,

• evaluate (if necessary re-evaluate IAEA-TECDOC-
1211) and select datasets,

• fit with Padé statistical approach,

• produce new recommended data with uncertainties
(for monitor reactions).

The results of this CRP have been made available to users
in two forms:

• three parallel reports without tabulated recom-
mended values in referenced scientific journals deal-
ing respectively with monitors (lead author A. Her-
manne, this report), diagnostic radionuclides (lead
author F. Tárkányi, about 100 reactions) and thera-
peutic radionuclides (lead author J.W. Engle, about
40 reactions),

• all numerical recommended values and yields placed
in the on-line medical database of the IAEA (pre-
pared by S. Takács).

C. Significance of Nuclear Data in Monitoring
Charged-particle Beams

Experimental determinations of cross sections and exci-
tation functions of charged particle reactions for radionu-
clide production rely mostly on an activation process
(bombardment of a target with a particle beam) followed
by γ-spectroscopic identification and quantification of the
induced activity. Calculation of particle energy-dependent
cross sections is then performed from the activation for-
mula,

A(E) = λN(E) = nσ(E)Φ(1− exp(−λt)) , (1)

where A(E) – is the measured activity of the radionuclide
produced at a given energy E and corrected to end of
bombardment (EOB) (Bq), λ – is the decay constant of
the produced radionuclide (s−1), N(E) – is the number
of nuclei produced in the target after irradiation, n - is
the surface density of target nuclei (cm−2), σ(E) – is the
cross section for the production of the radionuclide at a
given energy E (cm2), Φ – is the flux of incident beam
particles (s−1), and t – the irradiation time (s).

A reliable and accurate knowledge of the energy and
intensity of the bombarding particles is required. Fara-
day cup measurements of beam current (collecting the

charge passing through the sample, mostly 10–100 nA)
are sometimes not possible or not accurate enough be-
cause of leakage currents, secondary electrons, non-total
stoppage, and straggling. Direct energy measurement re-
quires complicated techniques that are often unavailable
at the research facility (analysing magnets, time of flight
techniques). The use of monitor reactions is a simple, con-
venient and inexpensive means of determining the energy
and intensity of the bombarding beam. Selected materials
are activated in the beam under study by well-known nu-
clear reactions, and the calculated cross sections obtained
are compared with recommended values (best activation
curves over a wider energy range). Physically admissible
corrections to beam energy and intensity are applied to
the initially estimated beam characteristics until good
agreement is obtained between the measured and recom-
mended excitation functions [18, 19].

The monitoring of beam parameters is also essential
in numerous other applications such as charged particle
activation analysis, thin layer activation, estimation of
neutron yield and residual activity of accelerator com-
ponents, calculation of activity for radiation safety and
simulation of radiation damage. When using monitor re-
actions to characterise charged particle beams, reliable
and accurate cross-section data are required as the ex-
citation functions have to be known at the “standard”
level. Therefore, the decision was made to include in this
CRP the first attempt to produce uncertainties for the
recommended data of the monitor reactions. The most
important and commonly employed nuclear reactions for
monitoring light ion charged particle beams (p, d, 3He,
α) are considered and some promising new reactions on
previously used targets were included.

D. Decay Data Needs for Charged-particle Monitor
Reactions

The transformation of count rates obtained directly
from γ-ray spectroscopy to the activity produced at a ref-
erence time relies on a sound knowledge of the emission
probabilities (intensities) of appropriate γ-ray lines and
on the half-life of the radionuclide in order to correct for
decay during the irradiation, cooling and measurement
times. However, the values used by the authors of experi-
mental studies are not always the most up to date, and
can vary due to the fact that the sources of the decay
data may well have different values. We recommend de-
cay data retrieved from the ENSDF database [20] by one
of the two most popular retrieval codes - LiveChart of
Nuclides (developed by the IAEA Nuclear Data Section)
[21] or NuDat (version 2.6; developed by US National
Nuclear Data Center, Brookhaven National Laboratory)
[22]. Available radionuclide decay-data evaluations should
also be considered from the database of the Decay Data
Evaluation Project (DDEP) which is maintained at the
Laboratoire National Henri Becquerel [23].

Recommended decay data do change as a consequence
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TABLE I. Decay data of radionuclides formed from proton, d, 3He, and α monitor reactions as present in IAEA-TECDOC-1211
[1], the monitor update undertaken in 2007 [10], ENSDF [20], and the Coordinated Research Project (CRP) evaluationsa.

TECDOC-1211 update 2007 ENSDFb Coordinated Research Project

Radionuclide T1/2 of radionuclide

22Na 2.60 y 2.602 y 2.6018 (22) y
24Na 14.96 h 14.659 h 14.997 (12) h
46Sc - - 83.79 (4) d
48V 15.98 d 15.975 d 15.9735 (25) d
51Cr 27.70 d 27.704 d 27.7010 (11) d
56Co 77.70 d 77.7 d 77.236 (26) d
58Co - - 70.86 (6) d
57Ni 1.50 d 1.503 d 35.60 (6) h
61Cu 3.40 h 3.333 h 3.339 (8) h 3.366 (33) h (Eval. by M.-M. Bé)
62Zn 9.26 h 9.26 h 9.193 (15) h
63Zn 38.1 min 38.1 min 38.47 (5) min 38.33 (10) min (Eval. by A.L. Nichols)
65Zn 244.10 d 244.1 d 243.93 (9) d
66Ga 9.49 h 9.49 h 9.49 (3) h 9.305 (8) h (Eval. by F.G. Kondev)
67Ga 3.26 d - 3.2617 (5) d
96gTc - - 4.28 (7) d

Radionuclide Eγ(keV)

22Na 1274.5 1274.53 1274.537 (7)
24Na 1368.6 1368.598 1368.626 (5)
46Sc - - 889.277 (3)

- - 1120.545 (4)
48V 983.5 983.501 983.525 (4)

1312.0 1312.046 1312.106 (8)
51Cr 320.1 320.084 320.0824 (4)
56Co 846.8 846.812 846.770 (2)

1238.3 1238.317 1238.288 (3)
58Co - - 810.7593 (20)
57Ni - 127.226 127.164 (3)

1377.6 1377.62 1377.63 (3)
61Cu 283.0 282.956 282.956 (10) 282.956 (2) (Eval. by M.-M. Bé)

656.0 656.008 656.008 (10) 656.008 (4) (Eval. by M.-M. Bé)
62Zn - 548.38 507.60 (10)

596.7 596.70 596.56 (13)
63Zn 669.8 669.76 669.62 (5) 669.93 (4) (Eval. by A.L. Nichols)

962.2 962.17 962.06 (4) 962.01 (3) (Eval. by A.L. Nichols)
65Zn 1115.5 1115.518 1115.539 (2)
66Ga - - 833.5324 (21) 833.5324 (21) (Eval. by F.G. Kondev)

1039.3 1039.35 1039.220 (3) 1039.220 (3) (Eval. by F.G. Kondev)
67Ga 184.6 184.578 184.576 (10)

- 300.218 300.217 (10)
96gTc - - 778.22 (4)

- - 812.54 (4)
- - 849.86 (4)

Radionuclide Iγ (%)c

22Na 99.94 99.94 99.940 (14)
24Na 100.0 100 99.9936 (15)
46Sc - - 99.9840 (10)

- - 99.9870 (10)
48V 99.99 99.99 99.98 (4)

97.49 97.49 98.2 (3)
51Cr 9.83 9.83 9.910 (10)
56Co 99.9 99.9 99.9399 (23)

67.0 67.0 66.46 (12)
58Co - - 99.450 (10)
57Ni - 12.9 16.7 (5)

77.9 77.9 81.7 (24)
61Cu 12.5 12.2 12.2 (22) 12.0 (17) (Eval. by M.-M. Bé)

10.66 10.8 10.8 (20) 10.4 (15) (Eval. by M.-M. Bé)
62Zn - 15.2 14.8 (14)

25.7 25.7 26.0 (20)
63Zn 8.4 8.4 8.2 (3) 8.19 (32) (Eval. by A.L. Nichols)

6.6 6.6 6.5 (4) 6.50 (16) (Eval. by A.L. Nichols)
65Zn 50.75 50.75 50.04 (10)
66Ga - - 5.9 (3) 5.9 (3) (Eval. by F.G. Kondev)

37.9 37.9 37.0 (20) 37.0 (20) (Eval. by F.G. Kondev)
67Ga 20.4 20.4 21.410 (10)

- 16.6 16.64 (12)
96gTc - - 99.760 (10)

- - 82 (3)
- - 98 (4)

a Tables II, III, IV, and V exactly provide the decay data recommended for monitoring.
b ENSDF nuclear structure and decay data can be easily extracted, understood and studied in an attractive user-friendly
manner by means of LiveChart of Nuclides [21] and NuDat [22].
c γ-ray intensities Iγ defined in energy order per each product radionuclide as presented in the listing of the Eγ data above.
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of improved measurements and re-evaluations, and appro-
priate references to the adopted data are often missing in
published cross-section articles. Hence, substantial efforts
were made during the course of this CRP to check and,
if necessary, correct the published cross-section values in
order to rectify the impact of outdated or erroneous decay
data, as well as stimulate re-evaluations and updates of
the decay data for selected radionuclides with respect to
specific problems noted in the past (e.g., disagreements
between cross sections calculated for different γ-lines, or
disagreements for radionuclides obtained from the same
target in the same experiment). This situation can be best
illustrated by the evolution of the reference decay data
for the monitor reactions presented in Table I. New eval-
uations were undertaken within the project for three acti-
vation products used in specific monitor reactions (61Cu,
63Zn, and 66Ga), and were presented at the Second Re-
search Coordination Meeting by Kellett, Nichols, and Kon-
dev [24]. Full reports for the first two evaluations have
been published in Ref. [25]. Results for these and other
decay-data evaluations for both diagnostic and therapeu-
tic radionuclides studied in this CRP will be published as
a separate report elsewhere (lead author A.L. Nichols).

Both LiveChart [21] and NuDat [22] provide identical
data, since they are both retrieval codes for data taken
from the same ENSDF database [20]. However, differ-
ences outside quoted evaluated uncertainties exist be-
tween ENSDF [20] and DDEP [23] values (e.g., for 24Na
and 57Ni half-lives, probably due to their differing eval-
uation dates and/or methodologies). The recommended
half-lives, and γ-ray energies and emission probabilities
adopted in the cross-section calculations are listed in Ta-
bles II, III, IV, and V for particular reactions with proton,
deuteron, 3He and α beams, respectively (these decay data
are taken from Ref. [22] which is effectively the ENSDF
database). An uncertainty contribution from the decay
data of 3-5% was considered as appropriate by the com-
pilers in their assignment of the total experimental cross-
section uncertainty (see Sec. I.F). Correlations between
different experiments due to the use of the same decay
data were neglected.

E. Recommended Curves and their Uncertainties

A purely statistical fit over the selected data points can
be performed when the status of the experimental dataset
is appropriate (i.e., a reasonable number of independent
measurements has been performed and collected with re-
liable estimations of their uncertainties and without inex-
plicable discrepancies). Often such fits use analytical func-
tions, the most prominent being polynomials or the ratio
of two polynomials. An analytical approximation based on
the ratio of two polynomials was proposed by Padé over
one hundred and twenty years ago [26], and has become
one of the most important interpolation techniques of sta-
tistical mathematics [27, 28]. The Padé fitting method is
briefly described in the following paragraphs for complete-

ness. The method of fitting applied in the present project
was comprehensively described in the original reference
by Vinogradov et al. [29] and some important questions
concerning applications are presented in Refs. [30, 31]. A
brief summary of the application of the method to beam-
monitor reactions was given in Ref. [1].

A Padé-II approximant for a function F (x) is a rational
function pL(x) given as a ratio of two polynomials, which
is described by altogether L parameters exactly matching
the function F (x) in L points. Note that L is an order of
the polynomial presentation of the Padé approximant [27,
28]).

The Padé approximant, as a rational function, can be
expressed by a set of polynomial coefficients or equiva-
lently by a set of the coefficients of the polar expansion.
The polar expansion makes use of analytical properties of
rational functions in the complex plane. To this end one
uses complex variables z = x+ iy and replaces pL(x) by
pL(z) that can be expanded as

pL(zj) = c+
∑
l

al
zj − ηl

+
∑
k

αk(zj − εk) + βk
(zj − εk)2 + γ2

k

. (2)

This equation is also called the resonance expansion, in
which εk (ηl) and γk are the energy and the total half-
width of the k-th (l-th) resonance respectively, while αk
(al) and βk are the partial widths and interference pa-
rameters. The first sum corresponds to real poles, while
the second sum relates to complex poles. A prominent
disturbing feature of the numerically generated rational
approximants is the appearance of real poles (zero de-
nominators) inside the approximation interval which are
physically meaningless and make the approximant unus-
able. These poles are accompanied closely by real zeros of
the numerator, constituting noise doublets that prevent
wide use of Padé approximants in data fitting. The noise
doublets are not only neutralised but become useful, cor-
responding to the terms with z ≈ ηl inside the interval
of approximation with relatively small coefficients al in
the first sum of Eq. (2). These terms are cancelled in the
present method and eliminated from the sum to generate
satisfactory results. Normally, the noise doublets appear
with increasing L at the final stages of the approxima-
tion and indicate, together with statistical criteria, that
the generation of analytical information is very close to
termination. The situation may differ if some points in
the experimental input data deviate significantly from the
general trend. Under such circumstances, the noise dou-
blets appear at relatively low L near such points that are
erroneous, inferior and/or outliers, describing them as lo-
cal singularities rather than smooth components. When
the singularities are eliminated, the resulting regularised
curve ignores the particularly adverse points, and in this
manner points with such aberrations are identified auto-
matically.

From the point of view of statistical mathematics, the
method of discrete optimisation is equivalent to the least-
squares technique, and therefore the experimental dataset
must be statistically consistent. When there are several
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sets of experimental data and discrepancies between differ-
ent sets are significantly larger than their declared uncer-
tainties, statistical processing of the data is only possible
after data selection by an expert. Padé codes construct the
approximating rational function and calculate the coeffi-
cients of the pole expansion for each resonance in Eq. (2).
Thus, we have an analytical expression that can be easily
calculated at any energy point.

The Padé approximation is also very convenient for
calculations of the data uncertainties and corresponding
covariance matrices. Every individual fitting procedure is
always based on a minimisation of the χ2 functional,

χ2 =
1

N − L

N∑
j=1

(pL(zj)− Fj)2

σ2
j

, (3)

where Fj are the available experimental data and σj are
their uncertainties. Such minimisation is carried out iter-
atively by means of the discrete optimisation approach.
The minimal deviation for a given L is computed by assess-
ing and selecting L points from the available N points,
and then determining the corresponding approximants
from Eq. (3). Once this process has been completed, L is
changed and the iteration is repeated until an overall min-
imum is found from all discrete possibilities available. The
least-squares fitting is based on consideration of Eq. (3),
and corresponds to uncorrelated data. Fitted data are in-
dependent of each other, and their uncertainties are used
to weight each data point. Correlations are taken into
account by extending the procedure to the generalised
least-squares technique in which the weight is expressed
by the inverse of a covariance matrix of the data. One of
the advantages of the discrete optimisation technique com-
pared with the continuous least-squares method (LSM) is
the possibility of adopting manifold functionals. Theoret-
ical estimates show that the mean quadratic deviation of
the approximant found by discrete optimisation from the
continuous LSM solution is about a factor of (N/L)1/2 less
than the average corridor of uncertainty of the analysed
data. Thus, the approximant is statistically equivalent to
the LSM solution.

Effective codes for practical applications of the Padé
approximation have been developed by the Obninsk group
[29]. The simplest versions of the codes permit analyses
of up to 500 experimental points in terms of a number
of parameters L ≤ 40 and with a ratio limit for analysed
functions of up to max(Fj)/min(Fj) ≤ 106.

When assessing the uncertainties of a dataset and defin-
ing the possible uncertainty of each point, the known con-
nections between the uncertainties of all points also need
to be considered. A set of uncertainty data in this form is
usually referred to as the covariance matrix of uncertain-
ties. Such a covariance matrix in full diagonal form repre-
sents a dataset in which each point possesses independent
uncertainty. Covariances of nuclear data can in principle
be obtained by analysis of the experimental data if there
are enough adequate measurements to define all reactions
of interest in their respective energy ranges. These analy-

ses can be reinforced with additional information provided
by physics laws and/or theoretical physics models. Such in-
formation is very important for the near-threshold regions
where experimental data can be extremely contradictory
in many cases. When considering a limited amount of ex-
perimental data, we are induced to combine the available
data with information derived from an analytical model.
Thus, the final cross-section covariances are calculated
from the updated covariances for the model parameters.
This procedure accounts consistently for the experimental
uncertainties and the uncertainties of the model param-
eters to ensure that the final cross-section uncertainties
are at least as good as the smaller of the two. Note that
cross correlations between different experimental datasets
which arise due to common systematic uncertainties are
neglected in this work.

As in the case of evaluations based on experimental
data only, the main problem of the combined approach
remains an estimation of the correlations between the ex-
perimental data. The evaluator is normally faced with two
significant difficulties when constructing a covariance ma-
trix. The first problem relates to a disagreement between
the uncertainty distribution based on the uncertainty es-
timates declared by authors and the reasonable statistical
laws for uncertainties. Attempts to improve the distribu-
tion by rejection of some outlying data introduce badly
controlled uncertainties in the final results and thwart a
proper estimation of the systematic uncertainties, which
are crucial for a complete uncertainty evaluation of all
the available data. The second difficulty of covariance con-
struction is connected with the essential differences in the
matrices obtained with various approximating functions
even if the resulting descriptions are practically indistin-
guishable. As a rule, the local uncertainties correspond-
ing to the diagonal matrix elements increase for a large
number of approximating parameters, but the off-diagonal
elements responsible for correlations decrease. As a result,
the uncertainty of any integral function averaged over a
broad energy spectrum depends on the local uncertainties
in a rather complex way, and is very sensitive to evalua-
tions of long-range systematic uncertainties.

Analyses of the uncertainties for the present project
have been carried out on the basis of the unrecognized
uncertainty-estimation method [30]. Along with a consis-
tent consideration of the statistical uncertainties of the
experimental data, the method allows the determination
of some systematic uncertainties that are usually under-
estimated by their authors and also the establishment of
some implicit correlations of the data. This approach has
been successfully used to evaluate the standard neutron
cross sections [32], and is applied routinely to construct
the uncertainties and corresponding covariance matrices
for the Russian neutron data library BROND-3 [33].

The method of the unrecognized uncertainty estimation
is based on the a priori assumption of equal reliability of
all available experimental data, which of course excludes
proven erroneous results. However, the systematic and
statistical uncertainties of each experimental study are
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determined in accordance with the observed distribution
of the data. An initial description of the data is required
at the beginning, and any deviations can be considered
as selective values of the uncertainties. The averaged de-
viation of the experimental data from the approximating
function is regarded as the systematic uncertainty, while
the variances of deviations around the averaged values
are identified as the statistical uncertainties for each ex-
perimental study. An optimal description of all data is
achieved by the traditional iteration procedure of minimis-
ing the mean squares deviations with the statistical and
systematic uncertainties obtained. Rational functions of
an optimal order are used for the corresponding approx-
imants, and the problem of small uncertainties (Peelle
paradox) is taken into consideration within the minimisa-
tion process and construction of the resulting covariance
matrices for the approximating function. More details of
the method can be found in Ref. [30].

Only total uncertainties are determined in the majority
of the experimental studies, and reasonable reconstruc-
tions of the corresponding systematic uncertainties are
judged to be impossible to achieve in many of these cases.
The method described above provides estimates of the
systematic uncertainties on the basis of general statistical
criteria which are valid for a reasonable number of studies.
However, for a small number of the experimental measure-
ments, underestimation of the systematic uncertainties is
highly probable. Such underestimations will also occur
in those cases whereby the same, very similar or other
components of the same experimental equipment are used
in a range of different studies, since any corresponding
correlations have been neglected.

Analysing the complete set of available data, we have
come to the conclusion that realistic total uncertainties
cannot be defined as less than 4% for each of the reac-
tions considered. Therefore, an additional systematic un-
certainty of 4% has been included as part of each system-
atic uncertainty derived from statistical analyses of all the
recommended cross sections.

F. Evaluated Cross Sections and Excitation
Functions for Beam Monitor Reactions

Evaluated excitation functions for monitor reactions
with beams of protons, deuterons, 3He- and α-particles
are presented in the following four sections. Along with
the reactions discussed in Ref. [1] and updates in 2007 [10],
several new and interesting reactions were identified at
an IAEA meeting held in 2011 [16]. A total of 34 monitor
reactions were defined (11 for protons, 11 for deuterons, 6
for 3He, and 6 for α-particles), and the methodology for
generation of the final evaluated excitation functions was
identical. Compilers were designated for all of the mon-
itor reactions, with the first responsibility to gather all
existing information on the measured cross sections ob-
tained from experiments in which quasi-mono-energetic
particles interact with thin targets. Possible sources were

the data already used in IAEA-TECDOC-2011 and the
2007 update, data from earlier publications overlooked
previously, new studies published after the 2007 update,
and results of dedicated experiments performed as part of
the agreed work programme of this CRP. All data were
checked and if necessary and possible corrected for out-
dated nuclear decay data, erroneous natural abundances
of isotopes in elements, or systematic errors (e.g., particle
flux) made obvious when comparing a dataset to the bulk
of available data. However, a large majority of the data
were used without any correction. Uncertainties for all
cross-section data were also provided as either the values
stated by the original authors, or when unavailable or not
credible, the compilers had to assign uncertainties based
on their experience with the experimental techniques. Af-
ter critical analyses of all gathered data, a selection had
to be made that was based on the rejection of data from
either disputable experiments, or observed inconsistencies
with the bulk of the data (mostly because of energy shift
or erroneous estimation of the beam intensity). Normali-
sation of datasets for systematic errors are explicitly in-
dicated in the the text. Only in a minority of cases were
part of the data in an individual set rejected, and they
were more specifically deviating data points obtained at
the low-energy end of a long stack irradiated at a high
incident energy, or manifest outliers. The selected cross-
section data and their uncertainties (original or adapted
by the compiler) were transferred to Obninsk for Padé fit-
ting by means of the techniques described in the previous
section. Sometimes quoted uncertainties were increased
(especially for data points near the threshold) to obtain
better statistical consistency, or some discrepant parts of
the datasets were deleted. Results of the Padé fit and
the uncertainties were transferred to the IAEA in both
graphical and listed forms, and are discussed separately
for each monitor reaction in Secs. II to V.

A short tabulated reminder of the decay data is given
at the beginning of each section (taken from Ref. [22]) as
deemed suitable for the identification and quantification
of the radionuclide in the irradiated monitor foils. All ref-
erences of the studies that have given experimental cross
sections in the relevant energy domain are listed, while
also indicating which sets were not included in the 2007
update [10], followed by an overview of the de-selected
datasets with reasons for their rejection. The characteris-
tics of the Padé fit on the remaining datasets are discussed
together with the energy-dependent behaviour of the to-
tal uncertainties given as percentages (uncertainty derived
from statistical analysis combined with an additional 4%
systematic uncertainty).

Finally, a short analysis is given of the nuclear re-
action channels contributing to the overall excitation
function. The notation for the formation reactions is
AZ(particle,xn)A

′
Z’ if only neutrons are ejected in the

reaction, or AZ(particle,x)A
′
Z’ when a combination of

charged particles and neutrons (possibly as a cluster) are
present in the outgoing channel. Each section also con-
tains two figures: one figure that includes all identified

8



Charged-particle Monitor Reactions ... NUCLEAR DATA SHEETS A. Hermanne et al.

and relevant literature datasets with uncertainty bars as
defined by the compilers, and the other figure with only
the selected sets and their assessed uncertainties retained
for the Padé fit (data points rejected during the fit are
removed) and the resulting overall fit that includes uncer-
tainty bands. For several reactions the energy range of the
fit (best representation of experimental results) exceeds
that of the useful range for monitoring, both at low and
high energy end.

II. MONITOR REACTIONS FOR PROTON
BEAMS

TABLE II. Reactions for monitoring proton beams and rec-
ommended decay data of the activation products (T1/2 is the
product half-life, and Eγ is the γ-ray energy in keV of the
transition with intensity Iγ in %).

Reaction T1/2 Eγ(keV) Iγ(%) Useful range(MeV)

27Al(p,x)22Na 2.602 y 1274.537 99.940 25–1000
27Al(p,x)24Na 14.997 h 1368.626 99.9936 30–100
natTi(p,x)48V 15.9735 d 983.525 99.98 5–100

1312.106 98.2
natTi(p,x)46Sc 83.79 d 889.277 99.9840 20–80

1120.545 99.9870
natNi(p,x)57Ni 35.60 h 127.164 16.7 15-100

1377.63 81.7
natCu(p,xn)62Zn 9.193 h 507.60 14.8 15–100

596.56 26.0
natCu(p,xn)63Zn 38.47 min 669.62 8.2 5–100

962.06 6.5
natCu(p,xn)65Zn 243.93 d 1115.539 50.04 5–100
natCu(p,x)56Co 77.236 d 846.770 99.9399 50–100

1238.288 66.46
natCu(p,x)58Co 70.86 d 810.759 99.450 30–1000
natMo(p,x)96m+gTc 4.28 da 778.22 99.760

812.54 82.0 10–45
849.86 98.0

a Cumulative formation of 96gTc (T1/2 =4.28 d) is measured

after the γ-decay of the short-lived 96mTc (T1/2 =51.5 min).

A. 27Al(p,x)22Na

The formation of long-lived 22Na (T1/2 = 2.602 y), eas-
ily assessed through an intense γ-ray line at 1274.537 keV
(99.940% intensity), is the most widely used monitoring
reaction for protons in the 25–1000 MeV energy range.
A grand total of thirty-five publications with experimen-
tal cross-section data in the considered energy range
were identified in the literature [34–68], and are repre-
sented with uncertainties in Fig. 1(a). One data point at
1600 MeV from Lüpke et al. (1993) [69] is not represented
in Fig. 1(a).

Of those 35 references, the new sources of data added
after the previous update of the IAEA monitor reac-
tions website in 2007 [10] were as follows: Buthelezi et
al. (2006) [36], Cline and Nieschmidt (1971) [37], Dittrich
et al. (1990) [39], Khandaker et al. (2011) [42], Lefort and
Tarrago (1963) [44], Marquez and Perlman (1951) [45],
Marquez (1952) [46], Michel et al. (1995) [48], Morgan et
al. (2003) [50], Schiekel et al. (1996) [51], Taddeucci et
al. (1997) [54], Titarenko et al. (2003) [55], and Titarenko

et al. (2011) [65]. The energy range of the existing proton
beam monitors evaluated in 2007 was limited to 100 MeV
[10], whereas eight studies with data points above this
energy limit appear in the current analysis.

The results of 12 studies were rejected and not consid-
ered for further analysis, and the reasons for their removal
are given in parentheses: Aleksandrov et al. (1988) (data
systematically too low) [57], Brun et al. (1962) (no numer-
ical values available in reference, high and scattered data)
[58], Gauvin et al. (1962) (data systematically shifted to
higher energy) [59], Grütter (1982) (data systematically
too low) [60], Hintz and Ramsey (1952) (data too high)
[61], Korteling and Caretto (1970) (data too low) [62],
Miyano (1973) (no numerical data available in reference)
[63], Pulfer (1979) (data systematically low and scattered)
[64] , Titarenko et al. (2011) (unexplained wide spread
of data) [65], Vukolov and Chukreev (1988) (values too
high) [66], Walton et al. (1976) (data systematically too
low) [67], and Williams and Fulmer (1967) (no numerical
data available in reference) [68].

The datasets of the remaining 23 papers were used
as input for a least-squares Padé fit [34–56]. A Padé
function with 26 parameters was fitted to 265 selected
data points with χ2=1.47, and covered energies up to
1000 MeV as shown in Fig. 1(b). Uncertainties include
a 4% systematic uncertainty, and range from 25% near
the reaction threshold to decrease below 4.5% between
44 and 800 MeV, and reach 5.2% at the highest energy.
The rather sharp maximum of 43.65 mb at 43.7 MeV
arises from a combination of two reactions with clustered
emissions: 27Al(p,αd)22Na (threshold 21.044 MeV) and
27Al(p,αpn)22Na (threshold 23.325 MeV). The long dis-
puted local bump between 80 and 150 MeV was shown by
model calculations (TALYS code) to originate from contri-
butions of the 27Al(p,3p3n)22Na and 27Al(p,2p2nd)22Na
reactions with 52.7 and 50.4 MeV thresholds, respectively.
Those reactions also feature a long high-energy tail of
3.5–6 mb above 100 MeV.

B. 27Al(p,x)24Na

The formation of 24Na (T1/2 = 14.997 h) with an easily
assessed intense γ-ray line at 1368.626 keV (99.9936% in-
tensity) can be used in parallel with 22Na to monitor
protons in the 40–1000 MeV range. However, 24Na is
likely produced from secondary neutrons in Al-foil stacks,
especially above 200 MeV. We suspect this causes the
deviation in measured data from the expected physical
behaviour of the excitation function, and actively discour-
ages the use of 27Al(p,x)24Na as a monitor reaction above
200 MeV. To be consistent with the original choices made
in the 2007 update [10], all datasets up to 200 MeV were
included in the compilation, and the fit and recommenda-
tions were limited to below such an energy.

Thirty-eight publications with experimental data up to
1000 MeV were identified in the literature, including 13
references that had data points only above 200 MeV. The
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(b) Selected data compared with evaluated Padé fit based on 26 parameters (solid) and including uncertainty bands (dashed) to give
a χ2=1.47 up to 1000 MeV.

FIG. 1. (Color online) Evaluated Padé fit and experimental data from Refs. [34–68] for the 27Al(p,x)22Na monitor reaction.

remaining 25 sets from Refs. [35, 38, 42, 43, 49, 55, 56, 58–
61, 63–65, 68, 70–79] are represented with uncertainties
in Fig. 2(a).

Of those 25 references, the new sources of data added
after the previous update of the IAEA monitor reac-
tions website in 2007 [10] were as follows: Bodemann
et al. (1995) [35], Khandaker et al. (2011) [42], Nair et
al. (1993) [77], Titarenko et al. (2003) [55], and Titarenko

et al. (2006) [75].
The results of 13 studies were rejected and not consid-

ered for further analysis, and the reasons for their removal
are indicated in parentheses: Bodemann et al. (1995)
(data too high and scattered) [35], Brun et al. (1962) (no
numerical values available in reference, data high and scat-
tered) [58], Gauvin et al. (1962) (data shifted systemati-
cally to higher energy) [59], Gilbert (1956) (only one data
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FIG. 2. (Color online) Evaluated Padé fit and experimental
data from Refs. [35, 38, 42, 43, 49, 55, 56, 58–61, 63–65, 68, 70–
79] for the 27Al(p,x)24Na monitor reaction.

point, too low) [70], Hicks et al. (1956) (scale shifted to
higher energy) [71], Hintz and Ramsey (1952) (data too
high, internal targets) [61], Hogan and Gadioli (1978) (sys-
tematically low and shifted to higher energy) [72], Holub et
al. (1977) (values too high, strange shape near maximum)
[73], Lagunas-Solar et al. (1988) (strange shape of the
excitation curve) [43], Meghir (1963) (too high, strange
shape) [74], Titarenko et al. (2003) [55] and Titarenko et
al. (2006) (suspected contamination with secondary neu-
trons) [75], and Titarenko et al. (2011) (unexplained wide
spread, suspected contamination with secondary neutrons)
[65].

The datasets of the remaining 12 papers were used for
further evaluation [38, 42, 49, 56, 60, 63, 64, 68, 76–79].

A Padé function with 13 parameters was fitted to 331
selected data points up to 200 MeV with χ2 = 1.47. The fit
is compared with selected experimental data in Fig. 2(b).
Uncertainties include a 4% systematic uncertainty, and
decrease from 100% near the reaction threshold to below
6% above 60 MeV, before reaching 4.2% at the highest
energy of 200 MeV. Cluster emission is not important
in this case, and the main contribution arises from the
27Al(p,3pn) reaction with a threshold at 32.601 MeV.

C. natTi(p,xn)48V

The natTi(p,xn)48V reaction on readily available and
corrosion resistant titanium is probably the most used
monitor route for protons in the low and middle beam
energy region (5–30 MeV), although the high energy tail
of the excitation curve can also be of importance. The
activation product 48V (T1/2 =15.9735 d) decays with the
emission of two intense γ-ray lines at 983.525 keV (99.98%
intensity) and 1312.106 keV (98.2% intensity). Thirty-one
publications containing experimental cross-section data
with incident particle energies up to 100 MeV were iden-
tified in the literature [11, 35, 49, 67, 80–106], and are
shown with uncertainties in Fig. 3(a). The two unpub-
lished datasets of Ref. [95] obtained with 17 and 25 MeV
incident energy are represented separately as (a) and
(b). Ten new references (eleven datasets) added after the
previous update of the IAEA monitor reaction website
in 2007 [10] are listed in alphabetical order: Bennett et
al. (2012) [89], Garrido (2011) [92], Garrido et al. (2016)
[93], Hermanne et al. (2011) [94], Hermanne et al. (2013a)
[95], Khandaker et al. (2009) [85], Lebeda (2016a) [97],
Takács et al. (2011) [101], Takács et al. (2013) [102], and
Tárkányi et al. (2012) [103].

The results of 10 studies were rejected and not consid-
ered for further analysis, and the reasons for their removal

0

100

200

300

400

500

600

0 20 40 60 80 100

0

100

200

300

400

500

600

0 20 40 60 80 100

C
ro

s
s
 s

e
c
ti
o
n
 (

m
b
)

Incident particle energy (MeV)

natTi(p,x)48V
1975 Barrandon 2012 Bennett
1977 Birattari 1995 Bodemann
1971 Brodzinski 1990b Dittrich
1990 Fink 1981 Gadioli
2011 Garrido 2016 Garrido
2011a Hermanne 2013a Hermanne (a)
2013a Hermanne(b) 1992 Jung
2009 Khandaker 1993 Kopecky
2016a Lebeda 1991 Levkovskij
1978 Michel 1997 Michel
1980 Michel 1983 Stuck
2001 Szelecsenyi 1959 Tanaka
2002a Takacs 2011 Takacs
2013 Takacs 2012 Tarkanyi
1973 Walton 1976 Walton
1990 West 2006 Zarie

(a) All experimental data are plotted with uncertainties.
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FIG. 3. (Color online) Evaluated Padé fit and experimental
data from Refs. [11, 35, 49, 67, 80–106] for the natTi(p,xn)48V
monitor reaction. Ref. [95] contains two datasets indicated as
(a) and (b).
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are indicated in parentheses: Barrandon et al. (1975) (sys-
tematically lower than other studies) [80], Birattari et
al. (1977) (large shift in energy scale) [81], Brodzinski
et al. (1971) (experiment with high energy protons, very
high uncertainty) [82] Gadioli et al. (1981) (no numeri-
cal data in the publication) [83], Jung (1992) (shifted to
higher energy) [84], Khandaker et al. (2009) (shifted to
higher energy) [85], Levkovskij (1991) (values too high,
even after correction for monitor reaction) [86], Michel
et al. (1978)(values too high at lower energy) [106], Wal-
ton et al. (1973) (data systematically too low, unreliable
beam current determination) [88], and Walton et al. (1976)
(data systematically too low, unreliable beam current de-
termination) [67].

The 22 datasets from the remaining 21 papers were
used for the least-square fit [11, 35, 49, 87, 89–105]. A
Padé function with 26 parameters was fitted to 503 se-
lected data points with χ2=1.15 up to 100 MeV, as shown
in Fig. 3(b). A number of outlying data points from
Refs. [49, 92, 94, 103] were rejected from the fitting pro-
cess, and are deleted from Fig. 3(b). Uncertainties include
a 4% systematic uncertainty, and range between 50% near
the reaction threshold to a minimum of 4.2% in the 14 to
35 MeV range before increasing to 6.5% at the highest en-
ergy. The unique abrupt maximum near 11 MeV (σmax=
288 mb) arises essentially from the 48Ti(p,n)48V reaction
(threshold 4.898 MeV) on the most naturally abundant
stable Ti isotope. Owing to the presence of simultaneously
generated 48Sc (T1/2 =43.67 h) from the 48Ti(p,p2n) reac-
tion that emits a γ-ray line at 983.526 keV, measurements
for monitoring purposes have to be postponed by at least
14 d to allow the removal of the contaminating signal by
decay.

D. natTi(p,x)46Sc

As the availability of a second monitoring reaction on
the same target material allows a check of internal con-
sistency within the measurements, the natTi(p,x)46Sc re-
action was included to complement the previously dis-
cussed natTi(p,x)48V reaction. An additional advantage
is that the excitation function reaches a maximum at
higher energy, and therefore increases the reliability of
monitoring in the 20–60 MeV region. The long-lived
46Sc (T1/2 =83.79 d) decays with the emission of two in-
tense γ-ray lines at 889.277 keV (99.984% intensity) and
1120.545 keV (99.987% intensity). Twelve publications
with experimental cross-section data at incident parti-
cle energies up to 80 MeV were identified in the liter-
ature [49, 82, 85, 91–93, 95, 97, 98, 106–108], and are
shown with corresponding uncertainties in Fig. 4(a). Ta-
ble 3 of Ref. [107] contained eleven sets of unpublished
results for this reaction, as also obtained in the other listed
experiments.

The reaction was not considered earlier in the IAEA
monitor reaction website [10], and therefore all references
are new. Five datasets were rejected from further analysis,
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FIG. 4. (Color online) Evaluated Padé fit and experimental
data from Refs. [49, 82, 85, 91–93, 95, 97, 98, 106–108] for the
natTi(p,x)46Sc monitor reaction. Ref. [107] contains 11 sets of
data labelled 2014a Hermanne(a) to 2014a Hermanne(k).

and the reasons for their removal are indicated in paren-
theses: Brodzinski et al. (1971) (experiment with high en-
ergy protons, very high uncertainty) [82], Fink et al. (1990)
(discrepant data) [91], Garrido (2011) (scattered values,
superseded by [93]) [92], Hermanne et al. (2014a)(h) (val-
ues too high) [107], and Khandaker et al. (2009) (values
too high) [85]. Additionally, all data points of Hermanne
et al. (2014a)(b) above 50 MeV were rejected as being too
high.

The remaining 17 datasets were used for further eval-
uation, as taken from Refs. [49, 93, 95, 97, 98, 106–108].
A Padé function with 13 parameters was fitted to 389 se-
lected data points with χ2=1.083 up to 80 MeV, as shown
in Fig. 4(b). Uncertainties include a 4% systematic uncer-
tainty, and range from 50% near the reaction threshold to
a minimum of 4.2% from 14 to 35 MeV incident particle
energy, before increasing to 6.5% at the highest energy.
The slowly rising excitation function with a rather mod-
estly pronounced maximum around 35 MeV arises from
a combination of reactions on stable 47,48,49Ti isotopes
in which two protons in combination with neutrons are
emitted. The low-energy part of this behaviour is domi-
nated by the 49Ti(p,α)46Sc reaction with a threshold of
1.978 MeV.
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E. natNi(p,x)57Ni

The natNi(p,x)57Ni reaction is a valid alternative moni-
tor reaction over the 20–50 MeV energy range. Activation
product 57Ni (T1/2 =35.60 h) decays with the emission of
two easily measured γ-ray lines at significantly different
energies: 127.164 keV (16.7% intensity) and 1377.63 keV
(81.7% intensity). Adoption of this reaction as a moni-
tor requires an extensive and well-defined detector effi-
ciency calibration undertaken with confidence, along with
checks on the up to date acceptability of the γ-ray inten-
sities to be used (see section I.D). Thirty publications
with experimental cross-section data at incident parti-
cle energies up to 100 MeV were identified in the liter-
ature [11, 35, 49, 80, 86, 92, 98–100, 103, 106, 109–127],
and are shown with uncertainties in Fig. 5(a). Reference
[112] contains five datasets represented separately as 2014
Amjed(a) to (e). Seven new references added after the pre-
vious update of the IAEA monitor reaction website in 2007
[10] are listed in alphabetical order: Alharbi et al. (2011)
[110], Al-Saleh et al. (2007) [111], Amjed et al. (2014)
[112], Garrido (2011) [92], Khandaker et al. (2011b) [120],
Tárkányi et al. (2012) [103], and Titarenko et al. (2011b)
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(a) All experimental data are plotted with uncertainties.
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FIG. 5. (Color online) Evaluated Padé fit and experimental
data from Refs. [11, 35, 49, 80, 86, 92, 98–100, 103, 106, 109–
127] for the natNi(p,x)57Ni monitor reaction. Ref. [112] con-
tains 5 sets of data labelled 2013 Amjed(a) to (e).

[126].
Ten references were removed from further analysis, and

the reasons for their rejection are indicated in parentheses:
Aleksandrov et al. (1987) (fluctuating values, systemat-
ically discrepant) [109], Barrandon et al. (1975) (values
too low), [80], Brinkmann et al. (1979) (cross sections
below threshold ) [113], Cohen et al. (1955) (only one
data point, too high) [115], Ewart and Blann (1964) (ma-
jor energy shift) [116], Furukawa et al. (1990) (fluctuat-
ing data, original data unavailable) [117], Haasbroek et
al. (1977) (large energy shift)[118], Kaufman (1960) (val-
ues too low) [119], Tanaka et al. (1972) (small energy shift)
[124], and Zhuravlev et al. (1984) (discrepant; neutron-
spectrum measurement) [127]. Additionally, the dataset
of 2014 Amjed(d) [112] was also discarded.

The remaining 23 datasets were considered in the fit-
ting process, as taken from Refs. [11, 35, 49, 86, 92, 98–
100, 103, 106, 110–112, 114, 120–123, 125, 126]. A Padé
function with 23 parameters was fitted to 482 selected
data points with χ2=1.24 up to 100 MeV, as shown in
Fig. 5(b). Uncertainties include a 4% systematic uncer-
tainty, and range from nearly 100% near the reaction
threshold to a minimum of 4.2% over 25 to 40 MeV before
increasing to 5% at higher energies. The sharp peak in the
excitation function around 27 MeV arises from a combi-
nation of the 58Ni(p,pn)57Ni and 58Ni(p,d)57Ni reactions
with thresholds of 12.43 and 10.16 MeV, respectively.

F. natCu(p,xn)62Zn

The natCu(p,xn)62Zn monitor reaction is often used in
the 15–40 MeV energy range. Activation product 62Zn
(T1/2 =9.193 h) decays with emission of two γ-ray lines
at rather similar energies: 507.60 keV (14.8% intensity)
and 596.56 keV (26.0% intensity). An advantage of us-
ing reactions on Cu for monitoring purposes is that this
material is often used as the backing for electroplated tar-
gets, and hence insertion of additional monitoring foils is
not required. Twenty-seven publications with experimen-
tal cross-section data at incident particle energies up to
100 MeV were identified in the literature [11, 36, 39, 49, 56,
60, 68, 86, 92, 95, 97, 100, 103, 109, 115, 128–139] and are
shown with uncertainties in Fig. 6(a). Nine new references
added after the previous update of the IAEA monitor re-
action website in 2007 [10] are listed in alphabetical order:
Buthelezi et al. (2006) [36], Garrido (2011) [92], Hermanne
et al. (2013) [95], Khandaker et al. (2011) [42], Lebeda
(2014) [136], Lebeda (2016) [97] Shahid et al. (2015) [138],
Siiskonnen et al. (2009) [139], and Tárkányi et al. (2012)
[103]. Seven references were removed from further anal-
ysis, and the reasons for their rejection are indicated in
parentheses: Aleksandrov et al. (1987) (measurement at
20 MeV intervals and large uncertainties) [109], Ghoshal
(1950) (values too high, and small energy shift) [130],
Green and Lebowitz (1972) (values too low, large scatter
energy shift) [131], Greenwood and Smither (1984) (data
for 63Cu(p,n) above threshold of 65Cu(p,4n), good nor-
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(a) All experimental data are plotted with uncertainties.
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FIG. 6. (Color online) Evaluated Padé fit and experimental
data from Refs. [11, 36, 39, 49, 56, 60, 68, 86, 92, 95, 97,
100, 103, 109, 115, 128–139] for the natCu(p,xn)62Zn monitor
reaction.

malisation not possible) [132], Levkovskij (1991) (data for
63Cu(p,n) above threshold of 65Cu(p,4n), good normalisa-
tion not possible) [86], Tárkányi et al. (2012) (scattered
and outlying data) [103], and Williams and Fulmer (1967)
(values too high) [68].

The remaining 20 datasets were considered in the fit-
ting process, as taken from Refs [11, 36, 39, 49, 56, 60, 92,
95, 97, 100, 115, 128, 129, 133–139]. A Padé function with
25 parameters was fitted to 391 selected data points with
χ2=1.91 up to 100 MeV, as shown in Fig. 6(b). Uncer-
tainties include a 4% systematic uncertainty, and range
from nearly 80% near the reaction threshold to a mini-
mum of 5.2% over an incident particle energy range of 25
to 40 MeV before increasing to 7.2% at higher energies.
The sharp peak in the excitation function around 24 MeV
is due to the 63Cu(p,2n)62Zn reaction, while the smaller
second maximum is attributed to the 65Cu(p,4n) reaction.

G. natCu(p,xn)63Zn

The natCu(p,xn)63Zn monitor reaction has proven more
difficult to use, and hence is not as popular as other re-
actions. Primarily, the short half-life of the product 63Zn
(T1/2 =38.47 min.) makes measurements of the monitor

foils mandatory in the first hours after the end of bom-
bardment, posing both dismantling and detector overload
problems. Activity determinations are undertaken by mea-
surement of two γ-ray lines of rather similar energies:
669.62 keV (8.2% intensity) and 962.06 keV (6.5% in-
tensity). Thirty-one publications with experimental cross-
section data at incident particle energies up to 100 MeV
were identified in the literature [11, 60, 80, 86, 92, 95,
97, 100, 109, 128–130, 136, 137, 139–155], and are shown
with uncertainties in Fig. 7(a). Reference [95] gives rise to
three datasets represented separately. Five new references
added after the previous update of the IAEA monitor
reaction website in 2007 [10] are listed in alphabetical
order: Garrido (2011) [92], Hermanne et al. (2013a) [95],
Lebeda (2014) [136], Lebeda (2016) [97], and Siiskonnen
et al. (2009) [139].

Eleven references were removed from further anal-
ysis, and the reasons for their rejection are given in
parentheses: Albert and Hansen (1961) (only one data
point) [140], Aleksandrov et al. (1987) (measurement at
20 MeV intervals, and large uncertainties) [109], Blaser et
al. (1951) (large energy shift) [142], Chackett et al. (1962)
(only one data point) [143], Ghoshal (1950) (large en-
ergy shift) [130], Hille et al. (1972) (values too high)
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(a) All experimental data are plotted with uncertainties.
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FIG. 7. (Color online) Evaluated Padé fit and experimental
data from Refs.[11, 60, 80, 86, 92, 95, 97, 100, 109, 128–130,
136, 137, 139–155] for the natCu(p,xn)63Zn monitor reaction.
Ref. [95] contains 3 datasets represented separately as (a), (b)
and (c).
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[147], Jones et al. (1961) (only one data point) [151],
Levkovskij (1991) (only data for the 63Cu(p,n) reaction)
[86], Meyer and Hintz (1960) (only one data point) [152],
Taketani and Alsford (1962) (large uncertainty in energy)
[153], and Yoshizawa et al. (1976) (energy shift and large
uncertainties)[155].

The remaining 22 datasets were considered in the fit-
ting process, as taken from Refs. [11, 60, 80, 92, 95, 97,
100, 128, 129, 136, 137, 139, 141, 144–146, 148–150, 154].
A Padé function with 13 parameters was fitted to 367
selected data points with χ2=1.035 up to 100 MeV, as
shown in Fig. 7(b). Uncertainties include a 4% systematic
uncertainty, and range from nearly 10% near the reac-
tion threshold to a minimum of 4.7% at incident particle
energies up to 21 MeV, before increasing to 6.5% at the
higher energies. The sharp peak in the excitation function
around 12 MeV arises from the 63Cu(p,2n)63Zn reaction,
while the smaller second maximum originates from the
65Cu(p,4n) reaction.
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(a) All experimental data are plotted with uncertainties.
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FIG. 8. (Color online) Evaluated Padé fit and experimental
data from Refs. [11, 36, 49, 56, 60, 80, 84, 86, 95, 97, 100, 128,
131, 132, 135–139, 142, 144, 146, 154, 157, 158, 160–162, 164]
for the natCu(p,xn)65Zn monitor reaction.

H. natCu(p,xn)65Zn

The natCu(p,xn)65Zn monitor reaction results in long-
lived activation product 65Zn (T1/2 =243.93 d) that decays

with the characteristic emission of a strong γ-ray line
at 1115.539 keV (50.04% intensity), and permits lengthy
activity measurements for months after the EOB. Forty-
two publications with experimental cross-section data at
incident particle energies up to 50 MeV were identified in
the literature [11, 36, 49, 56, 60, 80, 84, 86, 90, 95, 97, 100,
128, 131, 132, 135–146, 148–152, 154, 156–164]. Several of
these studies contain only one or two data points in the
energy region of interest which did not assist greatly in
judging the correctness of the energy scale. Therefore, they
are not included in Fig. 8(a) because of the availability of
other datasets that were more complete (Refs. [90, 140,
141, 143, 145, 148–152, 156, 159, 163] were not considered
further). All of the data assessed beyond this initial stage
are shown with their uncertainties in Fig. 8(a).

Six new references added since the previous update
of the IAEA monitor reaction website in 2007 [10] are
listed in alphabetical order: Buthelezi et al. (2006) [36],
Hermanne et al. (2013a) [95], Lebeda (2014) [136], Lebeda
(2016) [97], Shahid et al. (2015) [138], and Siiskonnen et
al. (2009) [139]. Along with the severely limited datasets
noted earlier, eight other references were rejected and not
considered for further analysis, and the reason for their
removal are indicated in parentheses: Blaser et al. (1951)
(cross sections energy shifted) [142], Gadioli et al. (1974)
(cross sections energy shifted) [158], Green and Lebowitz
(1972) (values too high) [131], Greenwood and Smither
(1984) (values too high) [132], Jung (1992) (data points
seem too high) [84], Kormali et al. (1976) (cross sections
energy shifted) [161], Levkovskij (1991) (cross sections
too high) [86], and Switkowski et al. (1978) (only neutron
emission measurements, and cross-section data too low)
[164].

The remaining 21 datasets were considered in the fit-
ting process, as taken from Refs [11, 36, 49, 56, 60, 80, 95,
97, 100, 128, 135–139, 144, 146, 154, 157, 160, 162]. The
data of Michel et al. (1997) [49] and Buthelezi et al. (2006)
[36] below 16 MeV and the data point at 10 MeV of Mills
et al. (1992) [137] were not included in the fitting. A Padé
function with 22 parameters was fitted to 828 selected
data points with χ2=1.12 up to 100 MeV, as shown in
Fig. 8(b). Uncertainties include a 4% systematic uncer-
tainty, and range from 6% near the reaction threshold to
between 4.1% and 4.6% from 8 MeV upwards. Only the
65Cu(p,n)65Zn reaction contributes, and gives rise to the
sharp peak in the excitation function around 11 MeV with
σ=226 mb (threshold at 2.167 MeV).

I. natCu(p,x)56Co

The natCu(p,x)56Co reaction is of interest to monitor
higher-energy proton beams of 45 to 200 MeV by Cu
foils, complementing beam monitoring by means of Zn-
radioisotopes below 50 MeV. Long-lived activation prod-
uct 56Co (T1/2 =77.236 d) decays by the emission of sev-
eral strong γ-ray lines at 846.770 keV (99.9399% inten-
sity) and 1238.288 keV (66.46% intensity), which permits
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FIG. 9. (Color online) Evaluated Padé fit and experimental
data from Refs. [49, 56, 60, 68, 109, 132, 137, 138, 159] for the
natCu(p,x)56Co monitor reaction.

lengthy activity measurements months after the EOB.
Nine publications with experimental cross-section data
at incident particle energies up to 200 MeV were identi-
fied [49, 56, 60, 68, 109, 132, 137, 138, 159], and are shown
with uncertainties in Fig. 9(a). Six data points published
in Ref. [35] are included in the extensive list of Ref. [49].
Data from Shahid et al. (2015) (all data points are below
the threshold, and clearly discrepant) [138], Heydegger et
al. (1972) (extensively scattered) [159], and Williams et
al. (1967) (somewhat shifted to lower energy) [68] were
not considered for further analysis. The data points of
Aleksandrov et al. (1987) above 70 MeV [109] are too low,
and were deleted during the course of the fitting process.

The remaining datasets as taken from Refs. [49, 56,
60, 109, 132, 137] were considered in the fitting process.
A Padé function with 24 parameters was fitted to 231
selected data points with χ2=1.50 up to 100 MeV, as
shown in Fig. 9(b). Uncertainties include a 4% system-
atic uncertainty, and decrease from nearly 25% at the
reaction threshold to below 7% above 50 MeV, and below
5% from 65 MeV upwards. Formation of 56Co by proton-
induced reactions is possible by means of the strongly
clustered emission 63Cu(p,αd2n) reaction with a thresh-
old at 34.497 MeV.

J. natCu(p,x)58Co

The natCu(p,x)58Co reaction was added to the list of
monitors for proton beams because of the specific shape of
the excitation function, with the cross sections extending
above 20 mb up to 1000 MeV and showing two maxima
at approximately 40 and 100 MeV. Long-lived activation
product 58Co (T1/2 =70.86 d) decays with a characteristi-
cally strong γ-ray line at 810.759 keV (99.450% intensity),
which permits lengthy activity measurements months af-
ter the EOB.

Twenty-six publications with experimental cross-
section data at incident particle energies up to 1000 MeV
were identified in the literature [37, 48, 49, 51, 60, 68, 109,
132, 135–138, 159, 165–177], and are shown with uncer-
tainties in Fig. 10(a). The equivalent data of Brinkman
et al. (1977) are clearly discrepant with a maximum cross
section of 216.6 mb for an enriched 63Cu target [113], and
therefore have not been included in this figure.

Ten references were removed from further analysis, and
the reasons for rejection are indicated in parentheses:
Cline and Nieschmidt (1971) (two different values at the
same energy, large scatter of data) [37], Fassbender et
al. (1997) (values too low) [167], Greenwood and Smither
(1984) (values too high) [132], Gruetter (1982) (shift in
energy) [60], Heydegger et al. (1972) (values too low)
[159], Orth et al. (1978) (different cross-section values at
same energy) [172], Sisterson (2002) (values too low) [173],
Titarenko et al. (1996) (value too high) [174], Williams
and Fulmer (1967) (values too high) [68], and Yashima et
al. (2002) (thick Cu targets) [176].

The remaining sixteen datasets were considered in the
fitting process [48, 49, 51, 109, 135–138, 165, 166, 168–
171, 175, 177]. A Padé function with 16 parameters was
fitted to 394 selected data points with χ2=1.74 up to
1000 MeV, as shown in Fig. 10(b). Uncertainties include
a 4% systematic uncertainty, and range from nearly 70%
at the reaction threshold to between 4.2% and 6% over all
higher beam energies up to 1000 MeV. The first maximum
in the excitation function arises from strongly clustered
emission reactions on 63Cu (63Cu(p,αd) with a thresh-
old of 14.228 MeV and 63Cu(p,αpn) with a threshold of
16.488 MeV), while above 35 MeV the clustered emis-
sion of the 65Cu (65Cu(p,αd2n) reaction with a thresh-
old of 32.325 MeV or reactions with individual nucleon
emissions contribute to the weaker second maximum with
the long tail (such as 63Cu(p,3p3n) with a threshold of
45.237 MeV).

K. natMo(p,x)96m+gTc

Although the natMo(p,x)96m+gTc reaction is not widely
used to monitor proton beams, an appropriate evaluation
is important to normalise the erroneous maximum cross
section used by Levkovskij [86], and so act as an accu-
rate mean of adjusting all of his results for more than 300
measured reactions. The need to correct systematically
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FIG. 10. (Color online) Evaluated Padé fit and experimental data from Refs. [37, 48, 49, 51, 60, 68, 109, 132, 135–138, 159, 165–
177] for the natCu(p,x)58Co monitor reaction.

all of the high cross sections listed in Ref. [86] was first
documented by Takács et al. (2002b) [178] who proposed
a reduction of 20% based on their new measurement of
this monitor reaction. Among other authors who have
discussed this adjustment factor, Qaim et al. (2014) [179]
have more recently proposed a value of 0.82±0.05 based
on a comparison of the results of many proton-induced re-

actions in Ref. [86] with their evaluated cross sections, but
not on direct measurements of the monitor cross section.
Under these circumstances, compilation of recent publica-
tions for natMo(p,x)96m+gTc complemented by dedicated
experiments, and final fitting of the selected datasets is
included in the present study with the aim of obtaining
a recommended value for the cross section at 30 MeV,
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FIG. 11. (Color online) Evaluated Padé fit based on 15 pa-
rameters (solid) and including uncertainty bands (dashed)
to give a χ2=1.34 up to 45 MeV. Experimental data are
taken from Refs. [56, 103, 110, 134, 178, 180–187] for the
natMo(p,x)96m+gTc monitor reaction. The original data of
Ref. [86] are shown separately.

published as being 250±10 mb by Levkovskij (1991) [86].
The cumulative formation of ground state 96gTc

(T1/2 =4.28 d) measured after the γ-decay of the short-

lived metastable state 96mTc (T1/2 =51.5 min.) was de-
termined from the three intense γ-ray lines at 778.22 keV
(99.760% intensity), 812.54 keV (82% intensity) and
849.86 keV (98% intensity). Thirteen publications for
the natMo(p,x)96m+gTc reaction with experimental cross-
section data on natMo were selected from the litera-
ture [56, 103, 110, 134, 178, 180–187], and are shown with
uncertainties in Fig. 11. All were considered for the fit-
ting process. Only one dataset by Bonardi et al. (2002)
[188] is not shown after been rejected because the data
are systematically too high. The original dataset of [86]
is also shown in Fig. 11 for visual comparison purposes
only.

A Padé function with 15 parameters was fitted to 228
selected data points with χ2=1.34 up to 45 MeV, as shown
in Fig. 11. Uncertainties include a 4% systematic uncer-
tainty, and range from nearly 70% at the reaction thresh-
old to between 4.2% and 6% over energies up to 45 MeV. A
value of 192.9±8.4 mb is recommended at 30 MeV, result-
ing in a ratio of 0.77±0.07 with respect to the Levkovskij
(1991) value [86].

III. MONITOR REACTIONS FOR DEUTERON
BEAMS

A. 27Al(d,x)22Na

The formation of long-lived 22Na (T1/2 =2.602 y) can
be easily quantified by means of the intense γ-ray line at
1274.537 keV (99.940% intensity), making this reaction
the most widely used monitor for deuterons over the en-
ergy range from 35 to 100 MeV. Twelve publications with

TABLE III. Reactions for monitoring deuteron beams and
recommended decay data of the activation products (T1/2 is
the product half-life, and Eγ is the γ-ray energy in keV of the
transition with intensity Iγ in %).

Reaction T1/2 Eγ(keV) Iγ(%) Useful range(MeV)

27Al(d,x)22Na 2.602 y 1274.537 99.940 30–100
27Al(d,x)24Na 14.997 h 1368.626 99.9936 15–90
natTi(d,xn)48V 15.9735 d 983.525 99.98 5–50

1312.106 98.2
natTi(d,x)46Sc 83.79 d 889.277 99.9840 5–75

1120.545 99.9870
natCu(d,xn)62Zn 9.193 h 507.60 14.8 15–50

596.56 26.0
natCu(d,xn)63Zn 38.47 min 669.62 8.2 8–50

962.06 6.5
natCu(d,xn)65Zn 243.93 d 1115.539 50.04 5–50
natFe(d,x)56Co 77.236 d 846.770 99.9399 10–50

1238.288 66.46
natNi(d,x)61Cu 3.339 h 282.956 12.2 3–50

656.008 10.8
natNi(d,x)56Co 77.236 d 846.770 99.9399 5–50

1238.288 66.46
natNi(d,x)58Co 70.86 d 810.759 99.450 5–50

relevant experimental cross-section data were identified
in the literature [189–200], and are represented with un-
certainties in Fig. 12(a). Ref. [190] contains two separate
datasets that have been labelled (a) and (b). Six new ref-
erences added after the previous update of the IAEA mon-
itor reaction website in 2007 [10] are Refs. [189–194]. Two
of the twelve studies were removed from further analysis,
and the reasons for rejection are indicated in parentheses:
Karpeles (1969) (energy shift visible below 50 MeV) [195],
and Ring and Litz (1955) (discrepant data) [199].
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FIG. 12. (Color online) Evaluated Padé fit and experimen-
tal data from Refs. [189–200] for the 27Al(d,x)22Na monitor
reaction. Ref. [190] contains two datasets labelled (a) and (b).
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The datasets of the remaining ten papers were con-
sidered in the fitting process, as taken from Refs. [189–
194, 196–198, 200]. Thus, a Padé function with 21 param-
eters was fitted to 185 selected data points with χ2=0.95
over the energy range from 20 to 100 MeV, as shown
in Fig. 12(b). Uncertainties include a 4% systematic un-
certainty, and decrease slowly from 60% near the reac-
tion threshold, remain higher than 9% up to 45 MeV
incident particle energy, and are of the order of 8% be-
tween 48 and 100 MeV. A slow rise of the excitation
function up to 50 MeV arises from a combination of two
reactions with cluster emissions: 27Al(d,αdn)22Na (thresh-
old of 24.19 MeV) and 27Al(d,αp2n)22Na (threshold of
26.58 MeV). The plateau at higher energies also contains
contributions from the 27Al(d,3p4n)22Na reaction with
the emission of independent nucleons and a threshold of
56.99 MeV.

B. 27Al(d,x)24Na

The formation of 24Na (T1/2 =14.997 h) is easily quan-
tified by means of the intense γ-ray line at 1368.626 keV
(99.9936% intensity), and can be used in parallel with 22Na
to monitor deuterons over the energy range from 15 to
90 MeV range. However, 24Na can also be produced from
secondary-neutron interactions in the stacked foils, espe-
cially above 200 MeV. We suspect this effect causes the
deviation of the measured data from the expected physi-
cal behaviour of the excitation function, and so actively
discourages evaluations of 27Al(d,x)24Na as a monitor re-
action above 100 MeV. As a continuation of the choices
made in the 2007 update of the IAEA monitor reaction
website [10], all datasets up to 200 MeV incident particle
energy were included in the compilation while the fit and
recommendation were limited to 90 MeV.

A total of twenty-three publications (twenty-six
datasets) with experimental data up to 200 MeV were
identified in the literature for the 27Al(d,x)24Na moni-
tor reaction [189, 190, 192–194, 196–198, 200–214], and
are represented with uncertainties in Fig. 13(a). Each
of Refs. [190, 192, 201] contains two datasets that have
been labelled (a) and (b). New references added after the
previous update of the IAEA monitor website in 2007
[10] are as follows: Bém et al. (2009) [202], Hermanne
et al. (2012a) [190], Hermanne et al. (2013b) [192], Her-
manne et al. (2013c) [193], Hermanne et al. (2013d) [194],
and Ochiai et al. (2008) [207]. Five datasets were removed
and not considered for further analysis, and the reasons
for their rejection are indicated in parentheses: Batzel
et al. (1953)(a) (strange shape of the excitation func-
tion near the maximum for series-a) [201], Crandall et
al. (1956) (only data above 100 MeV) [204], Hubbard
(1949) (only data above 100 MeV) [205], Lenk and Slobo-
drian (1959) (arbitrary normalisation required) [206], and
Nakao et al. (2006) (superseded by Ochiai et al. (2008)
[207]) [198].

The remaining 21 datasets were analysed and evaluated
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(a) All experimental data are plotted with uncertainties.
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(b) Selected data compared with evaluated Padé fit based on 12
parameters (solid) and including uncertainty bands (dashed) to

give a χ2=2.60 up to 90 MeV.

FIG. 13. (Color online) Evaluated Padé fit and experimental
data from Refs. [189, 190, 192–194, 196–198, 200–214] for the
27Al(d,x)24Na monitor reaction. Each of Refs. [190, 192, 201]
contains two datasets labelled (a) and (b).

further, as taken from Refs. [189, 190, 192–194, 196, 197,
200–203, 207–214]. A Padé function with 12 parameters
was fitted to 458 selected data points with χ2=2.60 up
to 90 MeV, and this fit is compared to the selected ex-
perimental data in Fig. 13(b). Uncertainties include a 4%
systematic uncertainty, and range from 72% near the re-
action threshold to below 6% between 20 and 75 MeV
incident particle energy, before increasing slightly up to
7.3% at higher energies. Cluster emission is very impor-
tant in this particular case, and the main contribution in
the peak region arises from the 27Al(d,αp) reaction with
a threshold at 5.76 MeV (any channel without the emis-
sion of an α-particle would have a threshold of at least
27.5 MeV).

C. natTi(d,xn)48V

The natTi(d,x)48V reaction on readily available and cor-
rosion resistant Ti is probably the most popular monitor
for deuteron beams in the low and middle energy region
(5-50 MeV). Activation product 48V with T1/2 =15.9735 d
decays with the emission of two intense γ-ray lines
at 983.525 keV (99.98% intensity) and 1312.106 keV
(98.2% intensity). Eleven publications with experimental
cross-section data (thirteen datasets) at incident parti-
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(a) All experimental data are plotted with uncertainties.
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FIG. 14. (Color online) Evaluated Padé fit and experimental
data from Refs. [104, 190, 200, 215–222] for the natTi(d,x)48V
monitor reaction. Both Refs. [190, 221] contain two datasets
labelled (a) and (b).

cle energies up to 50 MeV were identified in the litera-
ture [104, 190, 200, 215–222], and are shown with uncer-
tainties in Fig. 14(a). Both of references [190, 221] contain
two datasets labelled (a) and (b) that have been treated
separately. Four new references added after the previous
update of the IAEA monitor reaction website in 2007 [10]
are listed in alphabetical order: Gagnon et al. (2010) [217],
Hermanne et al. (2012a) [190], Khandaker et al. (2013)
[219], and Takács et al. (2014) [222]. The results of four
studies were removed from further analysis, and the rea-
sons for their rejection are indicated in parentheses: Bur-
gus et al. (1954) (normalised to natural composition, need
correction for improved decay data, energy shift) [215],
Chen and Miller (1964) (normalised and summed, large
estimated uncertainties) [216], Jung (1987) (energy shift))
[218], and Takács et al. (1997) (deviation near maximum)
[220].

The datasets from the remaining seven papers were
used in the least-squares evaluation [104, 190, 200, 217,
219, 221, 222]. A Padé function with 18 parameters was
fitted to 182 selected data points with χ2=1.04 up to
50 MeV, as shown in Fig. 14(b). Uncertainties include
a 4% systematic uncertainty, and range from 50% near

the reaction threshold to a minimum of 4.2% from 14 to
35 MeV incident particle energy that increases to 6.5%
at higher energies. The broad maximum near 17 MeV
(σmax=328 mb) arises essentially from the 48Ti(d,2n)48V
reaction on the stable and most naturally abundant 48Ti
isotope (threshold of 7.316 MeV). A small maximum
at approximately 6 MeV is caused by the 47Ti(d,n)48V
(Q-value of +4.604 MeV and 47Ti natural abundance of
7.44%). We refer to Sec. II C for remarks on the presence
of simultaneously formed 48Sc (T1/2 =43.67 h).

D. natTi(d,x)46Sc

Reasons to include this additional reaction for the mon-
itoring of deuteron beams along with the decay charac-
teristics of 46Sc are detailed in Sec. II D. Twelve publi-
cations with experimental cross-section data at incident
particle energies up to 75 MeV were identified in the lit-
erature [107, 136, 216–221, 223–226], and are shown with
uncertainties in Fig. 15(a). Table 2 of Ref. [107] contained
sixteen sets of unpublished results for this reaction ob-
tained in different experiments discussed in that paper.
Since this reaction was not present earlier in the IAEA
monitor reaction website [10], all references are new. Seven
datasets were removed from further analysis, and the rea-
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(a) All experimental data are plotted with uncertainties.
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FIG. 15. (Color online) Evaluated Padé fit and experimen-
tal data from Refs. [107, 136, 216–221, 223–226] for the
natTi(d,x)46Sc monitor reaction. Ref. [107] contains 16 sets
of data labelled 2014a Hermanne(a) to (p).
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sons for rejection are indicated in parentheses: Andres and
Meinke (1960) (energy shift) [223], Chen and Miller (1964)
(energy shift) [216], Hermanne et al. (2014a)(h) (energy
shift) [107], Hermanne et al. (2014a)(j) (energy shift) [107],
Hermanne et al. (2014a)(k) (values too high) [107], Jung
(1987) (values too low) [218], and Takács et al. (1997)
(values scattered and too high near maximum) [220]. The
remaining 20 datasets were used for further evaluation,
as taken from Refs. [107, 136, 217, 219, 221, 224–226]. A
Padé function with 13 parameters was fitted to 372 se-
lected data points with χ2=0.78 up to 75 MeV, as shown
in Fig. 15(b).

Uncertainties include a 4% systematic uncertainty, and
range from 22% near the reaction threshold to a mini-
mum of 4.2% from 12 to 32 MeV incident particle en-
ergy that increases to 4.8% at higher energies. The first
maximum in the excitation function occurs at approx-
imately 12 MeV, and arises from the 48Ti(d,α)46Sc re-
action on the stable and most naturally abundant 48Ti
isotope (Q-value of 3.979 MeV). A gradual rise starting
around 32 MeV is dominated by the emission of separate
nucleons (48Ti(d,2p2n)46Sc reaction with a threshold of
25.34 MeV).

E. natCu(d,xn)62Zn

As already discussed in Sec. II, the three reactions on
Cu were added to the list of deuteron monitors for reasons
of completeness and their potential adoption because of
the frequent use of electroplated targets with Cu-backing.
The natCu(d,xn)62Zn monitor reaction can be used over
an energy range of 15 to 50 MeV. Decay characteristics
of activation product 62Zn (T1/2 =9.193 h) were discussed
in Sec. II F. Ten publications with experimental cross-
section data at incident particle energies up to 50 MeV
were identified in the literature [198, 227–235], and are
shown with uncertainties in Fig. 16(a).

Data in Refs. [230, 231, 234] were obtained with 63Cu
targets, and have been re-normalised to natCu. Addition-
ally, the data of Ref. [231] were corrected for the outdated
values adopted for the intensities of the γ-ray lines (15%).
The original values of Ref. [227] are totally discrepant,
and were only included in Fig. 16(a) after being divided
arbitrarily by a factor of six. All references are new be-
cause the reaction was not present in the previous update
of the IAEA monitor reaction website in 2007 [10]. Three
references were removed prior to further analysis, and the
reasons for their rejection are given in parentheses: Bartell
et al. (1950) (discrepant data) [227], Fulmer and Williams
(1970) (values too high after correction) [231], and Bém
et al. (2008) (data superseded by values of Šimečková et
al. (2011) [234]) [230].

The remaining seven datasets were considered in the
fitting process, as taken from Refs. [198, 228, 229, 232–
235]. A Padé function with 13 parameters was fitted to
135 selected data points with χ2=1.57 up to 50 MeV,
as shown in Fig. 16(b). Uncertainties include a 4% sys-
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FIG. 16. (Color online) Evaluated Padé fit and experimen-
tal data from Refs. [198, 227–235] for the natCu(d,xn)62Zn
monitor reaction.

tematic uncertainty, and range from nearly 40% near the
reaction threshold to 7% above an incident particle energy
of 25 MeV. The broad peak with a maximum at approxi-
mately 32 MeV arises from the 63Cu(d,3n)62Zn reaction
with a threshold at 15.985 MeV, while the 65Cu(d,5n) reac-
tion can only contribute above 35 MeV and is responsible
for the long tail.

F. natCu(d,xn)63Zn

The decay characteristics and specific problems as-
sociated with the use of 63Zn as an activation prod-
uct in a monitor reaction were discussed in Sec. II G.
Eight publications with experimental cross-section data
at incident particle energies up to 50 MeV were identi-
fied in the literature [207, 227, 230, 231, 234–237], and
are shown with uncertainties in Fig. 17(a). Data in
Refs. [230, 231, 234, 237] were obtained with 63Cu tar-
gets, and have been re-normalised to natCu. The original
values of Ref. [227] are totally discrepant, and remain
represented in this form. All references are new as the
reaction was not present in the previous update of the
IAEA monitor reaction website in 2007 [10].

Two references were removed prior to further analy-
sis, and the reasons for their rejection are indicated in
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FIG. 17. (Color online) Evaluated Padé fit and experimen-
tal data from Refs. [207, 227, 230, 231, 234–237] for the
natCu(d,xn)63Zn monitor reaction.

parentheses: Bém et al. (2008) (superseded by Šimečková
et al. (2011) [234]) [230], and Bartell et al. (1950) (dis-
crepant) [227]. Data of Takács et al. (2006) [235] that
seem too high near the maximum were included, but data
points below 10 MeV were deleted. The lowest energy
data points of Refs. [231, 234] were also not included in
the fitting process.

The remaining six datasets were considered in the fit-
ting process, as taken from Refs. [207, 231, 234–237]. A
Padé function with 12 parameters was fitted to 95 selected
data points with χ2=0.95 up to 50 MeV, as shown in Fig.
17(b). Uncertainties include a 4% systematic uncertainty,
and range from 7.6% near the reaction threshold to a
minimum of 4.3% from 20 to 30 MeV incident particle en-
ergy that increases to 6.4% at higher energies. The broad
peak in the excitation function at approximately 16 MeV
arises from the 63Cu(d,2n)63Zn reaction with a threshold
at 6.577 MeV, while the 65Cu(d,4n) reaction can only con-
tribute above 26 MeV and is responsible for the slightly
increasing long tail between 40 and 50 MeV.

G. natCu(d,xn)65Zn

The natCu(d,xn)65Zn monitor reaction can be used over
an incident particle energy range from 5 to 50 MeV. De-
cay characteristics of activation product 65Zn were dis-

cussed in Sec. II H for proton monitoring. Fifteen publi-
cations with experimental cross-section data at incident
particle energies up to 50 MeV were identified in the litera-
ture [84, 200, 218, 228–234, 237–241], and are shown with
uncertainties in Fig. 18(a). Data in Refs. [230, 234, 237–
240] were obtained with 65Cu targets, and have been re-
normalised to natCu. All references are new as the reaction
was not present in the previous update of the IAEA moni-
tor reaction website [10]. The dataset of Bém et al. (2008)
[230] was rejected (superseded by values in Šimečková et
al. (2011) [234]), and the four lowest energy data points
of Ref. [239] were also discarded.

The remaining 14 datasets were considered in the fitting
process, as taken from Refs [84, 200, 218, 228, 229, 231–
234, 237–241]. A Padé function with 10 parameters was
fitted to 242 selected data points with χ2=1.10 up to
50 MeV, as shown in Fig. 18(b). Uncertainties include
a 4% systematic uncertainty, and range from nearly 10%
near the reaction threshold to 4.5% above an incident par-
ticle energy of 12 MeV. Only the 65Cu(d,2n)65Zn reaction
with a threshold at 4.493 MeV can contribute, and has a
characteristic excitation function with a broad maximum
at approximately 16 MeV.
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FIG. 18. (Color online) Evaluated Padé fit and experimen-
tal data from Refs. [84, 200, 218, 228–234, 237–241] for the
natCu(d,xn)65Zn monitor reaction.
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H. natFe(d,x)56Co

The natFe(d,x)56Co monitor reaction can be used
over an incident particle energy range from 10 to
50 MeV. Decay characteristics of activation product 56Co
(T1/2 =77.236 d) were discussed in Sec. II I for proton
monitoring.

Fourteen publications with experimental cross-section
data at incident particle energies up to 50 MeV were iden-
tified in the literature [198, 200, 207, 215, 218, 220, 242–
247, 249, 250], and are shown with uncertainties in
Fig. 19(a). Data in Refs. [246, 247] were originally pub-
lished as studies of 56Fe targets and have been converted
to natFe. Adjustments were also made to outdated decay
data adopted in Ref. [215], and the data of Refs. [242, 250]
were normalised arbitrarily to agree better with the values
of Ref. [200] by 30% and 12%, respectively.

Three new references were added after the previous
update of the IAEA monitor reaction website in 2007
[10], and are listed in alphabetical order: Khandaker et
al. (2013) [244], Ochiai et al. (2008) [207], and Zavorka
et al. (2011) [249]. Five references were removed prior to
further analysis, and the reasons for their rejection are
given in parentheses: Burgus et al. (1954) (still exhibited
significantly lower values after correction) [215], Clark et
al. (1969) (arbitrarily normalised by 30%) [242], Irwine
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(a) All experimental data are plotted with uncertainties.
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FIG. 19. (Color online) Evaluated Padé fit and experimental
data from Refs. [198, 200, 207, 215, 218, 220, 242–247, 249,
250] for the natFe(d,x)56Co monitor reaction.

(1949) (shifted to lower energy) [243], Jung (1987) (values
too low) [218], and Nakao et al. (2006) (superseded by
Ochiai et al. (2008) [207]) [198]. Furthermore, all data
points below 8 MeV in the datasets given by Refs. [244,
249, 250] were also rejected in the fitting process (see
below for threshold of contributing reaction).

The remaining data points from nine datasets were sub-
sequently considered in the fitting process, as taken from
Refs [200, 207, 220, 244–247, 249, 250]. A Padé function
with 9 parameters was fitted to 164 selected data points
with χ2=1.80 up to 50 MeV, as shown in Fig. 19(b). Un-
certainties include a 4% systematic uncertainty, and range
from nearly 40% near the reaction threshold to 5.5% over
an incident particle energy of 12 to 24 MeV, before reach-
ing 10% at higher energies. Only the 56Fe(d,2n)56Co re-
action with a threshold at 7.846 MeV contributes at the
lower energies, and is responsible for the maximum at
17.6 MeV, while the (d,3n) reaction on low natural abun-
dance 57Fe (2.2%) has a threshold of 15.757 MeV.

I. natNi(d,x)61Cu

The natNi(d,x)61Cu monitor reaction is a production
route for short-lived 61Cu (T1/2 =3.339 h) that can
be used over an incident particle energy range of 3 to
50 MeV. Activity can be determined from the γ-ray lines
at 282.956 keV (12.2% intensity) and 656.008 keV (10.8%
intensity). Ten references with experimental cross-section
data at incident particle energies up to 50 MeV were iden-
tified in the literature [200, 251–259], and are shown with
uncertainties in Fig. 20(a).

Ref. [256] contains five datasets labelled (a) to (e), and
Ref. [258] contains data points published elsewhere in
Refs. [255] and [200] that are represented separately here.
The original data of [257] were corrected by 18% to achieve
improved correspondence with [200] (re-estimation of
beam current), while the values of Ref. [253] were arbi-
trarily decreased by 38% to give good agreement with all
other data.

Three new references added after the previous update
of the IAEA monitor reaction website in 2007 [10] are
listed in alphabetical order: Haddad (2013) [254], Her-
manne et al. (2013e) [256], and Takács et al. (2007) [258].
Two datasets were removed prior to further analysis, and
the reasons for their rejection are given in parentheses:
Budzanowski and Grotowski (1962) (only one point which
is too high) [251], and Hermanne et al. (2013e)(d) (val-
ues too high) [256]. Three outlying data points near the
threshold in the studies of Refs. [252, 256, 259] were also
rejected from the fitting process.

The remaining 12 datasets were considered in the fitting
process, as taken from Refs. [200, 252–259]. A Padé func-
tion with 13 parameters was fitted to 207 selected data
points with χ2=1.19 up to 50 MeV, as shown in Fig. 20(b).
Uncertainties include a 4% systematic uncertainty, and
range from nearly 13% near the reaction threshold to
between 5% and 5.5% over an incident particle energy
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(a) All experimental data are plotted with uncertainties.
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FIG. 20. (Color online) Evaluated Padé fit and experimental
data from Refs. [200, 251–259] for the natNi(d,x)61Cu monitor
reaction. Ref. [256] contains five datasets labelled (a) to (e).

range of 9 to 35 MeV, to reach 6% at higher energies. The
only feasible contributor to the observed maximum in the
excitation function is the 60Ni(d,n)61Cu reaction with a
positive Q-value of 2.575 MeV, while reactions on low nat-
ural abundance 61,62Ni are responsible for the long tail at
high energies.

J. natNi(d,x)56Co

The natNi(d,x)56Co reaction is proposed as an addi-
tional monitor that can be used over an incident particle
energy range of 5 to 50 MeV. Decay characteristics of ac-
tivation product 56Co (T1/2 =77.236 d) were discussed in
Sec. II I. Eleven references with experimental cross-section
data at incident particle energies up to 50 MeV were iden-
tified in the literature [207, 218, 254, 256–263], and are
shown with uncertainties in Fig. 21(a). Ref. [256] contains
five datasets labelled (a) to (e). Data in Refs. [261–263]
were originally published as studies of 58Ni targets and
have been converted to natNi, while the original data of
Ref. [257] were corrected by 18% to correspond better with
[200] (based on a re-estimation of the beam current).

All data are new as this reaction was not present in the
previous update of the IAEA monitor reaction website in
2007 [10]. Three datasets were removed prior to further
analysis, and the reasons for their rejection are given in

parentheses: Blann and Merkel (1963) (values too high,
even after normalisation) [261], Takács et al. (1997b) (val-
ues too high, even after correction) [257], and Zweit et
al. (1991) (values too high) [259]. The data points of
Cline (1973) [262] above 25 MeV were also removed be-
cause they did not include the contributions of reactions
on 60Ni, and therefore are too low. The remaining 12
datasets were considered in the fitting process, as taken
from Refs. [207, 218, 254, 256, 258, 260, 262, 263]. A
Padé function with 11 parameters was fitted to 186 se-
lected data points with χ2=1.02 up to 50 MeV, as shown
in Fig. 21(b).

The first maximum in the excitation function at 10 MeV
arises from the 58Ni(d,α)56Co reaction with a positive Q-
value of 6.522 MeV, while the steep rise above 25 MeV
originates from the emission of separate nucleons by the
58Ni(d,2p2n)56Co reaction with a threshold of 22.53 MeV.
The 60Ni(d,α2n)56Co reaction at a threshold of 14.33 MeV
on 60Ni at 26.223% natural abundance would appear to
be unimportant. As a result of the specific shape of the
excitation function, uncertainties that include a system-
atic uncertainty of 4% are 5% in the region of the first
maximum, rise slightly to 5.5% at an incident particle
energy of 23 MeV, and are lower than 4.5% from 30 to
50 MeV.
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(a) All experimental data are plotted with uncertainties.
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FIG. 21. (Color online) Evaluated Padé fit and experimental
data from Refs. [207, 218, 254, 256–263] for the natNi(d,x)56Co
monitor reaction.
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K. natNi(d,x)58Co

The natNi(d,x)58Co monitor reaction is especially ap-
plicable in the deuteron energy range of 5–35 MeV. Decay
characteristics of activation product 58Co (T1/2 =70.86 d)
were discussed in Sec. II J. Nine references with experimen-
tal cross-section data at incident particle energies up to
50 MeV were identified in the literature [84, 218, 254, 256–
260, 262], and are shown with uncertainties in Fig. 22(a).
Ref. [256] contains five datasets labelled (a) to (e). Data
in Ref. [262] were originally published as studies of 58Ni
targets and have been converted to natNi, while the origi-
nal data of Takács [257] were corrected by 18% to corre-
spond better with [200] (based on re-estimation of beam
current).

All data are new as this reaction was not present in the
previous update of the IAEA monitor reaction website
in 2007 [10]. Three datasets were removed prior to fur-
ther analysis, and the reasons for their rejection are given
in parentheses: Cline (1973) (values too low, even after
conversion, and not sure to which reaction these data re-
fer) [262], Takács et al. (1997)(values too high, even after
correction) [257], and Zweit et al. (1991) (values too low)
[259]. The remaining 10 datasets were considered in the
fitting process, as taken from Refs. [84, 218, 254, 256, 258,
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(a) All experimental data are plotted with uncertainties.
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FIG. 22. (Color online) Evaluated Padé fit and experimen-
tal data from Refs. [84, 218, 254, 256–260, 262] for the
natNi(d,x)58Co monitor reaction. Ref. [256] contains five
datasets labelled (a) to (e).

260]. A Padé function with 12 parameters was fitted to
161 selected data points and χ2=1.09 up to 50 MeV, as
shown in Fig. 22(b).

The broad maximum in the excitation function around
18 MeV arises from a combination of the 58Ni(d,2p)58Co
reaction with a threshold at 1.887 MeV and the
60Ni(d,α)58Co reaction with a positive Q = +6.08 MeV
(Coulomb barrier for αemission shifts the effective thresh-
old), while the small rise above 25 MeV originates from
the emission of separate nucleons by the 60Ni(d,2p2n)58Co
reaction with a threshold of 22.53 MeV. As a result of
the specific shape of the excitation function, uncertainties
which include a 4% systematic uncertainty are below 4.5%
in the region of the first maximum and decrease to 4.2%
at higher energies.

IV. MONITOR REACTIONS FOR 3HE BEAMS

TABLE IV. Reactions for monitoring 3He beams and recom-
mended decay data of the activation products (T1/2 is the
product half-life, and Eγ is the γ-ray energy in keV of the
transition with intensity Iγ in %).

Reaction T1/2 Eγ(keV) Iγ(%) Useful range(MeV)

27Al(3He,x)22Na 2.602 y 1274.537 99.940 10–100
27Al(3He,x)24Na 14.997 h 1368.626 99.9936 20–130
natTi(3He,x)48V 15.9735 d 983.525 99.98 10–100

1312.106 98.2
natCu(3He,x)66Ga 9.49 h 833.532 5.9 10-40

1039.22 37.0
natCu(3He,x)63Zn 38.47 min 669.62 8.2 15–45

962.06 6.5
natCu(3He,x)65Zn 243.93 d 1115.539 50.04 10–90

A. 27Al(3He,x)22Na

The formation of long-lived 22Na (T1/2 =2.602 y)
is easily quantified by means of the intense γ-ray
line at 1274.537 keV (99.940% intensity), and the
27Al(3He,x)22Na reaction is widely used to monitor 3He-
particle beams over an energy range of 10 to 100 MeV.

Seven publications with experimental cross-section data
were identified in the literature in the energy range under
consideration [12, 264–267, 269, 270], and are represented
with uncertainties in Fig. 23(a). Only the data measured
by Lebeda (2016) [269] have been added since the previous
update of the IAEA-NDS monitor reaction website in
2007 [10]. The study of Ref. [267] (data taken from [268])
contains three datasets represented separately as (a), (b)
and (c). Dataset (a) of Ref. [267] was rejected because all
values are a factor two lower than all other data.

All other datasets from seven papers [12, 264–267, 269,
270] were used as input for a least-squares Padé fit. A Padé
function with 9 parameters was fitted to 147 selected data
points with χ2=1.14 that covered the incident particle en-
ergy range from 10 to 100 MeV, as shown in Fig. 23(b).
Uncertainties include a 4% systematic uncertainty, and de-
crease rapidly from 23% close to the reaction threshold to
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FIG. 23. (Color online) Evaluated Padé fit and experimental
data from Refs. [12, 264–267, 269, 270] for the 27Al(3He,x)22Na
monitor reaction. Ref. [267] contains three datasets labelled
(a) to (c).

below 6% at an incident particle energy of 16 MeV, and are
only 4% at 100 MeV. The rather sharp maximum in the
excitation function at approximately 22 MeV arises from
the clustered emission of the 27Al(3He,2α)22Na reaction
with an energy threshold of 2.149 MeV, while the increase
and plateau at higher energies contains contributions from
reactions that emit independent nucleons, for example
27Al(3He,α2p2n)22Na with a threshold of 33.608 MeV.

B. 27Al(3He,x)24Na

The formation of 24Na (T1/2 =14.997 h) is easily quan-
tified by means of the intense γ-ray line at 1368.626 keV
(99.9936% intensity), and can be used in parallel with 22Na
to monitor 3He-particle beams over an energy range of 20
to 130 MeV. As with the choices made during the course
of the 2007 update [10], all datasets up to an incident par-
ticle energy of 180 MeV were included in the compilation,
while the fit and recommendation were limited to below
130 MeV.

Six publications with experimental cross-section data
that covered the energy range of interest were identified
in the literature [264–266, 269–271], and are represented
with uncertainties in Fig. 24(a). Only the data by Lebeda

(2016) [269] were added after the previous update of the
IAEA monitor reaction website in 2007 [10].

The data of Frantsvog et al. (1982) [271] were not con-
sidered for further evaluation as they are clearly too low,
while one low data point from Michel et al. (1982) [270] at
an incident particle energy of 40 MeV was also removed
from the fitting process. A Padé function with 9 parame-
ters was fitted to 81 selected data points with a χ2=1.44
covering an energy range of 20 to 130 MeV, as shown in
Fig. 24(b). Uncertainties include a 4% systematic uncer-
tainty, and decrease from 20% near the reaction thresh-
old to lower than 10% at an incident particle energy of
27 MeV and remain at approximately 7% between 44 and
130 MeV. The rather sharp maximum in the excitation
function near 40 MeV arises from the 27Al(3He,2α2p)24Na
reaction with an energy threshold of 12.063 MeV, while
the plateau at higher energies contains contributions from
reactions that emit a greater number of independent nu-
cleons, for example the 27Al(3He,4p2n)24Na reaction with
a threshold of 43.52 MeV.
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FIG. 24. (Color online) Evaluated Padé fit and experimental
data from Refs. [264–266, 269–271] for the 27Al(3He,x)24Na
monitor reaction.
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FIG. 25. (Color online) Evaluated Padé fit and experimental
data from Refs. [12, 211, 269, 272–275] for the natTi(3He,x)48V
monitor reaction. The experimental data below 10 MeV were
replaced by seven data points from TENDL-2015 [276].

C. natTi(3He,x)48V

The natTi(3He,x)48V reaction on readily available and
corrosion resistant Ti is probably the most popular means
of monitoring 3He in the low and middle energy re-
gion of the beam (10–50 MeV). Activation product 48V
with T1/2 =15.9735 d decays via the emission of two in-
tense γ-ray lines at 983.525 keV (99.98% intensity) and
1312.106 keV (98.2% intensity). Seven publications with
relevant experimental cross-section data at incident par-
ticle energies up to 100 MeV were identified in the lit-
erature [12, 211, 269, 272–275], and are shown with un-
certainties in Fig. 25(a). Two new references were added
after the previous update of the IAEA monitor reaction
website in 2007 [10]: Lebeda (2016) [269] and Szelecsényi
et al. (2017) [274]. All datasets were used in the evalua-
tion apart from values below an incident particle energy
of 10 MeV that were deleted because of their large scat-
ter and non-physical behaviour to be replaced by seven
data points taken from the TENDL-2015 on-line database
[276]. A Padé function with 11 parameters was fitted to
239 selected data points with χ2=1.25 up to 100 MeV, as
shown in Fig. 25(b).

Uncertainties include a 4% systematic uncertainty, and

decrease from 45% near the reaction threshold to below
7% at 18 MeV, with variations between 4.5% and 4%
within the 28–100 MeV energy range. The broad maxi-
mum near 32 MeV (σ=400 mb) arises essentially from the
48Ti(3He,p2n)48V reaction with a threshold at 13.3 MeV
which involves the stable and most naturally abundant
Ti isotope. A shoulder at lower energy arises from the
47Ti(3He,n)48V reaction, with a threshold of 9.45 MeV
and 47Ti natural abundance of 7.44%. We refer to Sec. II C
for remarks on the presence of simultaneously formed 48Sc
(T1/2 =43.67 h).

D. natCu(3He,x)66Ga

A decision was taken to supplement the above mon-
itors of 3He beams with three additional reactions on
natCu which is often used as the backing material for tar-
gets. Activation product 66Ga with T1/2 =9.49 h decays
via the emission of two γ-ray lines at 833.532 keV (5.9%
intensity) and 1039.22 keV (37.0% intensity). Six publi-
cations with experimental cross-section data at incident
particle energies up to 40 MeV were identified in the liter-
ature [275, 277–281], and are shown with uncertainties in
Fig. 26(a). All references are new as this reaction was not
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(a) All experimental data are plotted with uncertainties.
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FIG. 26. (Color online) Evaluated Padé fit and experimen-
tal data from Refs. [275, 277–281] for the natCu(3He,x)66Ga
monitor reaction.
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present in previous versions of the IAEA monitor reac-
tion website [10]. The data of Golchert et al. (1970) [279]
were removed prior to evaluation because the cross-section
values are clearly lower than all other data.

A Padé function with 8 parameters was fitted to 120 se-
lected data points with χ2=1.69 up to 40 MeV, as shown
in Fig. 26(b). Uncertainties include a 4% systematic un-
certainty, and decrease from 30% close to the reaction
threshold to below 7% over an incident particle energy
range of 18 to 40 MeV. The only contributor to the ob-
served excitation function is the 65Cu(3He,2n)66Ga reac-
tion with a threshold of 4.971 MeV that exhibits a broad
maximum at approximately 17 MeV (σ=86.5 mb).

E. natCu(3He,x)63Zn

A second proposed monitor for 3He-beams on Cu is the
formation of short-lived 63Zn (T1/2 =38.47 min.). Decay
characteristics and specific problems associated with the
use of this activation product were discussed in Sec. II G.
Four publications with experimental cross-section data at
incident particle energies up to 45 MeV were identified in
the literature [277–280], and are shown with uncertainties
in Fig. 27. The study of Bissem et al. (1980) [277] contains
two datasets represented separately as (a) and (b). All
references are new as this reaction was not present in pre-
vious versions of the IAEA monitor reaction website [10],
and all of these data were included in the full evaluation.
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FIG. 27. (Color online) Evaluated Padé fit with 10 parameters
(solid) and including uncertainty bands (dashed) to give a
χ2=1.78 up to 45 MeV compared with experimental data from
Refs. [277–280] for the natCu(3He,x)63Zn monitor reaction.
Ref. [277] contains two datasets represented as (a) and (b).

A Padé function with 10 parameters was fitted to 62
selected data points with χ2=1.78 up to 45 MeV, as
shown in Fig. 27. Uncertainties include a 4% systematic
uncertainty, and range from 45% close to the reaction
threshold to less than 20% beyond an incident particle
energy of 20 MeV with a minimum of 12.5% leading up
to the maximum cross section considered. The only con-
tribution within the energy domain under consideration
is the 63Cu(3He,p2n)63Zn reaction with a threshold of
12.43 MeV which shows a broad maximum at approx-
imately 32 MeV (σ=271 mb). The 65Cu(3He,p4n)63Zn

reaction can only play a role at higher energies because
the threshold is 31.072 MeV.

F. natCu(3He,x)65Zn

A third proposed monitor for 3He-beams on Cu
is the cumulative formation of long-lived 65Zn
(T1/2 =243.93 d) that includes the total decay of

parent 65Ga (T1/2 =15.2 min.). Decay characteristics

of 65Zn were discussed in Sec. II H. Six publications
with experimental cross-section data at incident particle
energies up to 95 MeV were identified in the literature as
relevant [266, 277–281], and are shown with uncertainties
in Fig. 28(a).

Bissem et al. (1980) [277] quantifies cross sections at
only two energies (14.3 and 24.3 MeV), although cumula-
tive formation on natCu could be derived from the origi-
nal data (separate values for 65Ga and 65Zn formation on
enriched 63,65Cu targets). The published values of Kon-
dratev et al. (1997) [266] were multiplied by a factor of
0.85 to obtain better agreement with much of the data
from the other authors. Golchert et al. (1970) [279] con-
sidered only the contribution of reactions on 65Cu, and
therefore the low-energy region of the excitation function
is underestimated. All references are new as this reaction
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FIG. 28. (Color online) Evaluated Padé fit and experimen-
tal data from Refs. [266, 277–281] for the natCu(3He,x)65Zn
monitor reaction.
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was not present in previous versions of the IAEA monitor
reaction website [10].

Golchert et al. (1970) data below 15 MeV were removed
prior to further evaluation because contributions from the
63Cu-reactions are not included [279]. Although the values
of Bryant et al. (1963) [278] exhibit a slight shift in the 14-
19 MeV region, the dataset was still maintained within the
selection. A Padé function with 8 parameters was fitted to
112 selected data points with χ2=0.62 up to 95 MeV, as
shown in Fig. 28(b). Uncertainties include a 4% system-
atic uncertainty, and are approximately 20% close to the
reaction threshold, decrease to less than 7% at an incident
particle energy of 11 MeV and are constant at 4.1% from
17 MeV to the maximum energy studied. Four reactions
are involved in the cumulative formation of 65Zn. Only
the exo-energetic reactions of 63Cu(3He,p)65Zn (Q value
of +7.97 MeV) and 63Cu(3He,n)65Ga→65Zn (Q value of
+3.937 MeV) contribute below 8 MeV, and their influ-
ence is dominant up to approximately 14 MeV. Around
15 to 16 MeV, the reactions of 65Cu(3He,p2n)65Zn with
a threshold of 10.39 MeV and 65Cu(3He,3n)65Ga→65Zn
with a threshold of 14.533 MeV begin to dominate, and
are responsible for the high maximum of 283 mb at ap-
proximately 30 MeV.

V. MONITOR REACTIONS FOR 4HE BEAMS

TABLE V. Reactions for monitoring α beams and recom-
mended decay data of the activation products (T1/2 is the
product half-life, and Eγ is the γ-ray energy in keV of the
transition with intensity Iγ in %).

Reaction T1/2 Eγ(keV) Iγ(%) Useful range(MeV)

27Al(α,x)22Na 2.602 y 1274.537 99.940 35–150
27Al(α,x)24Na 14.997 h 1368.626 99.9936 40–160
natTi(α,x)51Cr 27.7010 d 320.082 9.910 8–45
natCu(α,x)66Ga 9.49 h 833.53 5.9 10–60

1039.22 37.0
natCu(α,x)67Ga 3.2617 d 184.576 21.410 10–45

300.217 16.64
natCu(α,x)65Zn 243.93 d 1115.539 50.04 10–45

A. 27Al(α,x)22Na

The formation of long-lived 22Na (T1/2 =2.602 y)
is easily assessed by means of the intense γ-ray line
at 1274.537 keV (99.940% intensity), and therefore the
27Al(α,x)22Na reaction is widely used to monitor alpha-
particle beams in the energy range of 35 to 150 MeV.
Fifteen publications with experimental cross-section data
within the incident particle energy range of interest were
identified in the literature [195, 196, 282–294], and are
shown with their uncertainties in Fig. 29(a). No new ref-
erences were found following the previous update of the
IAEA monitor reaction website in 2007 [10]. The results
of six studies were removed prior to further analysis, and
the reasons for their rejection are given in parentheses:
Bowman and Blann (1969) (large energy shift, and val-
ues too low) [283], Ismail (1990) (values too low) [284],
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(a) All experimental data are plotted with uncertainties.
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parameters (solid) and including uncertainty bands (dashed) to

give a χ2=1.3 up to 150 MeV.

FIG. 29. (Color online) Evaluated Padé fit and experimen-
tal data from Refs. [195, 196, 282–294] for the 27Al(α,x)22Na
monitor reaction.

Karpeles (1969) (values too low) [195], Lange et al. (1995)
(only high energy values, lower than those of other au-
thors) [285], Mukherjee et al. (1997) (discrepant data)
[286], and Visotskiy et al. (1989) (energy shift, visible
at lower energy) [294]. Additionally, the data points of
Probst et al. (1976) [290] below 50 MeV (energy shift at
the end of the stack foils) and the data points of Michel
et al. (1980) [288] (end of the stack foils) were removed
during the fitting process.

The remaining data from nine papers were used as in-
put for a least-squares Padé fit [196, 282, 287–293]. Thus,
a Padé function with 13 parameters was fitted to 104 se-
lected data points with a χ2=1.3 covering the energy range
from 35 to 150 MeV, as shown in Fig. 29(b). Uncertainties
include a 4% systematic uncertainty, and decrease slowly
from 30% near the reaction threshold, remain higher than
8% up to an incident particle energy of 46 MeV, and are
of the order of 4.5% between 51 and 150 MeV. The rise
of the excitation function up to 50 MeV results from the
27Al(α,2αn)22Na reaction with clustered emissions and
a threshold of 25.850 MeV, while the slight increase and
plateau at higher energies contains contributions from
reactions that emit independent nucleons, for example
27Al(α,α2p3n)22Na with a threshold of 58.344 MeV.
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B. 27Al(α,x)24Na

The formation of 24Na (T1/2 =14.997 h) is easily quan-
tified by means of the intense γ-ray line at 1368.626 keV
(99.9936% intensity), and therefore can be used in paral-
lel with 22Na to monitor αbeams in the incident particle
energy range of 40 to 160 MeV. Similar to the choice
made in the 2007 update of Ref. [10], all datasets up to
180 MeV were included in the evaluation, while the fit and
recommendations were limited to 160 MeV. Twenty pub-
lications with experimental cross-section data within the
specified incident particle energy range of interest were
identified in the literature [196, 282–300], and are shown
with their uncertainties in Fig. 30(a). Data from eight
publications were not included in the further evaluation,
and the reason for their rejection are given in parentheses:
Benzakin and Gauvin (1970)(values too high) [295], Bow-
man and Blann (1969) (low values and energy shift) [283],
Gordon (1967) (values too high) [297], Lange et al. (1995)
(values too low) [285], Lindner and Osborne (1953) (en-
ergy shift in region of study, very high primary αenergy)
[300], Mukherjee et al. (1997) (unusual shape of excitation
function) [286], Probst et al. (1976) (energy shift) [290],
and Visotskiy et al. (1989) (large energy shift) [294]. The
low-energy data points of Porile (1962) [289] and Ismail
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(a) All experimental data are plotted with uncertainties.
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FIG. 30. (Color online) Evaluated Padé fit and experimental
data from Refs. [196, 282–300] for the 27Al(α,x)24Na monitor
reaction.

(1990) [284] were also removed prior to fitting.
The remaining results from twelve publications were

used for the least-squares data fitting [196, 282, 284, 287–
289, 291–293, 296, 298, 299]. A Padé function with 12
parameters was fitted to 163 selected data points with a
χ2=1.44 covering the energy range from 10 to 160 MeV,
as shown in Fig. 30(b). Uncertainties include a 4% system-
atic uncertainty, and decrease slowly from 90% near the
reaction threshold, remain higher than 6% up to an inci-
dent particle energy of 45 MeV, and are of the order of 4%
between 70 and 160 MeV. The main contribution to the
excitation function comes from the 27Al(α,α2pn)24Na re-
action with a threshold of 36.090 MeV. At higher energies,
a plateau is formed by reactions with less cluster emission,
for example the 27Al(α,3dp) reaction has a threshold of
60.919 MeV, while the 27Al(α,4p3n)24Na reaction with
the emission of individual nucleons has a threshold of
68.58 MeV. The small cross sections below 36 MeV are
attributed to combinations of even stronger cluster emis-
sions such as 27Al(α,α3He) with a threshold of 27.23 MeV
and 27Al(α,αdp) with a threshold of 33.535 MeV.

C. natTi(α,x)51Cr

The preferred reaction for monitoring αbeams with Ti
foils involves the formation of relatively long-lived 51Cr
(T1/2 =27.7010 d). Although the characteristic γ-ray de-
cay line at 320.082 keV has only a moderate intensity of
9.910%, this emission allows an accurate assessment of
the 51Cr activity produced. Fifteen publications with ex-
perimental cross-section data within the specified incident
particle energy range of interest were identified in the lit-
erature [86, 211, 275, 301–312], and are represented with
their uncertainties in Fig. 31(a). The measurements by
Hermanne et al. (1999b) constitute two datasets presented
separately as (a) and (b) [303]. One new publication was
found that is not present in the 2007 update of the IAEA
monitor database [10]: Uddin and Scholten (2016) [310].

Datasets from eight publications were removed from
further evaluation, and the reasons for their rejection are
given in parentheses: Chang et al. (1973) (unusual shape
of excitation function) [302], Hermanne et al. (1999b)(b)
(values too low) [303], Iguchi et al. (1960) (energy shift)
[304], Levkovskij (1991) (values too low) [86], Michel et
al. (1983) (shifted to higher energies) [306], Tárkányi
(1992) [275] (energy shift at lower energies), Weinreich
et al. (1980) (energy shift at lower energies) [211], and Xi-
ufeng Peng et al. (1998) (energy shift, data below thresh-
old) [312].

Data points below 5 MeV of Király et al. (2008) [305]
and Takács et al. (2007) [309] and the outlying value of
Hermanne et al. (1999)(a) [303] at 18.7 MeV were not
considered in the fitting process. The remaining eight
datasets from eight publications were used for the least-
squares fitting [301, 303, 305, 307–311]. A Padé function
with 11 parameters was fitted to 242 selected data points
with χ2=1.50 covering the energy range from 5 to 45 MeV,
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(a) All experimental data are plotted with uncertainties.
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FIG. 31. (Color online) Evaluated Padé fit and experimental
data from Refs. [86, 211, 275, 301–312] for the natTi(α,x)51Cr
monitor reaction.

as shown in Fig. 31(b). Uncertainties include a 4% system-
atic uncertainty, and decrease from 10% near the reaction
threshold to lower than 6% above an incident particle
energy of 18 MeV. The main contribution to the maxi-
mum in the excitation function at approximately 15 MeV
(σmax=610 mb) arises essentially from the 48Ti(α,n)51Cr
reaction with a threshold at 9.911 MeV. Small contri-
butions of reactions on less abundant Ti isotopes exist
above 12 MeV, such as 49Ti(α,2n)51Cr with a threshold
of 11.71 MeV and 50Ti(α,3n)51Cr with a threshold of
23.51 MeV.

D. natCu(α,x)66Ga

Several reactions on Cu as a backing material for electro-
plated or deposited targets are recommended to monitor
αbeams and other light-charged particles. Earlier evalu-
ations of the three reactions discussed in the next three
subsections have involved separating the known data into
two groups defined as ”high” and ”low” with no satis-
factory explanation (see [10]). Recent measurements sup-
ported by theoretical model calculations point towards
the existence of only a ”high” group of data.

The natCu(α,xn)66Ga reaction is preferred over the in-
cident particle energy range from 10 to 30 MeV, result-

ing in an activation product with a half-life of 9.49 h
that can be quantified by means of two γ-ray lines at
833.532 keV (5.9% intensity) and 1039.220 keV (37.0%
intensity). Twenty-four publications with experimental
cross-section data within the specified incident particle
energy range of interest were identified in the litera-
ture [86, 275, 278, 292, 309, 313–331], and are represented
with their uncertainties in Fig. 32(a). Three new pub-
lications were found that were not present in the 2007
update of the IAEA monitor database [10]: Hermanne
et al. (2015) [316], Shahid et al. (2015) [323], and Sz-
elecsényi et al. (2012) [328]. Datasets from eight pub-
lications were removed prior to further evaluation, and
the reasons for their rejection are given in parentheses:
Bonesso et al. (1993) (values too low) [315], Nassiff and
Nassiff (1983) (data appear to be incorrect) [319], Porges
(1956) (values too low) [320], Porile and Morrison (1959)
(energy shift) [321], Rattan and Singh (1986) (only one
point, value too low) [292], Rizvi et al. (1987) (energy
shift) [322], Singh et al. (1994) (energy shift) [324], and
Zhukova et al. (1970 (values too low) [330].

The five data points below 12 MeV of Levkovskij
(1991) [86] and the lowest energy point of Shahid et
al. (2015) [323] were removed prior to the fitting pro-
cess because they were energy shifted or fell significantly
below the main dataset. All remaining data points from
sixteen publications were used for the least-squares fit-
ting [86, 275, 278, 309, 313, 314, 316–318, 323, 325–
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(a) All experimental data are plotted with uncertainties.
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parameters (solid) and including uncertainty bands (dashed) to

give a χ2=1.53 up to 60 MeV.

FIG. 32. (Color online) Evaluated Padé fit and experimen-
tal data from Refs. [86, 275, 278, 292, 309, 313–331] for the
natCu(α,x)66Ga monitor reaction.
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329, 331]. A Padé function with 17 parameters was fitted
to 364 selected data points with a χ2=1.53 covering the
energy range from 8 to 60 MeV, as shown in Fig. 32(b).
Uncertainties include a 4% systematic uncertainty, and
decrease from 10% near the reaction threshold to lower
than 6% above an incident particle energy of 18 MeV.
The main contribution to the first maximum in the exci-
tation function at approximately 15 MeV (σmax=450 mb)
comes primarily from the 63Cu(α,n)66Ga reaction with
a threshold at 7.978 MeV. A second smaller maximum
arises from the 65Cu(α,3n)66Ga reaction on less naturally
abundant 65Cu with a threshold of 26.889 MeV.

E. natCu(α,x)67Ga

The natCu(α,x)67Ga reaction constitutes a useful com-
plement with Cu foils over the incident particle energy
range from 15 to 40 MeV. Longer-lived activation prod-
uct 67Ga (T1/2 =3.2617 d) can be accurately quantified
by means of the γ-ray lines at 184.576 keV (21.410% in-
tensity) and 300.217 keV (16.64% intensity). Twenty-four
publications with experimental cross-section data within
the specified incident particle energy range of interest were
identified in the literature [86, 210, 278, 286, 292, 309, 313–
316, 318, 320–324, 327–334], and are represented with
their uncertainties in Fig. 33(a). Three new publications
were found that were not present in the 2007 update of the
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(a) All experimental data are plotted with uncertainties.
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FIG. 33. (Color online) Evaluated Padé fit and experimental
data from Refs. [86, 210, 278, 286, 292, 309, 313–316, 318, 320–
324, 327–334] for the natCu(α,x)67Ga monitor reaction.

IAEA monitor database [10]: Hermanne et al. (2015) [316],
Shahid et al. (2015) [323], and Szelecsényi et al. (2012)
[328]. Datasets from thirteen publications were removed
prior to further evaluation, and the reasons for their re-
jection are given in parentheses: Bhardwaj et al. (1988)
(unusual shape of excitation function) [314], Bonesso et
al. (1991) (values too low) [315], Graf and Munzel (1974)
(values too low) [333], Levkovskij (1991) (energy shift, and
values too low) [86], Mohan Rao et al. (1991) (values near
maximum too low) [318], Mukherjee et al. (1997) (energy
steps too large) [286], Porges (1956) (values too low) [320],
Porile and Morrison (1959) (energy shift) [321], Rizvi et
al. (1987) (energy shift, and values too low) [322], Sz-
elecsényi et al. (2001) (values 10% too high) [327], Watson
et al. (1973) (two outlying points too low) [210], Zhukova
et al. (1970) (values too low) [330], and Zweit et al. (1987)
(wrong data) [331].

All remaining results from eleven publications were
used in the least-squares fitting process [278, 292, 309, 313,
316, 323, 324, 328, 329, 332, 334]. A Padé function with
18 parameters was fitted to 266 selected data points with
a χ2=1.27 covering an energy range from 8 to 60 MeV,
as shown in Fig. 33(b). Uncertainties include a 4% sys-
tematic uncertainty, and decrease from 100% near the
reaction threshold to lower than 5% above an incident
particle energy of 22 MeV to increase again at energies
above 47 MeV (for example, 13.75% at 60 MeV). The only
contribution to the maximum in the excitation function
at approximately 28 MeV (σmax=298 mb) arises from the
65Cu(α,2n)67Ga reaction with a threshold of 14.971 MeV.

F. natCu(α,x)65Zn

A third useful reaction on Cu with which to moni-
tor αbeams in the energy range from 20 to 45 MeV
is natCu(α,xn)65Zn that results in long-lived activation
product 65Zn (T1/2 =243.93 d) with decay characteristics
that have already been discussed in Sec. II H. Twenty-one
publications with experimental cross-section data within
the specified incident particle energy range of interest were
identified in the literature [86, 281, 292, 309, 313–316, 320–
324, 329–331, 334–338], and are represented with their
uncertainties in Fig. 34(a). Two new publications were
found that were not available during the 2007 update of
the IAEA monitor database [10]: Hermanne et al. (2015)
[316], and Shahid et al. (2015) [323]. Data from nine pub-
lications were discarded prior to further evaluation, and
the reasons for their rejection are given in parentheses:
Bonesso et al. (1991) (values too low) [315], Lebowitz and
Greene (1970) (only one point, value too low) [281], Porges
(1956) (values too low values) [320], Porile and Morrison
(1959) (energy shift) [321], Rattan and Singh (1986) (val-
ues too low, noted as 1.987 mb in Table 4 of reference)
[292], Rizvi et al. (1987) (values too low at higher energy)
[322], Ruddy (1963) (data scattered at low energy) [337],
Singh et al. (1994) (values too low at higher energy) [324],
and Zweit et al. (1987) (values too low) [331]. The data
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(a) All experimental data are plotted with uncertainties.
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FIG. 34. (Color online) Evaluated Padé fit and experimental
data from Refs. [86, 281, 292, 309, 313–316, 320–324, 329–
331, 334–338] for the natCu(α,x)65Zn monitor reaction.

points below 16 MeV of Hermanne et al. (2015) [316],
Levkovskij (1991) [86] and Tárkányi et al. (2000) [329]
were also removed prior to the final fitting process.

All remaining datasets from twelve publications were
used in the least-squares fitting process [86, 309, 313, 314,
316, 323, 329, 330, 334–336, 338]. A Padé function with
12 parameters was fitted to 228 selected data points with
a χ2=1.48 covering the energy range from 16 to 45 MeV,
as shown in Fig. 34(b). Uncertainties include a 4% sys-
tematic uncertainty, and decrease from 25% near the reac-
tion threshold to lower than 5% over the incident particle
energy range from 24 to 40 MeV to increase again to
12.5% at 45 MeV. The only contribution to the maxi-
mum in the excitation function at approximately 26 MeV
(σmax=280 mb) arises from the 63Cu(α,pn)65Zn reaction
with a threshold of 13.404 MeV. At higher energies, small
contributions can originate from the 65Cu(α,p3n)65Zn re-
action with a threshold of 32.305 MeV; however, these
potential sources are not visible in the measured excita-
tion function.

VI. SUMMARY AND CONCLUSIONS

The IAEA Coordinated Research Project on “Nuclear
Data for Charged-particle Monitor Reactions and Medi-
cal Isotope Production” galvanized nuclear cross-section
research activities between 2012 and 2017 through the
encouragement of highly relevant measurements at accel-
erators and comprehensive evaluations of the most rele-
vant charged-particle induced reactions. The organisation
of such a programme of work catalysed comprehensive
technical discussions of the experimental and theoretical
challenges in such measurements, theoretical modelling
and evaluations in order to address cross-section reaction
and decay data needs.

For the most part, investigations of evaluation method-
ology in this CRP remained firmly rooted within the
realm of traditional least-squares techniques for merging
experimental and model data. Nevertheless, previously
unknown and ill-defined systematic uncertainties have
been estimated on the basis of the considerable amount
of data available for each of the selected beam-monitor
reactions. Such estimated systematic uncertainties corre-
sponds to the lowest achievable uncertainty for each moni-
tor reaction at a given incident particle energy. This CRP
gaivanised the generation of new evaluations of charged-
particle beam monitor reactions that for the first time
include uncertainties for the most commonly used beam
monitors relevant to accelerator applications.

Perhaps the most important contribution of the present
CRP has been to provide significantly improved beam-
monitor cross-section evaluations and evaluation method-
ology, and a timely road map for future work in this field.
Thus, the CRP activities have served as a worthy and, in
many respects, more comprehensive successor to the valu-
able pioneering efforts that produced IAEA-TECDOC-
1211 some 20 years ago [1].
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de la Section Efficace á la Production“, thesis, Annexe B:
Valeurs de Sections Ffficaces de Production, Université
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Amjed, “Excitation Functions for Production of 46Sc
by Deuteron and Proton Beams in natTi: A Basis
for Additional Monitor Reactions”, Nucl. Instrum.
Methods Phys. Res. B338, 31-41 (2014); EX-
FOR D4310.

[108] S. Neumann, “Activation Experiments with Medium-
energy Neutrons and the Production of Cosmogenic
Nuclides in Extraterrestrial Matter”, thesis, Universität
Hannover, 1999; EXFOR O1882.

[109] V.N. Aleksandrov, M.P. Semenova, V.G. Semenov, “Pro-
duction Cross Section of Radionuclides in (p,x) Reac-
tions on Copper and Nickel Nuclei”, Atomic Energy
62, 411 (1987); EXFOR A0351.

[110] A.A. Alharbi, J. Alzahrani, A. Azzam, “Activation Cross-
section Measurements of Some Proton Induced Reac-
tions on Ni, Co and Mo for Proton Analysis (PAA) pur-
poses”, Radiochim. Acta 99, 763-770 (2011); EX-
FOR D0673003.

[111] F.S. Al-Saleh, K.S. Al Mugren, A. Azzam, “Excitation
Functions of (p,x) Reactions on Natural Nickel Between
Proton Energies of 2.7 and 27.5 MeV”, Appl. Radiat.
Isot. 65, 104–113 (2007); EXFOR O1503005.

[112] N.F. Amjed, F. Tárkányi, A. Hermanne, F. Ditrói,
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[194] A. Hermanne, S. Takács, R. Adam Rebeles, F. Tárkányi,
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Adam-Rebeles, “Excitation functions of longer lived ra-
dionuclides formed by deuteron irradiation of germa-
nium”, Nucl. Instrum. Methods Phys. Res.
B336, 81-95 (2014).

[223] O.U. Andres and W.W. Meinke, “Absolute (d,n)-
reaction cross sections of zirconium, molybdenum, tita-
nium and sulfur”, Phys. Rev. 120, 2114 (1960);
EXFOR D4057.

[224] V. Duchemin, “Deuteron monitoring through
natTi(d,x)46Sc at Arronax”, private communication,
2015.

[225] A. Hermanne, M. Sonck, S. Takács, F. Tárkányi, “Exper-
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[234] E. Šimečková, P. Bém, M. Honusek, M. Štefánik, U.
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manne, “Evaluated activation cross sections of longer
lived radionuclides produced by deuteron induced reac-
tions on natural iron up to 10 MeV”, Nucl. Instrum.
Methods Phys. Res. B267, 15-22 (2009); EX-
FOR D4185.

[246] S. Sudar, S.M. Qaim, “Excitation functions of proton and
deuteron induced reactions on iron and alpha-particle in-
duced reactions on manganese in the energy region up
to 25 MeV”, Phys. Rev. C50, 2408 (1995), EX-
FOR D4018.

[247] Tao Zhenlan, Zhu Fuying, Qui Huiyuan, Wang Gonging,
“Excitation functions of deuteron induced reactions on
natural iron”, Atomic Energy Sci. Technol.
5, 506 (1993); EXFOR S0015.

[248] Landolt-Bornstein, New Series Group I, Volume 13, Sub-
volume F, “Production of Radionuclides at Intermediate
Energies: Interactions of Deuterons, Tritons and 3He-
nuclei with Nuclei”, Editor: H. Shopper, Contributors:
V.G. Semenov, M.P. Semenova, N.M. Sobolevsky (1995).
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“The Activation of Fe by Deuterons at Energies up
to 20 MeV”, J. Korean Phys. Soc. 59, 1961–
1964 (2011); final results published in M. Avrigeanu,
V. Avrigeanu, P. Bém, U. Fisher, M. Honusek, K. Ka-
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Sonck, “Evaluated activation cross sections of longer-
lived radionuclides produced by deuteron-induced reac-
tions on natural nickel”, Nucl. Instrum. Meth-
ods Phys. Res. B260, 495-507 (2007); EX-
FOR D4178.

[259] J. Zweit, A.M. Smith, S. Downey, H.L. Sharma, “Exci-
tation functions for deuteron induced reactions in nat-
ural nickel: production of no-carrier-added 64Cu from
enriched 64Ni targets for positron emission tomogra-
phy”, Appl. Radiat. Isot. 42, 193-197 (1991);
EXFOR D4056.
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“Alpha Beam Monitoring via natCu + Alpha Processes
in the Energy Range from 40 to 60 MeV”, Nucl.
Instrum. Methods Phys. Res. B184, 589–596
(2001); EXFOR E1996.
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