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Introduction

Consider the model stationary diffusion problem

     -∇ • (κ∇ū) + λū = f in Ω, ū = g on Γ D , κ∇ū • n = g on Γ N , (1) 
where Ω is a bounded open domain of R 2 with ∂Ω = Γ D ∪ Γ N (Γ D ∩ Γ N = ∅) and n ∈ R 2 the outgoing unit normal vector. The data are such that f, λ ∈ L 2 (Ω), with λ ≥ 0 (if λ = 0, then |Γ D | > 0), g ∈ H 1 /2 (Γ D ) and g ∈ L 2 (Γ N ). The tensor-valued diffusion coefficient κ is supposed to be bounded and to satisfy the uniform ellipticity condition ∀x ∈ Ω, ∀y ∈ R 2 , α min y 2 ≤ y t κ(x)y ≤ α max y 2 , where α min , α max are positive coefficients. Under the above conditions, and if either λ > 0 or Γ D is of positive length, it is well known that system (1) has a unique solution in H 1 (Ω). Such a solution satisfies a positiveness principle, i.e. if f ≥ 0 and g ≥ 0, then ū ≥ 0 (see [START_REF] Evans | Application of nonlinear semigroup theory to certain partial differential equations[END_REF] for example).

Standard methods may be applied to the discretization of such diffusion equations with possibly discontinuous κ on arbitrary meshes. This proves to be an efficient strategy, as far as accuracy (or convergence) is concerned. However, it is well known that positiveness of the discrete solution does not hold. This lack of positiveness (also called monotonicity) can lead to serious difficulties, since ū can account for a temperature or a concentration. A first attempt to solve the issue of monotonicity would be to truncate the discrete solution to zero. This is not satisfactory because conservation is lost in such a process, and conservation is an important property of the scheme. Some algorithms based on the repair technique introduced in [START_REF] Loubère | The repair paradigm: New algorithms and applications to compressible flow[END_REF] are employed to fix the conservation issue [START_REF] Cao | A conservative enforcing positivity-preserving algorithm for diffusion scheme on general meshes[END_REF][START_REF] Liska | Enforcing the discrete maximum principle for linear finite element solutions of second-order elliptic problems[END_REF][START_REF] Wang | Discrete maximum principle based on repair technique for diamond type scheme of diffusion problems[END_REF][START_REF] Yao | Enforcing positivity with conservation for nine-point scheme of nonlinear diffusion equations[END_REF]. However, these algorithms are only globally (and not locally) conservative, and the consistency is unclear. Some monotonic methods have been designed in the finite-element framework (see [START_REF] Ciarlet | Discrete maximum principle for finite-difference operators[END_REF][START_REF] Ciarlet | Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure[END_REF][START_REF] Karátson | On discrete maximum principles for nonlinear elliptic problems[END_REF][START_REF] Korotov | Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle[END_REF][START_REF] Vejchodskỳ | Discrete maximum principle for higher-order finite elements in 1[END_REF] among others), but they rely on restrictive conditions on the mesh, that we cannot afford. For fifteen years many original finite volume methods have been proposed to address the issue of monotonicity, while preserving conservation. Most of these schemes are nonlinear or have a larger stencil than standard methods. The finite volume framework is well suited to achieve monotonicity because it allows for an easy manipulation of the fluxes. The first works we know of are those of Le Potier [START_REF] Potier | Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés[END_REF] and Bertolazzi and Manzini [START_REF] Bertolazzi | A second-order maximum principle preserving finite volume method for steady convection-diffusion problems[END_REF]. In such methods, one uses a manipulation of the fluxes that leads to introduce a dependence on the discrete solution in the coefficients of the fluxes, making the scheme nonlinear, although [START_REF] Aavatsmark | Convergence of a symmetric MPFA method on quadrilateral grids[END_REF] is linear. To this end, one usually introduces secondary unknowns (for instance vertex-located or face-located unknowns) in addition to the primary (cell-located) unknowns. Among others, important contributions to this field are [START_REF] Blanc | A positive scheme for diffusion problems on deformed meshes[END_REF][START_REF] Gao | A finite volume element scheme with a monotonicity correction for anisotropic diffusion problems on general quadrilateral meshes[END_REF][START_REF] Lipnikov | Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes[END_REF][START_REF] Sheng | Monotone finite volume schemes of nonequilibrium radiation diffusion equations on distorted meshes[END_REF][START_REF] Yuan | Monotone finite volume schemes for diffusion equations on polygonal meshes[END_REF], which propose efficient numerical schemes preserving the positiveness of the primary unknowns. In [START_REF] Sheng | A new nonlinear finite volume scheme preserving positivity for diffusion equations[END_REF] the requirement of positive secondary unknowns is relaxed. The works [START_REF] Lipnikov | Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes[END_REF][START_REF] Zhao | A monotone combination scheme of diffusion equations on polygonal meshes[END_REF] explain how to build monotonic schemes without relying on secondary unknowns. In [START_REF] Potier | Correction non linéaire et principe du maximum pour la discrétisation d'opérateurs de diffusion avec des schémas volumes finis centrés sur les mailles[END_REF][START_REF] Lipnikov | Minimal stencil finite volume scheme with the discrete maximum principle[END_REF][START_REF] Sheng | The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes[END_REF], maximum principle preserving schemes are proposed. Cancès and Guichard obtained moreover an entropy diminishing property in [START_REF] Cancès | Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure[END_REF], introducing the nonlinearity directly at the continuous level via a change of variables. Some concepts and proofs about the existence of solutions for these types of scheme can be found in [START_REF] Després | Non linear schemes for the heat equation in 1D[END_REF][START_REF] Droniou | Construction and convergence study of schemes preserving the elliptic local maximum principle[END_REF][START_REF] Schneider | Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF]. See also [START_REF] Wang | A finite volume scheme preserving maximum principle with cell-centered and vertex unknowns for diffusion equations on distorted meshes[END_REF][START_REF] Yu | A finite volume scheme preserving maximum principle for the system of radiation diffusion equation with three temperatures[END_REF] for recent advances in this field.

The DDFV (Discrete Duality Finite Volume [START_REF] Hermeline | A finite volume method for the approximation of diffusion operators on distorted meshes[END_REF], [START_REF] Domelevo | A finite volume method for the laplace equation on almost arbitrary twodimensional grids[END_REF]) scheme relies on secondary (nodal) unknowns. However, in contrast with most above-mentioned methods, one considers an additional diffusion problem on a so-called dual mesh to calculate them. This scheme has been found to be one of the most accurate finite volume methods for diffusion problems [START_REF] Herbin | Benchmark on discretization schemes for anisotropic diffusion problems on general grids[END_REF], at the price of doubling the number of degrees of freedom compared for instance to the linear or bilinear finite element method or to cell centered methods such as MPFA (Multi Point Flux Approximation [START_REF] Aavatsmark | Convergence of a symmetric MPFA method on quadrilateral grids[END_REF]) or SUSHI (Scheme Using Stabilization and Hybrid Interfaces [START_REF] Eymard | Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: A scheme using stabilization and hybrid interfaces[END_REF]). However, none of latter methods are monotonic. A monotonic extension of DDFV has been proposed in [START_REF] Camier | A monotone nonlinear finite volume method for approximating diffusion operators on general meshes[END_REF], but was not compatible with Neumann boundary conditions, and only first-order convergent for discontinuous tensor coefficients κ. In the present paper, we propose a new monotonic extension of DDFV that remedies these flaws. Moreover, we compare its performance to a diamond type method with an original interpolation method relying on polynomial reconstructions. Monotonicity is achieved by adapting the method of [START_REF] Wu | Interpolation-based second-order monotone finite volume schemes for anisotropic diffusion equations on general grids[END_REF][START_REF] Gao | A second-order positivity-preserving finite volume scheme for diffusion equations on general meshes[END_REF][START_REF] Zhang | A vertex-centered and positivity-preserving scheme for anisotropic diffusion problems on arbitrary polygonal grids[END_REF][START_REF] Gao | A finite volume element scheme with a monotonicity correction for anisotropic diffusion problems on general quadrilateral meshes[END_REF] to our schemes. Such a technique does not require the positiveness of the secondary unknowns. The main steps of the proposed methods may be briefly summarized as follows.

1. Integration of the equation over each cell of the user's mesh that we will call primal.

2. Transformation of this surface integral into a sum of fluxes using the divergence theorem.

3. Approximation of the fluxes using the midpoint quadrature rule on each face of the cell.

4.

Taylor expansion of the solution ū in the neighborhood of the midpoint of each face along two independent privileged directions in order to obtain an approximation of ∇ū involving the values of ū and its derivatives at certain suitably chosen points, in this case the center and vertices of the cell.

5. Thanks to this Taylor expansion, estimation of (κ∇ū)

• n = (∇ū) • (κ t n).
6. Calculation of the values of ū at vertices either by a polynomial interpolation formula in the neighborhood of the midpoint of each primal cell face or by integration of the equation over each cell of the dual mesh.

7. Calculation of the values of derivatives of ū at centers and vertices of the neighboring cells by differentiating this polynomial interpolation.

8. Transformation of the scheme into a monotonic nonlinear two point flux approximation (or four point flux approximation if a DDFV type method is used). 9. Resolution of the nonlinear system by the Picard iteration method.

The integration over the primal mesh is common to the two monotonic schemes proposed here and is described in Sec. 3. The treatment of the vertex unknowns depends on the scheme and is addressed in Sec. 4. Monotonicity of both schemes is based on the same strategy, which is described in Sec. 5. It leads to a two point flux the coefficients of which depend on the unknown. The Picard iteration method to handle the nonlinearity is also described. The properties of the new DDFV schemes are listed in Sec. 6. Finally, both schemes are assessed in term of accuracy, monotonicity and computational efficiency, and compared with the non monotonic DDFV scheme in Sec. 7. It is shown that the interpolation-based scheme is more efficient for a given L 2 accuracy, but that the DDFV-based scheme achieves second-order accuracy in H 1 norm for the tests we ran. This outstanding feature has been already observed in [START_REF] Herbin | Benchmark on discretization schemes for anisotropic diffusion problems on general grids[END_REF][START_REF] Hermeline | Nouvelles méthodes de volumes finis pour approcher des équations aux dérivées partielles sur des maillages quelconques[END_REF]. Our final test problem is a solution of a simplified Fokker-Planck equation. We show that our scheme is able to compute a correct monotonic solution while achieving the energy conservation. In all that follows vectors and matrices will be noted with bold letters while x = (x, y) and I will stand for the position and 2 × 2 identity matrix, respectively.

Definitions and notations

In this section we gather most of the notations that will be used later. Consider an arbitrary primal mesh made of (possibly distorted, non-conformal, non convex...) polygonal cells that are denoted

P i (1 ≤ i ≤ n).
The center of a cell P i is denoted by x i (in general x i is the mass center of P i but other interior points for which P i is starred could be chosen) and its faces are F = x r x s . The center of the face F is x , the unit vector orthogonal to the face F (directed from cell P i to cell P j ) is n sr and N sr = x s -x r n sr .

. . In order to define DDFV type schemes we also need to define a dual mesh (often named barycentric or Donald dual mesh) obtained from the primal mesh by joining the center of each cell with the center of its neighbors and the middle of its boundary faces. The dual cells are denoted by D r (1 ≤ r ≤ m), their faces are G i = x i x , G j = x x j and we set G = G i ∪ G j . The unit vector orthogonal to the face G i (resp. G j ) and directed from dual cell D r to dual cell D s is n i (resp. n j ) and N i = xx i n i (resp. N j = x j -x n j ). Let θ i (resp. θ j ) be the (trigonometrically oriented) angle between vectors1 N ⊥ i (resp. N ⊥ j ) and N sr . If F ⊂ ∂Ω (resp. F ⊂ ∂Ω) we denote by I the quadrilateral x i x r x j x s (resp. the degenerate quadrilateral x i x r x x s ). Note that all these cells, which we will call diamond or intermediary, also constitute a mesh of Ω. Each interior diamond cell I can be divided into two degenerate quadrilaterals I i = x i x r x x s and I j = x j x s x x r that will be called diamond sub-cells. Most of these notations are illustrated by Fig. 1. Finally, given a geometrical quantity X (face or cell), we will denote by |X| its measure (length or area). Define

h = max (|F |, |G i |, |G j |),
we will assume that the primal and dual meshes satisfy the following assumptions.

(H1)

There exists a constant θ 0 independent of h such that, for all ,

|θ 0 | < π 2 , cos(θ 0 ) < cos(θ i ), cos(θ 0 ) < cos(θ j ).
2. (H2) Given N i (resp. N r ) the number of faces of the primal (resp. dual) cell P i (resp. D r ), there exists a constant N max independent of h such that max(max

i N i , max r N r ) < N max .

(H3)

There exists a constant ξ independent of h such that, for all ,

|I | ≤ ξ min(|P i |, |P j |, |D r |, |D s |).
Given v = (v i ) a vector in R n we will denote respectively its Euclidian, L 2 and L ∞ norms by

v = n i=1 v 2 i 1 /2 , v 2 = n i=1 |P i |v 2 i 1 /2 , v ∞ = max 1≤i≤n |v i |,
and we use the following notations

v ≥ 0 if ∀i, v i ≥ 0, v > 0 if ∀i, v i > 0.
Given x k any point and φ any function we will often note φ k = φ(x k ).

3 Finite volume formulation on the primal mesh

We will assume that κ is continuous inside each cell but can be discontinuous along some primal faces F .

To simplify the presentation it will be assumed for now on that κ is scalar-valued, that is, κ = κI with α min ≤ κ ≤ α max . For a tensor-valued coefficient κ ∈ R 2,2 it is enough to replace κn by κ t n in the following calculations.

The first step to design a finite volume scheme consists in integrating equation [START_REF] Aavatsmark | Convergence of a symmetric MPFA method on quadrilateral grids[END_REF] 

on cell P i - Pi ∇ • (κ∇ū) + Pi λū = Pi f.
We can make use of the divergence formula to obtain

- ∈i F κ∇ū • n + Pi λū = Pi f, (2) 
where the compact notation ∈i stands for the sum on all faces F of the primal cell P i . We need to approximate the flux

F = F κ∇ū • n sr .
Suppose that κ i (resp. κ j ) is a first-order approximation of κ in the diamond sub-cell I i (resp. I j ), for example

κ i = κ(x i ), κ j = κ(x j ),
or, if κ is continuous

κ i = κ j = κ(x ).
Denote by (∇ū) i and (∇ū) j expressions of ∇ū in P i and P j . We have

- ∈i F κ i (∇ū) i • n sr + Pi λū = Pi f + O h 3 .
A Taylor expansion in the neighborhood of x gives

ū(x) = ū(x ) + ∇ū(x ) • (x -x ) + O x -x 2 .
Replacing x respectively by x i , x j , x r , x s , we obtain

ū(x i ) = ū(x ) + ∇ū(x ) • N ⊥ i + O h 2 , ū(x j ) = ū(x ) + ∇ū(x ) • N ⊥ j + O h 2 , ū(x r ) = ū(x ) + ∇ū(x ) • N ⊥ r + O h 2 , ū(x s ) = ū(x ) + ∇ū(x ) • N ⊥ s + O h 2 .
Subtracting the last two equations we have

∇ū(x ) • N ⊥ sr = ū(x s ) -ū(x r ) + O h 2 . Therefore we obtain      ∇ū(x ) • N ⊥ i = ū(x ) -ū(x i ) + O h 2 , ∇ū(x ) • N ⊥ j = ū(x j ) -ū(x ) + O h 2 , ∇ū(x ) • N ⊥ sr = ū(x s ) -ū(x r ) + O h 2 .
(

) 3 
Let us first consider an interior primal face F . We can decompose the unit vector n sr in the basis (n ⊥ i , n ⊥ sr ) or (n ⊥ j , n ⊥ sr ) :

n sr = α i n ⊥ i + β i n ⊥ sr = α j n ⊥ j + β j n ⊥ sr , with α i = 1 n sr • n ⊥ i , β i = n sr • n i n ⊥ sr • n i , α j = 1 n sr • n ⊥ j , β j = n sr • n j n ⊥ sr • n j
, that is, in view of Fig.

1

α i = 1 cos(θ i ) , β i = sin(θ i ) cos(θ i ) , α j = 1 cos(θ j ) , β j = sin(θ j ) cos(θ j ) . (4) 
According to assumption H1 these values are well defined. Note that α i > 0, α j > 0 as soon as the centers x i and x j of the primal cells P i and P j are separated by the line corresponding to their face F = P i ∩ P j . It may happen that x i and x j are not separated by the face F . This is the case for a non-convex cell P i if its mass center x i is not inside P i (see the left-hand side of Fig. 2). In such a case we replace x i by the midpoint of an inner diagonal of P i or by any interior point for which P i is star-shaped (right-hand side of Fig. 2). Doing so, the inequalities α i > 0, α j > 0, which are mandatory to enforce the positiveness of the scheme (see Section 5), are always satisfied. The gradients in the direction n sr in the cells P i and P j then write

∇ū(x ) i • n sr = α i ∇ū(x ) i • n ⊥ i + β i ∇ū(x ) i • n ⊥ sr , ∇ū(x ) j • n sr = α j ∇ū(x ) j • n ⊥ j + β j ∇ū(x ) j • n ⊥
sr , that is to say, using Taylor expansions (3) Note that these approximations can also be obtained by using the Green-Gauss formula applied to ∇ū in diamond sub-cells I i and

           ∇ū(x ) i • n sr = α i ū(x ) -ū(x i ) |G i | + β i ū(x s ) -ū(x r ) |F | + O(h), ∇ū(x ) j • n sr = α j ū(x j ) -ū(x ) |G j | + β j ū(x s ) -ū(x r ) |F | + O(h). (5) 
I j            ∇ū(x ) i = 1 |I i | I i ∇ū(x ) + O(h) = 1 2 1 |I i | ((ū(x ) -ū(x i ))N sr + (ū(x s ) -ū(x r ))N i ) + O(h), ∇ū(x ) j = 1 |I j | I j ∇ū(x ) + O(h) = 1 2 1 |I j | ((ū(x j ) -ū(x ))N sr + (ū(x s ) -ū(x r ))N j ) + O(h). (6) 
The fluxes can be indifferently estimated using one or the other of formulas ( 5), [START_REF] Camier | A monotone nonlinear finite volume method for approximating diffusion operators on general meshes[END_REF].

Let us now recall that the properties of (1) imply that the normal component of the flux is continuous across the primal face F . We therefore impose

κ i ∇ū(x ) i • n sr = κ j ∇ū(x ) j • n sr .
This gives

ū(x ) = κ i α i |G j |ū(x i ) + κ j α j |G i |ū(x j ) κ i α i |G j | + κ j α j |G i | + |G i ||G j |(κ j β j -κ i β i ) |F |(κ i α i |G j | + κ j α j |G i |) (ū(x s ) -ū(x r )) + O(h 2 ). ( 7 
)
Inserting this value into one of the two equations of (5) results in

κ i ∇ū(x ) i • n sr = κ j ∇ū(x ) j • n sr = κ i κ j α i α j κ i α i |G j | + κ j α j |G i | ū(x j ) -ū(x i ) + κ i κ j (α i β j |G j | + α j β i |G i |) |F |(κ i α i |G j | + κ j α j |G i |) ū(x s ) -ū(x r ) + O(h).
In view of this relation the numerical flux F through the primal face F is then given by

F (u) = γ (u j -u i ) + δ (u s -u r ), (8) 
with

γ = κ i κ j α i α j |F | κ i α i |G j | + κ j α j |G i | , δ = κ i κ j (α i β j |G j | + α j β i |G i |) κ i α i |G j | + κ j α j |G i | . (9) 
Since α i > 0, α j > 0, κ i > 0, κ j > 0 we clearly have γ > 0.

Consider now a boundary face F . If F ⊂ Γ D we have ū = g(x ). From ( 5) we then obtain

∇ū(x ) i • n sr = α i g(x ) -ū(x i ) |G i | + β i ū(x s ) -ū(x r ) |F | + O(h),
so that the Dirichlet boundary flux is defined by

F (u) = γ (g(x ) -u i ) + δ (u s -u r ), (10) 
with

γ = κ i α i |F | |G i | , δ = κ i β i . If F ⊂ Γ N , we have F = F κ∇ū • n sr = F g,
so that the exact flux F and the approximated one F are

F = |F |g(x ) + O(h 2 ), F (u) = |F |g(x ).

Dealing with vertex unknows

In order to evaluate the numerical fluxes F (u), Equations ( 8) and ( 10) require the knowledge of the values of u at the vertices x r of the primal mesh. To compute these values, we propose to use two different methods.

For the first one, described in Section 4.1, vertex values are calculated by interpolation while for the second one, described in Section 4.2, they are calculated as the solution to the same diffusion problem (1) discretized on the dual mesh.

Diamond type scheme

The first way to calculate the vertex values u r is to use a polynomial approximation calculated using the cell-centered values u i . For a polynomial of degree 1, we have 3 coefficients to calculate, so at least 6 (3×dimension) neighboring cells of the cell are required for stability reason: see [START_REF] Dumbser | Central weighted eno schemes for hyperbolic conservation laws on fixed and moving unstructured meshes[END_REF][START_REF] Käser | Ader schemes on adaptive triangular meshes for scalar conservation laws[END_REF] 2 . When it is possible, the stencil will be centered on the cell, but the closer the cell is to the boundary of the domain or to the discontinuity of κ, the more the stencil will be shifted in order not to cross the discontinuity.

• x i • • • • x i • • • • • • • • Figure 3:
Construction of the stencil for the cell Pi with a discontinuity (in red).

2 An example of the use of polynomials of degree 2 is also provided in the numerical experiments section.

To be more precise, the construction of the stencil of a cell P i is illustrated on Fig. 3. We denote this stencil by S i = {P 0 , ..., P k }. For the sake of simplicity, we have assumed that the cells involved in the stencil have been renumbered. First the cell P i itself (in blue) is added to the stencil and then we add the cells that share, at least, a vertex with the cell P i (in yellow). If the number of cells we have already selected is not sufficient (in our case, 6 cells for a polynomial of order 1), we add the cells that have, at least, a vertex linked to the cells that we have just been added to the stencil (in green) and so on until we have enough cells. In all the above process, we impose that the stencil does not cross any discontinuity of κ (see Fig. 3).

Let u 0 , ..., u k denote the k + 1 values used for the calculation (k ≥ 5). The polynomial is of the form

P i (x) = a 00 (u 0 , ..., u k ) + a 10 (u 0 , ..., u k )(x -x i ) + a 01 (u 0 , ..., u k )(y -y i ),
and its coefficients a 00 , a 10 , a 01 are chosen such that

P i (x 0 ) = u 0 , ..., P i (x k ) = u k .
This leads to the following system

   1 x 0 -x i y 0 -y i . . . . . . . . . 1 x k -x i y k -y i    =:M   a 00 a 10 a 01   =:a =    u 0 . . . u k    =:b
.

Since matrix M has more rows than columns we have to use the least square method so that vector a is computed as a solution to the linear system:

M t Ma = M t b.
In this process note that we do not enforce the continuity of u at the vertices. Indeed, a priori, P i (x r ) = P j (x r ) for i = j.

We thus obtain expressions of the gradients in the direction n sr in the cells P i and P j similar to (5)

           ∇ū(x ) i • n sr = α i ū(x ) -ū(x i ) |G i | + β i P i (x s ) -P i (x r ) |F | + O(h), ∇ū(x ) j • n sr = α j ū(x j ) -ū(x ) |G j | + β j P j (x s ) -P j (x r ) |F | + O(h). (11) 
Assuming the continuity of the flux F through the primal face

F ∇ū(x ) i • n sr = ∇ū(x ) j • n sr , provides ū(x ) = κ i α i |G j |ū(x i ) + κ j α j |G i |ū(x j ) κ i α i |G j | + κ j α j |G i | + |G i ||G j |(κ j β j (P j (x s ) -P j (x r )) -κ i β i (P i (x s ) -P i (x r )) |F |(κ i α i |G j | + κ j α j |G i |) + O(h 2 ).
In view of one of the two equations of [START_REF] Després | Non linear schemes for the heat equation in 1D[END_REF], having inserting this value into it, the numerical flux F through the primal face F results in

F (u) = γ (u j -u i ) + δ i (P i (x s ) -P i (x r )) + δ j (P j (x s ) -P j (x r )), with γ = κ i κ j α i α j |F | κ i α i |G j | + κ j α j |G i | , δ i = κ i κ j α j β i |G i | |G j |κ i α i + |G i |κ j α j , δ j = κ i κ j α i β j |G j | |G j |κ i α i + |G i |κ j α j )
, so that the diamond scheme writes

                           - ∈i, / ∈∂Ω (γ (u j -u i ) + δ i (P i (x s ) -P i (x r )) + δ j (P j (x s ) -P j (x r ))) - ∈i, ∈∂Ω (γ (u -u i ) + δ i (P i (x s ) -P i (x r ))) + |P i |λ i u i = |P i |f i , u = g(x ) x ∈ Γ D , γ (u -u i ) + δ i (P i (x s ) -P i (x r )) = |F |g(x ) x ∈ Γ N . (12) 

DDFV scheme

The second way to calculate the vertex values u r is to consider them as additional unknowns that are solutions to problem (1) integrated on each cell of the dual mesh, thus following [START_REF] Hermeline | A finite volume method for the approximation of diffusion operators on distorted meshes[END_REF]. We have

- Dr ∇ • (κ∇ū) + Dr λū = Dr f,
that is, thanks to the divergence theorem

- ∈r G κ∇ū • n - Dr∩∂Ω κ∇ū • n + Dr λū = Dr f,
where the compact notation ∈r stands for the sum on all the faces

G = G i ∪ G j (if x / ∈ ∂Ω) or G = G i (if x ∈ ∂Ω) of the dual cell D r . We obtain - ∈r G i κ i ∇ū(x ) i • n i - ∈r, / ∈∂Ω G j κ j ∇ū(x ) j • n j - Dr∩∂Ω κ∇ū • n + Dr λū = Dr f + O h 3 .
We decompose the unit vector n i (resp. n j ) in the basis (n ⊥ sr , n ⊥ i ) (resp. (n ⊥ sr , n ⊥ j ))

n i = α i n ⊥ sr -β i n ⊥ i , n j = α j n ⊥ sr -β j n ⊥ j ,
where the values

α i = 1 n ⊥ sr • n i , β i = - n sr • n i n sr • n ⊥ i , α j = 1 n ⊥ sr • n j , β j = - n sr • n j n sr • n ⊥ j ,
coincide with those of (4): see Fig. 1. We obtain

∇ū(x ) i • n i = α i ∇ū(x ) i • n ⊥ sr -β i ∇ū(x ) i • n ⊥ i , ∇ū(x ) j • n j = α j ∇ū(x ) j • n ⊥ sr -β j ∇ū(x ) j • n ⊥ j , that is to say, using Taylor expansions (3) ∇ū(x ) i • n i = α i ū(x s ) -ū(x r ) |F | + β i ū(x ) -ū(x i ) |G i | + O(h), ∇ū(x ) j • n j = α j ū(x s ) -ū(x r ) |F | + β j ū(x j ) -ū(x ) |G j | + O(h).
Note that these approximations derive directly from the Green-Gauss formula applied to ∇ū in diamond subcells I i and I j already given by [START_REF] Camier | A monotone nonlinear finite volume method for approximating diffusion operators on general meshes[END_REF].

Suppose that x / ∈ ∂Ω. In view of the previous equations and of [START_REF] Cancès | Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure[END_REF], the numerical flux G through the common boundary G = G i ∪ G j of the dual cells D r and D s is given by

G (u) = Γ (u j -u i ) + ∆ (u s -u r ), with                        Γ = κ i κ j (α i β j + α j β i ) κ i α i |G j | + κ j α j |G i | , ∆ = (κ i α 2 i -κ i β 2 i + κ j α i α j + κ j β i β j )κ i |G j | |F | (κ i α i |G j | + κ j α j |G i |) + (κ j α 2 j -κ j β 2 j + κ i α i α j + κ i β i β j )κ j |G i | |F | (κ i α i |G j | + κ j α j |G i |) . (13) 
If x ∈ ∂Ω, the common boundary of the dual cells D r and D s is G = G i and the numerical flux G through G is given by

G (u) = Γ (u -u i ) + ∆ (u s -u r ), with Γ = κ i β i |G i | , ∆ = κ i α i |F | . ( 14 
) If x r ∈ Γ N , the boundary dual flux is Dr∩∂Ω κ∇ū.n = Dr∩∂Ω g,
the right hand side of which is approximated by (see Fig. 4)

|D r ∩ ∂Ω|g(x r ) = 1 2 (|F | + |F k |)g(x r ).
Recalling that δ , γ are defined by (9) while Γ , ∆ are defined by ( 13) or ( 14), the DDFV scheme thus writes

                                           - ∈i, / ∈∂Ω γ (u j -u i ) - ∈i, ∈∂Ω γ (u -u i ) - ∈i δ (u s -u r ) + |P i |λ i u i = |P i |f i - ∈r, / ∈∂Ω Γ (u j -u i ) - ∈r, ∈∂Ω Γ (u -u i ) - ∈r ∆ (u s -u r ) +|D r |λ r u r = |D r |f r + |D r ∩ ∂Ω|g(x r ) x r / ∈ Γ D , u = g(x ) x ∈ Γ D , u r = g(x r ) x r ∈ Γ D , γ (u -u i ) + δ (u s -u r ) = |F |g(x ) x ∈ Γ N . (15) 
Note that ∆ > 0: the proof is given in [START_REF] Hermeline | Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes[END_REF] in the general case where κ is a positive definite matrix. 

A method to make the schemes monotonic

In this section we propose to find a method for the previous methods to be made monotonic. A method borrowed from [START_REF] Wu | Interpolation-based second-order monotone finite volume schemes for anisotropic diffusion equations on general grids[END_REF][START_REF] Gao | A second-order positivity-preserving finite volume scheme for diffusion equations on general meshes[END_REF][START_REF] Zhang | A vertex-centered and positivity-preserving scheme for anisotropic diffusion problems on arbitrary polygonal grids[END_REF][START_REF] Gao | A finite volume element scheme with a monotonicity correction for anisotropic diffusion problems on general quadrilateral meshes[END_REF] and developed in the framework of 2D diffusion on arbitrary meshes can be used.

For any value r we will use the common notation r = r + -r -with

r + = 1 2 (|r| + r) ≥ 0, r -= 1 2 (|r| -r) ≥ 0.
The numerical primal and dual fluxes F and G read as

F (u) = γ (u j -u i ) + r (u), G (u) = ∆ (u s -u r ) + R (u),
where

r (u) = δ (u s -u r ), R (u) = Γ (u j -u i ).
Suppose that, for all i and r, u i > 0 and u r > 0, we can set

F (u) = γ + r + (u) u j u j -γ + r -(u) u i u i , G (u) = ∆ + R + (u) u s u s -∆ + R -(u) u r u r .
As γ > 0, ∆ > 0 we end up with two points primal and dual flux approximations with positive coefficients. The diamond scheme [START_REF] Domelevo | A finite volume method for the laplace equation on almost arbitrary twodimensional grids[END_REF] then rewrites

                                   - ∈i, / ∈∂Ω γ + r + (u) u j u j -γ + r -(u) u i u i - ∈i, ∈∂Ω γ + r + (u) u u -γ + r -(u) u i u i + |P i |λ i u i = |P i |f i , u = g(x ) x ∈ Γ D , γ + r + (u) u u -γ + r -(u) u i u i = |F |g(x ) x ∈ Γ N ,
while the DDFV scheme [START_REF] Evans | Application of nonlinear semigroup theory to certain partial differential equations[END_REF] rewrites

                                                                 - ∈i, / ∈∂Ω γ + r + (u) u j u j -γ + r -(u) u i u i - ∈i, ∈∂Ω γ + r + (u) u u -γ + r -(u) u i u i + |P i |λ i u i = |P i |f i , - ∈r ∆ + R + (u) u s u s -∆ + R -(u) u r u r + |D r |λ r u r = |D r |f r + |D r ∩ ∂Ω|g(x r ), x r / ∈ Γ D , u = g(x ) x ∈ Γ D , u r = g(x r ) x r ∈ Γ D , γ + r + (u) u u -γ + r -(u) u i u i = |F |g(x ) x ∈ Γ N . (16) 
The matrices associated with these systems are not symmetric and depend respectively on u i , u ( ∈ ∂Ω) and u r . More details about this are given in the following section.

Matrix form

Denoting

u primal = (u i ) 1≤i≤n , u dual = (u r ) 1≤r≤m , u = (u primal , u dual ), b primal = (b i ) 1≤i≤n , b dual = (b r ) 1≤r≤m , b = (b primal , b dual ), (17) 
and

               b primal i = |P i |f i + ∈i, ∈Γ D r (u dual ) + + γ g(x ) + ∈i, ∈Γ N |F |g(x ), b dual r = |D r |f r + |D r ∩ ∂Ω|g(x ) x r / ∈ Γ D , b dual r = |D r |f r + ζg(x ) x r ∈ Γ D , (18) 
where ζ is a large value dedicated to taking into account of the Dirichlet boundary conditions by penalization (for example ζ = 10 12 ), system [START_REF] Eymard | Finite volume methods[END_REF] then rewrites under the more compact form

A(u)u = A primal (u primal , u dual ) 0 0 A dual (u primal , u dual ) u primal u dual = b primal b dual = b, (19) 
with

                                                     A primal ii (u primal , u dual ) = ∈i, ∈Γ N γ + r (u dual ) - u i + |P i |λ i , A primal ij (u primal , u dual ) = -γ + r (u dual ) + u j x i = x j , A dual rr (u primal , u dual ) = ∈r, ∈Γ N ∆ + R (u primal ) - u r + |D r |λ r x r / ∈ Γ D , A dual rr (u primal , u dual ) = ∈r, ∈Γ N ∆ + R (u primal ) - u r + |D r |λ r + ζ x r ∈ Γ D , A dual rs (u primal , u dual ) = -∆ + R (u primal ) + u s x r = x s , x / ∈ Γ N . (20) 
Thus the monotonicity enforcing procedure leads to two decoupled sparse matrices of size m × m and n × n depending on u. This is a significant difference with the usual DDFV scheme for which all degrees of freedom are coupled, leading to a single (m + n) × (m + n) matrix independent of u.

In the case of the monotonic diamond method, we obtain the system

A diamond (u primal )u primal = b diamond , (21) 
with

               A diamond ii (u primal ) = ∈i, ∈Γ N γ + r (u primal ) - u i + |P i |λ i , A diamond ij (u primal ) = - ∈i∩j γ + r (u primal ) + u j x i = x j , (22) 
and

b diamond i = |P i |f i + ∈i, ∈Γ D r (u primal ) + + γ g(x ) + ∈i, ∈Γ N |F |g(x ). ( 23 
)
Remark 5.1. Assuming that f ≥ 0 and g ≥ 0, all the components of the right hand side b are non-negative. Assuming moreover that f and g are not zero, then at least one component of b is positive.

Picard iteration method

Both systems [START_REF] Gao | A second-order positivity-preserving finite volume scheme for diffusion equations on general meshes[END_REF] and ( 21) are of the form A(u)u = b. In order to solve them, we use a Picard iteration method. We start with an initial guess u 0 > 0, compute the matrix A(u 0 ) and solve A(u 0 )u 1 = b. Repeating this process, we build a sequence (u ν ) that, if it converges to a positive vector, tends to a solution of the scheme. We stop the algorithm when the difference u ν+1 -u ν between two successive iterates is small enough.

To summarize, the following algorithm is used

ν = 0 A(u 0 )u 1 = b do while u ν 2 < u ν+1 -u ν 2 A(u ν )u ν+1 = b ν = ν + 1 enddo
For the monotonic DDFV scheme [START_REF] Eymard | Finite volume methods[END_REF], for example, the linear system A(u ν )u ν+1 = b writes

                                                                 - ∈i, / ∈∂Ω γ + r + (u ν ) u ν j u ν+1 j -γ + r -(u ν ) u ν i u ν+1 i - ∈i, ∈∂Ω γ + r + (u ν ) u ν u ν+1 -γ + r -(u ν ) u ν i u ν+1 i + |P i |λ i u ν+1 i = |P i |f i , - ∈r ∆ + R + (u ν ) u ν s u ν+1 s -∆ + R -(u ν ) u ν r u ν+1 r + |D r |λ r u ν+1 r = |D r |f r + |D r ∩ ∂Ω|g(x r ) x r / ∈ Γ D , u ν+1 = g(x ) x ∈ Γ D , u ν+1 r = g(x r ) x r ∈ Γ D , γ + r + (u ν ) u ν u ν+1 -γ + r -(u ν ) u ν i u ν+1 i = |F |g(x ) x ∈ Γ N . (24) 
Unfortunately, we are unable to prove that the above algorithm converges. Nevertheless, we prove in Section 6.2 below that the scheme is well defined at each iteration of the algorithm, as soon as the initial guess u 0 is positive. Furthermore we prove in section 6.3 that the solution of the usual DDFV scheme ( 15) is close (in some sense) to the solution of the monotonic DDFV scheme ( 16).

6 Properties

Monotonicity

Consider the definition of an M-matrix (see for instance [START_REF] Plemmons | m-matrix characterizations.i -nonsingular m-matrices[END_REF]) Definition 6.1. An n × n matrix A that can be expressed in the forme A = sI -B, where B = (b ij ) 1≤i,j≤n with b ij ≥ 0, 1 ≤ i, j ≤ n, and s ≥ ρ(B), the maximum of the moduli of the eigenvalues of B, is called an M-matrix.

We use the following lemma Lemma 6.2. A matrix A = (A ij ) 1≤i,j≤n is an M-matrix if it satisfies the following inequalities ∀i = j, A ij ≤ 0, and ∀i,

n j=1 A ij ≥ 0.
Moreover, if the last inequality is strict, we say that A is a strict M-matrix.

Proposition 6.3. Assume that u > 0. Then the matrices A primal and A dual defined by ( 20) and the matrix A diamond defined by [START_REF] Hermeline | Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes[END_REF] are such that (A primal ) t , (A dual ) t and (A diamond ) t are strict M-matrices.

Proof. The matrix A primal satisfies ∀i = j, A primal ij ≤ 0 and ∀j,

n i=1 A primal ij > 0.
Indeed we have, for all j

n i=1 A primal ij = n i=1   ∈i, / ∈Γ N γ + r (u dual ) - u i - ∈i∩j γ + r (u dual ) + u j   + λ j |P j |.
Thanks to conservativity, only the boundary terms and the mass term remain, for all j

n i=1 A primal ij = n i=1 ∈(i∩Γ D ) γ + r (u dual ) - u i + λ j |P j | > 0.
The above argument has been carried out on A primal but the proof applies mutatis mutandis for A dual or A diamond . Remark 6.4. According to [START_REF] Gao | A second-order positivity-preserving finite volume scheme for diffusion equations on general meshes[END_REF], it is sufficient to prove that A primal and A dual are both strict M-matrices to prove that A is a strict M-matrix.

Theorem 6.5. Assume that f > 0 and g > 0. Let A and b be defined by ( 18)-( 20) or ( 22)-( 23). Then

A -1 b = u ≥ 0.
Proof. As A t is a strict M-matrix A is invertible and its inverse has only non-negative entries (see for example [START_REF] Varga | Matrix iterative analysis[END_REF], Corollary 3.20). In view of Remark 5.1, the right hand side is non-negative, hence u = A -1 b ≥ 0.

Well-posedness of the Picard iteration method

Proposition 6.6. Assume that f ≥ 0, g ≥ 0, and either f L 2 (Ω) > 0 or g L 2 (∂Ω) > 0. Assume moreover that u 0 > 0. Then for all ν, u ν > 0.

To prove this property, we need to introduce the concept of irreducible matrix. We quote here [40, Definition 1.15]. Definition 6.7. An n × n matrix A is reducible if there exits an n × n permutation matrix P such that

PAP t = A 11 A 12 0 A 22 ,
where A 11 , A 12 , A 22 are respectively r × r, r × (n -r) and (n -r) × (n -r) sub-matrices with 1 ≤ r < n. If no such permutation matrix exists, then A is irreducible.

The matrices A primal , A dual defined by [START_REF] Herbin | Benchmark on discretization schemes for anisotropic diffusion problems on general grids[END_REF] and the matrix A diamond defined by [START_REF] Hermeline | Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes[END_REF] are irreducible thanks to the following Lemma (see [40, Theorem 1.17]).

Lemma 6.8. To any n × n matrix A we associate the graph of nodes 1, 2, ..., n and of directed edges connecting x i to x j if A ij = 0. Then A is irreducible if and only if for any pair i = j there exists a chain of edges that allows to go from x i to x j ,

A i,k1 = 0 → A k1,k2 = 0 → • • • → A km,j = 0.
With these definitions we can make use of the following theorem (see [START_REF] Varga | Matrix iterative analysis[END_REF], Corollary 3.20).

Theorem 6.9. If A is an irreducible strict M-matrix, then it is invertible and, for all i, j (1 ≤ i, j ≤ n), (A -1 ) ij > 0.

We are now in position to prove Proposition 6.6.

Proof of Proposition 6.6. We argue by induction on the index ν. We assume that u ν > 0. Hence (A primal (u ν )) t is a strict M -matrix (see Proposition 6.3). It is easy to check that (A primal (u ν )) t is also irreducible. Thus, applying Theorem 6.9, all the entries of (A primal (u ν )) -t are positive. Consequently, all the entries of (A primal (u ν )) -1 are positive. Using Remark 5.1, we know that all components of b are non-negative. Moreover, because of the assumption that either f L 2 (Ω) > 0 or g L 2 (∂Ω) > 0, at least one component of b is positive. We thus have, for all i (1

≤ i ≤ n) u ν+1 i = n j=1 (A primal (u ν )) -1 ij b j > 0,
since all terms of this sum are non-negative, with one at least that does not vanish.

The above proof has been carried out on A primal but the same argument applies for A dual or A diamond . Proposition 6.6 shows that the condition u ν > 0 remains satisfied during the Picard iteration method, which allows to define A primal (u ν ) for all ν ≥ 0.

About the convergence of the fixed-point for the monotonic DDFV scheme

Recall that

• ū = ((ū i ) 1≤i≤n , (ū r ) 1≤r≤m ) is the exact solution of (1),

• u = ((u i ) 1≤i≤n , (u r ) 1≤r≤m ) is the DDFV solution defined by [START_REF] Evans | Application of nonlinear semigroup theory to certain partial differential equations[END_REF],

• u ν = ((u ν i ) 1≤i≤n , (u ν r ) 1≤r≤m
)) is the ν-th iterate associated with the monotonic DDFV scheme, that is, the solution to [START_REF] Karátson | On discrete maximum principles for nonlinear elliptic problems[END_REF].

We will make use of the following theorem, the proof of which is postponed to Appendix A. Theorem 6.10. Under assumptions H1, H2, H3 the DDFV scheme defined by ( 15) is first-order accurate in the discrete L 2 norm, that is, there exists a constant C 1 independent of h such that

ū -u 2 = i |P i |(ū(x i ) -u i ) 2 + r |D r |(ū(x r ) -u r ) 2 1 /2 ≤ C 1 h.
We will need the following lemma to prove Theorem 6.12. Lemma 6.11. Assume that there exists ν > 0 and > 0 such that

max max i u ν+1 i -u ν i u ν i , max r u ν+1 r -u ν r u ν r ≤ . ( 25 
)
Then the monotonic DDFV scheme [START_REF] Karátson | On discrete maximum principles for nonlinear elliptic problems[END_REF] writes

           - ∈i γ u ν+1 j -u ν+1 i + δ u ν+1 s -u ν+1 r + |P i |λ i u ν+1 i = |P i |f i + ρ ν i , - ∈r Γ u ν+1 j -u ν+1 i + ∆ u ν+1 s -u ν+1 r + |D r |λ r u ν+1 r = |D r |f r + ρ ν r , (26) 
with

|ρ ν i | ≤ C , |ρ ν r | ≤ C , ( 27 
)
where C is a constant independant of h and .

Proof. Recall that, for all i, r, ν, u ν i > 0 and u ν r > 0. Suppose, for example, that

r (u ν ) = δ (u ν s -u ν r ) ≥ 0, R (u ν ) = Γ (u ν j -u ν i ) ≥ 0, then r -(u ν ) = R -(u ν ) = 0 and the scheme (24) rewrites                - ∈i γ u ν+1 j -u ν+1 i + δ (u ν s -u ν r ) u ν+1 j u ν j + |P i |λ i u ν+1 i = |P i |f i , - ∈r Γ (u ν j -u ν i ) u ν+1 s u ν s + ∆ u ν+1 s -u ν+1 r + |D r |λ r u ν+1 r = |D r |f r . ( 28 
)
From assumption [START_REF] Korotov | Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle[END_REF] we deduce that, for all i, r, there exists i (| i | ≤ ) and r (| r | ≤ ) such that

u ν+1 i = u ν i + i u ν i , u ν+1 r = u ν r + r u ν r .
Inserting these values into [START_REF] Potier | Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés[END_REF] gives [START_REF] Käser | Ader schemes on adaptive triangular meshes for scalar conservation laws[END_REF] with

ρ ν i = ∈i δ ( r u ν r -s u ν s -j u ν r + j u ν s ) , ρ ν r = ∈r Γ i u ν i -j u ν j -s u ν i + s u ν j .
As a consequence,

|ρ ν i | ≤ 4N max max |δ | max r u ν r , |ρ ν r | ≤ 4N max max |Γ | max i u ν i ,
where we recall that N max is the maximum number of faces of primal and dual cells. This concludes the proof.

Theorem 6.12. Assume that H1, H2, H3 hold, and that the assumptions of Lemma 6.11 are satisfied. Then, there exists a constant C 4 , independent of h and , such that

ū -u ν+1 2 ≤ C 1 h + C 4 ,
with C 1 the constant defined by Theorem 6.10.

Proof. System [START_REF] Evans | Application of nonlinear semigroup theory to certain partial differential equations[END_REF] writes

Au = f with f = ((|P i |f i ) 1≤i≤n , (|D r |f r ) 1≤r≤m ) ,
while system [START_REF] Käser | Ader schemes on adaptive triangular meshes for scalar conservation laws[END_REF] writes

Au ν+1 = f + f with f = ((ρ ν i ) 1≤i≤n , (ρ ν r ) 1≤r≤m )
. By difference and thanks to the stability Lemma A.5, there exists a constant C 2 such that uu ν+1 2 ≤ C 2 f 2 . Thanks to Lemma 6.11 there exists a constant C 3 such that

f 2 ≤ C 3 .
Then choosing C 4 = C 2 C 3 and applying the triangle inequality and Theorem 6.10 we obtain

ū -u ν+1 2 ≤ ū -u 2 + u -u ν+1 2 ≤ C 1 h + C 4 , which concludes the proof.
Note that Theorem 6.12 is not a convergence theorem. Indeed if we make both h and tend to zero, the positive solution u ν+1 tends to the DDFV numerical solution u which is only possible if u itself is non negative. Roughly speaking one can say that the (positive) numerical solution u ν+1 obtained at the end of the iterative process is close to the (non necessarily positive) DDFV numerical solution u that itself is close to the exact solution ū. Note also that condition ( 25) is constraining: in practice we rather use the condition

u ν+1 -u ν ∞ ≤ u ν ∞ or u ν+1 -u ν 2 ≤ u ν 2 
as a stopping criterion.

Numerical experiments

Given Ω =]0, 1[ 2 , κ a diffusion coefficient and g a function defined on ∂Ω, consider Problem (1) with λ = 0 and

Γ N = ∅ -∇ • (κ∇ū) = f in Ω, ū = g on ∂Ω. ( 29 
)
In addition to Cartesian meshes we will use the two following types of meshes (see Fig. 5):

1. deformed meshes, the deformation of which from the Cartesian mesh is given by (x, y) → (x + 0.1 sin(2πx) sin(2πy), y + 0.1 sin(2πx) sin(2πy)), 2. randomly deformed meshes, the deformation of which from the unit Cartesian mesh with cells of size ∆x is given by (x, y) → 0.1(x, y) + 0.9(x + 0.45a∆x, y + 0.45b∆x),

where a, b are random numbers distributed according to the uniform law on [-1, 1].

(a) A deformed mesh (b) A random mesh where

∇ū 2 = |I | ∇ū(x ) 2 1 /2 , ∇ h u -∇ū 2 = |I | 1 2 1 |I | ((u j -u i )N sr + (u s -u r )N ij ) -∇ū(x ) 2 1 /2
.

For DDFV type schemes we plot on figures 8, 9, 11, 12, the primal numerical values while on tables 2, 3, 4, the maxima and minima are computed over both primal and dual values.

Accuracy

Three simple benchmarks are proposed to assess the accuracy of our monotonic schemes in comparison with the usual (non monotonic) DDFV scheme. For these three tests, we choose = 10 -12 as the stopping criterion of the fixed point algorithm.

Checking the preservation of linear solutions

Given κ(x) = 1 f (x) = 0 and g(x) = -x -y + 2, the positive linear function ū(x) = -x -y + 2 is solution to [START_REF] Potier | Correction non linéaire et principe du maximum pour la discrétisation d'opérateurs de diffusion avec des schémas volumes finis centrés sur les mailles[END_REF]. We perform a study of this problem on the deformed mesh (see Fig. 5a) with 32 × 32 cells for each of the three schemes. The L 2 -error between the exact solution ū and the approximated one u are reported in Table 1. The error is zero, to machine precision, when ū is a polynomial of degree 1.

Scheme

L 2 -error H 1 -error DDFV 2.58e -15 4.46e -14 Monotonic DDFV 9.42e -15 6.30e -13 Monotonic diamond (degree 1) 1.05e -14 1.02e -13

Table 1: Comparison between the different schemes for the positive linear solution to problem of Section 7.1.1.

Anisotropic diffusion coefficient

Given

κ(x) = 1 0 0 2 , f (x) = 3π 2 sin(πx) sin(πy), g(x) = 0,
the function ū(x) = sin(πx) sin(πy) is solution to [START_REF] Potier | Correction non linéaire et principe du maximum pour la discrétisation d'opérateurs de diffusion avec des schémas volumes finis centrés sur les mailles[END_REF]. We perform a convergence study for this problem with a sequence of successively refined deformed meshes like the one of Fig. 5a. Results are summarized in Fig. 6 which shows that all schemes are second-order accurate in the L 2 norm. Of course, similar results may be obtained for a scalar-valued diffusion coefficient κ. We see that the error in H 1 -norm is second-order convergent for DDFV methods (which is a nice feature already observed [START_REF] Herbin | Benchmark on discretization schemes for anisotropic diffusion problems on general grids[END_REF][START_REF] Hermeline | Nouvelles méthodes de volumes finis pour approcher des équations aux dérivées partielles sur des maillages quelconques[END_REF]). The diamond scheme is only first-order accurate in the H 1 norm. However, we show that we are able to achieve the second-order accuracy for the H 1 norm for this scheme. To do that, we reconstruct the gradient with polynomials of degree two instead of one.

Discontinuous diffusion coefficient

Recall that we have assumed that possible discontinuities of the diffusion coefficient κ occur only along the primal cell faces. Given

κ(x) =      1 if x ≤ 1 2 2 if x > 1 2 
, f (x) = 2π 2 cos(πx) cos(πy) + 20, g(x) = 0, the function

ū(x) =      cos(πx) cos(πy) -10x 2 + 12 if x ≤ 1 2 , 1 2 cos(πx) cos(πy) -5x 2 + 43 4 if x > 1 2 ,
is solution to [START_REF] Potier | Correction non linéaire et principe du maximum pour la discrétisation d'opérateurs de diffusion avec des schémas volumes finis centrés sur les mailles[END_REF]. We perform a convergence study for this problem with a sequence of successively refined deformed meshes as shown in Fig. 5a. Fig. 7 shows that, in the present case of a discontinuous κ, the results are similar to those of the continuous case, that is to say, the scheme is second-order accurate. However, both schemes are only first-order accurate in H 1 norm in this case.

Monotonicity test problems

We propose two benchmarks to compare the usual DDFV scheme, which can give nonpositive solutions, with our monotonic diamond and DDFV schemes which always give nonnegative solutions. We compare the results obtained with the monotonic diamond and DDFV schemes on a Cartesian mesh with 36 cells per direction. We use a quite low number of degrees of freedom for this test to exhibit the non-monotonicity of the DDFV scheme (which tends to cancel in refining the mesh, see also section 7.2.2). The stopping criterion of the fixed point algorithm is = 10 -12 . Figure 8 shows the mesh, the DDFV solution and its negative and positive parts. Fig. 9 displays the monotonic DDFV and diamond solutions while Table 2 gives the minimum and the maximum of each solution.

While the solution obtained with the usual DDFV scheme has a negative minimum we can see that the solutions obtained with the monotonic methods are always positive, as expected. 

Fokker-Planck type diffusion equation

This benchmark is a simplified version of the one from [START_REF] Larroche | An efficient explicit numerical scheme for diffusion-type equations with a highly inhomogeneous and highly anisotropic diffusion tensor[END_REF]. Given Ω =] -50, 50[ 2 , T = 250, v = (v x , v y ) the velocity variable and V = (-20, 20) the averaged velocity, we are looking for the distribution function ū = ū(v, t), solution to the simplified Fokker-Planck equation

             ∂ ū ∂t -∇ v (κ∇ v ū) = 0 in Ω × [0, T ], κ∇ v ū • n = 0 on ∂Ω × [0, T ], ū(0) = ū0 in Ω, (30) 
where the diffusion coefficient κ = κ(v) and the initial condition ū0 are given by

κ(v) = I - 1 v 2 v ⊗ v, ū0 (v) = 1 π exp(-v -V 2 ).
Note that the full Fokker-Planck equation would read as

∂ ū ∂t + ∇ v • (vū) -∇ v (κ∇ v ū) = 0.
It is well known that the n-order moments of ū (0 ≤ n ≤ 2) are preserved over the time

d dt Ω ū = 0, d dt Ω vū = 0, d dt
Proposition 7.1. Consider the DDFV solution to [START_REF] Lipnikov | Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes[END_REF], that is,

                                                     |P i | u n+1 i -u n i ∆t - 1 2 ∈i, / ∈∂Ω 1 |I | (u n+1 j -u n+1 i )N sr κ N sr + (u n+1 s -u n+1 r )N ij κ N sr - 1 2 ∈i, ∈∂Ω 1 |I | (u n+1 -u n+1 i )N sr κ N sr + (u n+1 s -u n+1 r )N i κ N sr = 0, |D r | u n+1 r -u n r ∆t - 1 2 ∈r, / ∈∂Ω 1 |I | (u n+1 j -u n+1 i )N sr κ N ij + (u n+1 s -u n+1 r )N ij κ N ij - 1 2 ∈r, ∈∂Ω 1 |I | (u n+1 -u n+1 i )N sr κ N i + (u n+1 s -u n+1 r )N i κ N i = 0, 1 2 1 |I | (u n+1 -u n+1 i )N sr κ N ij + (u n+1 s -u n+1 r )N ij κ N ij = 0 x ∈ ∂Ω, (32) 
with the following approximations of κ in a diamond cell I such that v / ∈ ∂Ω

κ = I - 1 v 2 v ⊗ v ,
with v calculated by [START_REF] Lipnikov | Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes[END_REF].

Let E n be the following discrete equivalent of the second-order moment

E n = 1 2 i |P i | v i 2 u n i + r |D r | v r 2 u n r .
Then, for all n ≥ 0, E n = E 0 .

Proof. We multiply the first (resp. second) equation of (32) by v i 2 (resp. v r 2 ) and sum over primal (resp. dual) cells P i (resp. D r ). Adding these two sums we get

1 ∆t i |P i | v i 2 u n+1 i + r |D r | v r 2 u n+1 r - i |P i | v i 2 u n i - r |D r | v r 2 u n r - 1 2 1 |I | ( v i 2 -v j 2 )N sr + ( v r 2 -v s 2 )N ij κ (u n+1 j -u n+1 i )N sr + (u n+1 s -u n+1 r )N ij = 0.
Then, noting that κ v = 0, we obtain thanks to (31)

i |P i | v i 2 u n+1 i + r |D r | v r 2 u n+1 r = i |P i | v i 2 u n i + r |D r | v r 2 u n r , that is, E n+1 = E n .
The numerical results displayed in Fig. 10 show that the second order moment is conserved over time for the non-monotonic DDFV scheme, as it has been proved. However, it is not exactly conserved with monotonic DDFV scheme because we do not exactly solve the DDFV system. However, the conservation error is far lower than for the positive diamond scheme. 

Number of cells

Concluding remarks

In this paper, we propose two new monotonic schemes for the diffusion equation, which are based on the same cell-centered discretization. This first step is called primal scheme, and the consistency of the primal fluxes relies on a correct evaluation of dual (node-centered) unknowns. The difference between the two schemes lies in the evaluation of these dual quantities. For the first one, which is called diamond type, the dual unknowns are evaluated, using a polynomial reconstruction involving values in neighbouring (primal) cells. For the second one, called DDFV type, the evaluation of the dual unknown is obtained by solving a diffusion problem discretized on the dual mesh. This second scheme is an improvement with respect to the nonlinear monotonic DDFV method of [START_REF] Camier | A monotone nonlinear finite volume method for approximating diffusion operators on general meshes[END_REF]. Indeed, the new nonlinear method we have proposed here makes it possible to deal with all types of boundary conditions (Dirichlet, Neumann) and is second-order convergent even for discontinuous diffusion coefficients. For both methods, we adapt the same non-linear process borrowed from [START_REF] Wu | Interpolation-based second-order monotone finite volume schemes for anisotropic diffusion equations on general grids[END_REF][START_REF] Gao | A second-order positivity-preserving finite volume scheme for diffusion equations on general meshes[END_REF][START_REF] Zhang | A vertex-centered and positivity-preserving scheme for anisotropic diffusion problems on arbitrary polygonal grids[END_REF][START_REF] Gao | A finite volume element scheme with a monotonicity correction for anisotropic diffusion problems on general quadrilateral meshes[END_REF], we assess their monotonicity and accuracy on several test cases and compare the results with the classical (nonmonotonic) DDFV scheme. Moreover, the DDFV type monotonic scheme takes advantage of very nice features of the DDFV scheme, such as second-order accuracy in H 1 norm, while providing non-negative solutions.

In the future, we plan to extend theses schemes to arbitrary order, using the techniques developed in the 1D setting in [START_REF] Blanc | High-order monotone finite-volume schemes for 1D elliptic problems[END_REF].

A Proof of convergence for the DDFV scheme

For simplicity we will restrict ourselves to the case κ = 1, λ = 0, g = 0 and Γ N = ∅ in (1), that is,

-∇ • (∇ū) = f in Ω, ū = g on ∂Ω. (33) 
To simplify the proof, we suppose further that the dual mesh is made of cells obtained by joining the center of each primal cell with the center of each of its neightbors and with the middle of its boundary faces (but it extends to the barycentric dual mesh used in this paper). In this case we observe that the dual boundary G = D r ∩ D s coincides with the segment x i x j . Denote by n ij the unit vector orthogonal to G directed from D r to D s , N ij = x i -x j n ij , and by θ the angle between vectors n ⊥ ji and n sr (see Fig. 13).

. . . . . We define

h = max (|F |, |G |).
Applying the method used in Sections 3 and 4.2, we have

∇ū(x ) • n sr = 1 cos(θ ) ū(x j ) -ū(x i ) |G | + sin(θ ) cos(θ ) ū(x s ) -ū(x r ) |F | + O(h), ∇ū(x ) • n ij = 1 cos(θ ) ū(x s ) -ū(x r ) |F | + sin(θ ) cos(θ ) ū(x j ) -ū(x i ) |G | + O(h).
This is equivalent to say that ∇ū is approximated in the diamond cell I using the Green-Gauss formula

∇ū(x ) = 1 |I | I ∇ū + O(h) = 1 2 1 |I | (N sr (u j -u i ) + N ij (u s -u r )) + O(h).
The discretization of (33) with the DDFV scheme then writes

                                                       - 1 2 ∈i, / ∈∂Ω 1 |I | (N sr (u j -u i ) + N ij (u s -u r )) • N sr - 1 2 ∈i, ∈∂Ω 1 |I | (N sr (u -u i ) + N i (u s -u r )) • N sr = |P i |f i , - 1 2 ∈r, / ∈∂Ω 1 |I | (N sr (u j -u i ) + N ij (u s -u r )) • N ij - 1 2 ∈r, ∈∂Ω 1 |I | (N sr (u -u i ) + N i (u s -u r )) • N ij = |D r |f r + |D r ∩ ∂Ω|g(x r ), u = g(x ) x ∈ ∂Ω, u r = g(x r ) x r ∈ ∂Ω. (34) 
The following proofs are inspired from the arguments of [START_REF] Eymard | Finite volume methods[END_REF] for admissible meshes and from [START_REF] Andreianov | Discrete duality finite volume schemes for Leray-Lions type elliptic problems on general 2D meshes[END_REF] for general meshes (see also [START_REF] Domelevo | A finite volume method for the laplace equation on almost arbitrary twodimensional grids[END_REF], [START_REF] Yuan | Analysis of accuracy of a finite volume scheme for diffusion equations on distorted meshes[END_REF]). In the sequel we will assume that the exact solution ū satisfies ū ∈ W 2,∞ (Ω).

A.1 Consistency of the fluxes

Let us denote by 1. F , Ḡ the exact primal and dual fluxes

F = F ∇ū • n sr , Ḡ = G ∇ū • n ij , 2. F (u), G ( 
u) the approximated primal and dual fluxes

F (u) = 1 2 1 |I | ((u j -u i )N sr + (u s -u r )N ij ) • N sr , G (u) = 1 2 1 |I | ((u j -u i )N sr + (u s -u r )N ij ) • N ij , 3. F (ū), G (ū 
) what we can call the semi-approximated primal and dual fluxes

F (ū) = 1 2 1 |I | ((ū(x j ) -ū(x i ))N sr + (ū(x s ) -ū(x r ))N ij ) • N sr , G (ū) = 1 2 1 |I | ((ū(x j ) -ū(x i ))N sr + (ū(x s ) -ū(x r ))N ij ) • N ij .
Proposition A.1 (Consistency of the fluxes for the DDFV scheme). Assume that H1 is satisfied. Then we have

       F -F (ū) ≤ C cos(θ ) |F | ((1 + | sin(θ )|)|F | + |G |) ≤ 2C cos(θ 0 ) h 2 , Ḡ -G (ū) ≤ C cos(θ ) |G | ((1 + | sin(θ )|)|G | + |F |) ≤ 2C cos(θ 0 ) h 2 , (35) 
where C ≤ C 0 D 2 ū L ∞ , where C 0 is a universal constant, and C = max C .

We note that

Ω χ ≤ diam(Ω)|F |, (37) 
where diam(Ω) = max

x,y∈Ω

xy is the diameter of Ω.

Fixing x ∈ P i , we write e 2 i as a telescopic sum along the segment [x, y (x)], that is,

e 2 i = e 2
i -e 2 j + ... + e 2 k -e 2 , where the difference e = 0, hence

|e 2 i | ≤ |e 2 i -e 2 j + ... + e 2 k -e 2 | ≤ |e 2 i -e 2 j |,
with the convention that, in the right hand side, if ⊂ ∂Ω, then e j = e = 0. The definition of χ allows to write this as follow 

e 2 i ≤ |e 2 j -e 2 i |χ ( 
This expression is nonnegative owing to the following inequality, which holds for all X, Y ∈ R n 

≤ |G | 2 |I | F (ū) -F 2 + |F | 2 |I | G (ū) -Ḡ 2 1 /2 . ( 44 
)
Applying the consistency of fluxes [START_REF] Plemmons | m-matrix characterizations.i -nonsingular m-matrices[END_REF] we have C cos(θ 0 ) 3 (2 + σ) N max ξ, hence the method is (at least) first-order convergent.

|G | 2 |I | F (ū) -F 2 + |F | 2 |I | G (ū) -Ḡ 2

Figure 1 :

 1 Figure 1: Two primal cells Pi, Pj (black lines) such that Pi ∩ Pj = F = xrxs, two dual cells Dr, Ds (blue lines) such that Dr ∩ Ds = G = xix ∪ x xj and one intermediary cell I = I i ∪ I j = xixrx xs ∪ xjxsx xr (red lines).

Figure 2 :

 2 Figure 2: A non convex cell Pi and a convex cell Pj such that xi and xj are not separated by the line defined by face F = xrxs.

Figure 4 :

 4 Figure 4: Two primal cells Pi, Pj (black lines), one interior dual cell Dp (blue lines) and one boundary dual cell Dr = xrx xixmxjx k (blue lines) such that Dr ∩ ∂Ω = x k xr ∪ xrx .

Figure 5 :

 5 Figure 5: Examples of deformed meshes. The L 2 and H 1 -errors used in the following tests are respectively given by uū 2 ū 2 and ∇ h u -∇ū 2 ∇ū 2 ,

7. 2 . 1 5 9 2 ,

 2152 Tensor-valued coefficient κ and square domain with a square hole Consider the square domain with a square hole Ω =]0, 1[ 2 \ 4 9 , f (x) = 0 in Ω and g(x) = 0 (resp. g(x) = 2) on the external (resp. internal) boundary. We have chosen κ = cos θ sin θ -sin θ cos θ 1 0 0 10 4 cos θ -sin θ sin θ cos θ , θ = π 6 .

Figure 6 :

 6 Figure 6: L 2 (on the left) and H 1 (on the right) errors for problem of Section 7.1.2.

Figure 7 :

 7 Figure 7: L 2 (on the left) and H 1 (on the right) errors for problem of Section 7.1.3.

Figure 8 :

 8 Figure 8: Mesh (top, left), DDFV solution to problem of section 7.2.1 (top, right) and its negative (bottom, left) and positive (bottom, right) parts.

Figure 9 :

 9 Figure 9: Monotonic DDFV (on the left) and diamond (degree 1, on the right) solutions to problem of section 7.2.1.

Figure 10 :

 10 Figure 10: Variation of energy over time for the 3 schemes on cartesian mesh of 200 × 200 cells.

Figure 11 :

 11 Figure 11: DDFV solution to (30) at time T = 250 on the Cartesian (top left), deformed (top right) and random (bottom) mesh of 200 × 200 cells.

Figure 12 :

 12 Figure 12: Monotonic DDFV (on the left) and diamond (degree 1, on the right) solutions to (30) at time T = 250 on the Cartesian (top), deformed (middle) and random (bottom) mesh of 200 × 200 cells.

Figure 13 :

 13 Figure 13: Two primal cells Pi, Pj (black lines) such that Pi ∩ Pj = F = xrxs and two dual cells Dr, Ds (blue lines) such that Dr ∩ Ds = G = xixj.

Figure 14 :

 14 Figure 14: An example of a sequel of three adjacent primal cells Pi, Pj, P k and a horizontal (dashed) half line coming from the point x ∈ Pi and intersecting the interior faces Fp, Fq and the boundary face F at point y(x).

Proposition A. 3 (|P i |e 2 i + r |D r |e 2 r 1 / 2 ≤ 2 + e s -e r |F | 2 + 2

 3212222 Convergence of the DDFV scheme). Let e i = ū(x i ) -u i (1 ≤ i ≤ n) and e r = ū(x r ) -u r (1 ≤ r ≤ m), where u is the solution of System[START_REF] Loubère | The repair paradigm: New algorithms and applications to compressible flow[END_REF]. Assume that H1, H2, H3 are satisfied. Then we havei C 1 h,where C 1 is a constant independent of h.Proof. The fluxes F , F (u), Ḡ , G (u) are such thate i = ū(x i ) -u i and e r = ū(x r ) -u r we deduce that ∈i (F (ū) -F (u)) = ∈i F (ū)j -e i )N sr + (e s -e r )N ij ) • N sr , j -e i )N sr + (e s -e r )N ij ) • N ij .Multiplying these relations respectively by e i and e r and summing over the primal cells P i and dual cells D r , j -e i )N sr + (e s -e r )N ij ) • N sr j -e i )N sr + (e s -e r )N ij ) • N ij .Exchanging the sums, this reads asF (ū) -F (e j -e i ) + G (ū) -Ḡ (e s -e r ) -e i ) 2 N sr • N sr + (e s -e r ) 2 N ij • N ij + 2(e j -e i )(e s -e r )N sr • N ij= 2 1 cos(θ ) 2 |I | e j -e i |G | sin(θ ) e j -e i |G | e s -e r |F | .

X 2 + 2 +≤ 1 + 2 + e s -e r |F | 2 + 2 + e s -e r |F | 2 + 2 1 / 2 F

 2212222212 Y 2 ≤ 1 1 -| sin(θ )| X 2 + Y 2 + 2 sin(θ )XY = 1 + | sin(θ )| cos(θ ) 2 X 2 + Y 2 + 2 sin(θ )XY .(43)Estimate[START_REF] Wang | Discrete maximum principle based on repair technique for diamond type scheme of diffusion problems[END_REF] and equality[START_REF] Wang | A finite volume scheme preserving maximum principle with cell-centered and vertex unknowns for diffusion equations on distorted meshes[END_REF] imply|I | e j -e i |G | e s -e r |F | | sin(θ )| cos(θ ) 2 |I | e j -e i |G | sin(θ ) e j -e i |G | e s -e r |F | = F (ū) -F (e j -e i ) + G (ū) -Ḡ (e s -e r ) .Using the Cauchy-Schwarz inequality we obtain(F (ū) -F )(e j -e i ) + (G (ū) -Ḡ )(e s -e r ) = |G | |I | (ū) -F |I | 1 /2 |G | (e j -e i ) + |F | |I | 1 /2 G (ū) -Ḡ |I | 1 /2

≤ 4 C 2 2 ≤ 8 C 2 2 +|P i |e 2 i + r |D r |e 2 r 1 / 2 ≤

 22822212 cos(θ ) 4 ((1 + | sin(θ )|)|F | + |G |) 2 + ((1 + | sin(θ )|)|G | + |F |) cos(θ 0 ) 4 |Ω|(2 + σ) 2 h 2 , (45) with C = max C , σ = max | sin(θ )|. Inserting (45) into (44), we deduce |I | e j -e i |G | .2 to the left-hand side of Equation (46), we conclude that i C 1 h, with C 1 = 8 diam(Ω)|Ω| 1 /2

Table 2 :

 2 Minimum and maximum of the numerical solution to the problem of section 7.2.1 for the Cartesian mesh with 36 cells by direction.

Table 3 :

 3 Minima and maxima of the DDFV solution of (30) at time T = 250 on refined Cartesian meshes.

	Scheme	Cartesian mesh Deformed mesh Random mesh
	DDFV	-2.48 × 10 -4	-1.25 × 10 -3	-2.41 × 10 -3
	Minima Monotonic DDFV	5.46 × 10 -30	2.53 × 10 -30	4.63 × 10 -40
	Monotonic diamond (degree 1)	1.86 × 10 -29	1.42 × 10 -22	1.58 × 10 -23
	DDFV	1.04 × 10 -2	1.04 × 10 -2	1.14 × 10 -2
	Maxima Monotonic DDFV	1.04 × 10 -2	0.97 × 10 -2	1.02 × 10 -2
	Monotonic diamond (degree 1)	0.29 × 10 -2	0.32 × 10 -2	0.31 × 10 -2

Table 4 :

 4 Minima and maxima of the numerical solutions to (30) at time T = 250 on the three types of 200 × 200 cells meshes.

  /2 |e j -e i | |G | (cos(θ )|F ||G |) 1 /2 |e j + e i |,and using assumption H1, we obtain (|ej | + |e i |). |I |(|e j | + |e i |) 2 | + |e j |) 2 ≤ 2(|e i | 2 + |e j | 2 ), |I |(|e j | 2 + |e i | 2 )

	|F ||e 2 j -e 2 i | = A.3 Convergence		cos(θ ) 1	(cos(θ )|F ||G |)
	|F ||e 2 j -e 2 i | ≤ 1 /2 Hence, using the Cauchy-Schwarz inequality and recalling that 1 cos(θ 0 ) (cos(θ )|F ||G |) 1 /2 |e j -e i | |G | (cos(θ )|F ||G |)
									|I | =	1 2	cos (θ ) |F ||G |,
	we infer												
	|F ||e 2 j -e 2 i | ≤	2 cos(θ 0 )		|I |	e j -e i |G |	2	1 /2	1 /2	.
	Since												
	(|e i this gives			
	|F ||e 2 j -e 2 i | ≤	2 √ cos(θ 0 ) 2		|I |		|G | e j -e i	2	1 /2
	Inserting this estimate into (39), we deduce that			
	|F ||e 2 j -e 2 i | ≤ 2 √	2	√ cos(θ 0 ) N max ξ		|I |	e j -e i |G |	2	1 /2	i	|P i |e 2 i	1 /2	.
	Using Equation (38) gives											
		i	|P i |e 2 i	1 /2	≤ 2	√	2 diam(Ω)	√ cos(θ 0 ) N max ξ	|I |	e j -e i |G |	2	1 /2	.	(40)
	Applying the same argument to the dual mesh, we also have
	Using (37), we deduce that r |D r |e 2 r	1 /2	Pi ≤ 2 e 2 i = |P i |e 2 i ≤ √ 2 diam(Ω) √ cos(θ 0 ) |e 2 j -e 2 i | N max ξ	Pi |I | χ .	e s -e r |F |	2	1 /2	.	(41)
	Collecting (40) and (41), we obtain								
	i that is to say, i |P i |e 2 |P i |e 2 i ≤ i + r	i |D r |e 2 r	|e 2 j -e 2 i | 1 /2 ≤ 2 √ 2 diam(Ω) Pi χ ≤ √ cos(θ 0 ) |e 2 j -e 2 i | N max ξ	Ω |I | χ ≤ diam(Ω) e j -e i |G | 2	+	|F ||e 2 j -e 2 i |, e s -e r |F |
														|F ||e 2 j -e 2 i |.	(38)
	Noting that												

x), where the sum runs over all faces F such that F ∩ [x, y (x)]. Integrating this inequality over P i with respect to x, we have

i |P i |e 2 i ≤ diam(Ω) 1 1 /2 . (

39

)

Taking into account assumptions H2 and H3 we have

|I |(e 2 i + e 2 j ) ≤ ξ (|P i |e 2 i + |P j |e 2 j ) ≤ N max ξ i |P i |e 2 i .

Given v = (vx, vy) a vector in R

we will use the common notation v ⊥ = (-vy, vx).

[START_REF] Aavatsmark | Convergence of a symmetric MPFA method on quadrilateral grids[END_REF] /2 , which concludes the proof.

The backward Euler scheme is used for time discretization. To limit the calculation time, the stopping criterion of the fixed point algorithm is = 10 -5 . Fig. 11 (resp. 12) displays the DDFV (resp. monotonic DDFV and diamond) numerical solutions obtained with the Cartesian, deformed and random meshes of 200 2 cells. Table 3 gives the minima and maxima of the DDFV solution for a sequence of refined Cartesian meshes and Table 4 gives the minima and the maxima of the numerical solution obtained with the DDFV, monotonic DDFV and diamond schemes. We observe that the minima of the DDFV solution are negative but converge to zero as h tends to zero while the minima of the solutions to monotonic schemes always remain non negative, as expected. Compared to both the non monotonic and monotonic DDFV schemes the monotonic diamond scheme is more diffusive. This could be explained by the use of a larger stencil required for polynomial reconstruction. The conservation of the zero-order moment of ū at the discrete level is a property of ours schemes. It is more challenging to obtain a conservation of a discrete equivalent of the second-order moment. Thanks to the identity

one can introduce an approximation v of v in the diamond cell I by using the Green-Gauss formula

We then prove the following proposition.

Proof. Using the midpoint integration formula we have

Since

we obtain

Using Taylor expansions in the neighborhood of x

), we deduce [START_REF] Plemmons | m-matrix characterizations.i -nonsingular m-matrices[END_REF].

A.2 Discrete Poincaré inequality

Lemma A.2 (Discrete Poincaré inequality). Assume that H2 and H3 are satisfied. Consider e = e primal , e dual ∈ R n+m , where e primal = (e i ) 1≤i≤n and e dual = (e r ) 1≤r≤m . Assume moreover that ∀r ∈ ∂Ω, e r = 0.

(

Then we have

, where we use the convention that, if ⊂ ∂Ω, then e i -e j = e i and the constants N max , ξ, θ 0 are definied by H2 and H3.

Proof. Given a point x ∈ Ω, let y(x) be the (first) point of intersection between the horizontal half line (for example) passing through x and the boundary ∂Ω (see Fig. 14). For any primal face F , let χ : Ω -→ {0, 1} be defined by

A.4 Coercivity

Lemma A.4 (Coercivity). Let A be the matrix associated with the DDFV discretization (34) of equation [START_REF] Liska | Enforcing the discrete maximum principle for linear finite element solutions of second-order elliptic problems[END_REF].

There exists a constant C 2 independent of h such that

we have

As we have assumed that u = g = 0 on ∂Ω we can use the Lemma A.2 to u = ((u i ) 1≤i≤n , (u r ) 1≤r≤m ) instead of e = ((e i ) 1≤i≤n , (e r ) 1≤r≤m ). Therefore there exists a constant C 2 independent of h such that

Using inequality (43), we have

which allows to conclude the proof.

A.5 Stability

Lemma A.5 (Stability). Let u be the solution to [START_REF] Loubère | The repair paradigm: New algorithms and applications to compressible flow[END_REF]. We have

where C 2 does not depend on u, f and h.

Proof. We have