Systematics of log ft values for β -, and EC/ β + transitions

Steffen Turkat^{a,*}, Xavier Mougeot^b, Balraj Singh^c, Kai Zuber^a

^aInstitut für Kern- und Teilchenphysik, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany ^bUniversité Paris-Saclay, CEA, List, Laboratoire National Henri Becquerel (LNE-LNHB), F-91120 Palaiseau, France ^cDepartment of Physics and Astronomy, McMaster University, Hamilton, Ontario-L8S 4M1, Canada

Abstract

This work is an update of the 1998 publication by B. Singh et al. [1] and reviews the log ft values for all the known β -decay branches (β -, β +/EC). Furthermore, an update of all Q-values (from AME2020 [2]), as well as a recalculation of all the log ft values (through BetaShape code [3, 4]) has been conducted using relevant data in the ENSDF database, as well as in newer literature. Only those cases have been considered in this review, where the beta transitions occur between levels of firm single spin assignments (86% of the transitions), and with probable single spin assignments (14% of the transitions), but with firm parity assignments for all the transitions. Weak β branches of <1% intensity in complex decay schemes have generally been omitted. Out of a total of 26 318 β transitions extracted from the ENSDF database and current literature, data for only 4038 β transitions survived the filtering criteria in the present review. The log ft values in β decay, spanning about 21 orders of magnitude, have been classified into allowed and forbidden categories according to the classification scheme of Konopinski [5]. All $\log ft$ values have been deduced using the BetaShape code with new developments presented in this study. A very few number of $\log ft$ values for very low-energy beta transitions $(<5 \,\mathrm{keV})$ survived the cut criteria and are briefly discussed in terms of atomic overlap corrections. Also tabulated and briefly discussed are seven superallowed cases with $\Delta T=0$, T_z (parent)=-2, while a known case for ²⁸S to ²⁸P has been omitted as reliable EC/β + feeding to the analog state in ²⁸P cannot be assigned due to lack of adequate experimental and detailed data for this decay. Centroid, width, minimum and maximum values for each category have been deduced. Uncertainties have been estimated and are also given. For literature coverage in the present review, see discussion in text.

^{*}Corresponding author.

Email addresses: steffen.turkat@tu-dresden.de (Steffen Turkat), xavier.mougeot@cea.fr (Xavier Mougeot), balraj@mcmaster.ca (Balraj Singh), kai.zuber@tu-dresden.de (Kai Zuber)

Contents

1.	Introduction	2
2.	Calculation of the $\log ft$ values	2
	2.1. Beta transitions	3
	2.1.1. Improved atomic corrections	4
	2.2. Electron captures	5
3.	Selection Criteria	6
4.	Additional inclusions of transitions	7
5.	Additional exclusions of transitions	7
6.	Treatment of potentially Pandemonium affected tra	an-
	sitions	8
7.	Comments on particular transitions	9
8.	Inferences and conclusions	9
9.	List of Tables and Figures	13
	References	22
10.	Explanation of Tables	25
	Statistics on $\log ft$ distributions	26
12.	Summary of $\log ft$ values	27
13.	Superallowed Transitions	29
	13.1. Superallowed (Parent $T_z=0;-1$)	29
	13.2. Superallowed (Parent $T_z=-2$)	29
14.	Isospin Forbidden Transitions	30
15.	Allowed Transitions	31
	15.1. $\Delta J=0, \Delta \pi=no, \log ft < 4, not 0^+ \to 0^+ \dots$	31
	15.2. Gamow-Teller, $0^+ \leftrightarrow 1^+$	32
	15.3. $\Delta J=0$, $\Delta \pi=$ no, $\log ft \ge 4$, not $0^+ \rightarrow 0^+ \dots$	44
	15.4. $\Delta J=1$, $\Delta \pi=$ no, not $0^+ \leftrightarrow 1^+ \dots$	56
16.	First Forbidden Transitions	80
	16.1. First forbidden non-unique ($\Delta J=0$)	80
	16.2. First forbidden non-unique ($\Delta J=1$)	91
	16.3. First forbidden unique	105
17.	Second Forbidden Transitions	109
	17.1. Second forbidden non-unique	109
	17.2. Second forbidden unique	109
18.	Third Forbidden Transitions	110
	18.1. Third Forbidden non-unique	110
	18.2. Third forbidden unique	110
19.	Fourth Forbidden Transitions	110
_	19.1. Fourth forbidden non-unique	110
20.	Additional tables of interest	111
	20.1. Lowest and highest $\log ft$ values	111

1. Introduction

Timely surveys of systematics of log ft values in β decay and their distribution in terms of allowed and forbidden transitions over the entire nuclear chart based on Konopinski's classification scheme [6] remain relevant for pedagogical purposes as well as for an understanding of detailed characteristics of weak interactions. First such detailed survey was done in 1963 by C.E. Gleit et al. [7] listing about 900 beta transitions known at the time. In 1973, Raman and Gove [8] published seminal work on critical evaluation of about 160 well-known beta transitions, based on which the authors proposed limiting values of log ft values for allowed and forbidden transitions, the latter with different degrees of forbiddenness, and formulated rules for the assignment of spins and parities of levels populated in daughter nuclei that are used to this day in structure and decay data evaluations for the ENSDF database [9]. In 1998, more detailed review of about 3900 well-established beta transitions was published by B. Singh et al. [1], where centroids, widths, minimum and maximum values for each category were deduced from the selected values, and lower limits for first and second forbidden transitions were compared to those given in the review by Raman and Gove [8].

In addition to above mentioned compilations, there have been timely evaluations of 0^+ to 0^+ , pure Fermi superallowed beta transitions by Hardy and Towner, the most recent published in 2020 [10]. We have revisited the 1998 review with the intention of updating the Tables and Figures in the 1998 work to incorporate not only the newer decay data over the last 25 years, but also to make use of more sophisticated tools via computer codes. This enabled the selection of only the best known transitions amongst all the known β transitions in the ENSDF database [9] and the XUNDL compilation database [11], together with the aid of the bibliographic NSR database [12], and the NUBASE2020 [13], the last one for half-lives and spinparity assignments of the parent activities.

Our starting point for the present study was setting up a decay data sub-library of all the β - and EC/ β + datasets by extracting from the August 2020 version of the ENSDF database [9]. This decay data library was supplemented by later updates of the ENSDF database, when beta feedings got revised significantly from newer papers, up until April 2023 version. Additionally, a large number of selected incoming publications in literature which came to our attention through retrieval of journal webpages for newer and relevant (subject to our filtering criteria) articles and those based on retrievals of the compilations in the XUNDL database [11], and through the NSR bibliographic database [12] until April 2023. Our overall literature can be considered up to April 15, 2023, although, we can only claim that important and definite type of decay data in literature until this date have been fully covered.

2. Calculation of the $\log ft$ values

The log ft values for this review have been determined splitting the two components : t-values are from the evaluated half-lives and branching ratios; f-values have been calculated with the latest released version (v2.2) of the BetaShape code¹. Uncertainties have been determined taking into account the components on both values. The theoretical modeling is summarized in this Section. Some

¹Available at: http://www.lnhb.fr/rd-activities/ spectrum-processing-software/

improvements in the β -decay modeling have been implemented specifically for this work and are also described.

2.1. Beta transitions

Beta (β) decay is an isobaric three-body disintegration process. Two types can be distinguished:

$$(\beta^{-}): \quad {}^{A}_{Z}X \longrightarrow {}^{A}_{Z+1}Y + e^{-} + \overline{\nu}_{e}$$
$$(\beta^{+}): \quad {}^{A}_{Z}X \longrightarrow {}^{A}_{Z-1}Y + e^{+} + \nu_{e}$$

The comprehensive formalism from H. Behrens and W. Bühring [14], in which both the nuclear and lepton currents are expanded in multipoles, is used in BetaShape to compute the properties of the β transitions. The energy spectrum of the β particles is normalized to the transition intensity and the spectrum shape is given assuming a massless ν particle by:

$$\frac{\mathrm{d}N}{\mathrm{d}W} \propto pWq^2 F_0 L_0 C(W) R(Z, W) A(Z, W) \tag{1}$$

where $W = 1 + E/m_e$ is the total energy defined from the kinetic energy E of the β particle and its rest mass m_e ; $p = \sqrt{W^2 - 1}$ is its momentum; and $q = W_0 - W$ is the ν momentum with W_0 the maximum total β energy. The f-value is determined by integrating the spectrum shape. Its uncertainty is obtained by propagating the uncertainty on the transition energy, which depends on the uncertainties on the Q-value and on the nuclear level energies.

The relativistic wave functions of the ejected β particles are established by solving numerically the Dirac equation, considering the Coulomb potential generated by a static nucleus modeled as a uniformly charged sphere. The Fermi function is defined from the Coulomb amplitudes α_k of these continuum states:

$$F_0 L_0 = \frac{\alpha_{-1}^2 + \alpha_{+1}^2}{2p^2} \tag{2}$$

The nature of the transition is fixed by the total angular momentum change $\Delta J = |J_i - J_f|$ and the parity change $\pi_i \pi_f$ between the initial and final nuclear states. Spin and parity J^{π} of a given state comes directly from the ENSDF evaluation of the decay scheme. The transition nature is characterized by the value of the multipole order L: for an allowed transition, $\Delta J = 0, 1$ and L = 1; for any $(L - 1)^{\text{th}}$ forbidden unique transition, $L = \Delta J$. For these types of transition, the nuclear matrix elements can be factored out and act as a constant factor. The energy dependency of the theoretical shape factor only comes from the lepton current:

$$C(W) = (2L-1)! \sum_{k=1}^{L} \lambda_k \frac{p^{2(k-1)} q^{2(L-k)}}{(2k-1)![2(L-k)+1]!}$$
(3)

As the Fermi function, the λ_k parameters are defined from the Coulomb amplitudes by:

$$\lambda_k = \frac{\alpha_{-k}^2 + \alpha_{+k}^2}{\alpha_{-1}^2 + \alpha_{+1}^2} \tag{4}$$

The shape factor (Eq. 3) is a good approximation to describe allowed and forbidden unique transitions, except in some rare cases where accidental cancellation of the nuclear matrix elements can occur. However, decoupling the lepton and nuclear currents is not possible in the case of forbidden non-unique transitions, which are very sensitive to nuclear structure. Including the latter to precisely calculate the shape factor is possible but constitutes a tremendous amount of work for the thousands of transitions present in the ENSDF database. Historically, the ξ -approximation was introduced demonstrating that first forbidden non-unique transitions can be treated as allowed if the Coulomb energy of the β particle at the nuclear surface is large compared to the transition energy [5, 15, 16], i.e. $2\xi = \alpha Z/R \gg W_0$ with α the fine structure constant and R the nuclear radius. Similar theoretical arguments lead to treating an L^{th} forbidden non-unique transition as $(L-1)^{\text{th}}$ forbidden unique. This approximation was tested against experimental shape factors in [3] and was found to be accurate only for low-energy, high-Z transitions. In the context of the present review, the $\log ft$ values of the forbidden non-unique transitions are essentially dominated by the partial half-lives. All these transitions have thus been treated according to the ξ -approximation.

To summarize, all allowed and forbidden unique β transitions are calculated correctly regarding their shapes. First forbidden non-unique transitions are calculated as allowed; second forbidden non-unique transitions as first forbidden unique; third forbidden non-unique transitions as second forbidden unique; etc.

Radiative corrections are usually split in inner corrections that renormalize the decay probability, and outer corrections that depend on the nucleus and on the β particle energy. The outer radiative corrections R(Z, W) in Eq. 1 include the effect of the internal bremsstrahlung process. In the first version of BetaShape (v1) [3], analytical corrections derived for allowed transitions in [17, 18] were implemented. Current version (v2.2) of the code consider more precise radiative corrections based on the work from [19] and described in detail in [20, 21]. The difference on the f-values can be higher than 1%. In Table 1, radiative corrections have been calculated for the superallowed transitions studied in minute detail by J.C. Hardy and I.S. Towner [10]. While the ones from the old version of BetaShape (v1) disagree significantly, especially for high atomic numbers, excellent agreement with the predictions from [10] is obtained in the current version (v2.2).

The last quantity A(Z, W) in Eq. 1 stands for the atomic corrections. The ones used in this work are not those implemented in BetaShape (v2.2) and are discussed below.

Finally, the log ft value results from the f-value as the integral of the spectrum (Eq. 1)

$$f_{\beta} = \int_{0}^{W_{0}} pWq^{2}F_{0}L_{0}C(W)R(Z,W)A(Z,W)dW \quad (5)$$

Table 1

Radiative corrections (%) on f-values of the superallowed transitions studied in [10] compared to the predictions from the former and the current versions of the BetaShape code (v1 and v2.2, respectively).

Nucleus	BetaShape	BetaShape	Hardy and
	(v1) [3]	(v2.2)	Towner [10]
$T_z = -1$			
$^{10}\mathrm{C}$	1.679	1.678	1.679
$^{14}\mathrm{O}$	1.583	1.539	1.543
$^{18}\mathrm{Ne}$	1.578	1.508	1.506
^{22}Mg	1.606	1.465	1.466
$^{26}\mathrm{Si}$	1.639	1.434	1.439
$^{30}\mathrm{S}$	1.688	1.420	1.423
$^{34}\mathrm{Ar}$	1.749	1.412	1.412
^{38}Ca	1.822	1.410	1.414
$^{42}\mathrm{Ti}$	1.906	1.423	1.424
$^{46}\mathrm{Cr}$	1.989	1.420	1.426
$^{50}\mathrm{Fe}$	2.078	1.423	1.426
54 Ni	2.171	1.423	1.423
$T_z = 0$			
$^{26\mathrm{m}}\mathrm{Al}$	1.644	1.478	1.478
$^{34}\mathrm{Cl}$	1.736	1.441	1.443
$^{38\mathrm{m}}\mathrm{K}$	1.803	1.437	1.440
$^{42}\mathrm{Sc}$	1.887	1.450	1.453
$^{46}\mathrm{V}$	1.961	1.442	1.445
$^{50}\mathrm{Mn}$	2.045	1.440	1.444
$^{54}\mathrm{Co}$	2.132	1.437	1.443
62 Ga	2.336	1.455	1.459
^{66}As	2.447	1.471	1.468
$^{70}\mathrm{Br}$	2.565	1.487	1.486
74 Rb	2.683	1.499	1.499

and the partial half-life

$$t = T_{1/2}/P_{\beta} \tag{6}$$

deduced from the evaluated total decay half-life $T_{1/2}$ and the evaluated transition probability P_{β} .

2.1.1. Improved atomic corrections

Recent analyses of high-precision measurements have demonstrated that the β spectrum shape can be significantly affected by atomic corrections at very low energy (see e.g. [22–24]). In the latest released version (v2.2) of the BetaShape code, only the atomic screening correction is included. It is based on the analytical approach from W. Bühring [25] in which the electron wave function from simplified coupled Dirac equations are radially expanded along with a screened potential. Keeping only the dominant term, formulas were established that give screenedto-unscreened ratios for the Fermi function F_0L_0 and the λ_k parameters. This correction was adapted to the more reliable screened potentials from [26] in [27].

However, this screening correction is not able to accurately describe the ultra-low energy region of a β spectrum, as illustrated in Fig. 1 and 2. For the present review, improved atomic corrections have been considered, computing screened-to-unscreened ratios for the Fermi function and the λ_k parameters via a full numerical solving of the Dirac equation for the Coulomb potential of a spherical, uniformly charged nucleus and a screened potential from [26]. An exponential grid has been considered to ensure precision at very low energy. The Fermi function and the λ_k parameters up to λ_7 , required for a sixth forbidden unique transition, have been tabulated up to 30 MeV. Such a tabulation covers more than all the transitions currently present in the ENSDF database.

In addition, the atomic exchange effect that originates in the indistinguishability of the electrons has also been taken into account in the present work. For allowed transitions, exchange is only possible with atomic electrons in $s_{1/2}$ and $p_{1/2}$ orbitals; the approach has already been described in [28] and references therein. Atomic orbital energies have been taken from the NIST website [29, 30] and extended by interpolation up to Z = 120. They were calculated for Z = 1 - 92 in [30] with a relativistic density functional theory considering a point nucleus and electron correlations. The formalism for allowed transitions has been extended to forbidden unique ones, as briefly described in [31] for first forbidden unique transitions, and will be described in detail elsewhere. Basically, each term in the shape factor is associated with a λ_k parameter that is corrected by an exchange term linked to the corresponding atomic orbitals: Fermi function is influenced by $s_{1/2}$ and $p_{1/2}$ orbitals; λ_2 by $p_{3/2}$ and $d_{3/2}$ orbitals; etc. The exchange correction factors have been tabulated on the same exponential grid as for screening. As these factors converge to unity, tabulation has been stopped when numerical precision is better than 0.001%.

Finally, it is also well-known that the atomic overlap correction, which accounts for shake-up and shake-off effects in β decay, decreases the emission probability close to the maximum energy [32, 33]. The most precise correction currently available in the literature is only first order and for allowed transitions [21]. It depends on the second derivative of the total electron binding energy of the atom in its ground state (B''), determined with a fit given in [21]. The influence on the *f*-value is small and for the present review, this correction has been applied indifferently to allowed and forbidden unique transitions in the β decay calculations.

Recently, potential β transitions with ultra-low maximum energies have been reviewed based on up-to-date decay data [34]. In all the transitions selected in the present review, only three β^- decays have a maximum energy <5 keV, for which the atomic overlap correction can be expected to be significant. In ¹⁸⁷Re ground-state to ground-state decay, the maximum energy is 2470.9(13) eV [35]. The influence of the atomic overlap correction on the log ft value is <1% but significant: 11.025(7) with this correction and 11.116(7) without. However, it modifies the average spectrum energy by ~7.5%: 595.01(34) eV with this correction and 642.09(33) eV without.

The second transition is from ¹¹⁵In decay with an ultralow maximum energy of 147(10) eV determined considering the ¹¹⁵Sn first excited state energy of 497.342(3) keVfrom [36]. In this case, B'' = 226 eV is higher than the maximum energy and the correction prevents the transition to occur. The *f*-value of this second forbidden unique transition has thus been determined without the atomic overlap correction. The log *ft* value of 14.59(12) has been calculated with the recently measured half-life of $5.18(6) \times 10^{14}$ y from [37]. For completeness, we also report the corresponding average spectrum energy of 42.6(27) eV. Further theoretical developments are required to improve the accuracy of this correction in the specific case of ultra-low maximum energy transitions.

The third transition appears in ²²⁸Ac decay from its ground-state to the 141th excited level of ²²⁸Th at 2123.1(3) keV. With a Q-value of 2123.8(26) keV, the maximum energy is 0.7(26) keV. No direct precision measurement of the atomic masses was found in the literature. The ²²⁸Th level spin is not firmly known and defines the transition as allowed. The calculated log ft value is ~1.4, with or without the atomic overlap correction, which is unrealistic. This transition seems to be very unlikely and has not been considered in the present review. One can only suggest it as a potential candidate for ultra-low energy beta transition. Further high-precision measurements are required to establish a better decay scheme as well as better level energies and Q-value.

Results from this improved modeling (compared to BetaShape version 2.2) are compared in Fig. 1 and 2 to highprecision measurements of the low-energy spectra from ⁶³Ni and ²⁴¹Pu decays. The former is an allowed transition and the latter is first forbidden non-unique but can be safely calculated as allowed following the ξ -approximation. Compared to the analytical screening from Bühring, the tabulated numerical screening induces a smoother energy dependency. Adding the tabulated exchange correction, excellent agreement is obtained over the entire measured energy range down to the 0.3 – 0.5 keV region in both cases. Nevertheless, accuracy of this modeling is quite uncertain below 5 keV in the general case. Strong decrease can be observed for some elements [38], such an effect having been recently questioned [39]. Prediction quality for ultra-low Q-value transitions is thus not guaranteed. High-precision measurements of different β decays down to the ultra-low energy region are definitely required to test and validate the theoretical models over a wide range of atomic elements.

Fig. 1: Comparison of calculated and measured β spectra from ⁶³Ni decay. The high-precision measurement is from [23].

2.2. Electron captures

Electron capture (ε) is an isobaric process that competes with β^+ decay, the latter occurring only if the transition energy is $\geq 2m_e$:

$${}^{A}_{Z}X + e^{-} \longrightarrow^{A}_{Z-1}Y + \nu_{e}$$

These two-body transitions are classified according to the same rules as in β decays. The modeling implemented in the BetaShape code is also based on the formalism of Behrens and Bühring [14, 41] and has already been described in detail in [4, 42]. The total capture probability is the sum of the capture probability of each subshell, the latter being characterized by its quantum number κ and

Fig. 2: Comparison of calculated and measured β spectra from 241 Pu decay. This first forbidden non-unique transition has been calculated as allowed following the ξ -approximation. The high-precision measurement is from [40].

its relative occupation number n_{κ} :

$$\lambda_{\varepsilon} = \frac{G_{\beta}^2}{2\pi^3} \sum_{\kappa} \frac{\pi}{2} n_{\kappa} C_{\kappa} q_{\kappa}^2 \beta_{\kappa}^2 B_{\kappa} S_{\kappa} R_{\kappa} \tag{7}$$

with G_{β} the Fermi coupling constant and q_{κ} the neutrino momentum.

The quantity C_{κ} is similar to the shape factor in β decay and couples the lepton and nuclear currents. Allowed and forbidden unique transitions can be treated without any nuclear structure input by calculating ratios of relative capture probabilities. As in the treatment of β decays, all allowed and forbidden unique transitions are thus calculated correctly regarding nuclear structure, while first forbidden non-unique transitions are calculated as allowed; second forbidden nonunique transitions as first forbidden unique; etc.

The quantity R_{κ} corresponds to the radiative corrections, which are especially important for accurate captureto-positron ratios. In BetaShape, they are determined following [43] with a Coulomb-free theory for the capture part, and with a simplified model of the same level of accuracy for the β^+ part. All other terms require the computation of the relativistic atomic wave functions: β_{κ} is the Coulomb amplitude of the bound state wave function as defined in [14]; B_{κ} corrects for the overlap and exchange effects; and S_{κ} accounts for the shake-up and shake-off effects based on the description from [44].

The atomic wave functions are determined for a neutral atom, while the capture process creates a hole in the atomic cloud. This hole slightly affects the wave functions and has to be taken into account. It is done in BetaShape using the first order, time independent perturbation approach from [45]. Accuracy of the atomic energies has also a significant influence. In this electron capture modeling, they are identical to those used for the atomic exchange effect in β decay [29, 30]. Two models, from J.N. Bahcall and E. Vatai, are used to estimate the overlap and exchange correction, both extended to all subshells [42]. The latter is physically more accurate and gives the central value of the capture probability. The former is used to estimate a modeling uncertainty, added to the uncertainty component from the maximum energy.

For each subshell, the relative capture probability and its contribution, the summand in Eq. 7, are calculated. The *f*-value of the ε transition is then simply the sum of the different contributions

$$f_{\varepsilon} = \sum_{x} \frac{\pi}{2} n_{\kappa} C_{\kappa} q_{\kappa}^{2} \beta_{\kappa}^{2} B_{\kappa} S_{\kappa} R_{\kappa}$$
(8)

If a β^+ transition competes, the splitting of the branch between ε and β^+ transitions is determined from the calculated capture-to-positron ratios. Intensities and partial half-lives are then updated accordingly. The *f*-value from the β^+ transition is then added to the ε component

$$f_{\rm tot} = f_{\varepsilon} + f_{\beta^+} \tag{9}$$

A comparison with different precise measurements available in the literature has highlighted good agreement and consistent results, validating this modeling [4].

3. Selection Criteria

The selection criteria in the review from 1998 were mainly focusing on the firm assignment of π values (with π being the corresponding parity) [1] and the exclusion of weak β branches (mainly transitions <1% or \approx 1%). While certain well-known transitions below 1% are included within the present review, there is also a variety of more stringent selection criteria, which prevent dubious transitions from being included. By only applying the selection criteria from 1998, a total number of 4788 transitions would have been reviewed instead of the 4038 presented in this work. In direct comparison to 1998 (with 3835 reported transitions), this means an effective increase of approximately 25% within the past 25 years.

- 1. The intensity of the transition has to be $\geq 1 \%$. The intensities in case of β^+/EC are treated as follows:
 - (a) If the total intensity is known, the corresponding value is used.
 - (b) If the total intensity is not known, but only the intensity for the β^+ -branch is known, the corresponding value is used.
 - (c) If the total intensity is not known, but only the intensity for the EC-branch is known, the corresponding value is used.

- (d) If the total intensity is not known, but the intensity for both the β^+ -branch, and the ECbranch are known, the sum of their respective values is used.
- 2. In addition to the selection criterion #1, transitions with intensities below 1% are accepted, if the following conditions are fulfilled:
 - (a) The selection criteria #3 to #7 are fulfilled.
 - (b) The half-life of the parent is >1 d.
- 3. The following word combinations (or the one word in case of "Pandemonium") may not be mentioned within the same line (or two consecutive lines, respectively) in the header comments of the respective ENSDF decay scheme:
 - (a) Apparent + Feeding
 - (b) Approximate + Feeding
 - (c) Incomplete + Scheme
 - (d) Pandemonium

While the majority of these decay schemes must legitimately be excluded based on their incompleteness, a manual cross check revealed some unintended exclusions. The resulting list of decay schemes, which have been exempted from this particular selection criterion is shown in section 4.

- 4. The branching ratio of the transition needs to have a well defined uncertainty. This uncertainty needs to be smaller than the third of the branching ratio. Beta branches listed as uncertain, approximate or with limits are not used. Exception: Transitions with an intensity of 100% do not need an uncertainty.
- 5. J π of the parent and daughter levels needs to be known as 'J π ' or as '(J) π '.
- 6. Except for the ground states, level energies of the parent and daughter need to have well-defined energies and uncertainties. Uncertain levels, or levels with energies given in the ENSDF database as '...+X', '...+Y', etc. are rejected.
- 7. The half-life of the parent nuclide needs to have a well defined uncertainty.

4. Additional inclusions of transitions

1. The decay of ¹⁰⁰Sn

The Q-value is listed as Q=2720+X. Nevertheless, X has been estimated as <50 keV. Due to its relevance as a doubly magic nucleus with extremely small $\log ft$ value, its decay scheme has been included with Q=2745(25) keV. (Based on [46]).

2. Exemptions from selection rule #3The following decay schemes are included despite fulfilling selection criterion #3. Their respective transitions are only accepted, if they also fulfill all the other selection criteria:

- (a) Apparent+Feeding: ${}^{22}\mathbf{F}$ (GS), ${}^{43}\mathbf{Ti}$ (GS), ${}^{71}\mathbf{Zn}$ (1st isomere), ${}^{74}\mathbf{Rb}$ (GS), ${}^{77}\mathbf{Ge}$ (1st **2n** (1) isomere), **4Rb** (GS), **4Ge** (1st isomere), 97 **Nb** (GS), 98 **Ag** (GS), 98 **Y** (2nd isomere), 98 **Nb** (1st isomere), 100 **Nb** (GS), 100 **Nb** (1st isomere), 122 **In** (2nd isomere), 129 **In** (2nd isomere), 1 $(2^{nd} \text{ isomere}), {}^{129}$ Sb (GS), 130 In (1st isomere), 1³⁵Nd (GS), 139 Cs (GS), 163 Tm (GS), 165 Tm $(GS), {}^{169}Lu (GS), {}^{183}Os (GS), {}^{184}Pt (GS),$ 190 **Re** (GS), 224 **Fr** (GS)
- (b) Approximate+Feeding: ¹⁰⁸In (1st isomere),
- (b) Approximate+recting. In (1 isomere), 129 Ba (GS), 146 Ba (GS), 154 Pm (1st isomere) (c) Incomplete+Scheme: 82 Ge (GS), 91 Tc (GS), 101 Sr (GS), 116 I (GS), 140 Ba (GS), 151 Nd (GS), 154 Tb (GS), 154 Tb (1st isomere), ¹⁵⁴**Tb** (2nd isomere), ¹⁵⁶**Eu** (GS), ¹⁵⁹**Er** (GS), ¹⁶⁹Lu (GS), ¹⁷⁹Pt (GS), ²⁰⁹Rn (GS)
- (d) **Pandemonium**: 98 Sr (GS-branches into 547.87 keV, 600.30 keV and 986.39 keV), $^{116}{\rm Ag}$ (GS), 116 Ag (1st isomere), 116 Ag (2nd isomere)

3. Other inclusions of single transitions

The following transitions have been included manually due to their appearance in a well-known decay scheme.

- (a)
- ¹⁴O $E_{\rm P} = 0.0 \, \rm keV \rightarrow E_{\rm D} = 0.0 \, \rm keV$ ¹⁴O $E_{\rm P} = 0.0 \, \rm keV \rightarrow E_{\rm D} = 3948.1 \, \rm keV$ (b)
- 28 Mg $E_{\rm P} = 0.0 \, \rm keV \rightarrow E_{\rm D} = 972.24 \, \rm keV$ (c)
- 66 Ga $E_{\rm P} = 0.0 \, {\rm keV} \rightarrow E_{\rm D} = 2372.353 \, {\rm keV}$ (d)
- 134 Cs $E_{\rm P}$ =0.0 keV $\rightarrow E_{\rm D}$ =847.0 keV (e)

5. Additional exclusions of transitions

- 1. Exclusion of single transitions
 - (a) 228 Ac $E_P = 0.0 \text{ keV} \rightarrow E_D = 2123.1 \text{ keV}$ This ultra-low energy β transition is excluded because the nuclear structure data leads to an unrealistic log ft value of ≈ 1.4 . Transition nature and energy are not sufficiently well known to be credible and require further experimental investigations (cf. section 2).

(b) ${}^{28}S - E_P = 0.0 \text{ keV} \rightarrow E_D = 5900 \text{ keV}$

In the current ENSDF database, for ²⁸S decay to ²⁸P decay, a single EC/β + branch of 100% with an unrealistically low log ft value of 2.33(9) to a proton-unbound analog 0^+ state at 5900 keV in ²⁸P is listed, based on an experimental study by F. Pougheon et al. [47]. As the experiment in Ref. [47] was designed to measure only the beta-delayed protons, there was no information available for $EC/\beta + de$ cays to proton-bound states in ²⁸P through γ ray spectroscopy. For this reason, we believe that 100% EC/ β + branch to the 5900 keV, 0⁺

state assigned in the ENSDF is erroneous, thus this decay has been omitted in Table 5 of 0^+ to 0^+ , $\Delta T=0$, T_z (parent)=-2 transitions. Additionally, based on $\log ft$ values for the seven transitions in Table 5, we estimate that $EC/\beta +$ branch to the 5900 keV, 0^+ level in ²⁸P should be $\sim 10\%$, not 100% as in the ENSDF database. Until detailed experimental spectroscopic results for the decay of ²⁸S decay become available, EC/β + branching ratio for the superallowed beta decay to the analog state cannot be reliably assigned.

2. Exclusion of entire decay schemes

- (a) 72 Br The entire decay scheme is excluded due to uncertain beta feedings.
- (b) ${}^{148\mathbf{m}}\mathbf{Tb}$ Both the ground state and the excited state transitions suffer from an incomplete decay scheme. While the ground state has been filtered out by selection criterion #3, the meta stable state is filtered out manually.
- (c) ${}^{146}\mathbf{Eu}$ This decay scheme suffers from many unplaced γ -rays. Hence, all transitions with beta branches below 2% have been excluded.

3. Exclusions from: Second Forbidden

The calculated $\log ft$ values for these transitions are too low for a 2nd forbidden transition. It is therefore assumed, that these transitions contain incorrect experimental data.

(a)	26 Ne	$- E_{\rm P} = 0.0 \mathrm{keV} \rightarrow E_{\rm D} = 232.9 \mathrm{keV}$
(b)	$^{49}\mathbf{K}$	- $E_{\rm P}=0.0{\rm keV}$ $\rightarrow E_{\rm D}=6.69{\rm E}3{\rm keV}$
(c)	$^{49}\mathbf{K}$	- $E_{\rm P}=0.0{\rm keV}$ $\rightarrow E_{\rm D}=6.90{\rm E}3{\rm keV}$
(d)	$^{49}\mathbf{K}$	- $E_{\rm P}=0.0{\rm keV} \rightarrow E_{\rm D}=7.06{\rm E3keV}$
(e)	52 Mn	$- E_{\rm P} = 0.0 {\rm keV} \rightarrow E_{\rm D} = 4627.13 {\rm keV}$
(f)	56 Co	- $E_{\rm P} = 0.0 {\rm keV} \rightarrow E_{\rm D} = 2959.972 {\rm keV}$
(g)	56 Co	$- E_{\rm P} = 0.0 {\rm keV} \rightarrow E_{\rm D} = 3369.95 {\rm keV}$
(h)	$^{77}\mathbf{Rb}$	$- E_{\rm P} = 0.0 {\rm keV} \rightarrow E_{\rm D} = 499.58 {\rm keV}$
(i)	$^{77}\mathbf{Br}$	- $E_{\rm P} = 0.0 \rm keV \rightarrow E_{\rm D} = 581.01 \rm keV$
(j)	91 Tc	$- E_{\rm P} = 0.0 {\rm keV} \rightarrow E_{\rm D} = 1362.02 {\rm keV}$
(k)	106 In	$- E_{\rm P} = 0.0 {\rm keV} \rightarrow E_{\rm D} = 2330.26 {\rm keV}$
(l)	$^{109}\mathbf{Rh}$	$- E_{\rm P} = 0.0 {\rm keV} \rightarrow E_{\rm D} = 491.589 {\rm keV}$
(m)	109 Sn	$- E_{\rm P} = 0.0 {\rm keV} \rightarrow E_{\rm D} = 1171.72 {\rm keV}$
(n)	109 Sn	$- E_{\rm P} = 0.0 {\rm keV} \rightarrow E_{\rm D} = 1713.27 {\rm keV}$
(o)	119 Cd	$- E_{\rm P} = 0.0 {\rm keV} \rightarrow E_{\rm D} = 941.33 {\rm keV}$
(p)	122 Cs	$- E_{\rm P} = 0.0 {\rm keV} \rightarrow E_{\rm D} = 1214.07 {\rm keV}$
(q)	$^{125}\mathbf{Sb}$	$- E_{\rm P} = 0.0 {\rm keV} \rightarrow E_{\rm D} = 443.554 {\rm keV}$
(r)	$^{130}\mathbf{Sb}$	$-E_{\rm P}=5.36{\rm keV} \rightarrow E_{\rm D}=1815.37{\rm keV}$
(s)	$^{145}\mathbf{Eu}$	$- E_{\rm P} = 0.0 {\rm keV} \rightarrow E_{\rm D} = 2292.82 {\rm keV}$
(t)	153 Tb	$- E_{\rm P} = 0.0 {\rm keV} \rightarrow E_{\rm D} = 482.875 {\rm keV}$
(u)	156 Pm	- $E_{\rm P} = 0.0 \rm keV \rightarrow E_{\rm D} = 517.07 \rm keV$
(v)	$^{160}\mathbf{Tb}$	$- E_{\rm P} = 0.0 {\rm keV} \rightarrow E_{\rm D} = 1285.59 {\rm keV}$
(w)	166 Ta	$- E_{\rm P} = 0.0 {\rm keV} \rightarrow E_{\rm D} = 470.47 {\rm keV}$
(\mathbf{x})	169 Yb	$- E_{\rm P} = 0.0 {\rm keV} \rightarrow E_{\rm D} = 570.832 {\rm keV}$

(\mathbf{y})	172 Lu	- $E_{\rm P} = 0.0 \rm keV$	$\rightarrow E_{\rm D} = 1757.56 \mathrm{keV}$
(z)	183 Ir	- $E_{\rm P}$ =0.0 keV	$\rightarrow E_{\rm D} = 558.15 \mathrm{keV}$
(aa)	183 Ir	- $E_{\rm P}$ =0.0 keV	$\rightarrow E_{\rm D} = 646.88 \rm keV$
(ab)	206 Po	- $E_{\rm P}$ =0.0 keV	$\rightarrow E_{\rm D} = 1077.87 \mathrm{keV}$
(ac)	206 At	- $E_{\rm P}$ =0.0 keV	$\rightarrow E_{\rm D} = 1564.70 \mathrm{keV}$
(ad)	221 Rn	- $E_{\rm P}$ =0.0 keV	$\rightarrow E_{\rm D} = 99.88 \mathrm{keV}$
(ae)	233 Pa	- $E_{\rm P}$ =0.0 keV	$\rightarrow E_{\rm D} = 320.76 \mathrm{keV}$

4. Exclusions from: Second Forbidden Unique The calculated $\log ft$ values for these transitions are too low for a 2nd forbidden unique transition. It is therefore assumed, that these transitions contain incorrect experimental data.

(a)	$^{99}\mathbf{Rh}$	$-E_{\rm P}=64.3{\rm keV}$	$\rightarrow E_{\rm D} = 89.6 \mathrm{keV}$
(b)	$^{99}\mathbf{Nb}$	- $E_{\rm P}$ =0.0 keV	$\rightarrow E_{\rm D} = 548.7 \mathrm{keV}$
(c)	$^{100}\mathbf{Nb}$	- $E_{\rm P}$ =0.0 keV	$\rightarrow E_{\rm D} = 2970.3 \mathrm{keV}$
(d)	$^{105}\mathbf{Ag}$	- $E_{\rm P}=0.0{\rm keV}$	$\rightarrow E_{\rm D} = 644.6 \mathrm{keV}$
(e)	109 Sn	- $E_{\rm P}=0.0{\rm keV}$	$\rightarrow E_{\rm D} = 1026.42 \mathrm{keV}$
(f)	122 In	- $E_{\rm P}=40{\rm keV}$	$\rightarrow E_{\rm D} = 2415.64 \mathrm{keV}$
(g)	131 Ba	- $E_{\rm P} = 0.0 \rm keV$	$\rightarrow E_{\rm D} = 1043.97 \mathrm{keV}$
(h)	131 Ba	- $E_{\rm P} = 0.0 \rm keV$	$\rightarrow E_{\rm D} = 1257.83 \mathrm{keV}$
(i)	$^{150}\mathbf{Tb}$	- $E_{\rm P} = 0.0 \rm keV$	$\rightarrow E_{\rm D} = 1699.915 \mathrm{keV}$
(j)	$^{170}\mathbf{Hf}$	- $E_{\rm P} = 0.0 \rm keV$	$\rightarrow E_{\rm D} = 114.87 \rm keV$
(k)	187 Pt	- $E_{\rm P} = 0.0 \rm keV$	$\rightarrow E_{\rm D} = 186.16 \rm keV$

5. Exclusions from: Third Forbidden

The calculated $\log ft$ values for these transitions are too low for a 3rd forbidden transition. It is therefore assumed, that these transitions contain incorrect experimental data.

- ${}^{105}\mathbf{Ag} E_{\mathrm{P}} = 0.0 \,\mathrm{keV} \rightarrow E_{\mathrm{D}} = 306.3 \,\mathrm{keV}$ ${}^{105}\mathbf{Ag} E_{\mathrm{P}} = 0.0 \,\mathrm{keV} \rightarrow E_{\mathrm{D}} = 442.3 \,\mathrm{keV}$ (a) (b)
- 170 Lu $E_{\rm P}$ =0.0 keV $\rightarrow E_{\rm D}$ =1397.05 keV (c)

 183 Ir - $E_{\rm P} = 0.0 \, \rm keV \rightarrow E_{\rm D} = 792.93 \, \rm keV$ (d)

6. Treatment of potentially Pandemonium affected transitions

The impact of the Pandemonium effect on a nucleus of interest strongly depends on its nuclear structure and its corresponding level density. The determination of appropriate cut conditions for the exclusion of Pandemonium nuclei is therefore not straightforward. Furthermore, the enormous effort in the research topic of total absorption gamma spectrometry (TAGS) has led to reliable nuclear data sets of certain Pandemonium nuclei.

Hence, in order to ensure transparency and traceability, no nuclide has been rejected on the basis of possible Pandemonium effects. Instead, an additional flag has been added in the last column of each table, which may give an indication of potentially affected transitions. This flag has been added if the Q-value of the parent nucleus is larger than $2800 \,\mathrm{keV}$, and the highest known daughter level of the decay scheme has an energy less than 80% of the Q-value. Furthermore, the following statements are applied:

- 1. In case of $1^+ \leftrightarrow 0^+$ and $0^+ \to 0^+$, no transition has been flagged, which is evaluated with a well-known $J\pi$ assignment for parent and daughter.
- 2. No transition with branching $\geq 90\%$ has been flagged.
- 3. In case of parental isomeres, the level energy of the parent nucleus has been added to the Q-value in order to determine the ratio between the Q-value and the energy level of the highest known daughter.
- 4. There is no decay scheme where the *Q*-value of the parent is larger than 2800 keV, its highest known daughter level is the ground state, and which furthermore fulfills all selection criteria. Therefore, there is no need for a special treatment of these cases.
- 5. Despite their fulfilled conditions, the well-kwown decay schemes of ²²Na and ²⁶Al are not flagged. However, the suggested flagging of these low-Z transitions underlines the weakness of our algorithm regarding the disregard of level densities. Furthermore, the transitions from ²⁰¹Bi are also not flagged despite fulfilling the conditions. However, its decay scheme is well-known.

It it important to emphasize that the presented definition of the "Pandemonium flag" is neither sufficient to flag all transitions, which are affected by the Pandemonium effect, nor sufficient to protect any transition from being flagged, which are not affected by the Pandemonium effect.

Neither the dependency of level densities on the mass numbers is reflected by this criterion, nor the effort by TAGS measurements in order to take the Pandemonium effect into account. The additional flag in the last column of the tables must therefore be treated with caution. Nevertheless, this flag may give an indication, whether the transition could potentially be affected by the Pandemonium effect and raises the awareness of the reader.

Furthermore, it may be noticed that the authors deliberately avoided a manual decision on a possible Pandemonium effect for every transition. This manual selection would neither be flawless as well and furthermore adds a lack of transparency regarding the proceeding.

7. Comments on particular transitions

While the vast majority of presented data relies on the methods stated in sections 1 to 6, there are some few cases, which have been treated individually.

- 1. ⁹⁰Mo ($E_{\rm P}=0.0 \, {\rm keV} \rightarrow E_{\rm D}=2309.0 \, {\rm keV}$)
 - The daughter level is assigned by experiments to $J\pi=3^+$. This is undoubtedly incorrect as it would give an unrealistic value of log ft=2.65 for a second-forbidden transition. The only meaningful assignment is 1^+ . This has therefore been adapted with a new resulting value of log ft=4.53.

2. ⁶⁶As EC decay to ⁶⁶Ge

Expected to be superallowed decay, with 100% decay from 0⁺ g.s. of ⁶⁶As to 0⁺ g.s. of ⁶⁶Ge, $\Delta T=0$, T_z (parent)=0, with log ft=3.490(2). As at present, there is no known excited level of spin=0 or 1 in ⁶⁶Ge which could be fed by the beta decay. Yet until the decay scheme of ⁶⁶As is firmly established experimentally with possible spin=1 or 0 levels at higher excitation energy in ⁶⁶Ge, this transition is left out of Table 4 of superallowed ($\Delta T=0$, T_z (parent)=0,1), even though it seems a reliable candidate for a superallowed transition.

3. ⁷⁰Br EC decay to ⁷⁰Se

Expected to be superallowed decay, with 98.7(13)%decay [48] from 0^+ g.s. of ⁷⁰Br to 0^+ g.s. of ⁷⁰Se, $\Delta T=0$, T_z (parent)=0, with log ft=3.608(8). As at present, except for a possible (0^+) state at 2010 keV, there is no other known excited level of spin=0 or 1 in 70 Se which could be fed by the beta decay. Yet until the decay scheme of ⁷⁰Br is firmly established experimentally, with possible spin=1 or 0 levels at higher excitation energy in ⁷⁰Se, this transition is left out of Table 4 of superallowed ($\Delta T=0$, T_z (parent)=0,1). Additionally, log ft value of 3.608 (or 3.602 if 100% feeding to the g.s. is assumed) is higher than expected log ft=3.49(1) for 0^+ to 0^+ superallowed transitions, implying that either the halflife of ⁷⁰Br decay or its $Q(\beta)$ value, or both are problematic.

4. $\mathbf{0}$ + \rightarrow $\mathbf{0}$ +, $\Delta \mathbf{T}$ = 0, \mathbf{T}_z (parent)= -2

From data presented in Table 5 for superallowed 0^+ to 0^+ transitions with $\Delta T=0$, $T_z(parent)=-2$, the log ft values for seven such known transitions are listed with an expected mean value of 3.12.

5. 115 In, 187 Re, and 228 Ac

These decay schemes each contain one transition with a particular low transition energy. See discussion in section 2.1.1.

8. Inferences and conclusions

1a) Superallowed $0^+ \rightarrow 0^+$ transitions for $T_z=0$ and $T_z=-1$ parents

Out of 24 listed cases in Table 4, log ft values for 22 nuclei lie in the expected range [10] of 3.487(6) and 3.504(14). For two cases, the values are slightly lower: 3.472(12) for ¹⁸Ne and 3.465(49) for ⁷⁰Kr, although, within the quoted uncertainties, these values almost agree with the values for $T_z=0$ and $T_z=-1$ parents.

1b) Superallowed $0^+ \rightarrow 0^+$ transitions for $T_z=-2$ parents

For all the seven cases listed in Table 5, $\log ft$ values are in the range of 3.174(41) and 3.33(7) which

is in agreement with the expected values. As explained earlier, in case of ²⁸S decay, a superallowed decay has been observed, but is omitted in our Tables and Figures due to lack of adequate data for beta branching ratio to the analog state in 28 P. In superallowed decays, the nuclear matrix element is mostly determined by isospin coupling. Transitions with $T_r = -2$ parents are expected to have ft values about half those with $T_z=-1$ parents. Adding log 2 for the sake of comparison the $\log ft$ values in Table 5 become similar to those with $T_z=-1$ parents. It is noteworthy that all the daughter levels in Table 5 are above the proton emission threshold. Precise measurements of such β decays are particularly difficult and uncertainties on $\log ft$ values have to be considered with caution.

2) $\mathbf{0^+} \rightarrow \mathbf{0^+}$ transitions with $\Delta \mathbf{T} \neq \mathbf{0}$

In Table 6, no log ft values were found between 3.6 and 6.4 for the 12 cases listed in this category. Lowest value among 20 cases of $\Delta T \neq 0$ is 6.661(18) for ⁶⁴Ga decay. This is consistent with the rule proposed [8, 49], that a log ft between 3.6 and 6.4 indicates that it is not a 0⁺ to 0⁺ transition. Most likely these cases suffer from hindered transitions due to nuclear state deformation [50]. However, more investigation is needed.

3) $\Delta J=0$, $\Delta \pi=$ no transitions with log ft < 4

There are 41 transitions in Table 7 where log ft values range from 2.98(9) to 3.932(17). This group of transitions is kept separate from the general allowed $(\Delta J=0)$ transitions since some of these are likely to fall in the category of superallowed ($\Delta T=0$, not 0⁺ to 0⁺) transitions, or β transitions for neutron decay and between mirror nuclei in odd-A nuclei from ³H to ⁷⁵Sr, as detailed in a recent evaluation by N. Severijns et al. [51].

4) $\mathbf{0}^+ \leftrightarrow \mathbf{1}^+$ transitions

Central $\log ft$ value of 584 transitions is about one unit lower than for other allowed transitions.

5) Allowed transitions (not $0^+ \leftrightarrow 1^+$)

From a database of 1899 transitions, the central log ft value is lower for $\Delta J=1$ transitions than for $\Delta J=0$ transitions. In each category of $\Delta J=0$ and $\Delta J=1$ transitions, the central log ft value and the width of the distribution for odd-A nuclides are less than those for even-A nuclides.

6) First-forbidden non-unique transitions

From a database of 1254 transitions, the central $\log ft$ value is lower for $\Delta J=0$ transitions than for $\Delta J=1$ transitions, which is reverse of that for allowed transitions. In each category of $\Delta J=0$ and $\Delta J=1$ transitions, the central $\log ft$ value and the width

of the distribution for odd-A nuclides are less than those for even-A nuclides, similar to that for allowed transitions. A lower limit of $\log ft=5.9$ for the first forbidden transitions for Z < 80 and 5.1 for Z > 80 is proposed [8, 49]. From a total of about 1100 transitions considered in this review, we find that there are only two real cases in the Z<80 region, where $\log ft$ value is <5.9. These are from well-known decays of 96 Y (0⁻ to 0⁺ transition) with log ft=5.616(7), and ¹⁴²Cs (0⁻ to 0⁺) with log ft=5.78(4) (based on TAGS data in [52]). The data for the decay of 96 Y to 96 Zr were not available at the time of publication of [8]. For ³³Mg, ⁹⁶Rb, ⁹⁷Rb, ⁹⁸Y, ¹⁷⁷W, and ²⁰³Au decays, $\log ft$ values are somewhat lower than 5.9, which could be explained by Pandemonium effect in most cases. Other 18 cases of low $\log ft$ values are for $Z \ge 80$, lowest being log ft of 5.202(6) for ²⁰⁷Tl decay $(1/2^+$ to $1/2^-$ transition), consistent with the findings in Ref. [8]. The policy in Nuclear Data Sheets [49] regarding nuclides with Z around 82 (log ft limit is lowered to 5.1) should apply for $Z \ge 80$ as intended in Ref. [8].

7) First-forbidden unique transitions

A lower limit of $\log f^{1u}t=8.5$ was proposed in Ref. [8]. We find that from a total of 213 transitions in Table 13, there are 12 transitions which show $\log f^{1u}t < 8.5$, within the quoted uncertainties, being in the range of 6.7 to 8.317. Eight of these transitions correspond to weak feedings (1.7-3.9%) where data problems, such as Pandemonium effect for at least three of the above eight transitions, or other decay scheme issues, could give rise to low $\log f^{1u}t$ values. These are:

78 As:	β branch = 3.5(5)%	$\log f^{1u}t = 6.72(7)$
⁹⁷ Tc:	β branch = 3.94(18)%	$\log f^{1u}t = 7.451(31)$
⁹⁸ Y:	β branch = 3.0(4)%	$\log f^{1u}t = 8.28(6)$
¹⁰³ Cd:	β branch = 3.4(9)%	$\log f^{1u}t = 7.99(12)$
¹⁰⁶ In:	β branch = 2.50(23)%	$\log f^{1u}t = 7.964(42)$
¹⁰⁸ In:	β branch = 3.0(7)%	$\log f^{1u}t = 7.73(10)$
¹⁰⁸ In:	β branch = 2.4(7)%	$\log f^{1u}t = 7.73(13)$
¹¹⁰ In:	β branch = 1.74(15)%	$\log f^{1u}t = 7.307(49)$

For exceptionally low $\log f^{1u}t$ values of 6.72(7) and 7.30(5) for 2⁻ to 4⁺ β transitions to the 2682.09 and 3294.73 keV levels in ⁷⁸Se, perusal of spinparity assignment arguments for these levels in the ENSDF database shows that 4⁺ assignments for both the levels are based only on L-transfer equal to 4 in (p,p') and (t,p) reactions, further e.g. called "L(p,p')=4". However, the quoted precision for observed level energies is rather low. According to data in the ENSDF database, in (t,p), three levels are reported: 2677(11) keV with L(t,p)=4; 3288(9) keV with L(t,p)=1 and 3295(10) keV with L=4, while in

Fig. 3: Distribution of log ft values for different transition types based on all listed transitions within this review. The entire range of listed log ft values is shown with horizontal bars for each transition type. Below these bars, both the centroid and the width of each distribution are indicated by an additional data point and its error bars, respectively. In case of first forbidden non-unique transitions with $\Delta J=1$ and $\Delta \pi=$ yes with Z<80, there are only two cases with a comparatively large log ft of approximately 20, that occur in ¹⁷⁶Lu decay, well known to be affected by nucleus deformation [53]. Otherwise, the maximum is 14.334. This fact is indicated by a transparent bar on the right side of the filled bar. As discussed later in the conclusions section of the paper, unexpected low log ft values are subject to revision due either to pandemonium effect, or low experimental β feedings known with less precision. Realistically, we consider that minimum log ft values for first-forbidden non-unique transitions for Z<80 region are not <5.9, and those for the first-forbidden unique transitions not <8.5, as proposed by Raman and Gove [8]. This fact is indicated by transparent regions left to the corresponding filled bar. The overall color assignment is identical to Figures 4 - 7.

(p,p'), two levels are reported: 2680.7(20) keV with L(p,p')=4 and 3288.4(20) keV doublet with L=4. While it is plausible that the 2682.09(9) keV and 3294.73(13) keV levels populated in ⁷⁸As decay correspond to L=4 levels in (p,t) and (p,p'), yet correspondence of levels in ⁷⁸As decay and particle-transfer studies is not absolutely established due to high level density in this energy range.

Two other cases, with significant β feedings, and well-established decay schemes, where $\log f^{1u}t$ values are marginally lower than 8.5 are: ¹⁴⁶Gd (0⁺ to 2⁻), β branch = 26.5(16)%, $\log f^{1u}t = 8.268(33)$; and ¹⁸²Re (7⁺ to 5⁻), β feeding=7.1(23)%, $\log f^{1u}t$ = 8.33(26). Low $\log f^{1u}t$ value for ¹⁴⁶Gd decay could possibly be related to semi-closed shell (N=82) of this nuclide. The distribution shown for the first-forbidden unique transitions in the third panel of Figure 11 is quite likely skewed on the right side due to lack of experimental data for a large number of possible but as yet unobserved weak β branches which could give log $f^{1u}t$ values much larger than the central value of 9.5. We conclude that lower limit of log $f^{1u}t=8.5$ is valid for first-forbidden transitions.

8) Second-forbidden non-unique transitions

A lower limit of $\log ft$ =11.0 was proposed in Ref. [8]. We find that from a total of 27 transitions, there is one weak transition from 5⁻ to 7⁻ in the decay of ¹⁴⁸Eu, with intensity of 0.106(25)% and $\log ft$ =10.92(10). All the other transitions have $\log ft > 11.1$.

9) Second–forbidden unique transitions

A lower limit of log ft=12.8, based on ²²Na decay, was proposed in Ref. [8]. There are only 12 transitions known in this category, based on which, we propose a limit of log $f^{2u}t=13.83$ (value for 0⁺ to 3⁺ (100%) transition in ¹⁰Be β^- decay). This value is consistent with that proposed in Ref. [8], but our value is based on the strong β^- transition from ¹⁰Be decay, rather than on the very weak one (0.056%) from ²²Na B+/EC decay in Ref. [8].

10) Third forbidden non-unique transition

Since only one transition is known: $3/2^-$ to $9/2^+$ in ⁸⁷Rb β^- decay with log ft=17.0724(25), no lower limit for log ft can be proposed for such transitions.

11) Third forbidden unique transitions

Only two transitions, both 4^- to 0^+ are known, both in ${}^{40}\text{K} \beta^-$ and β^+/EC decay, with log ft values of 20.5932(10) and 21.64(11), respectively, which do not provide adequate data for proposing lower limit for log ft in this category.

12) Fourth forbidden non-unique transitions

Only three transitions are known: 6^+ to 2^+ in ${}^{50}\text{V}$ EC decay, with log ft=24.338(37) (highest log ftvalue in the present survey), $1/2^+$ to $9/2^+$ in ${}^{113}\text{Cd}$ β^- decay with log ft values of 22.8060(38), and $9/2^+$ to $1/2^+$ in ${}^{115}\text{In}$ β^- decay with log ft value of 22.991(25), based on which, one can perhaps set a lower limit of log ft=22 for such transitions.

While we recognize that $\log ft$ values can depend on nuclear structure properties of the parent and daughter levels, especially in the deformed regions of the nuclear chart, where β transitions can be allowed unhindered or forbidden by the K-quantum numbers involved, such issues fall outside the scope of our present work, albeit, we point out two prominent cases: 1. 176 Lu β - decay, where the two known first-forbidden beta transitions occur between $J\pi=7^{-}$ g.s. of ¹⁷⁶Lu and $J\pi=0^{+}$, 6^{+} and 8^{+} members of the ground-state band in ¹⁷⁶Hf, resulting in exceptionally large log ft values of 19.2 and 20.1, respectively [53]; 2. ¹⁰⁰Sn EC/ β + decay investigated by C.B. Hinke et al. [46] and D. Lubos et al. [54], where 0^+ to 1^+ Gamow-teller transition has almost the lowest $\log ft$ value of 2.66(14) in our Tables, which is likely due to decay of a doublyclosed (Z=N=50) nucleus. This topic may get taken up in detail at a later date when BetaShape code undergoes further development to possibly include nuclear structure model calculations. We note that beta decays and $\log ft$ values for neutron decay and between the mirror nuclei in odd-A region (${}^{3}\text{H}$ to ${}^{75}\text{Sr}$) have recently been analyzed and evaluated in detail by N. Severijns et al. [51]. Extensive theoretical calculations have been performed for betatransition matrix elements, half-lives, and $\log ft$ values by the theory group at the University of Jyvaskyla [55–57] and by D.-L. Fang et al. [58], vet at present, it appears impractical to make detailed comparison of experimental and available theoretical results.

Acknowledgments

The authors are grateful to Prof. J. C. Hardy (Texas A&M University) for valuable consultations about the treatment of transitions, which are potentially affected by the Pandemonium effect, and an insight into superallowed β transitions. The theoretical developments were performed as part of the EMPIR Project 20FUN04 PrimA-LTD, which has received funding from the EMPIR program co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation program. The support by the Konrad Adenauer Stiftung is gratefully acknowledged.

9. List of Tables and Figures

Table 1	Radiative corrections on f -values of the superallowed transitions	Page 4
Figure 1	Comparison of calculated and measured β spectra from ⁶³ Ni	Page 5
Figure 2	Comparison of calculated and measured β spectra from ²⁴¹ Pu	Page 6
Figure 3	Distribution of log ft values for all transition types	Page 11
Figure 4a	Allowed transitions involving 0^+ states along the nuclide chart	Page 14
Figure 4b	Allowed transitions not involving 0^+ states along the nuclide chart	Page 14
Figure 5a	Forbidden non-unique transitions along the nuclide chart	Page 15
Figure 5b	Forbidden unique transitions along the nuclide chart	Page 15
Figure 6	Distribution of allowed $\log ft$ values	Page 16
Figure 7	Distribution of forbidden $\log ft$ values	Page 16
Figure 8a	Superallowed transitions: $0^+ \rightarrow 0^+$, $\Delta T=0$, Parent $T_z=0;-1$	Page 17
Figure 8b	Superallowed transitions: $0^+ \rightarrow 0^+$, $\Delta T=0$, Parent $T_z=-2$	Page 17
Figure 8c	Isospin forbidden transitions: $0^+ \to 0^+$, $\Delta T \neq 0$	Page 17
Figure 9a	Allowed transitions: $1^+ \leftrightarrow 0^+$ (Gamow–Teller)	Page 18
Figure 9b	Allowed transitions: $\Delta J=0$, $\Delta \pi=no$, not $0^+ \to 0^+$	Page 18
Figure 9c	Allowed transitions: $\Delta J=1$, $\Delta \pi=no$, not $0^+ \leftrightarrow 1^+$	Page 18
Figure 10a	Allowed transitions: $\Delta J=0$, $\Delta \pi=no$, odd A	Page 19
Figure 10b	Allowed transitions: $\Delta J=1$, $\Delta \pi=no$, odd A	Page 19
Figure 10c	Allowed transitions: $\Delta J=0$, $\Delta \pi=no$, even A	Page 19
Figure 10d	Allowed transitions: $\Delta J=1$, $\Delta \pi=no$, even A	Page 19
Figure 11a	First–forbidden non–unique transitions: $\Delta J=0, \Delta \pi=yes$	Page 20
Figure 11b	First–forbidden non–unique transitions: $\Delta J=1$, $\Delta \pi=yes$	Page 20
Figure 11c	First–forbidden unique transitions: $\Delta J=2$, $\Delta \pi=yes$	Page 20
Figure 12a	First–forbidden non–unique transitions: $\Delta J=0$, $\Delta \pi=yes$, odd A	Page 21
Figure 12b	First–forbidden non–unique transitions: $\Delta J=1$, $\Delta \pi=yes$, odd A	Page 21
Figure 12c	First–forbidden non–unique transitions: $\Delta J=0$, $\Delta \pi=yes$, even A	Page 21
Figure 12d	First–forbidden non–unique transitions: $\Delta J=1$, $\Delta \pi=yes$, even A	Page 21
Table 2	Statistics on $\log ft$ distributions	Page 26
Table 3	Summary of $\log ft$ distributions	Page 27
Table 4	Superallowed transitions: $0^+ \rightarrow 0^+$, $\Delta T=0$, Parent $T_z=0;-1$	Page 29
Table 5	Superallowed transitions: $0^+ \rightarrow 0^+$, $\Delta T=0$, Parent $T_z=-2$	Page 29
Table 6	Isospin forbidden transitions: $0^+ \to 0^+$, $\Delta T \neq 0$	Page 30
Table 7	Allowed transitions: $\Delta J=0$, $\Delta \pi=n0$, not $0^+ \to 0^+$, $(\log ft < 4)$	Page 31
Table 8	Allowed transitions: $1^+ \leftrightarrow 0^+$ (Gamow–Teller)	Page 32
Table 9	Allowed transitions: $\Delta J=0$, $\Delta \pi=n0$, not $0^+ \to 0^+$, $(\log ft \ge 4)$	Page 44
Table 10	Allowed transitions: $\Delta J=1$, $\Delta \pi=no$, not $1^+ \leftrightarrow 0^+$	Page 56
Table 11	First–forbidden non–unique: $\Delta J=0, \Delta \pi=yes$	Page 80
Table 12	First–forbidden non–unique: $\Delta J=1$, $\Delta \pi=yes$	Page 91
Table 13	First–forbidden unique transitions: $\Delta J=2$, $\Delta \pi=yes$	Page 105
Table 14	Second–forbidden non–unique: $\Delta J=2, \Delta \pi=no$	Page 109
Table 15	Second–forbidden unique: $\Delta J=3$, $\Delta \pi=no$	Page 109
Table 16	Third–forbidden non–unique: $\Delta J=3$, $\Delta \pi=yes$	Page 110
Table 17	Third–forbidden unique: $\Delta J=4$, $\Delta \pi=yes$	Page 110
Table 18	Fourth-forbidden non-unique: $\Delta J=4$, $\Delta \pi=no$	Page 110
Table 19	Lowest and highest $\log ft$ values	Page 111

Fig. 4: Distribution of allowed transitions along the nuclide chart. In order to minimize overlapping, the transition types are splitted into two figures: A figure concerning all transitions with an involved 0^+ state (a) and a figure regarding other allowed transitions (b). Magic numbers are indicated by dotted lines. The overall color assignment is identical to Figure 6. a) Distribution of all transition types with $0^+ \rightarrow 0^+$ (red, green and black) and $0^+ \leftrightarrow 1^+$ (pink). In case of multiple transition types for one mother nuclide, the transition type with less total number of transitions is shown (cf. Table 2). b) Distribution of all transition types with $\Delta J=0,1$ and $\Delta \pi=0$ (light blue).

Fig. 5: Distribution of forbidden transitions along the nuclide chart. In order to minimize overlapping, the transition types are splitted into two figures: A figure concerning forbidden non-unique transitions (a) and a figure regarding forbidden unique transitions (b). Magic numbers are indicated by dotted lines. The overall color assignment is identical to Figure 7. a) Distribution of forbidden non-unique transitions with 1^{st} , 2^{nd} , 3^{rd} and 4^{th} forbidden non-unique in greyish blue, dark red, yellow and magenta, respectively. b) Distribution of forbidden unique transitions with 1^{st} , 2^{nd} , and 3^{rd} forbidden unique in orange, turquoise and bright blue, respectively.

Fig. 6: Distribution of all allowed log ft values, which fulfill the selection criteria. The superallowed transitions with $\Delta T = 0$, T_z (parent)= 0; -1 and $\Delta T = 0$, T_z (parent)= -2 are shown in red and green, respectively. Isospin forbidden transitions are shown in black. All transitions with $0^+ \leftrightarrow 1^+$, and other allowed cases are colored in pink and light blue, respectively. Different shades might appear due to the overlap of different transparent colors. The overall color assignment is identical to Figure 4.

Fig. 7: Distribution of all forbidden $\log ft$ values, which fulfill the selection criteria. The distributions are shown in greyish blue and orange in case of first forbidden non-unique and unique transitions, respectively. Second forbidden non-unique and unique transitions are shown in dark red and turquoise, respectively. Third forbidden non-unique and unique transitions are shown in yellow and bright blue, respectively. Fourth forbidden non-unique transitions are shown in magenta. Different shades might appear due to the overlap of different transparent colors. The overall color assignment is identical to Figure 5.

Fig. 8: Log ft distributions of transitions with $0^+ \rightarrow 0^+$. a) Superallowed transitions with $\Delta T=0$ and Parent $T_z=0;-1$ (top). b) Superallowed transitions with $\Delta T=0$ and Parent $T_z=0;-1$ (top). b) Superallowed transitions with $\Delta T=0$ and Parent $T_z=0;-1$ (top). b) Superallowed transitions with $\Delta T=0$ and Parent $T_z=0;-1$ (top). b) Superallowed transitions with $\Delta T=0$ and Parent $T_z=0;-1$ (top). b) Superallowed transitions with $\Delta T=0$ and Parent $T_z=0;-1$ (top).

Fig. 9: Log ft distributions of allowed transitions. a) Gamow-Teller transitions with $0^+ \leftrightarrow 1^+$ (top). b) Allowed transitions with $\Delta J=0$ and $\Delta \pi=$ no, but no $0^+ \rightarrow 0^+$ (middle). c) Allowed transitions with $\Delta J=1$ and $\Delta \pi=$ no, but no $0^+ \leftrightarrow 1^+$ (bottom).

Fig. 10: Log ft distributions of allowed transitions and furthermore separated for even and odd mass numbers. a) Allowed transitions with $\Delta J=0$, $\Delta \pi=n0$, and odd mass numbers (top left). b) Allowed transitions with $\Delta J=1$, $\Delta \pi=n0$, and odd mass numbers (top right). c) Allowed transitions with $\Delta J=0$, $\Delta \pi=n0$, and even mass numbers, but no $0^+ \rightarrow 0^+$ (bottom left). d) Allowed transitions with $\Delta J=1$, $\Delta \pi=n0$, and even mass numbers, but no $0^+ \leftrightarrow 0^+$ (bottom left). d) Allowed transitions with $\Delta J=1$, $\Delta \pi=n0$, and even mass numbers, but no $0^+ \leftrightarrow 0^+$ (bottom left).

Fig. 11: Log ft distributions of first forbidden transitions. a) First forbidden non-unique transitions with $\Delta J=0$ and $\Delta \pi=yes$ (top). b) First forbidden non-unique transitions with $\Delta J=1$ and $\Delta \pi=yes$ (middle). c) First forbidden unique transitions with $\Delta J=2$ and $\Delta \pi=yes$ (bottom).

Fig. 12: Log ft distributions of first forbidden non-unique transitions, which are separated for even and odd mass numbers. a) First forbidden non-unique transitions with $\Delta J=0$, $\Delta \pi=yes$, and odd mass numbers (top left). b) First forbidden non-unique transitions with $\Delta J=1$, $\Delta \pi=yes$, and odd mass numbers (top right). c) First forbidden non-unique transitions with $\Delta J=0$, $\Delta \pi=yes$, and even mass numbers (bottom left). d) First forbidden non-unique transitions with $\Delta J=1$, $\Delta \pi=yes$, and even mass numbers (bottom right).

References

- B. Singh, J. Rodriguez, S. Wong, J. Tuli, Review of logft values in β decay, Nuclear Data Sheets 84 (3) (1998) 487–563.
- [2] M. Wang, W. Huang, F. G. Kondev, G. Audi, S. Naimi, The AME 2020 atomic mass evaluation (II). tables, graphs and references, Chinese Physics C 45 (3) (2021) 030003.
- [3] X. Mougeot, Reliability of usual assumptions in the calculation of β and ν spectra, Phys. Rev. C 91 (2015) 055504. doi:10.1103/PhysRevC.91.055504.
- [4] X. Mougeot, Towards high-precision calculation of electron capture decays, Applied Radiation and Isotopes 154 (2019) 108884. doi:10.1016/j.apradiso. 2019.108884.
- [5] E. J. Konopinski, G. E. Uhlenbeck, On the Fermi Theory of β-Radioactivity. II. The "Forbidden" Spectra, Phys. Rev. 60 (1941) 308–320. doi:10.1103/ PhysRev.60.308.
- [6] E. J. Konopinski, Beta-decay, Reviews of Modern Physics 15 (4) (1943) 209.
- [7] C. Gleit, C. Tang, C. Coryell, Beta-decay transition probabilities, Nuclear Data Sheets 5 (1963) 5.
- [8] S. Raman, N. Gove, Rules for spin and parity assignments based on log ft values, Phys. Rev. C 7 (5) (1973) 1995.
- [9] T. W. Burrows, The evaluated nuclear structure data file: Philosophy, content, and uses, Nuclear Instruments and Methods in Physics Research Section A 286 (3) (1990) 595–600, http://www.nndc.bnl.gov/ensdf/.
- [10] J. C. Hardy, I. S. Towner, Superallowed $0^+ \rightarrow 0^+$ nuclear β decays: 2020 critical survey, with implications for V_{ud} and CKM unitarity, Phys. Rev. C 102 (2020) 045501. doi:10.1103/PhysRevC.102.045501.
- [11] XUNDL database, http://www.nndc.bnl.gov/ensdf/ensdf/xundl.jsp.
- [12] B. Pritychenko, E. Běták, M. Kellett, B. Singh, J. Totans, The nuclear science references (NSR) database and web retrieval system, Nuclear Instruments and Methods in Physics Research Section A 640 (1) (2011) 213–218, Nuclear Structure Reference File, http://www.nndc.bnl.gov/nsr/.
- [13] F. Kondev, M. Wang, W. Huang, S. Naimi, G. Audi, The NUBASE2020 evaluation of nuclear physics properties, Chinese Physics C 45 (3) (2021) 030001.
- [14] H. Behrens, W. Bühring, Electron Radial Wave Functions and Nuclear Beta Decay, Clarendon, Oxford, 1982.
- [15] H. M. Mahmoud, E. J. Konopinski, The evidence of the once-forbidden spectra for the law of β -decay,

Phys. Rev. 88 (1952) 1266-1275. doi:10.1103/ PhysRev.88.1266.

- [16] T. Kotani, Deviation from the ξ approximation in first forbidden β decay, Phys. Rev. 114 (1959) 795–806. doi:10.1103/PhysRev.114.795.
- [17] A. Sirlin, General properties of the electromagnetic corrections to the beta decay of a physical nucleon, Phys. Rev. 164 (1967) 1767. doi:10.1103/PhysRev. 164.1767.
- [18] W. Jaus, Electromagnetic corrections of order $Z\alpha^2$ and $Z^2\alpha^3$ to fermi beta decays, Phys. Lett. B 40 (1972) 616. doi:10.1016/0370-2693(72)90610-7.
- [19] A. Czarnecki, W. J. Marciano, A. Sirlin, Precision measurements and CKM unitarity, Phys. Rev. D 70 (2004) 093006. doi:10.1103/PhysRevD.70.093006.
- [20] I. S. Towner, J. C. Hardy, Improved calculation of the isospin-symmetry-breaking corrections to superallowed fermi β decay, Phys. Rev. C 77 (2008) 025501. doi:10.1103/PhysRevC.77.025501.
- [21] L. Hayen, N. Severijns, K. Bodek, D. Rozpedzik, X. Mougeot, High precision analytical description of the allowed β spectrum shape, Rev. Mod. Phys. 90 (2018) 015008. doi:10.1103/RevModPhys.90. 015008.
- [22] X. Mougeot, M.-M. Bé, C. Bisch, M. Loidl, Evidence for the exchange effect in the β decay of ²⁴¹Pu, Phys. Rev. A 86 (2012) 042506. doi:10.1103/PhysRevA. 86.042506.
- [23] M. Loidl, M. Rodrigues, C. Le-Bret, X. Mougeot, Beta spectrometry with metallic magnetic calorimeters, Applied Radiation and Isotopes 87 (2014) 302– 305. doi:10.1016/j.apradiso.2013.11.024.
- [24] X. Mougeot, C. Bisch, Consistent calculation of the screening and exchange effects in allowed β⁻ transitions, Phys. Rev. A 90 (2014) 012501. doi:10.1103/ PhysRevA.90.012501.
- [25] W. Bühring, The screening correction to the fermi function of nuclear β -decay and its model dependence, Nucl. Phys. A 430 (1) (1984) 1–20. doi:10.1016/0375-9474(84)90190-8.
- [26] F. Salvat, J. D. Martinez, R. Mayol, J. Parellada, Analytical Dirac-Hartree-Fock-Slater screening function for atoms (Z=1-92), Phys. Rev. A 36 (1987) 467-474. doi:10.1103/PhysRevA.36.467.
- [27] X. Mougeot, Systematic comparison of beta spectra calculations using improved analytical screening correction with experimental shape factors, Applied Radiation and Isotopes 109 (2016) 177 - 182. doi: 10.1016/j.apradiso.2015.11.030.
- [28] E. Aprile, J. Aalbers, F. Agostini, M. Alfonsi, L. Althueser, F. D. Amaro, V. C. Antochi, E. Angelino, J. R. Angevaare, F. Arneodo, D. Barge, L. Baudis,

B. Bauermeister, L. Bellagamba, M. L. Benabderrahmane, T. Berger, A. Brown, E. Brown, S. Bruenner, G. Bruno, R. Budnik, C. Capelli, J. M. R. Cardoso, D. Cichon, B. Cimmino, M. Clark, D. Coderre, A. P. Colijn, J. Conrad, J. P. Cussonneau, M. P. Decowski, A. Depoian, P. Di Gangi, A. Di Giovanni, R. Di Stefano, S. Diglio, A. Elvkov, G. Eurin, A. D. Ferella, W. Fulgione, P. Gaemers, R. Gaior, M. Galloway, F. Gao, L. Grandi, C. Hasterok, C. Hils, K. Hiraide, L. Hoetzsch, J. Howlett, M. Iacovacci, Y. Itow, F. Joerg, N. Kato, S. Kazama, M. Kobayashi, G. Koltman, A. Kopec, H. Landsman, R. F. Lang, L. Levinson, Q. Lin, S. Lindemann, M. Lindner, F. Lombardi, J. Long, J. A. M. Lopes, E. López Fune, C. Macolino, J. Mahlstedt, A. Mancuso, L. Manenti, A. Manfredini, F. Marignetti, T. Marrodán Undagoitia, K. Martens, J. Masbou, D. Masson, S. Mastroianni, M. Messina, K. Miuchi, K. Mizukoshi, A. Molinario, K. Morå, S. Moriyama, Y. Mosbacher, M. Murra, J. Naganoma, K. Ni, U. Oberlack, K. Odgers, J. Palacio, B. Pelssers, R. Peres, J. Pienaar, V. Pizzella, G. Plante, J. Qin, H. Qiu, D. Ramírez García, S. Reichard, A. Rocchetti, N. Rupp, J. M. F. dos Santos, G. Sartorelli, N. Šarčević, M. Scheibelhut, J. Schreiner, D. Schulte, M. Schumann, L. Scotto Lavina, M. Selvi, F. Semeria, P. Shagin, E. Shockley, M. Silva, H. Simgen, A. Takeda, C. Therreau, D. Thers, F. Toschi, G. Trinchero, C. Tunnell, M. Vargas, G. Volta, H. Wang, Y. Wei, C. Weinheimer, M. Weiss, D. Wenz, C. Wittweg, Z. Xu, M. Yamashita, J. Ye, G. Zavattini, Y. Zhang, T. Zhu, J. P. Zopounidis, X. Mougeot, Excess electronic recoil events in XENON1T, Phys. Rev. D 102 (2020) 072004. doi:10.1103/PhysRevD.102.072004.

- [29] NIST, Atomic reference data for electronic structure calculation, NIST Stand. Ref. Database 141, 2009. doi:10.18434/T4ZP4F.
- [30] S. Kotochigova, Z. H. Levine, E. L. Shirley, M. D. Stiles, C. W. Clark, Local-density-functional calculations of the energy of atoms, Phys. Rev. A 55 (1997) 191–199. doi:10.1103/PhysRevA.55.191.
- [31] S. J. Haselschwardt, J. Kostensalo, X. Mougeot, J. Suhonen, Improved calculations of β decay backgrounds to new physics in liquid xenon detectors, Phys. Rev. C 102 (2020) 065501. doi:10.1103/ PhysRevC.102.065501.
- [32] J. N. Bahcall, Overlap and exchange effects in beta decay, Phys. Rev. 129 (1963) 2683-2694. doi:10. 1103/PhysRev.129.2683.
- [33] J. C. Hardy, I. S. Towner, Superallowed $0^+ \rightarrow 0^+$ nuclear β decays: A new survey with precision tests of the conserved vector current hypothesis and the standard model, Phys. Rev. C 79 (2009) 055502. doi: 10.1103/PhysRevC.79.055502.
- [34] D. K. Keblbeck, R. Bhandari, N. D. Gamage, M. Ho-

rana Gamage, K. G. Leach, X. Mougeot, M. Redshaw, Updated evaluation of potential ultralow Q-value β -decay candidates, Phys. Rev. C 107 (2023) 015504. doi:10.1103/PhysRevC.107.015504.

- [35] P. Filianin, C. Lyu, M. Door, K. Blaum, W. J. Huang, M. Haverkort, P. Indelicato, C. H. Keitel, K. Kromer, D. Lange, Y. N. Novikov, A. Rischka, R. X. Schüssler, C. Schweiger, S. Sturm, S. Ulmer, Z. Harman, S. Eliseev, Direct Q-value determination of the β⁻ decay of ¹⁸⁷Re, Phys. Rev. Lett. 127 (2021) 072502. doi:10.1103/PhysRevLett.127.072502.
- [36] V. A. Zheltonozhsky, A. M. Savrasov, N. V. Strilchuk, V. I. Tretyak, Precise measurement of energy of the first excited state of 115Sn ($E_{exc} \simeq 497.3 \text{ keV}$), Europhysics Letters 121 (1) (2018) 12001. doi:10.1209/ 0295-5075/121/12001.
- [37] A. F. Leder, D. Mayer, J. L. Ouellet, F. A. Danevich, L. Dumoulin, A. Giuliani, J. Kostensalo, J. Kotila, P. de Marcillac, C. Nones, V. Novati, E. Olivieri, D. Poda, J. Suhonen, V. I. Tretyak, L. Winslow, A. Zolotarova, Determining g_A/g_V with high-resolution spectral measurements using a LiInSe₂ bolometer, Phys. Rev. Lett. 129 (2022) 232502. doi:10.1103/PhysRevLett.129.232502.
- [38] K. Kossert, M. Loidl, X. Mougeot, M. Paulsen, P. Ranitzsch, M. Rodrigues, High precision measurement of the ¹⁵¹Sm beta decay by means of a metallic magnetic calorimeter, Applied Radiation and Isotopes 185 (2022) 110237. doi:10.1016/j.apradiso.2022. 110237.
- [39] O. Nitescu, S. Stoica, F. Simkovic, Exchange correction for allowed β -decay, arXiv:2206.13513 [physics.atom-ph] (2022). doi:10.48550/ARXIV. 2206.13513.
- [40] M. Loidl, M. Rodrigues, B. Censier, S. Kowalski, X. Mougeot, P. Cassette, T. Branger, D. Lacour, First measurement of the beta spectrum of ²⁴¹Pu with a cryogenic detector, Applied Radiation and Isotopes 68 (7) (2010) 1454–1458. doi:10.1016/j.apradiso. 2009.11.054.
- [41] W. Bambynek, H. Behrens, M. H. Chen, B. Crasemann, M. L. Fitzpatrick, K. W. D. Ledingham, H. Genz, M. Mutterer, R. L. Intemann, Orbital electron capture by the nucleus, Rev. Mod. Phys. 49 (1977) 77–221. doi:10.1103/RevModPhys.49.77.
- [42] X. Mougeot, Improved calculations of electron capture transitions for decay data and radionuclide metrology, Applied Radiation and Isotopes 134 (2018) 225–232. doi:10.1016/j.apradiso.2017.07.027.
- [43] B. R. Holstein, Electromagnetic corrections to ε/β + ratios, Phys. Rev. C 20 (1) (1979) 387 – 388. doi: 10.1103/PhysRevC.20.387.
- [44] B. Crasemann, M. H. Chen, J. P. Briand, P. Cheval-

lier, A. Chetioui, M. Tavernier, Atomic electron excitation probabilities during orbital electron capture by the nucleus, Phys. Rev. C 19 (1979) 1042–1046. doi:10.1103/PhysRevC.19.1042.

- [45] E. Vatai, On the exchange and overlap corrections in electron capture, Nuclear Physics A 156 (3) (1970) 541-552. doi:10.1016/0375-9474(70)90250-2.
- [46] C. Hinke, M. Böhmer, P. Boutachkov, T. Faestermann, H. Geissel, J. Gerl, R. Gernhäuser, M. Górska, A. Gottardo, H. Grawe, et al., Superallowed Gamow-Teller decay of the doubly magic nucleus ¹⁰⁰Sn, Nature 486 (7403) (2012) 341–345.
- [47] F. Pougheon, V. Borrel, J. Jacmar, R. Anne, C. Détraz, D. Guillemaud-Mueller, A. Mueller, D. Bazin, R. Del Moral, J. Dufour, et al., Betadelayed proton decay of 28, Nuclear Physics A 500 (2) (1989) 287–300.
- [48] A. Morales, A. Algora, B. Rubio, K. Kaneko, S. Nishimura, P. Aguilera, S. Orrigo, F. Molina, G. De Angelis, F. Recchia, et al., Simultaneous investigation of the T=1 (Jπ= 0+) and T=0 (Jπ= 9+) β decays in ⁷⁰Br, Phys. Rev. C 95 (6) (2017) 064327.
- [49] General Policies, Nuclear Data Sheets 185 (2022) iiix. doi:https://doi.org/10.1016/j.nds.2022.10. 004.
- [50] F. Kondev, G. Dracoulis, T. Kibédi, Configurations and hindered decays of k isomers in deformed nuclei with A>100, Atomic Data and Nuclear Data Tables 103-104 (2015) 50-105. doi:https://doi.org/10. 1016/j.adt.2015.01.001.
- [51] N. Severijns, L. Hayen, V. De Leebeeck, S. Vanlangendonck, K. Bodek, D. Rozpedzik, I. S. Towner, *Ft* values of the mirror β transitions and the weakmagnetism-induced current in allowed nuclear β decay, Phys. Rev. C 107 (2023) 015502. doi:10.1103/ PhysRevC.107.015502.
- [52] M. Wolińska-Cichocka, B. C. Rasco, K. P. Rykaczewski, N. T. Brewer, A. Fijałkowska, M. Karny, R. K. Grzywacz, K. Goetz, C. J. Gross, D. W. Stracener, et al., Complete β-decay patterns of ¹⁴²Cs, ¹⁴²Ba, and ¹⁴²La determined using total absorption spectroscopy, Physical Review C 107 (3) (2023) 034303. doi:10.1103/PhysRevC.107.034303.
- [53] F. G. A. Quarati, G. Bollen, P. Dorenbos, M. Eibach, K. Gulyuz, A. Hamaker, C. Izzo, D. K. Keblbeck, X. Mougeot, D. Puentes, M. Redshaw, R. Ringle, R. Sandler, J. Surbrook, I. Yandow, Measurements and computational analysis of the natural decay of ¹⁷⁶Lu, Phys. Rev. C 107 (2023) 024313. doi:10. 1103/PhysRevC.107.024313.
- [54] D. Lubos, J. Park, T. Faestermann, R. Gernhäuser, R. Kruecken, M. Lewitowicz, S. Nishimura, H. Sakurai, D. Ahn, H. Baba, et al., Improved Value for

the Gamow-Teller Strength of the 100 Sn Beta Decay, Phys. Rev. Lett. 122 (22) (2019) 222502.

- [55] P. Pirinen, J. Suhonen, Systematic approach to β and $2\nu\beta\beta$ decays of mass A= 100–136 nuclei, Phys. Rev. C 91 (5) (2015) 054309.
- [56] F. F. Deppisch, J. Suhonen, Statistical analysis of β decays and the effective value of g_A in the protonneutron quasiparticle random-phase approximation framework, Phys. Rev. C 94 (5) (2016) 055501.
- [57] J. Kostensalo, J. Suhonen, Spin-multipole nuclear matrix elements in the pn quasiparticle random-phase approximation: Implications for β and β β half-lives, Phys. Rev. C 95 (1) (2017) 014322.
- [58] D.-L. Fang, B. A. Brown, T. Suzuki, Investigating β decay properties of spherical nuclei along the possible r-process path, Phys. Rev. C 88 (3) (2013) 034304.

10. Explanation of Tables

All the level energies, half-lives of parent nuclei, spins and parities, and beta branches are from the ENSDF database, augmented by selected data from newer literature. Our overall literature can be considered up to April 15, 2023. See section 1 for details. The Q-values were updated to values in the AME2020 database [2]. All the log ft values, as well as their uncertainties are deduced by us using the BetaShape code [3, 4]. As detailed in section 2, uncertainties in the case of β decays arise from those in evaluated branching ratios, Q-values, half-lives and level energies. In the case of ε decays, a theoretical component is also estimated from the difference between two models of the overlap and exchange correction, and is included in the log ft uncertainty. For the most precise log ft values quoted in the present review, uncertainties from theory could be much higher than the listed ones.

We applied the ENSDF policies of strong rules for spin-parity assignment [49]. Some of the parent/daughter level $J\pi$ have been determined through the application of log ft rules in the Nuclear Data Sheets. These have not been excluded from the present work.

Nuclide	Parent nucleus for the respective transition.
Decay	Decay mode for the respective transition.
Q	Q-value of the parent nucleus for the given decay mode.
$E_{\rm P}$	Energy level of the parent nucleus.
$J\pi$	Assignment of both spin and parity of the parent/daughter.
$E_{\rm D}$	Energy level of the daughter nucleus.
Branch	Branching ratio of the parent state to undergo this particular transition.
Unc.	Uncertainty for a value is in the last digit(s) of the value.
Pand.	Flag for a potentially Pandemonium affected transition.

11. Statistics on $\log ft$ distributions

Table 2

Statistical summary for all $\log ft$ distributions. The number of transitions, which fulfill all selection criteria are shown, as well as the mean value, and the width of the respective distributions. Furthermore, the minimal and maximal $\log ft$ value is listed respectively.

Name	Transitions	Number	Centroid	Width	Min	Max
Superallowed Superallowed Isospin forbidden Gamow-Teller	$\begin{array}{l} 0^+ \rightarrow 0^+ \ (\Delta T{=}0, \ \text{Parent} \ \mathrm{T}_z{=}0;{-}1) \\ 0^+ \rightarrow 0^+ \ (\Delta T{=}0, \ \text{Parent} \ \mathrm{T}_z{=}{-}2) \\ 0^+ \rightarrow 0^+ \ (\Delta T{\neq}0) \\ 0^+ \leftrightarrow 1^+ \end{array}$	$24 \\ 7 \\ 12 \\ 584$	$3.494 \\ 3.24 \\ 9.19 \\ 5.04$	$\begin{array}{c} 0.016 \\ 0.06 \\ 1.16 \\ 0.99 \end{array}$	$3.465 \\ 3.174 \\ 6.661 \\ 2.66$	3.525 3.33 10.92 9.046
Allowed	$\Delta I = 0$ $\Delta \pi = n_0$ not 0^+ $\rightarrow 0^+$	649	6 24	1 49	2.08	10 520
Anowed	$\Delta J=0, \ \Delta \pi=no, \text{ not } 0^+ \rightarrow 0^+$ $\Delta J=0, \ \Delta \pi=no, \text{ even } A$ $\Delta J=0, \ \Delta \pi=no, \text{ odd } A$	$ 224 \\ 418 $	$6.68 \\ 6.00$	1.42 1.57 1.26	2.98 3.317 2.98	$12.532 \\12.532 \\11.594$
Allowed	$\Delta J=1, \Delta \pi=no, not 0^+ \leftrightarrow 1^+$	1257	6.19	1.21	2.574	12.367
	$\Delta J=1, \Delta \pi=no, \text{ even A}$ $\Delta J=1, \Delta \pi=no, \text{ odd A}$	468 789	$\begin{array}{c} 6.33 \\ 6.11 \end{array}$	$\begin{array}{c} 1.30\\ 1.14 \end{array}$	$4.129 \\ 2.574$	$12.367 \\ 10.89$
First-forbidden non-unique	$\Delta J=0, \Delta \pi=yes$	546	7.35	0.90	5.202	11.03
	$\Delta J=0, \Delta \pi=yes$, even A $\Delta J=0, \Delta \pi=yes$, odd A	$\begin{array}{c} 256 \\ 290 \end{array}$	$7.45 \\ 7.25$	$\begin{array}{c} 0.96 \\ 0.83 \end{array}$	$5.2711 \\ 5.202$	$11.03 \\ 9.795$
	$\Delta J=0, \Delta \pi=yes, Z<80$ $\Delta J=0, \Delta \pi=yes, Z\geq 80$	$\begin{array}{c} 412\\ 134 \end{array}$	$\begin{array}{c} 7.47 \\ 6.97 \end{array}$	$0.90 \\ 0.79$	5.568^2 5.202	$11.03 \\ 9.795$
First-forbidden non-unique	$\Delta J=1, \Delta \pi=yes$	708	8.14	1.60	5.23^{2}	20.082
	$\Delta J=1, \Delta \pi=yes$, even A $\Delta J=1, \Delta \pi=yes$, odd A	$\begin{array}{c} 376\\ 332 \end{array}$	$8.50 \\ 7.74$	$1.89 \\ 1.04$	$5.33 \\ 5.23$	20.082 11.22
	$\Delta J=1, \Delta \pi=yes, Z<80$ $\Delta J=1, \Delta \pi=yes, Z\geq 80$	$\begin{array}{c} 544 \\ 164 \end{array}$	$\begin{array}{c} 8.43 \\ 7.18 \end{array}$	$\begin{array}{c} 1.66 \\ 0.80 \end{array}$	$5.23 \\ 5.33$	$20.082 \\ 10.51$
First-forbidden unique	$\Delta J=2, \Delta \pi=yes$	213	9.75	0.97	6.72^{2}	12.78
Second-forbidden non-unique Second-forbidden unique	$\Delta J=2, \Delta \pi=no$ $\Delta J=3, \Delta \pi=no$	27 12	$\begin{array}{c} 12.45 \\ 15.44 \end{array}$	$0.89 \\ 1.25$	$10.92 \\ 13.8383$	14.23 18.081
Third-forbidden non-unique Third-forbidden unique	$\Delta J=3, \Delta \pi=yes$ $\Delta J=4, \Delta \pi=yes$	$\frac{1}{2}$				
Fourth-forbidden non-unique	$\Delta J=4, \Delta \pi=no$	3				

²As discussed later in the conclusions section of the paper, unexpected low log ft values are subject to revision due either to pandemonium effect, or low experimental β feedings known with less precision. Realistically, we consider that minimum log ft values for first-forbidden non-unique transitions for Z<80 region are not <5.9, and those for the first-forbidden unique transitions not <8.5, as proposed by Raman and Gove [8].

12. Summary of $\log ft$ values

Table 3

 $1^{\mathrm{st}} \ \mathrm{f}. \quad 1^{\mathrm{st}} \ \mathrm{f}. \quad 1^{\mathrm{st}} \ \mathrm{f}. u \mid 2^{\mathrm{nd}} \ \mathrm{f}. \quad 2^{\mathrm{nd}} \ \mathrm{f}. u \mid 3^{\mathrm{rd}} \ \mathrm{f}. \quad 3^{\mathrm{rd}} \ \mathrm{f}. u \mid 4^{\mathrm{th}} \ \mathrm{f}.$ $\log ft \mid 0^+ \to 0^+ \quad 0^+ \to 0^+ \quad 0^+ \to 0^+ \mid \text{Allowed}$ Allowed Allowed $\Delta T=0$ $\Delta T=0$ $\Delta T \neq 0$ $\Delta J=1$ $\Delta J=0 \quad \Delta J=1 \quad \Delta J=2$ $\Delta J=2$ $\Delta J=3$ $\Delta J=3$ $\Delta J=4$ $\Delta J=4$ $0^+ \leftrightarrow 1^+$ $\Delta J=0$ $\Delta \pi = y$ $T_z = 0;-1$ $T_z = -2$ $\Delta \pi = n$ $\Delta \pi = n$ $\Delta \pi = y \quad \Delta \pi = y$ $\Delta \pi = y$ $\Delta \pi = n$ $\Delta \pi = n$ $\Delta \pi = y$ $\Delta \pi = n$ no $0^+ \rightarrow 0^+$ no 0⁺ \leftrightarrow 1⁺ $\mathbf{2}$ 2.12.32.52.72.93.1 $\mathbf{2}$ 3.33.53.7 $\mathbf{2}$ 3.94.14.34.5 $\mathbf{6}$ 4.74.95.15.35.55.75.96.16.36.56.76.97.17.3 $\mathbf{2}$ $\mathbf{5}$ 7.57.7 $\mathbf{2}$ $\mathbf{2}$ 7.9 $\mathbf{2}$ $\mathbf{2}$ 8.1 8.3 $\mathbf{2}$ 8.5 8.7 8.9 $\mathbf{2}$ 9.1 9.39.5 $\mathbf{2}$ 9.7 9.9 $\mathbf{2}$ 10.110.310.5 $\mathbf{2}$ 10.710.9 $\mathbf{2}$ 11.1 $\mathbf{2}$ 11.311.5 $\mathbf{2}$ 11.7 $\mathbf{2}$ 11.912.1 $\mathbf{3}$ 12.3 $\mathbf{2}$ $\mathbf{2}$ 12.512.7 $\mathbf{2}$ $\mathbf{2}$ 12.913.113.313.513.7

Distribution of all log ft transitions, which fulfill the selection criteria. The first line shows the sum of all entries from the respective column. The first column represents the mid point of the respective interval. For example, '2.1' means: $2.0 \leq \log ft < 2.2$. The value for T_z in this table refers to the parent state. The letters 'n' and 'y' regarding parity changes in the header correspond to 'no' and 'yes', respectively.

Table 3
(continued $)$

$\log ft$	$\begin{array}{c} 0^+ \rightarrow 0^+ \\ \Delta T=0 \\ T_z=0;-1 \end{array}$	$\begin{array}{c} 0^+ \rightarrow 0^+ \\ \Delta T=0 \\ T_z=-2 \end{array}$	$\begin{array}{c} 0^+ \rightarrow 0^+ \\ \Delta T \neq 0 \end{array}$	$\begin{vmatrix} \text{Allowed} \\ 0^+ \leftrightarrow 1^+ \end{vmatrix}$	Allowed $\Delta J=0$ $\Delta \pi=n$ no $0^+ \rightarrow 0^+$	Allowed $\Delta J=1$ $\Delta \pi=n$ no $0^+ \leftrightarrow 1^+$	1^{st} f. $\Delta J=0$ $\Delta \pi=y$	$1^{\rm st}$ f. $\Delta J=1$ $\Delta \pi=y$	1^{st} f.u. $\Delta J=2$ $\Delta \pi=y$	2^{nd} f. $\Delta J=2$ $\Delta \pi=n$	2^{nd} f.u. $\Delta J=3$ $\Delta \pi=n$	$\begin{vmatrix} 3^{\rm rd} & {\rm f.} \\ \Delta J=3 \\ \Delta \pi=y \end{vmatrix}$	$3^{\rm rd}$ f.u. $\Delta J=4$ $\Delta \pi=y$	4^{th} f. $\Delta J=4$ $\Delta \pi=n$
13.9										2	1			
14.1														
14.3								2		1				
14.5											4			
14.7											1			
14.9											1			
15.1														
10.0 15.5														
15.7											1			
15.9											1			
16.1														
16.3														
16.5														
16.7											1			
16.9														
17.1											1			
17.3 17.5											1			
17.5 17.7														
17.9														
18.1											1			
18.3														
18.5														
18.7														
18.9														
19.1								-1						
19.3								1						
19.5														
19.9														
20.1								1						
20.3														
20.5													1	
20.7														
20.9														
21.1														
21.3 21.5														
21.0 21.7													1	
21.9													÷	
22.1														
22.3														
22.5														
22.7														
22.9														2
∠3.1 22.2														
23.5 23.5														
23.7														
23.9														
24.1														
24.3														1
24.5														
24.7														
24.9														

13. Superallowed Transitions

13.1. Superallowed (Parent $T_z=0;-1$)

Table 4

List of superallowed transitions with $0^+ \rightarrow 0^+$, $\Delta T=0$, and parent $T_z=0;-1$. The upper nine transitions are assigned with parent $T_z=0$, and the lower 14 transitions are assigned with parent $T_z=-1$.

Nuclie	de Decay	$Q \; [\text{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
26 Al	$\beta + \varepsilon$	4004.40	228.305	0+	0.0	0 +	100.		3.48971	6	
^{34}Cl	$\beta + \varepsilon$	5491.604	0.0	0 +	0.0	0 +	100.		3.49173	13	
$^{38}\mathrm{K}$	$\beta + \varepsilon$	5914.067	130.22	0 +	0.0	0 +	99.9670	44	3.49235	15	
^{42}Sc	$\beta + \varepsilon$	6426.290	0.0	0 +	0.0	0 +	99.9941	14	3.49249	17	
^{46}V	$\beta + \varepsilon$	7052.37	0.0	0 +	0.0	0 +	99.985	10	3.49318	7	
$^{50}\mathrm{Mn}$	$\beta + \varepsilon$	7634.48	0.0	0 +	0.0	0 +	99.9423	30	3.49326	17	
$^{54}\mathrm{Co}$	$\beta + \varepsilon$	8244.55	0.0	0 +	0.0	0 +	99.9955	6	3.49408	14	
62 Ga	$\beta + \varepsilon$	9181.07	0.0	0 +	0.0	0 +	99.8577	26	3.49827	13	
$^{74}\mathrm{Rb}$	$\beta + \varepsilon$	1.04158E4	0.0	0 +	0.0	0 +	99.545	31	3.5015	8	
$^{10}\mathrm{C}$	$\beta + \varepsilon$	3648.06	0.0	0+	1740.05	0+	1.4646	19	3.4906	6	
^{14}O	$\beta + \varepsilon$	5144.364	0.0	0 +	2312.798	0 +	99.446	13	3.49020	7	
$^{18}\mathrm{Ne}$	$\beta + \varepsilon$	4444.5	0.0	0 +	1041.55	0 +	7.70	21	3.472	12	
^{22}Mg	$\beta + \varepsilon$	4781.41	0.0	0 +	657.00	0 +	53.16	12	3.4915	10	
26 Si	$\beta + \varepsilon$	5069.14	0.0	0 +	228.305	0 +	75.67	14	3.4917	8	
$^{30}\mathrm{S}$	$\beta + \varepsilon$	6141.60	0.0	0 +	677.01	0 +	77.4	10	3.487	6	
$^{34}\mathrm{Ar}$	$\beta + \varepsilon$	6061.79	0.0	0 +	0.0	0 +	94.48	8	3.49309	41	
^{38}Ca	$\beta + \varepsilon$	6742.26	0.0	0 +	130.2	0 +	77.26	15	3.4940	9	
$^{42}\mathrm{Ti}$	$\beta + \varepsilon$	7016.65	0.0	0 +	0.0	0 +	48.1	14	3.499	13	
$^{46}\mathrm{Cr}$	$\beta + \varepsilon$	7604	0.0	0 +	0.0	0 +	76.7	23	3.504	14	
50 Fe	$\beta + \varepsilon$	8150	0.0	0 +	0.0	0 +	73.9	17	3.501	10	
54 Ni	$\beta + \varepsilon$	8731.8	0.0	0 +	0.0	0 +	78.9	12	3.496	7	
58 Zn	$\beta + \varepsilon$	9.37E3	0.0	0 +	203	0 +	74	9	3.50	6	
$^{62}\mathrm{Ge}$	$\beta + \varepsilon$	9.85E3	0.0	0 +	0.0	0 +	85.30	33	3.525	34	
$^{70}\mathrm{Kr}$	$\beta + \varepsilon$	1.033E4	0.0	0 +	0.0	0 +	73	3	3.465	49	

13.2. Superallowed (Parent $T_z = -2$)

Table 5

List of superallowed transitions with $0^+ \rightarrow 0^+$, $\Delta T=0$, and Parent T_z=-2.

Nuclide	Decay	$Q \; [\text{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \; [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
^{20}Mg	$\beta + \varepsilon$	1.06272 E4	0.0	0+	6496	0+	2.20	20	3.247	40	
24 Si	$\beta + \varepsilon$	1.0794 E4	0.0	0 +	5953	0 +	9.9	9	3.174	41	
^{32}Ar	$\beta + \varepsilon$	1.11344E4	0.0	0 +	5046.3	0 +	22.71	16	3.186	9	
36 Ca	$\beta + \varepsilon$	1.0966 E4	0.0	0 +	4281.9	0 +	38.0	10	3.186	20	
40 Ti	$\beta + \varepsilon$	1.153 E4	0.0	0 +	4359	0 +	25.6	8	3.225	27	
48 Fe	$\beta + \varepsilon$	1.129E4	0.0	0 +	3036.8	0 +	35	5	3.33	7	
⁵² Ni	$\beta + \varepsilon$	1.178E4	0.0	0 +	2931	0 +	49	5	3.30	5	

14. Isospin Forbidden Transitions

Table 6

The of hoop	piii 101.010	acia cranore		, ,	ana = 1/a					
Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P} \ [{\rm keV}]$	$J\pi$	$E_D [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.
^{-28}Mg	β-	1830.77	0.0	0 +	972.24	0+	0.31	4	7.96	6
64 Ga	$\beta + \varepsilon$	7171.2	0.0	0 +	0.0	0 +	24.7	10	6.661	18
66 Ga	$\beta + \varepsilon$	5175.5	0.0	0 +	0.0	0 +	51.0	40	7.889	34
66 Ga	$\beta + \varepsilon$	5175.5	0.0	0 +	2372.353	0 +	0.340	30	8.465	38
156 Eu	β-	2452.5	0.0	0 +	0.0	0 +	32	3	9.882	41
156 Eu	β -	2452.5	0.0	0 +	1049.41	0 +	1.28	12	10.330	41
156 Eu	β -	2452.5	0.0	0 +	1168.14	0 +	4.1	4	9.680	43
156 Eu	β-	2452.5	0.0	0 +	1715.16	0 +	0.032	10	10.92	14
170 Lu	$\beta + \varepsilon$	3458	0.0	0 +	0.0	0 +	0.80	13	9.77	7
170 Lu	$\beta + \varepsilon$	3458	0.0	0 +	1228.84	0 +	0.73	12	9.28	7
170 Lu	$\beta + \varepsilon$	3458	0.0	0 +	1566.38	0 +	0.35	5	9.44	6
^{188}W	β-	349.0	0.0	0 +	207.8478	0 +	0.0105	12	10.00	6

Pand.

List of isospin forbidden transitions with $0^+ \rightarrow 0^+$ and $\Delta T \neq 0$.

15. Allowed Transitions

15.1. $\Delta J=0, \ \Delta \pi=no, \ log ft <4, \ not \ 0^+ \rightarrow \ 0^+$

Table 7

List of allowed transitions with $\Delta J=0$ and $\Delta \pi=n0$, but also log ft < 4, and not $0^+ \rightarrow 0^+$.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
³ H β - 18.59202 0.0 1/2+ 0.0 1/2+ 100.0 3.0547 7	
⁷ Be ε 861.89 0.0 3/2- 0.0 3/2- 89.56 4 3.25 6	
¹¹ C $\beta + \varepsilon$ 1981.69 0.0 3/2- 0.0 3/2- 100. 3.59759 16	
¹³ N $\beta + \varepsilon$ 2220.47 0.0 1/2- 0.0 1/2- 100. 3.67200 44	
¹⁵ O $\beta + \varepsilon$ 2754.18 0.0 1/2- 0.0 1/2- 100. 3.6448 8	
¹⁷ F $\beta + \varepsilon$ 2760.47 0.0 5/2+ 0.0 5/2+ 100. 3.36336 43	
¹⁹ Ne $\beta + \varepsilon$ 3239.50 0.0 1/2+ 0.0 1/2+ 99.9878 7 3.23870 15	
²⁰ Na $\beta + \varepsilon$ 1.38924E4 0.0 2+ 10274 2+ 2.877 42 3.486 7	
²¹ Na $\beta + \varepsilon$ 3546.919 0.0 3/2+ 0.0 3/2+ 94.93 13 3.6146 10	
²³ Mg $\beta + \varepsilon$ 4056.179 0.0 3/2+ 0.0 3/2+ 92.14 9 3.67440 46	
²⁴ Al $\beta + \varepsilon$ 1.388477E4 0.0 4+ 8439.36 4+ 50.0 20 3.932 17	
²⁴ Al $\beta + \varepsilon$ 1.388477E4 0.0 4+ 9516.28 4+ 37.0 15 3.512 18	
²⁴ Al $\beta + \varepsilon$ 1.388477E4 425.8 1+ 9965.3 1+ 1.83 19 3.60 4	
²⁵ Al $\beta + \varepsilon$ 4276.808 0.0 5/2+ 0.0 5/2+ 99.11 8 3.5740 8	
^{28}P $\beta + /\varepsilon$ 1.43449E4 0.0 3+ 9315.78 3+ 11.30 40 3.485 15	
²⁹ P $\beta + \varepsilon$ 4942.23 0.0 1/2+ 0.0 1/2+ 98.290 30 3.6878 16	
³¹ S $\beta + \varepsilon$ 5398.01 0.0 1/2+ 0.0 1/2+ 98.860 40 3.68566 37	
³¹ Cl $\beta + \varepsilon$ 1.20080E4 0.0 $3/2 + 6278.89 3/2 + 18.7 7 3.418 18$	Р
³¹ Ar $\beta + \varepsilon$ 1.836E4 0.0 5/2+ 12282 5/2+ 5.30 30 2.98 9	Р
³² Cl $\beta + \varepsilon$ 1.26808E4 0.0 1+ 7001.0 1+ 22.47 20 3.5130 42	
³³ Cl $\beta + \varepsilon$ 5582.52 0.0 3/2+ 0.0 3/2+ 98.58 19 3.7530 9	
³³ Ar $\beta + \varepsilon$ 1.16190E4 0.0 1/2+ 5548 1/2+ 31.0 14 3.291 20	
³⁵ Ar $\beta + \varepsilon$ 5966.2 0.0 3/2+ 0.0 3/2+ 98.23 5 3.75945 44	
35 K $\beta + /\varepsilon$ 1.18744E4 0.0 3/2+ 5572.66 3/2+ 36.0 30 3.321 41	Р
36 K $\beta + /\varepsilon$ 1.281436E4 0.0 2+ 6612.12 2+ 42.0 40 3.498 42	
37 K $\beta + /\varepsilon$ 6147.48 0.0 $3/2 +$ 0.0 $3/2 +$ 97.89 11 3.6687 6	
³⁹ Ca $\beta + \varepsilon$ 6524.5 0.0 3/2+ 0.0 3/2+ 99.9975 27 3.6376 6	
40 Sc $\beta + /\varepsilon$ 1.43230E4 0.0 4- 7658.3 4- 49.0 40 3.317 36	
⁴¹ Sc $\beta + \epsilon$ 6495.55 0.0 7/2- 0.0 7/2- 99.9630 30 3.4608 12	
⁴¹ Ti $\beta + /\epsilon$ 1.2945E4 0.0 3/2+ 5940 3/2+ 25.0 6 3.374 14	Р
⁴³ Ti $\beta + \epsilon$ 6873 0.0 7/2- 0.0 7/2- 90.3 14 3.564 8	
⁴⁴ V $\beta + /\varepsilon$ 1.3741E4 0.0 (2)+ 6606.4 2+ 30 5 3.46 8	Р
^{45}V $\beta + /\varepsilon$ 7123.82 0.0 7/2- 0.0 7/2- 95.7 15 3.648 8	
4^{7} Cr $\beta + /\epsilon$ 7444 0.0 3/2- 0.0 3/2- 96.2 13 3.704 14	
49 Mn $\beta + /\epsilon$ 7712.43 0.0 5/2- 0.0 5/2- 91.9 28 3.684 15	
51 Fe $\beta + /\varepsilon$ 8054.0 0.0 5/2- 0.0 5/2- 93.8 13 3.672 7	
⁵⁵ Ni $\beta + /\varepsilon$ 8694.0 0.0 7/2- 0.0 7/2- 100. 3.6362 36	
^{57}Cu $\beta + /\varepsilon$ 8774.95 0.0 3/2- 0.0 3/2- 89.9 8 3.6797 42	Р
59 Zn $\beta + /\epsilon$ 9142.8 0.0 3/2- 0.0 3/2- 94.1 30 3.707 15	-
61 Ga $\beta + /\varepsilon$ 9214 0.0 3/2- 0.0 3/2- 94.0 10 3.691 13	
⁷¹ Kr $\beta + /\varepsilon$ 1018E1 0.0 (5/2)- 0.0 (5/2)- 91.5 9 3.658 30	

Table 8

List of allowed Gamow-Teller transitions with $0^+ \leftrightarrow 1^+$.

Nuclide	Decay	$Q \; [\text{keV}]$	$E_P [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
⁶ He	β-	3505.21	0.0	0+	0.0	1 +	100		2.90924	8	
$^{8}\mathrm{He}$	β -	1.066388E4	0.	0 +	980.	1+	84	1	4.202	7	
^{10}C	$\beta + \varepsilon$	3648.06	0.0	0 +	718.380	1+	98.530	20	3.04935	12	
^{12}Be	β-	1.17084E4	0.0	0 +	0.0	1+	99.50	3	3.7991	11	
$^{12}\mathrm{B}$	β-	1.33694E4	0.0	1 +	0.0	0 +	98.216	28	4.06593	49	
^{12}N	$\beta + \varepsilon$	1.73381E4	0.0	1 +	0.0	0 +	96.17	5	4.1145	7	
^{12}N	$\beta +$	1.73381E4	0.0	1 +	7654.07	0 +	1.410	30	4.626	9	
$^{14}\mathrm{Be}$	β-	1.629E4	0.0	0 +	1280	1 +	91	9	3.66	5	
$^{14}\mathrm{C}$	β-	156.4765	0.0	0 +	0.0	1 +	100		9.0460	22	
^{14}O	$\beta + \varepsilon$	5144.364	0.0	0 +	0.0	1 +	0.500	13	7.372	11	
^{14}O	$\beta + \varepsilon$	5144.364	0.0	0 +	3948.10	1 +	0.0545	19	3.133	16	
$^{16}\mathrm{C}$	β-	8010.2	0.0	0 +	4320	1 +	15.6	17	3.827	48	
$^{18}\mathrm{C}$	β-	1.1806E4	0.0	0 +	2614.35	1+	61	5	4.163	38	
18 F	$\beta + \varepsilon$	1655.93	0.0	1 +	0.0	0 +	100.		3.5795	12	
$^{18}\mathrm{Ne}$	$\beta + \varepsilon$	4444.5	0.0	0 +	0.0	1+	92.11	21	3.0946	11	
^{20}O	β-	3813.6	0.0	0 +	1056.848	1 +	99.973	3	3.7391	17	
^{20}Mg	$\beta + \varepsilon$	1.06272E4	0.0	0 +	984.10	1+	72.0	25	3.780	15	
^{20}Mg	$\beta + \varepsilon$	1.06272E4	0.0	0 +	2970	1+	10.90	30	4.063	13	
^{20}Mg	$\beta + \varepsilon$	1.06272E4	0.0	0 +	4094	1+	2.20	30	4.38	6	
^{20}Mg	$\beta + \varepsilon$	1.06272E4	0.0	0 +	4760	1 +	3.30	30	3.947	40	
^{20}Mg	$\beta + \varepsilon$	1.06272E4	0.0	0 +	5507	1 +	1.00	11	4.132	48	
^{20}Mg	$\beta + \varepsilon$	1.06272E4	0.0	0 +	6273	1 +	2.10	40	3.40	8	
^{22}O	β-	6.49E3	0.0	0 +	1627.0	1 +	31	5	4.57	8	
^{22}O	β-	6.49E3	0.0	0 +	2571.5	1+	68	8	3.81	6	
^{22}Mg	$\beta + \varepsilon$	4781.41	0.0	0 +	583.05	1 +	41.33	20	3.6466	21	
^{22}Mg	$\beta + \varepsilon$	4781.41	0.0	0 +	1936.9	1 +	5.45	7	3.466	6	
^{24}Ne	β-	2466.3	0.0	0 +	472.2074	1 +	92.1	2	4.3697	28	
24 Ne	β-	2466.3	0.0	0 +	1346.63	1+	7.9	2	4.406	11	
^{24}Al	$\beta + \varepsilon$	1.388477E4	425.8	1+	0.0	0+	24.3	11	5.08	1	
24 Si	$\beta +$	1.0794E4	0.0	0 +	425.8	1 +	41.0	44	4.369	47	
24 Si	$\beta +$	1.0794E4	0.0	0 +	1088.3	1 +	23.9	5	4.452	28	
24 Si	$\beta + \varepsilon$	1.0794E4	0.0	0 +	2991	1 +	5.8	7	4.56	5	
24 Si	$\beta + \varepsilon$	1.0794E4	0.0	0 +	3364	1 +	11.0	10	4.166	40	
24 Si	$\beta + \varepsilon$	1.0794E4	0.0	0 +	4400	1 +	1.00	23	4.85	10	
24 Si	$\beta +$	1.0794E4	0.0	0 +	4670	1 +	1.39	23	4.60	8	
24 Si	$\beta +$	1.0794E4	0.0	0 +	4970	1+	1.31	23	4.50	8	
24 Si	$\beta + \varepsilon$	1.0794E4	0.0	0 +	6243	1 +	2.20	20	3.672	42	
26 F	β-	1.819E4	0.0	1 +	0.0	0 +	36.5	60	4.79	9	
26 F	β-	1.819E4	0.0	1 +	0.0	0+	36.5	60	4.79	9	
26 Ne	β-	7342	0.0	0 +	82.0	1 +	91.6	2	3.877	7	
^{26}Si	$\beta + \varepsilon$	5069.14	0.0	0 +	1057.739	1 +	21.4	5	3.561	10	
^{26}Si	$\beta + \varepsilon$	5069.14	0.0	0 +	1850.62	1 +	2.73	7	3.864	11	
28 Ne	β-	1.229E4	0.0	0 +	0.0	1 +	55	5	4.19	5	
28 Na	β-	1.4032E4	0.0	1 +	0.0	0+	60	5	4.622	37	
28 Na	β-	1.4032E4	0.0	1 +	3862.15	0 +	20.1	19	4.428	41	
$^{28}{ m Mg}$	β-	1830.77	0.0	0 +	1372.85	1+	94.8	10	4.4567	47	
^{28}Mg	β-	1830.77	0.0	$^{.}$	1620.1	1+	4.9	10	4.57	9	
^{30}Ne	β-	1.481E4	0.0	$^{.}$	150.62	1+	63	11	4.05	9	
30 Ne	β-	1.481E4	0.0	$^{.}$	926.0	1+	7.7	12	4.85	8	
30 Ne	΄β-	1.481 E 4	0.0	0 +	2113.6	1+	14.0	18	4.41	7	
^{30}Mg	β-	6982.7	0.0	0+	688.0	1 +	68	20	3.94	13	

Table 8
(continued)

	Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \; [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
	^{30}Mg	β -	6982.7	0.0	0 +	2413.5	1+	7	1	4.29	6	
	^{30}P	$\beta + \varepsilon$	4232.11	0.0	1+	0.0	0 +	99.9390	30	4.8466	7	
	^{30}S	$\beta + \varepsilon$	6141.60	0.0	0+	0.0	1+	20.0	10	4.358	22	
	^{30}S	$\beta + \varepsilon$	6141.60	0.0	0+	3019.2	1+	2.28	5	3.562	10	
	^{32}Mg	β -	1.0270E4	0.0	0 +	2765.3	1 +	24.6	8	4.178	29	
	^{32}Mg	β -	1.0270E4	0.0	0 +	3202.2	1 +	10.7	10	4.417	48	
	^{32}Al	β -	1.2978E4	0.0	1+	0.0	0 +	85	5	4.364	26	
	^{32}Al	β -	1.2978E4	0.0	1+	4983.9	0 +	4.3	11	4.66	11	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{32}Si	β -	227.19	0.0	0 +	0.0	1+	100		8.22	5	
	^{32}P	β -	1710.661	0.0	1+	0.0	0 +	100		7.90654	16	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{32}Ar	$\beta + \varepsilon$	1.11344E4	0.0	0 +	1168.55	1 +	57.0	30	3.945	25	
	^{32}Ar	$\beta + \varepsilon$	1.11344E4	0.0	0 +	3772	1+	3.68	11	4.430	16	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{34}P	β -	5383.0	0.0	1+	0.0	0 +	84.8	21	5.165	11	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{34}Ar	$\beta + \varepsilon$	6061.79	0.0	0 +	665.8	1 +	2.520	40	4.784	7	
	$^{34}\mathrm{Ar}$	$\beta + \varepsilon$	6061.79	0.0	0 +	3129.2	1 +	1.280	30	3.475	10	
	^{36}Si	β -	7.81E3	0.0	0 +	1303.1	1 +	37	4	4.45	8	
	^{36}Si	β -	7.81E3	0.0	0 +	2281.0	1 +	48	6	4.01	8	
	36 Ca	$\beta + \varepsilon$	1.0966E4	0.0	0 +	1112.4	1 +	14.3	6	4.519	22	
	36 Ca	$\beta + \varepsilon$	1.0966E4	0.0	0 +	1618.6	1 +	31.0	17	4.061	27	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{36}Ca	$\beta + \varepsilon$	1.0966E4	0.0	0 +	3357	1 +	10.3	10	4.060	45	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	36 Ca	$\beta + \varepsilon$	1.0966E4	0.0	0 +	4658	1 +	1.20	20	4.55	8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{36}Ca	$\beta + \varepsilon$	1.0966E4	0.0	0 +	5926	1 +	2.20	40	3.74	8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{38}Si	β-	1.045E4	0.0	0 +	1694	1 +	17	5	4.54	14	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	^{38}Si	β-	1.045E4	0.0	0 +	1874	1 +	51	8	4.02	9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{38}S	β-	2937	0	0 +	1941.998	1 +	86.6	19	4.957	15	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{38}S	β-	2937	0	0 +	2751.09	1 +	1.44	6	4.14	6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	38 Ca	$\beta + \varepsilon$	6742.26	0.0	0 +	458.5	1 +	2.84	6	4.807	9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	38 Ca	$\beta + \varepsilon$	6742.26	0.0	0 +	1697.7	1 +	19.48	13	3.4341	29	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{40}S	β-	4720	0.0	0 +	889.02	1 +	35	5	4.74	13	
	^{40}S	β-	4720	0.0	0 +	2306.23	1 +	46	4	3.74	12	
	$^{40}\mathrm{Ti}$	$\beta + \varepsilon$	1.153 E4	0.0	0 +	2276	1 +	23.2	6	3.863	21	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40 Ti	$\beta + \varepsilon$	1.153E4	0.0	0 +	2746	1 +	29.1	10	3.644	24	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40 Ti	$\beta + \varepsilon$	1.153 E4	0.0	0 +	2933	1 +	1.90	40	4.78	9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40 Ti	$\beta + \varepsilon$	1.153E4	0.0	0 +	3221	1 +	2.4	6	4.60	11	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40 Ti	$\beta + \varepsilon$	1.153E4	0.0	0 +	3648	1 +	1.71	20	4.62	6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40 Ti	$\beta + \varepsilon$	1.153E4	0.0	0 +	3780	1 +	2.65	29	4.39	5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40 Ti	$\beta + \varepsilon$	1.153E4	0.0	0 +	4264	1 +	2.05	22	4.35	5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{40}\mathrm{Ti}$	$\beta + \varepsilon$	1.153 E4	0.0	0 +	4518	1 +	2.60	40	4.16	7	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{40}\mathrm{Ti}$	$\beta + \varepsilon$	1.153 E4	0.0	0 +	4649	1 +	1.98	29	4.24	7	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{40}\mathrm{Ti}$	$\beta + \varepsilon$	1.153 E4	0.0	0 +	5014	1 +	1.50	30	4.23	9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{40}\mathrm{Ti}$	$\beta + \varepsilon$	1.153E4	0.0	0 +	5080	1 +	1.03	25	4.37	11	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{42}S	β-	7.19E3	0.0	0 +	1267.48	1 +	17.6	11	4.966	35	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{42}S	β-	7.19E3	0.0	0 +	2123.28	1 +	63	3	4.099	32	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{42}S	β-	7.19E3	0.0	0 +	3029.76	1 +	16.2	9	4.299	38	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{42}\mathrm{Ti}$	$\beta + \varepsilon$	7016.65	0.0	0 +	611.0	1 +	51.5	13	3.252	11	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{44}\mathrm{Ar}$	β-	3108.2	0.0	0 +	1886.13	1 +	93.0	6	4.1511	40	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{44}\mathrm{Ar}$	β-	3108.2	0.0	0 +	2325.94	1 +	3.2	2	4.866	27	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{44}\mathrm{Ar}$	β-	3108.2	0.0	0 +	2574.28	1 +	2.2	1	4.418	20	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{46}\mathrm{Ar}$	β-	5642.7	0.0	0+	1944.30	1 +	95.6	25	4.242	31	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{46}\mathrm{Cr}$	$\beta + \varepsilon$	7604	0.0	$^{.}$	993.21	1 +	14.2	14	3.905	43	
	$^{46}\mathrm{Cr}$	$\beta + \varepsilon$	7604	0.0	0 +	1432.52	1 +	3.36	23	4.367	30	
⁴⁶ Cr $\beta + \varepsilon$ 7604 0.0 0+ 2977.88 1+ 2.50 17 3.786 30	$^{46}\mathrm{Cr}$	$\beta + \varepsilon$	7604	0.0	0 +	2459.80	1+	1.52	11	4.267	32	
	$^{46}\mathrm{Cr}$	$\beta + \varepsilon$	7604	0.0	0 +	2977.88	1 +	2.50	17	3.786	30	

Table 8
(continued)

Nuclide	Decay	$Q \; [\text{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
48 Fe	$\beta + \varepsilon$	1.129E4	0.0	0 +	3204	1 +	1.00	30	4.83	13	
48 Fe	$\beta + \varepsilon$	1.129E4	0.0	0 +	3495	1+	1.80	30	4.49	8	
48 Fe	$\beta + \varepsilon$	1.129E4	0.0	0+	3713	1+	1.30	20	4.56	7	
50 Fe	$\beta + \varepsilon$	8150	0.0	0 +	2403.84	1+	1.47	10	4.371	30	
50 Ca	β -	4947.9	0.0	0 +	1847.772	1+	99	1	4.118	5	
^{52}Ca	β -	6257.3	0.0	0 +	1636.43	1+	86.8	13	4.482	29	
^{52}Ca	β -	6257.3	0.0	0 +	2745.7	1+	11.2	12	4.84	5	
52 Ca	β -	6257.3	0.0	0 +	4265.7	1+	1.4	4	4.68	13	
52 Ti	β -	1965.3	0.0	0 +	141.606	1+	100		4.040	26	
54 Ni	$\beta + \varepsilon$	8731.8	0.0	0 +	936.7	1+	19.9	12	3.830	26	
56 Ti	β -	6.76E3	0.0	0 +	0.0	1+	94	3	3.87	6	
^{56}V	β -	9.10E3	0.0	1+	0.0	0+	70	2	4.646	44	
$^{56}\mathrm{Cr}$	β -	1626.5	0.0	0 +	110	1+	100		4.286	7	
56 Ni	ε	2132.87	0.0	0 +	1720.19	1+	100		4.3933	30	
58 Zn	$\beta + \varepsilon$	$9.37\mathrm{E}3$	0.0	0 +	1051	1+	6.0	10	4.37	7	
58 Cu	$\beta + \varepsilon$	8561.02	0.0	1+	0.0	0 +	81.2	5	4.8791	28	
58 Cu	$\beta + \varepsilon$	8561.02	0.0	1+	2943.3	0 +	10.2	14	4.78	6	
60 Zn	$\beta + \varepsilon$	4170.8	0.0	0 +	62.0	1+	20	5	5.35	11	
60 Zn	$\beta + \varepsilon$	4170.8	0.0	0 +	670.1	1 +	73	6	4.370	37	
$^{60}\mathrm{Cr}$	β -	6059.4	0.0	0 +	0.0	1+	88.6	6	4.090	9	
^{60}Mn	β -	8445.2	0.0	1+	0.0	0 +	88	2	4.532	33	
^{60}Mn	β -	8445.2	0.0	1+	1974	0 +	5.0	6	5.24	6	
^{60}Mn	β -	8445.2	0.0	1+	2356	0 +	3.0	5	5.34	8	
62 Ge	$\beta + \varepsilon$	9.85E3	0.0	0 +	571.3	1 +	3.40	10	4.784	38	
62 Ge	$\beta + \varepsilon$	9.85E3	0.0	0 +	978.3	1 +	1.80	10	4.959	45	
62 Ge	$\beta + \varepsilon$	9.85E3	0.0	0 +	1017.1	1 +	2.60	10	4.789	41	
62 Ge	$\beta + \varepsilon$	9.85E3	0.0	0 +	2164.1	1 +	2.60	20	4.46	6	
62 Fe	β -	2546	0.0	0 +	506.1	1 +	100		4.126	21	
^{62}Cu	$\beta + \varepsilon$	3958.90	0.0	1+	0.0	0 +	99.608	24	5.1708	14	
62 Zn	$\beta + \varepsilon$	1619.5	0.0	0 +	0.0	1+	40	5	4.99	5	
62 Zn	$\beta + \varepsilon$	1619.5	0.0	0 +	548.29	1+	31.0	30	4.637	43	
62 Zn	ε	1619.5	0.0	0 +	637.45	1+	28.6	22	4.596	34	
64 Cu	$\beta + \varepsilon$	1674.62	0.0	1+	0.0	0 +	61.05	30	4.9785	40	
64 Cu	β -	579.6	0.0	1+	0.0	0+	38.48	26	5.3151	33	
64 Ga	$\beta + \varepsilon$	7171.2	0.0	0+	3186.77	1+	30.6	7	5.125	10	
64 Ga	$\beta + \varepsilon$	7171.2	0.0	0 +	3366.00	1+	29.1	7	5.027	11	
64 Ga	$\beta + \varepsilon$	7171.2	0.0	0 +	3425.14	1+	6.80	30	5.618	19	
64 Ga	$\beta + \varepsilon$	7171.2	0.0	0+	3795.00	1+	4.03	17	5.570	18	
64 Ga	$\beta + \varepsilon$	7171.2	0.0	0+	4454.70	1+	1.33	8	5.459	26	
66 Ni	β -	252.0	0.0	0+	0.0	1+	100		4.283	9	
66 Cu	β -	2640.9	0.0	1+	0.0	0+	90.77	9	5.3424	14	
66 Ga	$\beta + \varepsilon$	5175.5	0.0	0 +	3228.885	1+	7.4	6	6.147	36	
66 Ga	$\beta + \varepsilon$	5175.5	0.0	0+	3791.123	1+	26.9	22	5.000	38	
66 Ga	$\beta + \varepsilon$	5175.5	0.0	0 +	4085.983	1+	1.67	14	5.981	39	
66 Ga	ε	5175.5	0.0	0 +	4295.339	1+	6.2	5	5.224	37	
66 Ga	ε	5175.5	0.0	0 +	4461.409	1+	1.96	17	5.541	40	
66 Ga	ε	5175.5	0.0	0 +	4806.199	1+	2.30	19	4.889	39	
$^{66}\mathrm{Ge}$	$\beta + \varepsilon$	2116.7	0.0	0 +	43.81	1+	12.9	20	5.46	7	
$^{66}\mathrm{Ge}$	$\beta + \varepsilon$	2116.7	0.0	0+	381.859	1+	48.3	19	4.494	20	
66 Ge	$\beta + \varepsilon$	2116.7	0.0	0+	536.62	1+	22.2	8	4.675	19	
66 Ge	$\beta + \varepsilon$	2116.7	0.0	0+	705.990	1+	9.3	5	4.908	26	
66 Ge	ε	2116.7	0.0	0+	1456.09	1+	1.30	10	5.078	35	
$^{66}\mathrm{Ge}$	ε	2116.7	0.0	0+	1556.66	1+	1.41	11	4.897	36	

Table 8
(continued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \; [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
⁶⁸ Cu	β-	4440.1	0.0	1+	0.0	0+	33	4	5.77	5	
⁶⁸ Ga	$\beta + \varepsilon$	2921.1	0.0	1+	0.0	0+	96.640	30	5.2097	16	
68 Ge	ε	107.3	0.0	0+	0.0	1+	100		5.007	24	
70 Ga	β -	1651.9	0.0	1+	0.0	0+	98.91	6	5.1050	19	
70 Se	$\beta + \varepsilon$	2404.1	0.0	0 +	81.56	1+	40.4	22	4.767	24	
70 Se	$\beta + \varepsilon$	2404.1	0.0	0 +	234.78	1+	4.65	25	5.537	24	
70 Se	$\beta + \varepsilon$	2404.1	0.0	0+	458.21	1+	44.9	22	4.305	22	
70 Se	$\beta + \varepsilon$	2404.1	0.0	0+	581.58	1+	5.50	40	5.087	32	
$^{70}\mathrm{Kr}$	$\beta + \varepsilon$	1.033E4	0.0	0 +	1119.8	1+	7.80	40	4.17	6	
$^{70}\mathrm{Kr}$	$\beta + \varepsilon$	1.033E4	0.0	0+	2305.5	1+	5.20	30	4.03	7	
72 Zn	β -	442.8	0.0	0+	161.1	1+	85.1	2	4.484	12	
72 Zn	β -	442.8	0.0	0 +	207.9	1+	14.7	3	4.989	17	
$^{72}\mathrm{Se}$	ε	361.6	0.0	0 +	46.025	1+	100	6	4.598	31	
72 Kr	$\beta + \varepsilon$	5121	0.0	0 +	0.0	1+	35.0	10	4.713	14	
$^{72}\mathrm{Kr}$	$\beta + \varepsilon$	5121	0.0	0 +	309.92	1 +	16.8	6	4.878	17	
$^{72}\mathrm{Kr}$	$\beta + \varepsilon$	5121	0.0	0 +	415.15	1 +	16.2	9	4.839	25	
$^{72}\mathrm{Kr}$	$\beta + \varepsilon$	5121	0.0	0 +	575.83	1+	1.48	19	5.79	6	
$^{72}\mathrm{Kr}$	$\beta + \varepsilon$	5121	0.0	0 +	576.79	1 +	13.4	8	4.834	27	
72 Kr	$\beta + \varepsilon$	5121	0.0	0 +	755.57	1 +	1.55	12	5.671	34	
$^{72}\mathrm{Kr}$	$\beta + \varepsilon$	5121	0.0	0+	939.27	1+	1.08	5	5.719	21	
$^{72}\mathrm{Kr}$	$\beta + \varepsilon$	5121	0.0	0 +	1027.80	1 +	1.67	14	5.476	37	
$^{72}\mathrm{Kr}$	$\beta + \varepsilon$	5121	0.0	0 +	1386.08	1 +	1.98	16	5.168	36	
$^{72}\mathrm{Kr}$	$\beta + \varepsilon$	5121	0.0	0 +	1772.05	1 +	2.89	12	4.722	20	
$^{74}\mathrm{Kr}$	$\beta + \varepsilon$	2956	0.0	0+	212.86	1+	31	6	4.77	8	
74 Kr	$\beta + \varepsilon$	2956	0.0	0 +	306.55	1+	41	7	4.56	7	
⁷⁶ Kr	ε	1275	0.0	0+	315.68	1+	53	6	4.82	5	
⁷⁶ Kr	ε	1275	0.0	0+	355.28	1+	9.9	11	5.51	5	
76 Kr	ε	1275	0.0	0^{+}	451.96	1+	25.3	23	5.003	42	
76 Kr	ε	1275	0.0	0^{+}	868.16	1+	2.1		5.46	7	
76 Kr	ε	1275	0.0	0^{+}	898.36	1+	2.1	3	5.39	7	
76 Zn	β-	3993.6	0.0	0^{+}	199.50	1+	33	6	4.75	8	
76 Zn	β-	3993.6	0.0	0^{+}	275.28	1+	29	5	4 77	8	
76 Zn	β-	3993.6	0.0	0^{+}	565 53	1+	11.0	6	5.032	33	
76 Zn	р В-	3993.6	0.0	0+	1030.30	1+	10.7	5	4.768	31	
76 Zn	р В-	3993.6	0.0	0+	1545 44	1+	4 1	3	4 830	39	
76 Zn	р В -	3993.6	0.0	0+	1750.14	1+	2.00	11	4 982	33	
76Zn	β- β-	3993.6	0.0	0+	2091.02	1+	2.00	2	4.564	47	
78Zn	β- β-	6220 8	0.0	0+	860.37	1_ 1_	38	2	4.004 4.77	6	
78Zn	р В -	6220.8	0.0	0+	979 72	1+	15.9	17	5 11	6	
78Zn	β- β-	6220.8	0.0	0+	1031.08	1+	6.6	16	5.11 5.47	11	
78 Z n	β_ β_	6220.8	0.0		1866 61	1⊥	12.2	10	4.86	6	
78Zn	β- β-	6220.8	0.0		2205.68	1_ 1_	17.6	10	4.00	6	
787n	р- В	6220.8	0.0	$0\pm$	2205.08	1+ 1+	36	6	4.04 5.00	8	
78Co	р- в	055	0.0	0 +	2004.09	1	06	1	$\frac{5.00}{4.270}$	24	
$^{78}C_{2}$	р- в	955 055	0.0	0+	211.3	1+	90 4	1	4.219	24 11	
78Dn	p- B L la	900 2572 Q	0.0	0+	293.9	$1 \pm$	4 86 40	1	5.02	11 49	
807n	$\rho + \epsilon$	0070.0 7575 1	0.0	1+	0.0	0+ 1 +	00.40 24	40	4.1001	42 5	
211 80 7 n	р- В	7575 1	0.0	0+	1449.92 2002-21	1+ 1+	94 91 K	4 19	4.07 1 619	0 26	
211 807n	ρ- β	7575 1	0.0	0+	2092.21	1+ 1	21.0 7 4	10	4.040 4 099	50 41	
807n	μ- β	7575 1	0.0	0+	2000.40 9676 04	1+ 1	1.4	1 19	4.900 1 600	41 20	
80 C c	μ- β	1010.1	0.0	0+	2070.94	1+ 1 -	13.0 65	12	4.0 <i>22</i> 4 E 4 1	30 47	
80 C a	р- в	2019.3 2670-2	0.0	0+	0.0	1+ 1 -	00	l C	4.041	47 10	
80 C -	ρ- ρ	2019.3 2670.2	0.0	0+	200.30 600.00	1+ 1 -	21	07	4.13 E 90	10	
Ge	/ D -	2079.3	0.0	0+	680.26	1+	3.0	7	5.26	8	

Table 8
(continued $)$

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{P} \ [keV]$	$J\pi$	$E_D \; [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
80 Ge	β -	2679.3	0.0	0 +	937.05	1+	5.3	10	4.85	8	
^{80}As	β -	5544.9	0.0	1+	0.0	0+	56	6	5.726	47	
^{80}As	β -	5544.9	0.0	1+	1873.3	(0)+	4.2	4	6.051	42	
$^{80}\mathrm{Br}$	$\beta + \varepsilon$	1870.46	0.0	1+	0.0	0 +	7.10	20	4.688	13	
$^{80}\mathrm{Br}$	β -	2004.4	0.0	1+	0.0	0 +	85.0	7	5.5012	37	
80 Rb	$\beta + \varepsilon$	5718.0	0.0	1 +	0.0	0 +	74.4	30	4.937	20	
80 Rb	$\beta + \varepsilon$	5718.0	0.0	1 +	1321.1	0 +	1.90	30	5.89	7	
80 Sr	$\beta + \varepsilon$	1864.0	0.0	0 +	0.0	1 +	40	7	4.78	8	
$^{80}\mathrm{Sr}$	$\beta + \varepsilon$	1864.0	0.0	0 +	553.5	1 +	12.1	13	4.87	6	
$^{80}\mathrm{Sr}$	$\beta + \varepsilon$	1864.0	0.0	0 +	589.0	1 +	42	5	4.30	7	
82 Sr	ε	178	0.0	0 +	0.0	1 +	100		4.69	8	
^{82}Y	$\beta + \varepsilon$	7946	0.0	1+	0.0	0+	75	7	5.098	42	
^{82}Y	$\beta + \varepsilon$	7946	0.0	1+	1310.8	0+	2.1	6	6.23	12	
82 Ge	β-	4690.4	0.0	0+	1092.05	1+	80	8	4.19	5	
82 Bb	$\beta + \varepsilon$	4404.0	0.0	1+	0.0	0+	84.80	40	4.5986	27	
84 Se	β-	1835	0.0	0^{-1}	408.2	1+	100	10	4 085	35	
^{86}Zr	p e	1314	0.0	0+	271.90	1+	95	8	4 857	40	
^{86}Zr	e	1314	0.0	0+	883.90	1+	57	3	5 292	43	
^{88}Kr	С В-	2017 7	0.0		2231 761	1⊥	9.1 9.1	5	5 681	40 25	
88 Kr	β- β-	2917.7	0.0		2231.101 2302.147	1	67	1	4 406	$\frac{20}{27}$	
⁸⁸ Kr	B- B-	2017.7	0.0		2532.147	⊥ 1⊥	2.65	- 1 16	5.987	21	
887r	ρ- Γ	2311.1 670	0.0		2040.420	1	100	10	5 722	20	
90 P 11	$\mathcal{B} \perp \mathcal{I}_{\mathcal{C}}$	5840.0	0.0	0+	144.1	1+	100	11	0.700 4.62	24 10	
90 Kr	$\rho_{\pm/\epsilon}$	1406 1406	0.0	0+	144.1 1780.01	1+	49 65	6	4.03 4.607	10	
90 IZn	ρ-	4400	0.0	0+	2127 59	1+	00	10	4.007	40 26	
901Z	ρ-	4400	0.0	0+	2127.08	1+	2.29	19	0.801	30 41	
90 M	β- 0 + 1	4406	0.0	0+	3083.07	1+	2.07	19	4.891	41	
90 M	$p+/\varepsilon$	2489.0	0.0	0+	382.0	1+	81	9	5.322	28	
90 M -	ε	2489.0	0.0	0+	1709.1	1+	8.0	8	5.219	44	
90 M -	2	2469.0	0.0	0+	2120.0	1+	4.1	5 C	4.69	0 19	3
921Z	E O	2469.0	0.0	0+	2309.0	1+	2.1	5	4.00	15	
920	p-	0003	0.0	0+	1300.91	1+	88	Э С	4.308	20 27	
°-Sr 92D	p-	1949	0.0	0+	1383.90	1+	97	0	4.301	37 97	
⁹² Ru	$\beta + \varepsilon$	4624.5	0.0	0+	711.36	1+	50.0	40	4.984	35	
92 Ru	$\beta + \varepsilon$	4624.5	0.0	0+	1443.89	1+	8.7	8	5.241	40	
⁹² Ru	$\beta + \varepsilon$	4624.5	0.0	0+	1796.57	1+	5.4	5	5.175	41	
⁹² Ru	$\beta + \varepsilon$	4624.5	0.0	0+	2106.9	1+	2.70	40	5.22	6	
⁹² Ru	$\beta + \varepsilon$	4624.5	0.0	0+	2316.06	1+	4.00	30	4.882	33	
⁹² Ru	$\beta + \varepsilon$	4624.5	0.0	0+	2390.95	1+	18.4	11	4.159	27	
⁹² Ru	$\beta + \varepsilon$	4624.5	0.0	0+	2770.99	1+	4.60	40	4.474	39	
⁹² Ru	$\beta + \varepsilon$	4624.5	0.0	0+	3004.7	1+	2.60	18	4.563	31	
92 Ru	$\beta + \varepsilon$	4624.5	0.0	0+	3048.1	1+	1.28	15	4.84	5	
94 Ru	$\beta + \varepsilon$	1575	0.0	0+	442.5	1+	73	10	3.93	6	
94 Ru	ε	1575	0.0	0+	966.9	1+	27	6	3.81	10	
94 Sr	β -	3506	0.0	0 +	1427.71	1+	98.1	9	4.403	7	
⁹⁶ Pd	$\beta + \varepsilon$	3504	0.0	0 +	939.1	1+	50.9	24	3.768	23	
96 Pd	$\beta + \varepsilon$	3504	0.0	0 +	1275.3	1 +	39.6	13	3.620	17	
⁹⁶ Pd	$\beta + \varepsilon$	3504	0.0	0 +	1564.6	1 +	5.40	40	4.278	34	
$^{96}\mathrm{Pd}$	$\beta + \varepsilon$	3504	0.0	0 +	1802.1	1 +	4.8	5	4.172	46	
$^{96}\mathrm{Sr}$	β -	5412	0.0	0 +	931.70	1 +	92	3	4.014	15	
$^{96}\mathrm{Sr}$	β -	5412	0.0	0 +	1983.58	1 +	3.4	4	4.94	5	
$^{98}\mathrm{Sr}$	β -	5866	0.0	0+	547.87	1+	14	3	4.95	9	

 3 For further information, see 7.
Table 8
(continued $)$

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \; [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
98 Sr	β -	5866	0.0	0+	600.30	1+	49	8	4.39	7	
98 Sr	β -	5866	0.0	0+	986.39	1+	6.9	5	5.090	32	
98 Zr	β -	2243	0.0	0+	0.0	1 +	100		4.176	10	
⁹⁸ Nb	β -	4591	0.0	1+	0.0	0+	61	3	4.713	23	
^{98}Nb	β -	4591	0.0	1+	734.61	0+	20	2	4.864	44	
⁹⁸ Pd	$\beta + \varepsilon$	1854	0.0	0+	112.06	1+	66	5	3.999	35	
⁹⁸ Pd	ε	1854	0.0	0+	837.0	1+	23.5	15	3.942	32	
98 Pd	ε	1854	0.0	0+	1007.5	1 +	5.9	5	4.379	41	
98 Pd	ε	1854	0.0	0+	1262.3	1 +	2.4	3	4.45	6	
$^{100}\mathrm{Pd}$	ε	378	0.0	0+	151.86	(1)+	0.66	6	6.60	12	
$^{100}\mathrm{Pd}$	ε	378	0.0	0+	158.80	1+	92	8	4.42	12	
$^{100}\mathrm{Cd}$	$\beta + \varepsilon$	3943	0.0	0+	952.05	1 +	69	5	3.590	32	
$^{100}\mathrm{Cd}$	$\beta + \varepsilon$	3943	0.0	0+	1156.39	1 +	2.30	20	4.918	38	
^{100}Cd	$\beta + \varepsilon$	3943	0.0	0+	1212.69	1 +	3.70	30	4.670	36	
$^{100}\mathrm{Cd}$	$\beta + \varepsilon$	3943	0.0	0+	1393.15	1 +	15.8	14	3.907	39	
$^{100}\mathrm{Cd}$	$\beta + \varepsilon$	3943	0.0	0+	1574.30	1+	5.5	5	4.234	40	
$^{100}\mathrm{Cd}$	$\beta + \varepsilon$	3943	0.0	0+	1892.95	1 +	1.90	20	4.474	47	
100 Sn	$\beta + \varepsilon$	7.03E3	0.0	0 +	2745	1 +	100.		2.66	14	
$^{100}\mathrm{Zr}$	β-	3419	0.0	0 +	0.0	1 +	46	5	4.65	5	
$^{100}\mathrm{Zr}$	β -	3419	0.0	0 +	400.52	1 +	17.9	9	4.830	33	
$^{100}\mathrm{Zr}$	β-	3419	0.0	0 +	504.29	1 +	33	4	4.50	6	
$^{100}\mathrm{Nb}$	β-	6402	0.0	1+	0.0	0 +	50	7	5.14	9	
100 Nb	β-	6402	0.0	1+	695.21	0 +	8.5	14	5.68	9	
$^{100}\mathrm{Nb}$	β-	6402	0.0	1 +	1504.79	0 +	3.7	6	5.74	9	
$^{100}\mathrm{Nb}$	β-	6402	0.0	1 +	2037.55	0 +	4.7	7	5.42	9	
100 Nb	β-	6402	0.0	1 +	2086.38	0 +	7.0	12	5.22	10	
$^{100}\mathrm{Tc}$	β-	3206.4	0.0	1 +	0.0	0 +	93.29	3	4.6189	34	
$^{100}\mathrm{Tc}$	β-	3206.4	0.0	1 +	1130.25	0 +	5.38	13	5.067	11	
$^{102}\mathrm{Cd}$	$\beta + \varepsilon$	2587	0.0	0 +	490.44	1 +	63.9	18	3.806	43	
$^{102}\mathrm{Cd}$	$\beta + \varepsilon$	2587	0.0	0 +	1045.59	1 +	25.7	8	3.846	44	
$^{102}\mathrm{Cd}$	$\beta + \varepsilon$	2587	0.0	0 +	1368.6	1 +	6.3	6	4.24	6	
^{102}Mo	β-	1012	0.0	0 +	0.0	1 +	94.1	6	4.222	21	
^{102}Mo	β -	1012	0.0	0 +	359.86	1 +	4.8	7	4.82	7	
$^{102}\mathrm{Tc}$	β -	4534	0.0	1 +	0.0	0 +	92.9	6	4.804	13	
^{104}Mo	β-	2155	0.0	0 +	174.8	1 +	77	19	4.39	11	
$^{104}\mathrm{Mo}$	β-	2155	0.0	0 +	613.9	1 +	1.2	4	5.76	15	
$^{104}\mathrm{Mo}$	β-	2155	0.0	0 +	642.0	1 +	5.3	13	5.09	11	
^{104}Mo	β -	2155	0.0	0 +	728.8	1 +	2.7	6	5.28	10	
$^{104}\mathrm{Rh}$	β -	2435.8	0.0	1 +	0.0	0 +	97.6	5	4.561	5	
106 Ru	β -	39.40	0.0	0 +	0.0	1 +	100		4.349	7	
$^{106}\mathrm{Rh}$	β -	3545	0.0	1 +	0.0	0 +	78.6	7	5.197	7	
106 Rh	β -	3545	0.0	1 +	1133.75	0 +	10.0	4	5.383	18	
^{106}Ag	$\beta + \varepsilon$	2965.1	0.0	1+	0.0	0 +	82.9	15	4.944	8	
^{108}Ag	β-	1645.6	0.0	1+	0.0	0 +	95.4	3	4.4454	37	
108 Sn	$\beta + \varepsilon$	2050	0.0	0 +	698.8	1 +	87.8	12	3.532	11	
108 Sn	ε	2050	0.0	0 +	1191.6	1 +	5.2	5	4.354	44	
$^{108}\mathrm{Mo}$	β-	5174	0.0	0 +	326.91	1 +	13	3	5.09	10	
$^{108}\mathrm{Mo}$	β-	5174	0.0	0 +	334.03	1 +	11	3	5.16	12	
$^{108}\mathrm{Mo}$	β-	5174	0.0	0 +	458.76	1 +	31	8	4.66	11	
$^{108}\mathrm{Ru}$	β-	1370	0.0	0 +	164.95	1 +	46	10	4.46	10	
$^{108}\mathrm{Rh}$	β-	4493	0.0	1+	0.0	0 +	56	11	5.54	9	
$^{108}\mathrm{Rh}$	β-	4493	0.0	1+	1053.0	0 +	15	4	5.61	12	
$^{108}\mathrm{Ag}$	$\beta + \varepsilon$	1917.4	0.0	1+	0.0	0 +	2.35	16	4.722	30	

Table 8
(continued $)$

	Nuclide	Decay	$Q \; [\text{keV}]$	$E_{P} \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
	110 Sn	ε	628	0.0	0+	342.539	1+	100		3.45	6	
$ \begin{split} & \overset{142}{113} \ln \beta + \xi = 2884.7 & 0.0 & 1+ & 0.0 & 0+ & 5.0 & 40 & 4.67 & 33 \\ & \overset{112}{115} \ln \beta + & 664.9 & 0.0 & 1+ & 0.0 & 0+ & 38 & 4 & 4.216 & 47 \\ & \overset{114}{116} n \beta + & 1989.3 & 0.0 & 1+ & 0.0 & 0+ & 93.6 & 6 & 4.4957 & 7 \\ & \overset{114}{14} p \beta + & 1440 & 0.0 & 0+ & 0.0 & 1+ & 60 & 14 & 4.39 & 11 \\ & \overset{114}{14} p \beta + & 1440 & 0.0 & 0+ & 0.0 & 1+ & 92.0 & 5 & 4.221 & 15 \\ & \overset{114}{14} p \beta + & 1440 & 0.0 & 0+ & 93.75 & 1+ & 94.3 & 10 & 4.896 & 28 \\ & \overset{110}{17} r & \beta + \xi + & 1588 & 0.0 & 0+ & 73.75 & 1+ & 94.3 & 10 & 4.896 & 28 \\ & \overset{116}{19} r & \beta + & 1588 & 0.0 & 0+ & 73.75 & 1+ & 94.3 & 10 & 4.896 & 28 \\ & \overset{116}{19} r & \beta + \xi + & 3656.6 & 0.0 & 1+ & 0.0 & 0+ & 97.50 & 30 & 4.556 & 12 \\ & \overset{118}{18} p \beta & \beta + \xi + & 3656.6 & 0.0 & 1+ & 0.0 & 0+ & 97.50 & 30 & 4.556 & 12 \\ & \overset{118}{18} p \beta & \beta + \xi + & 3656.6 & 0.0 & 0+ & 0.0 & 1+ & 100 & 5.13 & 7 \\ & \overset{118}{18} p \beta & \beta + \xi + & 3656.6 & 0.0 & 0+ & 0.0 & 1+ & 100 & 5.13 & 7 \\ & \overset{118}{18} p \beta & \beta + \xi + & 3656.6 & 0.0 & 0+ & 720.42 & 1+ & 15.8 & 16 & 4.685 & 39 \\ & \overset{118}{18} p \beta & 4165.4 & 0.0 & 0+ & 720.42 & 1+ & 15.8 & 12 & 4.66 & 6 \\ & \overset{118}{118} p \beta & 4165.4 & 0.0 & 0+ & 720.42 & 1+ & 15.8 & 12 & 4.66 & 6 \\ & \overset{118}{118} p \beta & 4165.4 & 0.0 & 0+ & 720.42 & 1+ & 15.8 & 12 & 5.66 & 12 \\ & \overset{118}{118} n \beta & 4425 & 0.0 & 1+ & 0.0 & 0+ & 98.3 & 11 & 4.58 & 8 \\ & \overset{118}{118} n \beta & 4425 & 0.0 & 1+ & 0.0 & 0+ & 98.3 & 11 & 4.58 & 8 \\ & \overset{118}{118} n \beta & 4425 & 0.0 & 0+ & 200.55 & 1+ & 4.5 & 12 & 5.66 & 12 \\ & \overset{118}{118} n \beta & 4425 & 0.0 & 0+ & 375.35 & 1+ & 1.50 & 40 & 6.00 & 12 \\ & \overset{123}{120} \chi & \beta + \xi + & 1575 & 0.0 & 0+ & 375.35 & 1+ & 1.50 & 40 & 6.00 & 12 \\ & \overset{123}{120} \chi & \beta + \xi + & 1575 & 0.0 & 0+ & 375.35 & 1+ & 1.50 & 40 & 6.00 & 12 \\ & \overset{123}{120} \chi & \beta + \xi + & 1575 & 0.0 & 0+ & 375.35 & 1+ & 1.50 & 40 & 6.00 & 12 \\ & \overset{123}{120} \chi & \beta + \xi + & 1575 & 0.0 & 0+ & 350.53 & 1+ & 1.59 & 4.59 & 5.63 \\ & \overset{123}{120} \chi & \beta + \xi + & 1575 & 0.0 & 0+ & 350.53 & 1+ & 1.59 & 4.59 & 6 \\ & \overset{123}{120} \chi & \beta + \xi + & 1575 & 0.0 & 0+ & 350.53$	$^{110}\mathrm{Ag}$	β-	2890.7	0.0	1+	0.0	0+	94.89	25	4.6830	24	
	112 In	$\beta + \varepsilon$	2584.7	0.0	1+	0.0	0+	55.0	40	4.671	33	
	112 In	$\beta + \varepsilon$	2584.7	0.0	1+	1224.345	0+	1.00	12	5.61	5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	112 In	β -	664.9	0.0	1+	0.0	0+	38	4	4.216	47	
	114 In	β -	1989.93	0.0	1+	0.0	0+	99.36	6	4.4957	7	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	114 Ru	β -	$5.49\mathrm{E3}$	0.0	0+	0.0	1+	60	14	4.39	11	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	114 Pd	β -	1440	0.0	0+	0.0	1+	92.0	5	4.221	15	
	114 Pd	β -	1440	0.0	0 +	358.5	1+	7.5	6	4.836	38	
	$^{116}\mathrm{Te}$	$\beta + \varepsilon$	1558	0.0	0+	93.75	1+	94.3	10	4.819	21	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{116}\mathrm{Te}$	ε	1558	0.0	0+	731.70	1+	4.36	10	5.641	34	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	116 Pd	β -	2712	0.0	0+	114.70	1+	79	4	4.230	27	
	$^{116}\mathrm{Pd}$	β -	2712	0.0	0+	393.9	1+	21	2	4.600	44	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{118}\mathrm{Sb}$	$\beta + \varepsilon$	3656.6	0.0	1+	0.0	0 +	97.50	30	4.556	12	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{118}{ m Te}$	ε	305	0.0	0 +	0.0	1+	100		5.13	7	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	118 Pd	β -	4165.4	0.0	0 +	396.45	1+	21.8	16	4.685	39	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{118}\mathrm{Pd}$	β -	4165.4	0.0	0 +	475.08	1+	44	4	4.340	46	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{118}\mathrm{Pd}$	β -	4165.4	0.0	0 +	641.82	1+	11.7	8	4.828	38	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{118}\mathrm{Pd}$	β-	4165.4	0.0	0 +	720.42	1 +	15.8	22	4.66	6	
	$^{118}\mathrm{Cd}$	β -	527	0.0	0 +	0.0	1+	100		3.95	6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	118 In	β-	4425	0.0	1+	0.0	0 +	94.9	1	4.820	44	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{120}\mathrm{Sb}$	$\beta + \varepsilon$	2681	0.0	1 +	0.0	0 +	98.3	11	4.558	8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120 Xe	$\beta + \varepsilon$	1575	0.0	0 +	25.07	1 +	38	9	4.83	10	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120 Xe	$\beta + \varepsilon$	1575	0.0	0 +	200.95	1 +	4.5	12	5.65	12	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120 Xe	$\beta + \varepsilon$	1575	0.0	0 +	212.37	1+	3.6	11	5.74	13	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120 Xe	$\beta + \varepsilon$	1575	0.0	0 +	375.35	1 +	1.50	40	6.00	12	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120 Xe	$\beta + \varepsilon$	1575	0.0	0 +	449.32	1 +	6.2	7	5.33	5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120 Xe	ε	1575	0.0	0 +	850.77	1 +	5.0	5	5.03	5	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$^{120}\mathrm{Xe}$	ε	1575	0.0	0 +	965.62	1 +	15.9	16	4.37	5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{120}\mathrm{Xe}$	ε	1575	0.0	0 +	1023.52	1 +	2.39	24	5.10	6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{120}\mathrm{Xe}$	ε	1575	0.0	0 +	1142.86	1 +	1.85	19	4.99	6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120 Ba	$\beta + \varepsilon$	5.00E3	0.0	0 +	319.15	1 +	29	7	4.71	19	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{120}\mathrm{Cd}$	β-	1770	0.0	0 +	0.0	1 +	100		4.118	41	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120 In	β-	5370	0.0	1+	0.0	0 +	80.6	16	5.050	20	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120 In	β-	5370	0.0	1 +	1876.7	0 +	1.43	22	5.99	7	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	122 Xe	ε	724	0.0	0 +	0.0	1 +	83.0	4	5.226	18	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	122 Xe	ε	724	0.0	0 +	148.612	1 +	3.75	16	6.363	28	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{122}\mathrm{Xe}$	ε	724	0.0	0 +	350.053	1 +	9.25	21	5.572	35	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	122 Xe	ε	724	0.0	0 +	416.675	1 +	2.47	11	5.959	45	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{122}Cs	$\beta + \varepsilon$	7210	0.0	1 +	0.0	0 +	49	5	5.411	46	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{122}Cs	$\beta + \varepsilon$	7210	0.0	1 +	1149.07	0 +	3.10	40	6.21	6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	122 In	β-	6.37E3	0.0	1 +	0.0	0 +	69	6	5.14	10	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	122 In	β-	$6.37\mathrm{E3}$	0.0	1 +	2530.02	(0)+	1.83	4	5.74	9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	122 In	β-	6.37E3	0.0	1 +	3205.95	(0) +	2.0	4	5.34	13	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{122}I	$\beta + \varepsilon$	4234	0.0	1+	0.0	$\dot{0+}$	82	6	4.977	33	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{122}I	$\beta + \varepsilon$	4234	0.0	1 +	1357.42	0 +	1.30	40	5.96	13	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{124}Cs	$\beta + \varepsilon$	5926	0.0	1+	0.0	0 +	49	7	5.13	6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{124}Cs	$\beta + \varepsilon$	5926	0.0	1+	1268.89	0 +	4.9	7	5.58	6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{126}Cs	$\beta + \varepsilon$	4796	0.0	1+	0.0	0+	56.4	22	5.085	18	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{126}Cs	$\beta + \varepsilon$	4796	0.0	1+	1313.86	0+	5.40	30	5.401	25	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{126}Ba	$\beta + \varepsilon$	1681	0.0	$^{.}$	0.0	1 +	31	6	5.38	10	
126 Ba ε 1681 0.0 0+ 681.84 1+ 5.4 7 5.66 8	126 Ba	$\beta + \varepsilon$	1681	0.0	$^{.}$	233.63	1 +	16.9	18	5.50	7	
	126 Ba	ε	1681	0.0	0 +	681.84	1 +	5.4	7	5.66	8	

Table 8
(continued $)$

Nuclide	Decay	$Q \; [\text{keV}]$	$E_{P} \ [keV]$	$J\pi$	$E_D \; [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
^{126}Ba	ε	1681	0.0	0 +	1097.48	1+	5.1	6	5.20	9	
^{126}Ba	ε	1681	0.0	0+	1210.75	1+	3.7	5	5.14	10	
^{126}Ba	ε	1681	0.0	0+	1234.32	1+	9.6	10	4.68	9	
126 Ba	ε	1681	0.0	0+	1241.63	1+	3.5	5	5.10	10	
^{126}Ba	ε	1681	0.0	0 +	1293.01	1+	9.1	10	4.57	10	
$^{126}\mathrm{Cd}$	β -	5553.6	0.0	0 +	688.23	1+	85	6	4.043	31	
^{128}Cs	$\beta + \varepsilon$	3929	0.0	1+	0.0	0 +	72.1	14	4.877	9	
^{128}Cs	$\beta + \varepsilon$	3929	0.0	1+	1582.976	0 +	1.52	8	5.609	23	
^{128}Ba	ε	563	0.0	0 +	0.0	1 +	84.0	8	5.49	5	
^{128}Ba	ε	563	0.0	0 +	273.440	1+	15.3	8	5.60	7	
$^{128}\mathrm{Cd}$	β -	6952	0.0	0 +	1172.88	1+	93	9	4.015	42	
^{128}I	$\beta + \varepsilon$	1255.8	0.0	1+	0.0	0 +	6.783	21	5.083	6	
^{128}I	β -	2122.5	0.0	1+	0.0	0 +	80.0	3	6.0958	34	
^{130}Cs	β -	357	0.0	1+	0.0	0 +	1.6	4	5.10	11	
130 Ce	$\beta + \varepsilon$	2204	0.0	0 +	131.01	1 +	42.0	20	4.918	29	
130 Ce	$\beta + \varepsilon$	2204	0.0	0 +	267.31	1 +	7.4	10	5.60	6	
$^{130}\mathrm{Ce}$	$\beta + \varepsilon$	2204	0.0	0 +	523.88	1+	3.90	20	5.736	33	
$^{130}\mathrm{Ce}$	$\beta + \varepsilon$	2204	0.0	0 +	1168.72	1+	3.00	20	5.411	47	
$^{130}\mathrm{Ce}$	ε	2204	0.0	0 +	1196.79	1+	11	1	4.82	5	
$^{130}\mathrm{Ce}$	ε	2204	0.0	0 +	1289.04	1+	4.3	3	5.14	5	
$^{130}\mathrm{Ce}$	ε	2204	0.0	0 +	1431.19	1+	1.0	2	5.62	10	
$^{130}\mathrm{Cd}$	β -	8789	0.0	0 +	2120.2	1+	74	7	4.111	42	
130 Sn	β -	2153	0.0	0 +	702.88	1+	16.3	2	5.248	19	
130 Sn	β -	2153	0.0	0 +	819.09	(1)+	2.1	5	6.00	11	
130 Sn	β -	2153	0.0	0 +	1048.23	1 +	80.5	13	4.104	23	
$^{132}\mathrm{Ce}$	ε	1255	0.0	0 +	182.071	1+	77.10	35	4.996	40	
$^{132}\mathrm{Ce}$	ε	1255	0.0	0 +	279.14	1 +	2.1	3	6.48	8	
$^{132}\mathrm{Ce}$	ε	1255	0.0	0 +	406.87	1 +	6.4	3	5.87	5	
$^{132}\mathrm{Ce}$	ε	1255	0.0	0 +	485.04	1+	5.1	3	5.88	6	
$^{132}\mathrm{Ce}$	ε	1255	0.0	0 +	523.83	1+	1.48	10	6.37	6	
$^{132}\mathrm{Ce}$	ε	1255	0.0	0 +	606.744	1+	4.0	2	5.82	7	
$^{132}\mathrm{Ce}$	ε	1255	0.0	0 +	648.33	1+	1.61	14	6.16	8	
$^{132}\mathrm{Ce}$	ε	1255	0.0	0 +	731.77	1+	1.74	12	5.99	9	
132 Nd	$\beta + \varepsilon$	3802	0.0	0 +	147.72	1+	33.0	20	4.762	42	
132 Nd	$\beta + \varepsilon$	3802	0.0	0 +	714.94	1+	23.0	10	4.616	37	
132 Sn	β -	3088.7	0.0	0 +	1325.15	1+	99	4	4.045	20	
$^{132}{ m Te}$	β -	515.3	0.0	0 +	277.86	1+	100	4	4.863	27	
$^{134}\mathrm{Ce}$	ε	386	0.0	0 +	0.0	1 +	98.9	2	5.28	8	
$^{134}\mathrm{Ce}$	ε	386	0.0	0 +	162.312	1+	0.53	4	7.02	15	
$^{134}\mathrm{Ce}$	ε	386	0.0	0 +	252.483	(1)+	0.050	9	7.49	30	
$^{134}\mathrm{Ce}$	ε	386	0.0	0 +	294.264	(1)+	0.11	1	6.7	5	
$^{134}\mathrm{Ce}$	ε	386	0.0	0 +	355.479	(1)+	0.25	1	4.8	33	
$^{134}\mathrm{Te}$	β -	1509.7	0.0	0 +	846.688	1+	42	2	4.677	25	
$^{134}\mathrm{Te}$	β -	1509.7	0.0	0 +	923.431	1+	44	2	4.472	25	
$^{134}\mathrm{Te}$	β -	1509.7	0.0	0 +	1106.466	1+	14	1	4.420	37	
134 La	$\beta + \varepsilon$	3731	0.0	1+	0.0	0 +	94.71	21	4.920	15	
$^{136}\mathrm{Te}$	β -	5120	0.0	0 +	2656.42	1+	38	4	4.733	47	
$^{136}\mathrm{Te}$	β -	5120	0.0	0 +	3137.1	1+	4.3	5	5.30	5	
$^{136}\mathrm{Te}$	β -	5120	0.0	0 +	3235.2	1+	21.4	24	4.51	5	
136 La	$\beta + \varepsilon$	2.85 E3	0.0	1+	0.0	0 +	97.61	9	4.589	25	
$^{136}\mathrm{Nd}$	$\beta + \varepsilon$	2141	0.0	0 +	149.11	1+	74.2	11	5.039	11	
$^{136}\mathrm{Nd}$	$\beta + \varepsilon$	2141	0.0	0 +	476.63	1+	1.88	21	6.46	5	
$^{136}\mathrm{Nd}$	$\beta + /\varepsilon$	2141	0.0	0+	574.82	1+	12.3	12	5.587	44	

Table 8
(continued)

	Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
	¹³⁶ Nd	$\beta + \varepsilon$	2141	0.0	0+	940.10	(1)+	1.88	14	6.162	35	
	¹³⁸ Nd	$\beta + \varepsilon$	1112	0.0	0+	0.0	1+	95.9	7	5.161	16	
	138 Nd	ε	1112	0.0	0+	325.73	1+	2.9	5	6.37	8	
	138 Xe	β -	2915	0.0	0+	2026.73	1+	35.3	13	4.774	24	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	138 Xe	β -	2915	0.0	0+	2263.13	1+	10.3	4	4.833	29	
	138 Xe	β -	2915	0.0	0+	2337.65	1+	3.31	14	5.143	32	
	138 Pr	$\beta + \varepsilon$	4437	0.0	1+	0.0	0+	97.2	5	4.643	16	
	140 Pm	$\beta + \varepsilon$	6045	0.0	1+	0.0	0+	93.6	6	4.371	13	
	140 Sm	$\beta + \varepsilon$	2756	0.0	0+	0.0	1+	75	5	4.953	31	
	$^{140}\mathrm{Eu}$	$\beta + \varepsilon$	8.47E3	0.0	1+	0.0	0+	70.0	40	4.464	29	
	140 Eu	$\beta + \varepsilon$	8.47 E3	0.0	1+	1599.10	0+	3.5	7	5.30	9	
	$^{140}\mathrm{Gd}$	$\beta + \varepsilon$	5.20E3	0.0	0 +	0.0	1+	46	9	4.60	9	
	$^{140}\mathrm{Gd}$	$\beta + \varepsilon$	$5.20\mathrm{E3}$	0.0	0 +	749.94	1 +	21.0	30	4.62	7	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	140 Xe	β -	4063	0.0	0 +	1427.58	1 +	65	7	4.545	47	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	140 Xe	β -	4063	0.0	0 +	2324.31	1 +	1.1	2	5.59	8	
	140 Pr	$\beta + \varepsilon$	3388	0.0	1+	0.0	0 +	99.39	6	4.4589	31	
	140 Nd	ε	429	0.0	0 +	0.0	1 +	100		5.474	18	
	$^{142}\mathrm{Gd}$	$\beta + \varepsilon$	4349	0.0	0 +	0.0	1 +	52	5	4.828	45	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	142 Dy	$\beta + \varepsilon$	6.44E3	0.0	0 +	0.0	1 +	94.0	20	3.92	9	
	^{142}Ba	β-	2182	0.0	0 +	1078.71	1 +	22.1	8	5.241	24	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{142}Ba	β-	2182	0.0	0 +	1204.35	1 +	46.8	17	4.720	24	
	^{142}Ba	β-	2182	0.0	0 +	1457.90	1 +	15.4	6	4.736	25	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	144 Gd	$\beta + \varepsilon$	3860	0.0	0 +	0.0	1 +	80	14	4.99	8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	144 Eu	$\beta + \varepsilon$	6346	0.0	1 +	0.0	0 +	89.4	7	4.547	7	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	144 Eu	$\beta + \varepsilon$	6346	0.0	1+	2477.8	0 +	1.56	13	5.275	37	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{146}\mathrm{Tb}$	$\beta + \varepsilon$	8322	0.0	1+	0.0	0 +	84.0	20	5.07	22	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{146}\mathrm{Tb}$	$\beta + \varepsilon$	8322	0.0	1 +	2164.72	0 +	2.90	40	5.87	23	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	146 Dy	$\beta + \varepsilon$	5209	0.0	0 +	0.0	1 +	21	5	5.28	11	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	146 Dy	$\beta + \varepsilon$	5209	0.0	0 +	354.85	1 +	4.4	6	5.82	6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	146 Dy	$\beta + \varepsilon$	5209	0.0	0 +	1726.96	1 +	18.7	8	4.579	26	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	146 Dy	$\beta + \varepsilon$	5209	0.0	0 +	1737.40	1 +	8.6	5	4.911	31	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	146 Dy	$\beta + \varepsilon$	5209	0.0	0 +	2082.01	1 +	12.0	7	4.606	31	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁴⁶ Dy	$\beta + \varepsilon$	5209	0.0	0 +	2156.80	1 +	15.2	10	4.468	34	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	146 Ba	β-	4354.9	0.0	0 +	372.53	1 +	28.2	16	4.910	27	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	146 Ba	β-	4354.9	0.0	0 +	708.84	1 +	9.1	6	5.237	31	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	146 Ba	β-	4354.9	0.0	0 +	880.24	1 +	8.6	6	5.173	33	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	146 Ba	β-	4354.9	0.0	0 +	1064.51	1 +	6.3	4	5.208	30	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{146}Ba	β-	4354.9	0.0	0 +	1181.91	1 +	3.15	24	5.443	35	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{146}Ba	β-	4354.9	0.0	0 +	1190.18	1 +	3.21	23	5.430	33	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{146}Ba	β-	4354.9	0.0	0 +	1224.10	1 +	1.70	23	5.69	6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{146}Ba	β-	4354.9	0.0	0 +	1268.96	1 +	2.39	18	5.512	35	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	146 Ba	β-	4354.9	0.0	0 +	1443.45	1 +	3.31	22	5.265	31	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{146}Ba	β-	4354.9	0.0	0 +	1469.15	1+	3.5	3	5.224	39	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{146}Ba	β-	4354.9	0.0	0 +	1481.50	1+	1.83	13	5.498	33	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{146}Ba	β-	4354.9	0.0	0 +	1534.43	1+	4.30	$\frac{1}{23}$	5.094	26	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{146}Ba	β-	4354.9	0.0	0^{+}	1624.43	1+	2.33	16	5.301	<u>-</u> ° 32	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{146}Ce	β-	1048	0.0	0+	351 78	1+	94.3	24	4 04	8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	146 Ce		1048	0.0	0 +	502.95	1+	3.47	- 1	5.11	9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	148 Ce	β-	2137	0.0	0^{+}	390.684	1+	59	4	4.564	32	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{148}Ce	Γ β-	2137	0.0	0^{+}	520.83	1+	16.3	9	4.992	28	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{148}Ce	β-	2137	0.0	0^{+}	765.45	1+	2.1	3	5.61	 6	
150 Er $\beta + / \varepsilon$ 4115 0.0 0+ 476.0 1+ 95.60 10 3.729 17	150 Dv	$\beta + 1 \epsilon$	1796	0.0	0^{+}	397.2	1+	100.	5	3.934	7	
	150 Er	$\beta + \epsilon$	4115	0.0	0 +	476.0	1+	95.60	10	3.729	17	

Table 8
(continued)

_	Nuclide	Decay	$Q \; [\text{keV}]$	$E_{\rm P} \ [\rm keV]$	$J\pi$	$E_D \; [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
	¹⁵⁰ Er	$\beta + \varepsilon$	4115	0.0	0+	1152.0	1+	1.34	21	5.28	7	
	150 Er	$\beta + \varepsilon$	4115	0.0	0+	1490.2	1+	1.24	21	5.16	8	
	¹⁵² Dy	ε	599	0.0	0+	256.93	1+	100		3.92	13	
	152 Er	$\beta + \varepsilon$	3104	0.0	0+	179.3	1+	100.		3.138	6	
	152 Yb	$\beta + \varepsilon$	5.45E3	0.0	0 +	141.7	1+	3.5	9	5.10	12	
	152 Yb	$\beta + \varepsilon$	5.45E3	0.0	0 +	458.6	1+	8.0	6	4.62	6	
	152 Yb	$\beta + \varepsilon$	5.45 E3	0.0	0 +	482.4	1+	87.2	5	3.57	5	
	152 Nd	β -	1105	0.0	0+	294.55	1+	47	6	4.54	7	
	152 Nd	β -	1105	0.0	0 +	570.78	1+	1.44	19	5.43	8	
	$^{152}\mathrm{Nd}$	β -	1105	0.0	0+	592.40	1+	1.65	22	5.31	8	
	$^{152}\mathrm{Pm}$	β -	3509	0.0	1+	0.0	0 +	62	4	6.474	32	
	$^{152}\mathrm{Pm}$	β -	3509	0.0	1+	1082.77	0 +	4.5	5	6.95	5	
	$^{152}\mathrm{Pm}$	β -	3509	0.0	1+	1658.7	0 +	2.7	3	6.70	5	
	$^{154}\mathrm{Yb}$	$\beta + \varepsilon$	4495	0.0	0 +	133.2	1+	5.6	14	3.65	11	
	156 Er	$\beta + \varepsilon$	1327	0.0	0 +	117.58	1+	52	6	4.59	7	
	$^{156}\mathrm{Sm}$	β-	722	0.0	0 +	22.6	1+	48	15	6.05	14	
	$^{156}\mathrm{Sm}$	β-	722	0.0	0 +	291.4	1+	44	8	5.37	8	
	156 Eu	β-	2452.5	0.0	0 +	1965.91	1+	29	3	7.342	46	
	156 Eu	β-	2452.5	0.0	0 +	2026.60	1+	5.7	6	7.856	47	
	$^{156}\mathrm{Eu}$	β-	2452.5	0.0	0 +	2186.74	1+	10.3	10	6.934	46	
	$^{156}\mathrm{Eu}$	β-	2452.5	0.0	0 +	2269.89	1+	4.2	4	6.809	49	
	$^{156}\mathrm{Eu}$	β-	2452.5	0.0	0 +	2300.75	1+	0.123	11	8.09	5	
	156 Eu	β-	2452.5	0.0	0 +	2360.78	1+	0.026	3	8.09	7	
	$^{158}\mathrm{Er}$	ε	884	0.0	0 +	146.801	1 +	76	11	4.82	8	
	$^{158}\mathrm{Er}$	ε	884	0.0	0 +	385.708	1 +	4.4	3	5.69	8	
	$^{158}\mathrm{Er}$	ε	884	0.0	0 +	433.168	1+	4.0	4	5.63	10	
	$^{158}\mathrm{Er}$	ε	884	0.0	0 +	461.698	1+	8.9	7	5.22	10	
	160 Yb	$\beta + \varepsilon$	2138	0.0	0 +	215.84	1 +	80	8	4.29	5	
	$^{160}\mathrm{Yb}$	$\beta + \varepsilon$	2138	0.0	0 +	494.49	1 +	1.94	24	5.76	6	
	$^{160}\mathrm{Yb}$	$\beta + \varepsilon$	2138	0.0	0 +	547.38	1 +	4.3	5	5.38	6	
	160 Yb	$\beta + \varepsilon$	2138	0.0	0 +	605.37	1+	5.7	16	5.22	13	
	160 Yb	$\beta + \varepsilon$	2138	0.0	0 +	797.96	1 +	1.29	21	5.75	8	
	$^{162}\mathrm{Gd}$	β-	1598.8	0.0	0 +	442.11	1 +	95.5	5	4.749	12	
	¹⁶² Ho	E I	2140.6	0.0	1+	1400.29	0+	4.1	3	5.096	43	
	162 Yb	$\beta + \varepsilon$	1656	0.0	0+	163.351	1+	73	8	4.69	5	
	162 Yb	$\beta + \varepsilon$	1656	0.0	0 +	415.88	1+	1.70	30	6.15	8	
	162 Yb	ε ε	1656	0.0	0 +	739.45	1+	3.3	4	5.59	6	
	162 Yb	ε	1656	0.0	0 +	771.00	1 +	2.1	4	5.75	9	
	162 Yb	ε	1656	0.0	0 +	782.64	1 +	1.9	3	5.78	8	
	¹⁶⁴ Ho	ε	987.1	0.0	1+	0.0	0+	41	6	4.64	6	
	$^{164}\mathrm{Ho}$	β-	962.1	0.0	1+	0.0	0 +	28	5	5.59	8	
	164 Tm	$\beta + \varepsilon$	4034	0.0	1+	0.0	0+	63.0	30	4.901	32	
	164 Tm	$\beta + \varepsilon$	4034	0.0	1+	1246.07	0+	1.08	10	6.127	47	
	164 Tm	$\beta + \varepsilon$	4034	0.0	1+	1702.20	0^{+}	1.63	13	5.745	42	
	164 Tm	$\beta + /\varepsilon$	4034	0.0	1+	1765.20 1765.85	0+	1.34	11	5 802	43	
	164 Tm	$\beta + /\varepsilon$	4034	0.0	1+	2172.96	0+	1.54	15	5 55	5	
	¹⁶⁶ Hf	$\beta + /\varepsilon$	2162	0.0	0+	135.9	1+	71	6	4.602	46	
	¹⁶⁶ Hf	$\beta + /\epsilon$	2162	0.0	0^{+}	543.7	1+	9.2	13	5.28	7	
	^{166}W	$\beta + 1 \varepsilon$	4210	0.0	0^{+}	125 79	1+	90	11	4.08	6	
	^{166}W	$\beta + 1 \epsilon$	4210	0.0	0+	395.93	1+	10.0	15	4 93	7	
	166 Dv	β- β-	485.9	0.0	0+	425,987	1+	1 17	18	5.30	7	
	166 Yh	r F	293	0.0	0+	82.29	1+	100	10	4 90	8	
	168W	$\beta \pm l \epsilon$	3501	0.0	$0 \pm$	178.43	+ 1⊥	96	20	4 18	g	
	••	P1/5	3001	0.0	01	1,0.40	- I	00	40	1.10	0	

Table 8
(continued $)$

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \; [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
168 Dy	β -	1.50E3	0.0	0 +	192.57	1+	33	3	5.47	21	
$^{168}\mathrm{Dy}$	β -	1.50E3	0.0	0 +	630.41	1+	61	3	4.56	31	
170 Lu	$\beta + \varepsilon$	3458	0.0	0 +	2039.85	1+	3.84	20	8.137	28	
170 Lu	ε	3458	0.0	0+	2661.02	1+	0.29	5	8.73	8	
170 Lu	ε	3458	0.0	0 +	2783.12	1 +	1.60	9	7.834	39	
170 Lu	ε	3458	0.0	0 +	2956.55	1 +	0.501	25	8.055	45	
170 Lu	ε	3458	0.0	0 +	2965.66	1 +	2.32	13	7.371	47	
170 Lu	ε	3458	0.0	0 +	3042.46	1+	0.21	4	8.25	10	
170 Lu	ε	3458	0.0	0 +	3065.36	1+	0.34	8	7.98	11	
170 Lu	ε	3458	0.0	0 +	3131.10	1+	0.23	5	7.97	11	
170 Lu	ε	3458	0.0	0 +	3146.03	1+	0.49	3	7.59	7	
170 Lu	ε	3458	0.0	0 +	3202.94	1+	0.46	12	7.40	14	
170 Lu	ε	3458	0.0	0 +	3258.18	1 +	0.27	4	7.36	13	
170 Lu	ε	3458	0.0	0 +	3291.82	1 +	0.19	5	7.30	18	
170 Lu	ε	3458	0.0	0 +	3301.95	1 +	0.37	5	6.93	17	
$^{170}\mathrm{Hf}$	ε	1052	0.0	0 +	98.49	1 +	2.3	7	7.55	14	
$^{170}\mathrm{Hf}$	ε	1052	0.0	0 +	116.00	(1)+	3.4	10	7.37	13	
$^{170}\mathrm{Hf}$	ε	1052	0.0	0 +	198.37	1+	15	4	6.64	12	
$^{170}\mathrm{Hf}$	ε	1052	0.0	0 +	349.00	1 +	1.2	4	7.55	15	
$^{170}\mathrm{Hf}$	ε	1052	0.0	0 +	785.46	1 +	43	12	5.03	19	
$^{172}\mathrm{Er}$	β-	891.0	0.0	0 +	610.062	1 +	46.6	22	5.606	31	
$^{172}\mathrm{Hf}$	ε	334	0.0	0 +	109.41	(1)+	5.9	13	8.71	17	
$^{172}\mathrm{Hf}$	ε	334	0.0	0 +	179.85	(1)+	19	2	7.76	24	
172 Hf	ε	334	0.0	0 +	191.60	(1)+	58^{-5}	$\frac{-}{5}$	7.17	$27^{$	
172 Hf	ε	334	0.0	0^{+}	232.33	(1)+	6.4	10	7.64	49	
¹⁸⁰ Ta	ε	845.8	0.0	1+	0.0	(-)	61	2	5.761	15	
180 Ta	β-	702.6	0.0	1+	0.0	0 +	11.1	15^{-}	6.89	6	
182 Pt	$\beta + \varepsilon$	2883	0.0	0+	210.97	1+	54	14	4.80	11	
182 Pt	$\beta + \varepsilon$	2883	0.0	0^{+}	1002.36	1+	7.0	14	5.34	9	
182 Pt	$\beta + \varepsilon$	2883	0.0	0 +	1024.87	(1)+	2.5	5	5.78	9	
184 Pt	$\beta + \varepsilon$	2278	0.0	0^{+}	428.24	1+	3.0	10	6.51	15	
184 Pt	$\beta + \varepsilon$	2278	0.0	0^{+}	478.73	(1)+	1.10	30	6.92	12	
184 Pt	$\beta + \varepsilon$	2278	0.0	0^{+}	484.88	1+	3.63	10	6.396	22	
184 Pt	$\beta + \varepsilon$	2278	0.0	0^{+}	903.84	1+	29.0	30	5.25	5	
184 Pt	$\beta + \epsilon$	2278	0.0	0^{+}	924.98	1+	2.61	17	6 281	38	
184 Pt	$\beta + \epsilon$	2278	0.0	0+	1065.26	1+	11.5	8	5.537	41	
184 Pt	$\beta + \epsilon$	2278	0.0	0^{+}	1086.20	1+	23.3	15	5.001	39	
184 H σ	$\beta + /\varepsilon$	3974	0.0	0^{+}	306.90	1+	6.9	19	5.40	12	
184 Hg	$\beta + \varepsilon$	3974	0.0	0^{+}	364.19	1+	3.6	10	5.66	12	
184 Hg	$\beta + \epsilon$	3974	0.0	0^{+}	490.91	1+	58	7	4 41	5	
¹⁸⁶ Hø	$\beta + /\varepsilon$	3176	0.0	0^{+}	363 61	1+	82	8	4 45	5	
¹⁸⁸ Ho	$\beta + \epsilon$	2173	0.0	0+	82.7	1+	65.0	40	4 624	34	
¹⁸⁸ Ho	$\beta + /\epsilon$	2173	0.0	0+	217.5	(1) +	1.21	14	6 29	5	
¹⁸⁸ Ho	e prije	2173	0.0	0+	1205.0	$(1)^+$	1.21	15	5.72	7	
190 W	β_	1914	0.0		310.7	11	00 7	3	5.11	7	
¹⁹² Hg	р- с	761	0.0		306.47	1_ 1_	66 66	5	5.13	7	
192 ph	$\beta \perp l_{c}$	3320	0.0	0	1105 /6	⊥ ⊢ 1⊥	58	7	1 78	6	
194ph	$\beta \pm 1c$	2730	0.0	$0\pm$	1510 22	⊥⊤ 1⊥	94 R	16	±.10 5 198	42	
$204 \mathbf{p}_0$	$\beta \perp l_{c}$	2100	0.0	0	805 70	⊥ ⊢ 1⊥	24.0 1 QA	30	0.120 7 222	74 20	
$204 P_{O}$	pt/c c	2000 2305	0.0	$0\pm$	1255 20	⊥⊤ 1⊥	4.50 11 9	50	6 700	29 25	
206 po	c c	2000 18/10	0.0	0+ 0-	1200.00	1 (1)	10.2	5	0.700 8.106	20 18	
206 po	c	1840	0.0	0+	991.07 1380 49	$(1)^+$	19.0 74 1	ม 19	6 830	10 96	
206 Do	2	1040	0.0	0+	1509.42 1502 50	$(1)^+$	(4.1	10 9	0.000	20 40	
FO	2	1040	0.0	0+	1023.08	(1)+	0.70	3	0.444	40	

Table 8
(continued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
²⁰⁶ Po	ε	1840	0.0	0 +	1600.15	(1)+	0.97	3	8.01	5	
210 Rn	ε	2367	0.0	0 +	1488.59	(1)+	1.6	1	7.277	35	
210 Rn	ε	2367	0.0	0 +	1525.52	(1)+	1.9	1	7.162	32	
$^{214}\mathrm{Pb}$	β-	1018	0.0	0 +	838.994	1 +	2.75	8	4.53	9	
^{244}Am	β-	1427.3	89.5	1 +	984.914	0 +	1.5	3	6.67	10	

15.3. $\Delta J=0$, $\Delta \pi=no$, $\log ft \ge 4$, not $0^+ \rightarrow 0^+$

Table 9

List of allowed transitions with $\Delta J=0$ and $\Delta \pi=n0$, but also log $ft \ge 4$, and not $0^+ \rightarrow 0^+$.

Nuclide	Decay	$Q \; [\text{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
⁸ Li	β -	1.600413E4	0.	2+	3030	2+	100		5.5933	16	
⁹ Li	β -	1.360645E4	0.0	3/2-	0.0	3/2-	40.9	54	5.41	5	
⁹ Li	β -	1.360645E4	0.0	3/2-	2830	3/2-	9.3	10	5.566	48	
⁹ Li	β -	1.360645E4	0.0	3/2-	7940	3/2-	6.79	76	4.39	6	
11 Li	β -	2.05511E4	0.0	3/2-	2654	3/2-	17	4	5.06	10	
11 Li	β -	2.05511E4	0.0	3/2-	8020	3/2-	15.5	31	4.35	9	
^{11}Li	β -	2.05511E4	0.0	3/2-	8813	3/2-	8.9	14	4.45	7	
$^{11}\mathrm{Be}$	β -	1.150946E4	0.0	1/2 +	6791.80	1/2 +	6.47	45	5.937	30	
$^{13}\mathrm{B}$	β -	1.34369E4	0.0	3/2-	3684.507	3/2-	7.6	8	4.454	46	Р
$^{15}\mathrm{C}$	β -	9771.7	0.0	1/2 +	5298.822	1/2 +	63.2	8	4.114	6	
^{16}N	β -	1.04209E4	0.0	2-	8871.9	2-	1.06	7	4.356	29	
$^{17}\mathrm{N}$	β-	8679	0.0	1/2-	5931.6	1/2-	6.69	31	4.385	23	
$^{17}\mathrm{Ne}$	$\beta + \varepsilon$	1.454875E4	0.0	1/2-	6037	1/2-	7.80	20	4.555	12	
$^{18}\mathrm{N}$	β-	1.3896E4	0.0	1-	4455.52	1-	47.2	9	5.168	9	
$^{18}\mathrm{N}$	β-	1.3896E4	0.0	1-	6198.22	1-	1.2	2	6.34	7	
$^{18}\mathrm{N}$	β-	1.3896E4	0.0	1-	7620	1-	6.8	5	5.174	33	
$^{18}\mathrm{N}$	β-	1.3896E4	0.0	1-	8040	1-	1.8	2	5.612	49	
^{19}O	β-	4820.3	0.0	5/2 +	197.143	5/2 +	45.4	15	5.379	14	
20 F	β-	7024.469	0.0	2^{+}	1633.674	2+	99.9914	6	4.97926	31	
20 Na	$\beta + \varepsilon$	1.38924E4	0.0	2+	1633.674	2+	79.44	27	4.9906	27	
²⁰ Na	$\beta + \varepsilon$	1.38924E4	0.0	2^{+}	7421.9	$\frac{-}{2+}$	15.96	$\frac{-1}{22}$	4.201	6	
21 F	β-	5684 2	0.0	$\frac{-}{5/2+}$	350 727	$\frac{5}{2+}$	74 1	22	4 659	13	
$^{21}M\sigma$	$\beta + \epsilon$	1.30887E4	0.0	5/2+	331.93	5/2+	41	5	4 80	5	Р
$^{21}M\sigma$	$\beta + \epsilon$	1.30887E4	0.0	5/2+	4294	5/2+	5 40	30	4 822	26	P
²² A1	$\beta + \epsilon$	1.860E4	0.0	(4)+	6307	4+	47	6	5.52	10	P
^{23}O	β-	1.134E4	0.0	1/2+	2244	(1/2)+	45.8	16	4.308	49	P
^{23}Ne	β-	4375.81	0.0	5/2+	440.3	5/2+	31.9	10	5.386	14	P
24 Na	β-	5515 677	0.0	3/ <u>-</u> / 4+	4122 889	3/ <u>-</u> 4+	99.855	5	6 12436	12	-
24 Al	$\beta + \epsilon$	1 388477E4	0.0	4+	4122.889	4+	77	10	6 13	6	
$^{24}A1$	$\beta + \epsilon$	1 388477E4	0.0	4+	6010.84	4+	1.20	10	6.435	36	
$^{24}A1$	$\beta + \epsilon$	1 388477E4	0.0	4+	9301 15	4+	2.50	20	4 805	35	
^{25}Ne	β-70 β-	7322	0.0	1/2+	1069.32	1/2+	19.5	20	4 731	46	Р
²⁵ Na	р В-	3835.0	0.0	5/2+	0.0	5/2+	62.5	20	5 257	15	P
^{25}Si	$\beta + l \epsilon$	1 2743E4	0.0	5/2+	0.0	5/2+	25	20	5.25	12	P
^{25}Si	$\beta + \epsilon$	1.2743E4	0.0	5/2+	4582	5/2+	$\frac{20}{320}$	30	5 115	41	P
^{25}Si	$\beta + \epsilon$	1.2743E4	0.0	5/2+	5802	5/2+	1.70	10	5 008	26	P
^{26}Na	β-70 β-	9353 8	0.0	3+	3941 48	3+	1.10	4	5.875	13	1
²⁶ Na	р В-	9353.8	0.0	3+	4350.02	3+	3.17	7	5 334	10	
²⁶ Na	р В-	9353.8	0.0	3+	6125.00	3+	1.72	• 4	4.742	10	
27Na	р В-	9068.8	0.0	$5/2 \perp$	1698.06	$5/2\perp$	11.72	7	5.012	28	р
$27 M_{\odot}$	р В-	2610.27	0.0	$\frac{0}{2}$	843.76	$\frac{5}{2}$	70.94	ġ	4 7341	14	1
²⁸ Na	р В-	1.4032E4	0.0	1/2 1	4561.0	1/2 1+	3.9	4	5.08	5	Р
28Na	β- β-	1.4032E4	0.0	1_ 1_	4001.0 5270.1	1_ 1_	1.5	5	5.00	14	P
28p	p- B⊥/c	1.4052114 1.43440E4	0.0	1 3⊥	6276.40	1 3⊥	7.60	40	0.20 4 704	<u>14</u> 93	1
28p	$\beta \perp l \epsilon$	1.43440E4	0.0	$3 \pm$	7700.21	0 3⊥	2.44	40	4.794	25 16	
28 D	$\beta \pm lc$	1.43449D4 1.43440F4	0.0	3^+	8588.80	3^+	2.44	9 11	4.735	10	
1 29 Ma	ρ_{\pm}/ε	1.49449E4 7505 40	0.0	ป⊤ 3 /ว⊥	0000.00	ป+ 3 /ว⊥	0.04 01	6	4.309 4-75	10 19	Þ
29M~	ρ- β	7505 40	0.0	$\frac{3}{2+1}$	2224.1 2065 6	3/2+ 3/2+	21 7 0	15	4.70 7 09	10	I D
29 A 1	ρ- β	1090.40 2687 20	0.0	5/2+	2009.0 2099.17	5/2+	1.0	10 1	4.90 5 740	9 19	T
30N _c	ρ- β	3007.32 1 73560F4	0.0	0/2+ 2+	2020.17 1709 1	$\frac{3}{2+}$	ی.0 5	1 1	0.740	12	D
ina 30 Ma	ρ- β	1.73500E4 1.73560E4	0.0	$\frac{2+}{2+}$	1400.1	$\frac{2+}{2}$	0 71	0 L	U.10 K 49	9 E	Г D
⊥Nd	ρ -	1.10000E/4	0.0	4十	0094.8	4十	(.1	0	0.40	0	Г

Table 9
(continued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
30 Na	β -	1.73560E4	0.0	2 +	5413.1	2+	7.8	9	5.34	5	Р
^{30}Al	β -	8568.8	0.0	3+	4830.84	3+	6.6	2	4.995	15	Р
^{30}Al	β -	8568.8	0.0	3+	5231.56	3+	2.6	2	5.180	34	Р
31 Na	β -	1.5368E4	0.0	3/2 +	673.08	3/2 +	6	1	5.46	7	Р
^{31}Cl	$\beta + \varepsilon$	1.20080E4	0.0	3/2 +	4207.69	(3/2)+	4.15	27	4.809	28	Р
^{31}Cl	$\beta + \varepsilon$	1.20080E4	0.0	3/2 +	4519.71	3/2 +	1.13	9	5.278	35	Р
$^{31}\mathrm{Cl}$	$\beta + \varepsilon$	1.20080E4	0.0	3/2 +	6390.23	3/2 +	3.38	12	4.114	16	Р
^{32}Cl	$\beta + \varepsilon$	1.26808E4	0.0	1 +	4695.5	1 +	6.10	9	4.892	7	
$^{33}\mathrm{Ar}$	$\beta + \varepsilon$	1.16190E4	0.0	1/2 +	810.63	1/2 +	41.0	8	4.522	10	
$^{33}\mathrm{Ar}$	$\beta + \varepsilon$	1.16190E4	0.0	1/2+	4441	1/2 +	2.375	20	4.807	6	
$^{35}\mathrm{P}$	β -	3988.4	0.0	1/2 +	1572.29	1/2 +	98.80	3	4.129	7	
$^{35}\mathrm{S}$	β -	167.322	0.0	3/2+	0.0	3/2+	100		5.02107	30	
$^{35}\mathrm{K}$	$\beta + \varepsilon$	1.18744E4	0.0	3/2+	0.0	3/2+	19.0	40	5.08	9	Р
^{36}P	β-	1.0413E4	0.0	4-	5021.5	4-	10.7	7	5.721	37	Р
$^{36}\mathrm{K}$	$\beta + \varepsilon$	1.281436E4	0.0	2 +	1970.84	2 +	44.0	40	4.786	40	
$^{36}\mathrm{K}$	$\beta + \varepsilon$	1.281436E4	0.0	2 +	4441.54	2 +	8.4	10	4.91	5	
$^{37}\mathrm{S}$	β-	4865.13	0.0	7/2-	3103.510	7/2-	94.0	6	4.3908	33	
$^{37}\mathrm{Ar}$	ε	813.87	0.0	3'/2+	0.0	3/2+	100		5.101	5	
$^{39}\mathrm{Cl}$	β-	3442	0.0	3/2+	1517.540	3/2+	83	3	5.665	17	
$^{40}\mathrm{Sc}$	$\beta + \varepsilon$	1.43230E4	0.0	4-	5613.1	4-	12.0	30	4.56	11	
$^{41}\mathrm{Ar}$	β-	2492.04	0.0	7/2-	1293.64	7/2-	99.16	2	5.0551	5	
$^{41}\mathrm{Ti}$	$\beta + \varepsilon$	1.2945E4	0.0	3'/2+	2095	3'/2+	5.30	30	5.065	25	Р
$^{41}\mathrm{Ti}$	$\beta + \varepsilon$	1.2945E4	0.0	3/2+	3560	3/2+	2.40	20	5.075	37	Р
41 Ti	$\beta + \varepsilon$	1.2945E4	0.0	3/2+	4776	3/2+	2.10	30	4.81	6	Р
41 Ti	$\beta + \varepsilon$	1.2945E4	0.0	3/2+	5581	3/2+	1.75	10	4.647	27	P
^{43}K	β-	1833.48	0.0	3/2+	990.257	3/2+	90.9	6	5.6046	36	
^{43}Sc	$\beta + \varepsilon$	2220.7	0.0	7/2-	0.0	7/2-	77.5	7	5.051	5	
^{44}Sc	$\beta + \varepsilon$	3652.7	0.0	2+	1157.039	2+	98.970	20	5.3257	22	
^{44}Sc	ε	3652.7	0.0	2^{+}	2656.530	2^{+}	1.02	2	5.177	$12^{$	
^{44}Sc	ε	3652.7	271.240	6+	3285.00	6+	1.20	7	5.880	$27^{$	
^{44}V	$\beta + \varepsilon$	1.3741E4	0.0	(2)+	2530.98	2+	23.0	30	4.63	6	Р
$^{44}\mathrm{V}$	$\beta + \varepsilon$	1.3741E4	0.0	(2)+	4115.3	2+	14.7	22	4.47	7	Р
^{45}K	β-	4196.6	0.0	3/2+	1879.90	$\frac{3}{2+}$	51	4	5.746	37	
⁴⁵ Ti	$\beta + \varepsilon$	2062.1	0.0	7/2-	0.0	7/2-	99.685	17^{-1}	4.6000	19	
⁴⁶ K	β-	7725.7	0.0	2-	5051.96	2-	39.7	13	5.078	14	
^{46}Sc	β-	2366.6	0.0	- 4+	2009.846	- 4+	99.9964	7	6.2108	29	
$^{47} m K$	β-	6632.7	0.0	1/2+	2599.52	1/2+	80	$\frac{1}{2}$	4.816	11	
47 Ca	β-	1992.2	0.0	$\frac{7}{2}$	0.0	7/2-	17.7	5	8.507	12	
^{47}Sc	β-	600.8	0.0	7/2-	159.381	7/2-	68.4	6	5.298	8	
^{48}Sc	β-	3988.9	0.0	6+	3333.208	6+	90.12	22	5.528	12	
^{48}Sc	β-	3988.9	0.0	6+	3508.569	6+	9.88	 22	6.002	19	
^{48}V	$\beta + \varepsilon$	4014.9	0.0	4+	2295.658	4+	89.50	30	6.1809	27	
^{48}V	ε ε	4014 9	0.0	4+	3239 797	4+	7 871	7	6 1756	46	
49 Ca	β-	5262.4	0.0	$\frac{3}{2}$	308452	$\frac{3}{2}$ -	90.20	5	5 0883	20	
^{49}Sc	β-	2001.6	0.0	$\frac{3}{2}$	0.0	$\frac{3}{2}$	99.94	1	5.7210	23	
^{49}Cr	$\beta + \epsilon$	2629.8	0.0	5/2-	90 6391	5/2-	37.3	14	5.032	17	
50 Sc	β-	6894.7	0.0	5+	4880 4	5^{-}_{-}	1.445	32	6.048	10	
^{51}Sc	β-	6482.6	0.0	(7/2)-	1437.3	$\frac{7}{2}$	27.5	6	5.599	10	Р
^{51}Sc	р В-	6482.6	0.0	(7/2)-	2691 4	$\frac{7}{2}$	2.03	18	6.171	39	P
51 Ti	р В-	2470.14	0.0	3/2-	928.63	3/2-	8.1	4	5 363	21	*
^{51}Cr	r E	752.39	0.0	$\frac{3}{7/2}$	0.0	7/2-	90.070	10	5 397	6	
52 Mn	$\beta + 1 \epsilon$	4708.12	0.0	6+	3113 883	$\frac{1}{6+}$	90.8	8	5.5626	41	
^{52}Mn	$\beta + \epsilon$	4708.12	377.749	2+	1434.083	2+	99.7	$\tilde{5}$	5.3182	47	
	, . , -						-				

Table 9
(continued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{P} \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
⁵³ Ti	β -	4970.2	0.0	(3/2)-	1549.6	(3/2)-	10	3	5.72	13	Р
53 Ti	β -	4970.2	0.0	(3/2)-	2084.0	(3/2)-	6.7	7	5.566	47	Р
53 Ti	β -	4970.2	0.0	(3/2)-	2584.0	(3/2)-	15.0	14	4.860	42	Р
53 Ti	β -	4970.2	0.0	(3/2)-	2930.5	(3/2)-	1.0	3	5.75	13	Р
53 Fe	$\beta + \varepsilon$	3742.9	0.0	7/2-	0.0	7/2-	56	8	5.23	6	
$^{55}\mathrm{Co}$	$\beta + \varepsilon$	3451.43	0.0	7/2-	1316.62	7/2-	5.60	40	6.737	31	
$^{55}\mathrm{Co}$	$\beta + \varepsilon$	3451.43	0.0	7/2-	1408.50	7/2-	36.4	23	5.796	27	
56 Co	$\beta + \varepsilon$	4566.65	0.0	4 +	2085.1045	4 +	20.8	16	8.633	33	
56 Co	$\beta + \varepsilon$	4566.65	0.0	4 +	3122.970	4 +	10.05	6	7.5871	35	
$^{56}\mathrm{Co}$	ε	4566.65	0.0	4 +	4100.363	4 +	12.66	4	6.4479	34	
$^{56}\mathrm{Co}$	ε	4566.65	0.0	4 +	4298.096	4 +	3.688	13	6.4956	40	
$^{56}\mathrm{Co}$	ε	4566.65	0.0	4 +	4458.406	4 +	0.209	7	6.922	16	
^{57}Mn	β -	2695.7	0.0	5/2-	136.47376	5/2-	11.5	5	5.575	20	
^{57}Mn	β -	2695.7	0.0	5/2-	706.445	5/2-	4.67	20	5.504	20	
⁵⁷ Ni	$\beta + \varepsilon$	3261.7	0.0	3/2-	1377.666	3/2-	64.5	22	5.649	15	
57 Ni	$\beta + \varepsilon$	3261.7	0.0	3/2-	1757.608	3/2-	5.66	21	6.230	16	
⁵⁷ Ni	ε	3261.7	0.0	3/2-	3108.17	(3/2)-	0.060	3	6.120	22	
$^{58}\mathrm{Co}$	$\beta + \varepsilon$	2308.0	0.0	2^{+}	810.7666	2+	98.80	20	6.6129	28	
$^{58}\mathrm{Co}$	ε	2308.0	0.0	2 +	1674.736	2 +	1.21	2	7.699	8	
$^{58}\mathrm{Cu}$	$\beta + \varepsilon$	8561.02	0.0	1 +	2902.86	1 +	4.6	14	5.14	13	Р
^{59}Mn	β-	5139.6	0.0	5/2-	472.72	5/2-	21	4	5.18	8	Р
$^{59}\mathrm{Mn}$	β-	5139.6	0.0	5/2-	570.75	5/2-	10.9	20	5.43	8	Р
59 Fe	β-	1564.88	0.0	3'/2-	1099.257	3/2-	53.1	15	6.708	12	
59 Fe	β-	1564.88	0.0	3'/2-	1291.601	3'/2-	45.3	11	5.993	11	
$^{59}\mathrm{Cu}$	$\beta + \varepsilon$	4798.38	0.0	3'/2-	0.0	3'/2-	58.10	40	5.0418	40	Р
$^{59}\mathrm{Cu}$	$\beta + \varepsilon$	4798.38	0.0	3'/2-	878.00	3'/2-	8.80	40	5.347	20	Р
$^{59}\mathrm{Cu}$	$\beta + \varepsilon$	4798.38	0.0	3'/2-	1734.67	3'/2-	2.000	40	5.331	9	Р
^{60}Mn	β-	8445.2	271.21	4^{+}	3072.01	4^{+}	3.2	5	5.96	7	Р
$^{60}\mathrm{Cu}$	$\beta + \varepsilon$	6128.0	0.0	2+	2158.95	2+	15.3	12	6.380	35	
$^{60}\mathrm{Cu}$	$\beta + \varepsilon$	6128.0	0.0	2+	3124.16	2+	52.3	24	5.101	21	
$^{60}\mathrm{Cu}$	$\beta + \varepsilon$	6128.0	0.0	2 +	3269.48	2 +	4.99	23	5.983	21	
$^{61}\mathrm{Co}$	β-	1323.9	0.0	7/2-	917.5	(7/2)-	4.4	4	4.794	40	
$^{61}\mathrm{Cu}$	$\beta + \varepsilon$	2238.0	0.0	3'/2-	0.0	3/2-	67	6	5.088	39	
$^{61}\mathrm{Cu}$	$\beta + \varepsilon$	2238.0	0.0	3'/2-	1185.239	3'/2-	4.3	8	5.00	8	
61 Zn	$\beta + \varepsilon$	5635	0.0	3'/2-	0.0	3'/2-	66.7	17	5.411	13	Р
61 Zn	$\beta + \varepsilon$	5635	0.0	3/2-	1660.44	3/2-	11.1	7	5.316	29	Р
61 Zn	$\beta + \varepsilon$	5635	0.0	3/2-	2358.13	3/2-	1.36	9	5.717	32	Р
61 Zn	$\beta + \varepsilon$	5635	0.0	3/2-	2472.50	3/2-	1.37	9	5.618	32	Р
61 Zn	$\beta + \varepsilon$	5635	0.0	3/2-	2683.96	3/2-	1.49	10	5.392	33	Р
61 Ga	$\beta + \varepsilon$	9214	0.0	3/2-	418.3	3/2-	1.30	40	5.44	13	Р
^{62}Co	β-	5322	0.0	(2)+	1172.9	2^{+}	66.7	11	5.782	31	P
^{62}Co	β-	5322	0.0	(2)+	2301.8	$\frac{-}{2+}$	24.3	8	5.613	34	P
^{62}Co	β-	5322	0.0	$(2)^+$	3158.0	$\frac{-}{2+}$	2.8	6	5.93	10	P
^{62}Co	β-	5322	0.0	$(2)^+$	3518.7	$\frac{-}{2+}$	17	3	5.82	8	P
63 Zn	$\beta + \epsilon$	3366 4	0.0	$\frac{2}{3}/2$ -	0.0	$\frac{2}{3}/2$ -	84.0	7	5 4123	39	-
^{65}Ni	β-7,0 β-	2137.9	0.0	5/2-	1115 55	5/2-	10.18	13	6.078	6	
65 Zn	r E	1351.65	0.0	5/2-	1115 549	5/2-5/2-	50.04	10	5 897	9	
65 Ga	$\beta + 1 \epsilon$	3254.5	0.0	3/2-	115 126	3/2-	62	15	4 95	11	Р
65 Ga	$\beta + 1 \epsilon$	3254.5	0.0	3/2-	206.95	3/2-	11 1	23	5.62	9	P
65 Ga	$\beta + /\epsilon$	3254.5	0.0	3/2-	1469.80	3/2-	1 40	30	5.11	9	P
67 Ga	ρ1/C	1001.2	0.0	3/2-	184576	3/2-	22 71	9	5 520	14	Ŧ
67 Ga	e F	1001.2	0.0	3/2-	303 597	3/2-	22.11	3	5.020 5.243	15	
67 Ge	$\beta + 1 \epsilon$	4205 4	0.0	1/2	167.01	$\frac{3}{1/2}$	20.0 76	5	5 617	30	
	p 1/0		0.0	-/ -	101.01	±/ -		9	0.011	00	

Table 9
(continued)

Nuclide	Decay	$Q \; [\text{keV}]$	$E_{P} [keV]$	Jπ	E_{D} [keV]	Jπ	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
⁶⁷ Ge	$\beta + \varepsilon$	4205.4	0.0	1/2-	1081.64	1/2-	3.80	40	6.241	46	
^{68}As	$\beta + \varepsilon$	8084.3	0.0	3+	2429.5	3+	36.3	20	5.898	24	Р
68 Cu	β -	4440.1	721.26	6-	3610.8	(6)-	6.3	17	5.41	12	Р
69 Cu	β -	2681.7	0.0	3/2-	834.46	(3/2)-	8.8	15	5.45	8	
69 Cu	β -	2681.7	0.0	3/2-	1828.01	3/2-	1.8	3	4.83	8	
69 Ge	$\beta + \varepsilon$	2227.1	0.0	5/2-	574.12	5/2-	12.3	18	6.24	6	
69 Ge	$\beta + \varepsilon$	2227.1	0.0	5/2-	1106.78	5/2-	37.0	40	5.325	47	
^{69}Ge	ε	2227.1	0.0	5/2-	1723.35	5/2-	0.079	11	7.29	6	
69 Ge	ε	2227.1	0.0	5/2-	2023.68	5/2-	0.63	8	5.58	6	
69 Ge	ε	2227.1	0.0	5/2-	2044.9	5/2-	0.047	8	6.61	7	
^{69}As	$\beta + \varepsilon$	3988	0.0	5/2-	0.0	5/2-	75.8	9	5.488	22	
^{70}As	$\beta + \varepsilon$	6228.1	0.0	4+	2806.25	4+	1.30	40	7.39	13	
^{70}As	$\beta + \varepsilon$	6228.1	0.0	4 +	3058.720	4+	38.8	21	5.715	24	
$^{71}\mathrm{Kr}$	$\beta + \varepsilon$	1018E1	0.0	(5/2)-	407.12	(5/2)-	4.40	40	4.88	5	
71 Zn	β-	2810.3	155.62	9/2+	1493.865	9/2+	85.3	12	6.023	7	
^{71}As	$\beta + \varepsilon$	2013.4	0.0	5/2-	174.948	5/2-	83.9	21	5.869	13	
^{71}As	ε	2013.4	0.0	5/2-	1026.572	5/2-	1.54	5	6.882	18	
^{71}As	ε	2013.4	0.0	5/2-	1212.499	5'/2-	1.08	6	6.853	27	
72 Ga	β-	3997.6	0.0	3-	2515.255	3-	9.18	4	7.5485	21	
72 Ga	β-	3997.6	0.0	3-	2943.874	3-	1.953	16	7.6430	38	
72 Ga	β-	3997.6	0.0	3-	3325.608	(3)-	22.43	5	5.8591	21	
^{72}As	$\beta + \varepsilon$	4343.60	0.0	2-	3035.73	2-	0.515	20	7.209	19	
^{72}As	ε ε	4343 60	0.0	- 2-	3341.83	(2)-	0.369	$\frac{-0}{12}$	7 116	16	
73 Kr	$\beta + \epsilon$	7094	0.0	$\frac{-}{(3/2)}$ -	178.04	$\frac{(-)}{3/2}$	8.8	25	6 24	12	
73 Zn	β-70 β-	4105.9	0.0	(0/2) 1/2-	0.0	1/2-	86.6	30	5 115	16	Р
73 Ga	р В-	1598.2	0.0	1/2	66 75	$\frac{1}{2}$	59	10	7.34	7	1
73 Ga	р В-	1598.2	0.0	1/2	1131.88	$\frac{1}{2}$	7.2	3	5 333	19	
73 S o	p B±/c	2725	0.0	$0/2 \perp$	427.65	$\frac{1}{2}$ $\frac{0}{2}$	07.3	10	5.335 5.377	10	
73Se	$\beta + \epsilon$	2725	25.71	3/2	421.00	3/2	15 4	11	5.617	10 37	
73 S e	$\beta \perp / \epsilon$	2725	25.71 25.71	$\frac{3}{2}$	303 30	$\frac{3}{2}$	1 99	11	6 312	44	
7350	$\beta \perp l \epsilon$	2725	25.71 25.71	$\frac{3}{2}$	655 36	$\frac{3}{2}$	1.22	16	5.842	49	
75 So	ρτ/ε	866.04	25.71	5/2- 5/2⊥	400 6583	5/2- 5/2+	06.2	6	6.1155	42	
75Br	$\beta \perp l \epsilon$	3062 5	0.0	$\frac{3}{2}$	286 55	$\frac{3}{2}$	64 0	40	5.1155	40 28	Ð
$75 \mathbf{p_r}$	$\rho_{\pm/\epsilon}$	3062.5	0.0	3/2-	280.00	3/2-	1.72	40	5.411 6.683	20 40	I D
75 Dn	ρ_{\pm}/ϵ	2062.5	0.0	0/2- 2/0	950.44	0/2- 2/9	1.12	19	5.820	49	I D
- DI 75 р.	$\rho + \epsilon$	3002.3 2062 5	0.0	3/2- 2/9	009.44	3/2- 2/9	0.3 0.75	1 25	5.829 5.786	49 40	Г D
751Z-	$\rho + \epsilon$	3002.3 4799	0.0	3/2- 5/2-	1240.20	$\frac{3}{2}$	2.70	20	5.780	40	Г D
76Dh	$p+/\varepsilon$	4783	0.0	$\frac{3}{2+}$	132.00	(3/2)+	35.0 E 7	40 E	$ \frac{5.08}{6.272} $	0 20	Р
76DL	$\rho + \epsilon$	0004.0	0.0	1- 1	2104.55	1-	0.7 15 50		0.373	ა9 19	
76 D L	$p+/\varepsilon$	8034.0	0.0	1- 1	2071.01	1- 1	15.50	40 6	5.759 F 717	13	
76 A	$\rho + \varepsilon$	8534.0	0.0	1-	3602.81	1-	5.9	0	5.717	45	
⁷⁰ As 771/	β-	2960.6	0.0	2-	2669.875	2-	0.477	9	6.595	9	ъ
77 NI	$\beta + \varepsilon$	3065.4	0.0	5/2+	129.63	5/2+	49.5	23	5.540	21	P
''Rb	$\beta + \varepsilon$	5339.0	0.0	3/2-	66.50	3/2-	28	5	6.00	8	Р
77 As	β-	683.2	0.0	3/2-	239.012	3/2-	1.6	2	6.86	5	
''As	β-	683.2	0.0	3/2-	520.653	3/2-	0.63	10	5.83	7	
''Br	$\beta + \varepsilon$	1364.7	0.0	3/2-	238.95	3/2-	15.30	40	6.037	13	
''Br	ε	1364.7	0.0	3/2-	520.58	3/2-	18.6	4	5.699	11	
⁷ Br	ε	1364.7	0.0	3/2-	1005.09	3/2-	4.46	5	5.562	12	_
(9Rb	$\beta + \varepsilon$	3639.5	0.0	5/2+	290.52	5/2+	15.8	8	5.886	24	Р
⁷⁹ Rb	$\beta + \varepsilon$	3639.5	0.0	5/2+	752.03	5/2+	12.8	6	5.593	23	Р
⁷⁹ As	β -	2281	0.0	3/2-	527.4	3/2-	1.10	11	6.827	44	
⁽⁹ As	β -	2281	0.0	3/2-	974.0	3/2-	1.77	17	6.111	43	
⁸¹ Rb	$\beta + \varepsilon$	2239	0.0	3/2-	636.85	3/2-	21.7	9	5.220	19	

Table 9
(continued)

Nuclide	Decay	$Q \; [\text{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
81 Sr	$\beta + \varepsilon$	3929	0.0	1/2-	574.729	(1/2)-	8.5	11	6.14	6	Р
^{81}As	β -	3855.7	0.0	3/2-	467.69	3/2-	17.89	11	5.609	11	
^{81}As	β -	3855.7	0.0	3/2-	1406.18	3/2-	1.44	7	6.099	24	
82 Rb	$\beta + \varepsilon$	4404.0	69.0	5-	3011.25	(5)-	4.98	11	5.905	11	
83 Se	β -	3673.2	0.0	9/2 +	1092.138	9/2 +	4.1	6	7.36	6	
83 Se	β -	3673.2	0.0	9/2 +	2738.382	(9/2)+	16.4	2	4.997	10	
83 Rb	ε	920.0	0.0	5/2-	561.9586	5/2-	61	4	6.061	30	
83 Rb	ε	920.0	0.0	5/2-	690.53	5/2-	0.137	17	8.31	6	
83 Sr	$\beta + \varepsilon$	2273	0.0	7/2+	804.77	(7/2)+	25.9	22	5.91	6	
^{85}Y	$\beta + \varepsilon$	3261	19.8	(9/2)+	0.0	9/2+	60.0	40	6.361	37	
^{85}Y	$\beta + \varepsilon$	3261	19.8	(9/2)+	1261.99	9/2+	1.30	14	6.90	5	
$^{85}\mathrm{Kr}$	β-	687.0	0.0	9/2+	513.999	9/2+	0.434	10	9.528	19	
$^{85}\mathrm{Sr}$	ε	1064.1	0.0	9/2+	514.0084	9/2+	96	4	6.14	5	
$^{87}\mathrm{Nb}$	$\beta + \varepsilon$	5473	0.0	(1/2)-	336.4	1/2-	100.		5.357	12	
^{87}Y	$\beta + \varepsilon$	1861.7	0.0	1/2-	388.5276	1/2-	6.6	7	6.972	47	
^{87}Y	$\beta + \varepsilon$	1861.7	380.82	9/2+	0.0	9/2+	1.57	11	7.462	31	
$^{87}\mathrm{Zr}$	$\beta + \varepsilon$	3671.2	0.0	9/2+	380.79	9/2+	94.32	15	5.7124	42	
88 Rb	β-	5312.62	0.0	2-	4514.017	2-	2.319	22	5.5532	42	
⁸⁹ Rb	β -	4497	0.0	3/2-	2570.08	(3/2)-	3.3	9	6.81	12	
89 Rb	β-	4497	0.0	3/2-	3227.89	(3/2)-	35.7	14	5.056	19	
89 Zr	$\beta + \varepsilon$	2833.2	0.0	9/2+	909.15	9/2+	98.95	5	6.1705	41	
89 Zr	ε	2833.2	0.0	9/2+	2622.2	9/2+	0.745	13	6.201	18	
⁹⁰ Nb	$\beta + \epsilon$	6111.0	0.0	8+	3589 409	8+	87.0	30	6.048	15	
⁹⁰ Nb	р 1 / С Е	6111.0	0.0	8+	5164 48	(8)+	1 017	24	6 730	13	
⁹¹ Tc	$\beta + \epsilon$	6222	0.0	(9/2)+	0.0	9/2+	42	10	6.12	10	Р
⁹¹ Tc	$\beta + \epsilon$	6222	0.0	$(9/2)^+$ $(9/2)^+$	1902.49	$\frac{3}{2}$	27	7	6.43	10	P
⁹¹ Tc	$\beta + \epsilon$	6222	0.0	$(9/2)^+$ $(9/2)^+$	223370	$\frac{3}{2}$	1.20	30	6.58	11	P
^{91}Tc	$\beta \perp /c$	6222	0.0	$(0/2)^+$ $(0/2)^+$	2250.10	$0/2 + 0/2 \pm$	22.0	40	5.18	8	P
91Tc	$\beta + \epsilon$	6222	139.3	$(3/2)^{+}$ $(1/2)_{-}$	652.94	$\frac{3}{2}$	22.0 44	40 7	5.91	7	P
$^{91}M_{\odot}$	$\beta \perp /c$	4429	105.0	$(1/2)^{-}$ 0/2 \perp	002.94	$0/2 \perp$	00 13	5	5 6185	38	1
92Nb	$\beta \perp / \epsilon$	2005 7	135.5	$(2) \perp$	0.0	$\frac{3}{2}$	97.36	11	6 186	7	
92Nb	ρτ/ε	2005.7	135.5	$(2)_{\pm}$	1847.22	$2\pm$	2 64	11	6.400	1 91	
92Te	BILC	2005.1	135.5	(2) + (8) +	2760.0	2T 81	2.04	6	5.450	21 22	
93 P.1	$\beta \pm lc$	6380 4	0.0	$(0/2)_{\perp}$	2700.0	$0/2\perp$	90 00 0	6	5 341	5	
93Te	$\beta \pm lc$	2201.0	0.0	(3/2) + 0/2 +	1477.16	$\frac{3}{2}$	90.9 8 5	5	5 798	ິ າຈ	
93Te	$\rho_{\pm/\epsilon}$	3201.0 2201.0	0.0	9/2+	2001.87	$\frac{9}{2+}$	0.5	5	1 20	20 20	
94Te	e B L /c	3201.0 4255 7	0.0	9/2+	2901.87	(9/2)+	1.08	1	4.020 5.627	22	
94Te	$\rho + \epsilon$	4255.7	70 76	(2)+	071.090	2+	00.40	40 17	5.027	9 41	
94Te	$\rho_{\pm/\epsilon}$	4255.7	70 76	(2)+	2202.02	$\frac{2+}{2+}$	1.84 5.00	30	0.479 5.613	41 98	
95Dh	$\rho + \epsilon$	4200.7 5117	10	(2)+	2393.02	$\frac{2+}{0/2}$	5.00	30	5.015	20 45	
95Dh	$\rho + \epsilon$	5117	0.0	(9/2)+	1352.00	9/2+	0.0	0	0.020 4 790	40	
°° КП 95 То	$\rho + \varepsilon$	0117 1601	0.0	(9/2)+	3779.2 047.676	(9/2)+	1.00	14	4.780	41	
95 D	E 0 + 1 -	1091	0.0	9/2+ 5/0+	947.070	9/2+	1.382	23 C	0.000	14	
95 D	$\rho + \epsilon$	2004	0.0	0/2+ 5/0+	020.91	$\frac{3}{2+}$	1.4	0	0.709 4.602	37 99	
95 D	$p+/\varepsilon$	2004	0.0	$\frac{3}{2+}$	1433.28	$\frac{3}{2+}$	24.0	10	4.093	23	
96 x z	ε	2564	0.0	5/2+	1/4/.05	(5/2)+	4.27	24	5.154	30	л
96 NTI	β-	7109	1140	8+	4389.8	8+	80.9	96	4.75	6	Р
96m	β-	3192.06	0.0	0+7	2440.803	0+	2.3	3	7.43	6	
96D1	ε	2973	0.0	(+ C +	2875.35	(+ C +	0.80	5	5.64	(
⁹⁶ Rh	$\beta + \varepsilon$	0393	0.0	0+ C+	2149.76	0+ C +	10.3	24	6.30 F 400	10	
97D	$\beta + \varepsilon$	0393	0.0	0+ 5 (0)	2891.67	0+ 5 (0)	27.7	8	5.406	15	
97 F	ε	1104	0.0	$\frac{5}{2+}$	324.491	5/2+	11.01	14	6.319	12	
97 Ru	ε	1104	0.0	5/2+	785.030	5/2+	1.115	14	6.506	20	
"'Rh	$\beta + \varepsilon$	3523	0.0	9/2+	878.76	(9/2)+	5.6	6	5.95	5	

Table 9
(continued $)$

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_{\rm D}~[{\rm keV}]$	Jπ	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
⁹⁷ Rh	$\beta + \varepsilon$	3523	0.0	9/2+	1229.42	9/2+	3.40	30	5.890	45	
⁹⁷ Rb	β -	1.00615E4	0.0	3/2+	585.06	(3/2)+	14.7	12	5.476	35	Р
⁹⁸ Nb	β -	4591	84	(5)+	2506.34	5+	2.4	2	7.753	37	
99 Rh	ε	2041	64.3	9/2 +	1277.3	9/2 +	3.2	2	5.788	37	
⁹⁹ Pd	$\beta + \varepsilon$	3402	0.0	(5/2)+	463.9	(5/2)+	8.7	18	5.84	9	
99 Pd	$\beta + \varepsilon$	3402	0.0	(5/2)+	874.0	(5/2)+	4.2	10	5.84	10	
^{99}Ag	$\beta + \varepsilon$	5470	0.0	(9/2)+	832.45	(9/2)+	7.3	10	5.98	6	Р
^{99}Ag	$\beta + \varepsilon$	5470	0.0	(9/2)+	1102.78	(9/2)+	5.0	5	6.005	45	Р
^{99}Ag	$\beta + \varepsilon$	5470	0.0	(9/2)+	1540.42	(9/2)+	6.3	8	5.65	6	Р
^{99}Mo	β -	1357.8	0.0	1/2 +	920.637	1/2 +	16.4	3	6.233	9	
100 Rh	$\beta + \varepsilon$	3636	0.0	1-	2516.824	1-	1.313	13	7.082	18	
^{100}Ag	$\beta + \varepsilon$	7075	15.52	(2)+	665.69	2 +	37	8	6.09	10	Р
$^{101}\mathrm{Pd}$	$\beta + \varepsilon$	1980.3	0.0	5/2 +	478.15	(5/2)+	11.6	10	6.058	38	
$^{101}\mathrm{Nb}$	β-	4628.5	0.0	(5/2)+	454.4	5/2+	5.5	16	5.97	13	Р
$^{102}\mathrm{Rh}$	ε	2323	140	6+	1873.22	6+	35	2	8.290	27	
^{102}Ag	$\beta + \varepsilon$	5656	9.2	2 +	1534.6	2 +	4.1	12	6.53	13	Р
$^{103}\mathrm{Tc}$	β-	2663	0.0	5/2 +	136.079	5/2 +	10.1	17	5.69	7	
$^{103}\mathrm{Tc}$	β-	2663	0.0	5/2+	501.06	(5/2)+	3.6	5	5.85	6	
103 Ru	β-	764.5	0.0	3/2+	651.798	(3/2)+	0.110	5	7.720	34	
$^{103}\mathrm{Pd}$	έ	574.7	0.0	5/2+	536.832	5/2+	0.0040	2	7.41	11	
$^{103}\mathrm{Ag}$	$\beta + \varepsilon$	2654.3	0.0	7/2+	243.93	7/2+	5.50	40	6.144	32	
^{103}Ag	$\beta + \varepsilon$	2654.3	0.0	7/2+	531.93	7/2+	7.2	7	5.817	43	
^{103}Cd	$\beta + \epsilon$	4151.1	0.0	(5/2)+	1461.80	(5/2)+	8.2	11	5.24	6	Р
$104 \mathrm{Ag}$	$\beta + /\epsilon$	4278 7	6.9	$(3/2)^{+}$	555.81	$(3/2)^{+}$	70.0	40	5 691	36	-
104 Ag	$\beta + /\epsilon$	4278 7	6.9	$\frac{2}{2+}$	1341.68	$\frac{2}{2+}$	1 70	40	6 76	11	
105 In	$\beta + \epsilon$	4693	0.0	$\frac{2}{9}/2+$	771.00	$\frac{-}{9/2+}$	8.1	18	5.93	10	Р
105In	$\beta + \epsilon$	4693	0.0	9/2+	832.52	9/2+	6.3	11	6.01	8	P
105 Ru	β-70	1916 7	0.0	3/2 + 3/2 +	469 369	3/2+	3.06	18	7713	26	1
105Ru	р В-	1916 7	0.0	3/2+	806 045	3/2+	19.22	25	6474	20 7	
105 Ru	β -	1916.7	0.0	3/2+	1345 135	3/2+	3.84	5	6 1 3 1	10	
$105 R_{11}$	β- β-	1916 7	0.0	3/2 + 3/2 +	1340.100 1377.024	3/2+	1.764	18	6 383	9	
105 Rh	ρ β_	566 6	0.0	$\frac{5}{2}$	306 307	$\frac{5}{2}$	1.704	7	5.801	14	
105 Rh	β- β-	566 6	0.0	$7/2 + 7/2 \pm$	449 411	$(7/2) \perp$	4.70	5	6.032	26	
105Cd	p- B±le	900.0 9737.0	0.0	$5/2 \pm$	$087\ 312$	$(1/2)^+$ $(5/2)^+$	3.26	24	5.876	20	
^{105}Cd	$\beta + \epsilon$	2737.0	0.0	5/2 + 5/2 +	1327 028	$(5/2)^+$ 5/2+	4.00	24	5.573	34 35	
^{105}Cd	$\beta + lc$	2737.0	0.0	5/2+	1441 50	5/2 + 5/2 +	4.00	30	5.575	49	
^{105}Cd	ρτιε	2737.0	0.0	5/2+	2256 40	5/2 + 5/2 +	5.20 1.11	0	5.094 5.165	42	
106In	$\beta \pm lc$	2131.0	0.0	$\frac{3}{2+}$	2250.49	$\frac{3}{2+}$	6.20	9 40	5 835	40 30	Þ
106Tn	$\rho_{\pm/\epsilon}$	6524	0.0	7 + 7 -	3126.03	7 + 7 -	0.20	40 92	0.000 6 152	$\frac{30}{27}$	I D
106рь	$\rho_{\pm/\epsilon}$	0524 3545	0.0 127	(6)	3120.03 2076 70	1+ 6+	2.80	20 10	$0.100 \\ 7.87$	5	1
107Dh	ρ- β	3545 1500	137	(0)+	2070.79	$\frac{0+}{7/2+}$	1.05	19	1.01 6.10	5 6	
107 Dh	ρ-	1509	0.0	7/2+7/2+	312.24 202.46	7/2+7/2+	4.2	0	0.19 E OE	0 7	
107 T	ρ- 0 - /-	1009	0.0	1/2+	392.40	1/2+	1	1	0.00	1	
107T	$p+\varepsilon$	3424	0.0	9/2+	809.03	9/2+	2.70	20	0.339	34 26	
108 A	$\beta + \varepsilon$	3424	0.0	9/2+	921.63	(9/2)+	2.60	20	0.270	30	
108 Ag	ε	1917.4	109.466	0+ 0+	1771.162	0+ 0+	91.3	0	9.245	14	л
108 In 108 I	$\beta + \varepsilon$	5133	29.75	2+	632.99	2+	33.9	11	6.544	17	P
108 In	$\beta + \varepsilon$	5133	29.75	2+	1601.18	2+	4.80	40	6.830	38	P
108T	$p+\varepsilon$	0133 5199	29.75	2+	2162.6	2+	7.30	40	0.269	20 20	Г D
108 T	$\beta + \varepsilon$	5133	29.75	2+	2365.3	2+	4.40	30	0.345	32	Р D
108T	$\beta + \varepsilon$	5133	29.75	2+	2486	2+	3.30	20	0.383	29	Р D
¹⁰⁰ In	$\beta + \varepsilon$	5133	29.75	2+	2681.5	2+	3.50	40	6.22	5	Р
¹⁰⁰ Tc	β-	7739	0.0	(2)+	242.23	2+	27.6	25	6.302	40	Р
¹⁰⁹ Rh	β -	2607.2	0.0	7/2+	276.289	7/2+	1.1	3	6.71	12	

Table 9
(continued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_P \ [keV]$	Jπ	$E_{\rm D}~[{\rm keV}]$	Jπ	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
109 Rh	β-	2607.2	0.0	7/2+	426.140	7/2+	8.3	11	5.71	6	
109 Sn	$\beta + \varepsilon$	3859	0.0	5/2 +	1099.29	5/2 +	3.9	10	6.04	11	
109 Sn	$\beta + \varepsilon$	3859	0.0	5/2 +	1483.76	5/2 +	2.20	17	6.027	34	
109 Sn	ε	3859	0.0	5/2 +	2871.19	5/2 +	3.42	25	4.907	34	
¹¹⁰ In	$\beta + \varepsilon$	3878	62.08	2+	657.792	2+	87.23	19	5.628	9	
110 In	$\beta + \varepsilon$	3878	62.08	2 +	1783.537	2 +	1.17	7	6.713	30	
110 In	$\beta + \varepsilon$	3878	62.08	2 +	2787.24	2 +	2.58	12	5.717	30	
^{110}Ag	β -	2890.7	117.59	6+	2479.933	6+	30.9	3	8.301	6	
^{110}Ag	β -	2890.7	117.59	6+	2876.808	6+	0.399	18	8.237	24	
$^{113}\mathrm{Sb}$	$\beta + \varepsilon$	3911	0.0	5/2 +	1018.09	5/2 +	3.43	16	5.782	23	Р
$^{114}\mathrm{Sb}$	$\beta + \varepsilon$	6063	0.0	3+	2514.7	3+	5.6	5	5.716	41	Р
$^{115}\mathrm{Sb}$	$\beta + \varepsilon$	3030	0.0	5/2 +	986.5	5/2 +	1.38	30	6.30	10	Р
$^{115}\mathrm{Sb}$	$\beta + \varepsilon$	3030	0.0	5/2 +	1734.0	5/2 +	1.00	10	5.982	47	Р
115 Cd	β -	1451.9	0.0	1/2 +	864.14	1/2 +	33.1	10	6.401	13	
$^{117}\mathrm{Te}$	$\beta + \varepsilon$	3544	0.0	1/2 +	719.7	1/2 +	52.3	14	5.537	20	Р
$^{117}\mathrm{Te}$	$\beta + \varepsilon$	3544	0.0	1/2 +	2285	1/2 +	3.20	40	5.77	6	Р
$^{117}\mathrm{Cd}$	β-	2525	0.0	1/2 +	749.486	1/2 +	13.2	17	7.25	6	
$^{117}\mathrm{Cd}$	β-	2525	0.0	1/2 +	1891.928	1/2 +	32	4	5.20	6	
119 I	$\beta + \varepsilon$	3405	0.0	5/2+	635.86	5/2+	3.03	10	6.247	21	Р
$^{119}\mathrm{Te}$	$\beta + \varepsilon$	2293.0	0.0	1/2 +	644.03	1/2 +	82.6	5	5.798	5	
$^{119}\mathrm{Te}$	$\beta + \varepsilon$	2293.0	260.96	11/2-	1366.34	11/2-	67.0	30	6.435	20	
$^{119}\mathrm{Te}$	ε	2293.0	260.96	11/2-	2226.06	11/2-	4.7	4	6.417	38	
$^{121}\mathrm{Te}$	ε	1056	0.0	1/2+	573.142	1/2+	81.6	6	6.15	6	
124 In	β-	7364	0.0	3^{+}	2836.32	3+	3.5	4	6.09	5	Р
^{124}Sb	β-	2905.07	0.0	3-	2293.712	3-	51.24	19	7.7648	17	
^{124}Sb	β-	2905.07	0.0	3-	2693.679	3-	8.75	4	7.0126	22	
^{124}Sb	β-	2905.07	0.0	3-	2865.72	3-	0.0611	24	6.929	18	
^{124}Sb	β-	2905.07	0.0	3-	2886.37	3-	0.0080	12	6.84	7	
124 I	r E	3159.6	0.0	2-	2701.53	2-	2.02	3	7.079	10	
^{125}Sn	β-	2361.4	0.0	$\frac{-}{11/2}$	1982.86	$\frac{-}{11/2}$	4.3	12	7.32	12	
^{125}Sb	β-	766.7	0.0	7/2+	402.09	7/2+	0.0222	11	11.594	23	
^{125}Sb	β-	766.7	0.0	7/2+	636.090	7/2+	17.88	19	7.272	$\frac{-3}{22}$	
^{125}Sb	β-	766.7	0.0	7/2+	642.204	7/2+	5.75	7	7.701	$24^{$	
127 Xe	E	662.3	0.0	1/2+	374.992	1/2+	47.6	14	6.246	16	
^{127}Cs	$\beta + \epsilon$	2081	0.0	1/2+	0.0	1/2+	12.3	15	6.56	5	
^{127}Cs	$\beta + /\epsilon$	2081	0.0	1/2+	411 957	1/2+	68.1	11	5.584	11	
^{127}Ba	$\beta + /\epsilon$	3422	0.0	1/2+	0.0	1/2+	61.2	24	5.001	28	Р
^{127}Sb	β-γε	1582.2	0.0	$\frac{1}{2}$	685.5	$\frac{1}{2}$	35.8	20	7.316	26 26	1
^{127}Sb	β-	1582.2	0.0	7/2+	924.3	7/2+	13	3	8 28	10	
^{129}Cs	$\beta + \epsilon$	1197.0	0.0	1/2+	0.0	1/2+	34.0	40	6.29	5	
^{129}Cs	р 1 / С Е	1197.0	0.0	1/2+	411 496	1/2+	55	3	5.20	25	
¹²⁹ Ba	$\beta + \epsilon$	2438	0.0	1/2 + 1/2 +	0.0	1/2 + 1/2 +	60 0	10	5.645	20 41	
129Sn	β-70	4039	0.0	$\frac{1}{2}$	913.61	(3/2) +	3.2	2	7.084	33	Р
^{129}Sb	β- β-	2376	0.0	$\frac{5}{2}$	812.96	$(0/2)^+$ 7/2+	3.1	6	7.00 ± 7.96	9	1
129Sb	β_ β_	2376	0.0	$7/2 \pm 7/2 \pm$	1318 23	$7/2 + 7/2 \pm$	4.02	7	7.90 7.201	3/	
130 _T	β- β-	2010	0.0	1/2 5-	2362 081	1/21 5-	4.02	11	5.707	04 13	
130 ₁	B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-	2044.3	30.0525	$\frac{0}{2\pm}$	536.068	$\frac{0}{2}$	14 3	17	6.65	5	
130 ₁	β- β-	2944.3	39.9525 30.0525	$2\pm$	1122 120	$2\pm$	14.5	1/	7.26	5	
130 Sh	β- β-	5067	53.3020 5 26	$(4) \perp$	1081 57	4 4+	10.8	8	7.015	34	Р
130 Sh	β- β-	5067	5.30 5.26	(≖)⊤ (4)₊⊥	2440.45	≖.≓ ∕I⊥	10.0	11	6 657	70 70	ı P
131 P_{2}	ρ- ε	1376 69	0.00	('±) ∓ 1/9⊥	⊿449.40 690 190	+⊤ 1 /9⊥	12.4 59.7	5	6.640	40 /1	T
131 ₁	c B±1c	1070.02 2010	0.0	$\frac{1}{2} \frac{2}{2}$	108 077	$\frac{1}{2} \frac{2}{2}$	54.7 11-9	10	6 272	чт ДД	
131 ₁	$\mu \pm /\epsilon$	2910	0.0	$\frac{3}{2+1}$	100.077 985 951	$\frac{3}{2+1}$	7.00	10	6 200	33 77	
La	$\rho + \epsilon$	2910	0.0	J/2+	200.201	J/2+	1.00	40	0.580	აა	

Table 9	
(continued)	

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	Jπ	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
¹³¹ La	$\beta + \varepsilon$	2910	0.0	3/2 +	525.850	(3/2)+	30.0	9	5.612	26	
$^{131}\mathrm{Te}$	β -	2231.7	182.25	11/2-	1645.991	11/2-	2.6	3	7.78	5	
131 Te	β -	2231.7	182.25	11/2-	1924.573	11/2-	2.01	16	7.214	35	
$^{131}\mathrm{Te}$	β -	2231.7	182.25	11/2-	1980.263	11/2-	37.8	10	5.763	12	
^{131}I	β -	970.8	0.0	7/2 +	636.991	7/2 +	7.23	10	6.902	7	
^{132}Cs	$\beta + \varepsilon$	2126.3	0.0	2 +	667.7159	2 +	95.92	10	6.7043	26	
^{132}Cs	ε	2126.3	0.0	2+	1297.913	2 +	0.27	6	8.75	10	
^{132}Cs	ε	2126.3	0.0	2+	1985.641	2 +	0.659	20	6.647	16	
^{132}Cs	β -	1282.2	0.0	2 +	464.497	2 +	1.51	11	8.857	32	
^{132}Cs	β-	1282.2	0.0	2 +	1031.661	2 +	0.36	2	7.754	26	
^{132}I	β -	3575.5	0.0	4 +	1440.323	4 +	19.0	20	7.471	46	
^{132}I	β-	3575.5	0.0	4 +	1962.98	4 +	12.3	6	7.175	22	
^{132}I	β-	3575.5	0.0	4 +	2110.26	4 +	9.1	9	7.144	43	
^{132}I	β-	3575.5	0.0	4 +	2394.99	4 +	19.0	5	6.467	13	
133 La	$\beta + \varepsilon$	2059	0.0	5/2 +	291.186	5/2 +	1.13	11	7.297	46	
133 La	$\beta + \varepsilon$	2059	0.0	5/2+	923.955	5/2+	1.59	8	6.742	37	
$^{133}\mathrm{Ce}$	$\beta + \varepsilon$	3076	0.0	1/2+	174.1	1/2+	53	8	5.90	7	Р
$^{133}\mathrm{Ce}$	$\beta + \varepsilon$	3076	37.2	9/2-	1045.925	9/2-	8.7	6	6.726	43	
133 Ce	$\beta + \varepsilon$	3076	37.2	9/2-	1468.86	9/2-	1.24	8	7.340	42	
133 Ce	$\beta + \varepsilon$	3076	37.2	9/2-	1690.64	(9/2)-	3.90	13	6.709	36	
133 Ce	$\beta + \epsilon$	3076	37.2	9/2-	1735.44	(9/2)-	9.37	21	6.299	35	
133 Ce	$\beta + /\epsilon$	3076	37.2	9/2-	1912.81	9/2-	3 29	9	6.630	39	
133 Ce	$\beta + \epsilon$	3076	37.2	$9/2_{-}$	2062.16	$9/2_{-}$	5.29 5.42	13	6 294	41	
^{133}Ce	e prije	3076	37.2	$9/2_{-}$	2002.10 2137 18	9/2	1.52	13	6 78	6	
133 ₁	с В-	1786	0.0	$\frac{3}{2}$	875 331	$\frac{3}{2}$	1.52	13	7 668	17	
133 ₁	B- B-	1786	0.0	7/2 + 7/2	1226 440	7/2 + 7/2 +	4.10 3.15	10	7.000	17 91	
1 133 T	р- В	1786	0.0	$7/2 \pm 7/2 \pm$	1230.449 1386 153	7/2 + 7/2 +	1.25	5	6 955	21 28	
1 133 V o	ρ- β	1780	0.0	$\frac{1}{2+}$	282 8401	$\frac{1}{2+}$	1.20	10	6.01	28	
133 Ro	ρ- c	427.4 517 4	0.0	$\frac{3}{2+}$	303.0491 427.0112	$\frac{3}{2+}$	0.0087 85.4	5	0.91 6.64	9	
Dа 134т	E B	J17.4 4082 4	0.0	$\frac{1}{2+}$	457.0115	1/2+	00.4 12.6	0 01	$0.04 \\ 7.40$	0 7	
т 134т	ρ- β	4082.4	0.0	(4)+	2252.06	4+	12.0	21 5	6.024	20	
134 _T	ρ- β	4082.4	0.0	(4)+	2552.90	(4)+	11.0		0.924 6 507	20 19	
і 134т	ρ-	4082.4	0.0	(4)+	2000.40	(4)+	10.2	4	0.307 5 901	12 19	
$134C_{\pi}$	ρ-	4082.4	0.0	(4)+	2007.37	(4)+	50.4 70.17	07	0.091	15 7	
134 Cs	ρ-	2058.84	0.0	4+	1400.091	4+	10.17	1	6.9229 6.5417	1	
-э-Сs 135т	р- 0	2058.84	0.0	4+	1909.923	4+	21.21	ა ი	0.3417	38 7	
135T	р- 0	2034.2	0.0	$\frac{1}{2+}$	1131.312	(/2+	1.3	2	8.49	(17	
135T -	β-	2034.2	0.0	(/2+ 5/0+	1078.005	(1/2)+	21.8	8	0.520	11	
136 C-	ε	1207	0.0	5/2+	480.525	5/2+	1.52	24 1	7.00 6.727	1	
137 N 1	β- 0 - 1	2548.2	0.0	5+	2373.748	5+	2.4	1	0.737	24	Ъ
137 Nd	$\beta + \varepsilon$	3618	0.0	1/2+	857.00	(1/2)+	10.8	15	6.16	6	P
¹³⁷ Nd 137D	$\beta + \varepsilon$	3618	0.0	1/2+	1001.35	(1/2)+	7.9	11	6.22	6	P
¹³⁷ Pm	$\beta + \varepsilon$	5511	0.0	11/2-	519.5	11/2-	42	6	5.49	7	Р
137 Pm	$\beta + \varepsilon$	5511	0.0	11/2-	1510.5	(11/2)-	13.0	20	5.54	7	Р
¹³⁷ Ce	ε	1222.1	254.29	11/2-	1004.61	11/2-	0.51	4	7.417	35	
13 Pr	$\beta + \varepsilon$	2717	0.0	5/2+	836.70	(5/2)+	1.20	20	6.92	7	
¹³⁰ Pr	$\beta + \varepsilon$	4437	364	7-	2129.55	7-	91	6	5.659	32	_
$^{139}\mathrm{Sm}$	$\beta + \varepsilon$	5121	457.38	11/2-	188.7	(11/2)-	6.3	5	5.360	43	Р
¹³⁹ Nd	$\beta + \varepsilon$	2812	0.0	3/2+	405.04	3/2+	2.9	5	6.43	8	Р
¹³⁹ Nd	$\beta + \varepsilon$	2812	231.15	11/2-	822.00	11/2-	6.8	15	7.01	10	Р
^{140}Cs	β -	6218	0.0	1-	2703.98	1-	3.36	15	7.045	20	
¹⁴⁰ La	β -	3762.2	0.0	3-	2464.09	3-	5.52	7	8.486	6	
¹⁴⁰ La	β -	3762.2	0.0	3-	3473.58	3-	0.054	7	8.23	6	
141 Sm	$\beta + \varepsilon$	4589	0.0	1/2 +	438.29	(1/2)+	30.7	15	5.882	24	Р

Table 9
(continued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{P} \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
^{141}Sm	$\beta + \varepsilon$	4589	175.9	11/2-	628.70	11/2-	11.0	30	6.67	12	Р
^{141}Sm	$\beta + \varepsilon$	4589	175.9	11/2-	2091.66	11/2-	16.2	7	5.760	20	Р
141 Eu	$\beta + \varepsilon$	6008	96.45	11/2-	175.8	11/2-	11.0	30	4.73	13	Р
141 Pm	$\beta + \varepsilon$	3669	0.0	5/2 +	1223.3	5/2 +	2.10	30	6.47	6	
143 Eu	$\beta + \varepsilon$	5276	0.0	5/2 +	1107.3	5/2 +	5.8	6	6.031	45	Р
143 Eu	$\beta + \varepsilon$	5276	0.0	5/2 +	1536.9	(5/2)+	3.40	30	6.056	39	Р
^{143}Gd	$\beta + \varepsilon$	6.01 E3	0.0	(1/2)+	463.61	(1/2)+	33.6	20	5.26	8	Р
^{143}Gd	$\beta + \varepsilon$	6.01 E3	152.6	11/2-	1188.43	11/2-	9.7	8	6.02	9	Р
^{143}Gd	$\beta + \varepsilon$	6.01 E3	152.6	11/2-	1214.0	11/2-	4.00	40	6.40	9	Р
$^{143}\mathrm{Sm}$	$\beta + \varepsilon$	3443.5	0.0	3/2 +	1056.63	3/2 +	2.30	30	6.05	6	
144 Pm	ε	2331.9	0.0	5-	2093.33	5-	1.9	1	8.684	31	
$^{145}\mathrm{Gd}$	$\beta + \varepsilon$	5065	749.1	11/2-	716.1	11/2-	5.7	8	6.20	6	Р
^{145}Cs	β -	7462	0.0	3/2 +	435.69	3/2 +	6.2	1	6.052	9	Р
$^{145}\mathrm{Eu}$	ε	2659.9	0.0	5/2+	1804.24	5/2+	1.17	6	8.393	23	
$^{145}\mathrm{Eu}$	ε	2659.9	0.0	5/2+	2276.55	5/2+	0.135	7	8.580	24	
$^{145}\mathrm{Gd}$	$\beta + \varepsilon$	5065	0.0	1/2+	2494.88	1/2 +	1.43	8	6.826	27	
$^{146}\mathrm{Pm}$	ε	1471.6	0.0	3-	1189.73	3-	23.2	15	8.510	33	
$^{146}\mathrm{Pm}$	β-	1542.0	0.0	3-	1380.5	3-	2.26	22	8.99	5	
$^{146}\mathrm{Eu}$	$\beta + \varepsilon$	3879	0.0	4-	2045.689	4-	8.4	5	8.122	26	
$^{147}\mathrm{Eu}$	ε	1721.4	0.0	5/2 +	1063.390	5/2 +	0.302	9	9.349	17	
$^{147}\mathrm{Eu}$	ε	1721.4	0.0	5/2+	1180.253	5/2+	0.157	8	9.451	25	
$^{147}\mathrm{Gd}$	$\beta + \varepsilon$	2187.7	0.0	7/2-	1069.39	7'/2-	2.7	6	7.73	10	
$^{147}\mathrm{Gd}$	ε	2187.7	0.0	7'/2-	1235.77	7'/2-	3.5	3	7.473	38	
$^{148}\mathrm{Pm}$	β-	2470	0.0	1-	1465.129	1-	33.4	8	7.882	14	
149 Dv	$\beta + \varepsilon$	3795	0.0	7/2-	1381.92	7/2-	1.74	12	5.992	37	Р
149 Dv	$\beta + \varepsilon$	3795	0.0	7/2-	1735.44	(7/2)-	2.32	6	5.699	24	Р
149 Dv	$\beta + \varepsilon$	3795	0.0	7/2-	1776.61	7/2-	1.71	7	5.811	28	Р
149 Dv	$\beta + \varepsilon$	3795	0.0	7/2-	2026.32	(7/2)-	1.18	10	5.845	43	Р
149 Dv	$\beta + \varepsilon$	3795	0.0	7/2-	2065.37	7/2-	10.50	30	4.875	25	Р
149 Dv	$\beta + \varepsilon$	3795	0.0	7'/2-	2074.22	7'/2-	1.74	9	5.650	31	Р
^{149}Nd	β-	1688.9	0.0	5'/2-	537.863	5'/2-	21.5	9	6.394	19	
149 Gd	ε	1314.1	0.0	7/2-	748.601	7/2-	8.6	5	7.370	28	
$^{151}\mathrm{Nd}$	β-	2443.1	0.0	3/2+	255.692	3/2+	7.5	8	7.007	47	
$^{151}\mathrm{Nd}$	β-	2443.1	0.0	3/2+	840.966	(3/2)+	4.4	3	6.706	30	
$^{151}\mathrm{Pm}$	β-	1190.2	0.0	5/2+	167.751	5/2+	7.9	10	7.88	6	
^{151}Pm	β-	1190.2	0.0	5/2+	395.581	5/2+	1.9	3	8.10	7	
^{151}Pm	β-	1190.2	0.0	5/2+	445.68	5/2+	7.1	8	7.43	5	
$^{151}\mathrm{Gd}$	ε	464.2	0.0	7/2-	243.25	7/2-	5.5	4	7.761	36	
$^{152}\mathrm{Tb}$	$\beta + \varepsilon$	3990	0.0	2-	1643.428	2-	1.86	5	8.296	21	
152 Pr	β-	6392	0.0	4+	236.55	4+	5.7	9	6.69	7	Р
^{152}Eu	E	1874.5	0.0	3-	1041.1217	3-	0.067	7	12.532	45	-
^{152}Eu	ε	1874.5	0.0	3-	1579.427	3-	2.082	12	10.0543	45	
^{152}Eu	ε	1874.5	0.0	3-	1730.207	3-	0.0538	24	10.871	21	
^{152}Eu	e e	1874 5	0.0	3-	1779 119	3-	0.0124	4	10.978	18	
^{152}Eu	β-	1818.8	0.0	3-	1123 1855	3-	13.74	9	10.7080	32	
^{153}Pm	β-	1912	0.0	5/2-	182 903	$\frac{5}{2}$	77	8	6 237	46	
153Sm	р В-	807.4	0.0	3/2+	103 18018	3/2+	49.2	9	6 741	8	
153 Th	$\beta + 1 \epsilon$	1569.3	0.0	5/2+	183 413	5/2+	3.10	24	8.070	34	
153 Th	$\beta + 1 \epsilon$	1569.3	0.0	5/2+	$303\ 577$	5/2+	5.0	5	7.781	44	
153 Th	ε ε	1569.3	0.0	5/2+	937 419	5/2+	0.54	4	8,113	33	
153 Th	e E	1569.3	0.0	5/2+	955 47	5/2+	0.31	7	7 955	42	
153 Th	E	1569.3	0.0	5/2+	1014 76	5/2+	0.31	3	8 232	43	
153 Th	ε	1569.3	0.0	5/2+	1035 188	5/2+	1 07	9	7 658	38	
10	-		0.0	∽, - 1	1000.100	∽, - '	1.01	0			

Table 9
(continued $)$

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
$^{153}\mathrm{Tb}$	ε	1569.3	0.0	5/2 +	1131.72	5/2 +	0.247	23	8.105	42	
$^{153}\mathrm{Tb}$	ε	1569.3	0.0	5/2 +	1180.49	5/2 +	0.247	18	7.991	34	
$^{153}\mathrm{Tb}$	ε	1569.3	0.0	5/2 +	1272.70	5/2 +	0.136	8	7.981	30	
$^{153}\mathrm{Tb}$	ε	1569.3	0.0	5/2 +	1328.12	5/2 +	0.34	4	7.37	5	
154 Eu	β -	1968.0	0.0	3-	1251.630	3-	0.301	8	12.215	12	
154 Eu	β -	1968.0	0.0	3-	1617.127	3-	1.584	16	10.452	5	
154 Eu	β -	1968.0	0.0	3-	1796.97	3-	0.0662	21	10.839	15	
155 Eu	β -	252.0	0.0	5/2 +	86.5462	5/2 +	25.5	24	7.950	42	
$^{155}\mathrm{Tb}$	ε	820	0.0	3/2+	105.3140	3/2+	38	3	6.736	38	
$^{155}\mathrm{Tb}$	ε	820	0.0	3/2+	268.582	3/2+	7.1	4	7.223	32	
$^{155}\mathrm{Tb}$	ε	820	0.0	3/2+	427.211	3/2+	4.7	4	7.078	46	
155 Dy	$\beta + \varepsilon$	2094.5	0.0	3/2-	891.137	3/2-	4.10	9	7.103	13	
$^{156}\mathrm{Pm}$	β-	5194	0.0	4+	1509.22	4^{+}	11.4	9	6.339	35	Р
157 Eu	β-	1364.8	0.0	5/2 +	63.919	5/2 +	49	10	7.24	9	
157 Ho	$\beta + \varepsilon$	2592	0.0	7/2-	419.929	7/2-	8.0	9	5.73	5	
157 Ho	$\beta + \varepsilon$	2592	0.0	7'/2-	990.12	7'/2-	3.30	30	5.818	43	
$^{158}\mathrm{Tb}$	ε	1219.1	0.0	3-	1041.6423	3-	30.2	13	9.536	34	
¹⁵⁹ Er	$\beta + \varepsilon$	2768.5	0.0	$\frac{3}{2}$ -	520.50	3/2-	1.40	30	7.01	9	
159 Er	$\beta + \varepsilon$	2768.5	0.0	3/2-	580.97	(3/2)-	2.5	5	6.73	9	
160 Tb	β-γε	1836.0	0.0	3-	1286.694	3-	3.43	7	9.170	9	
160 Th	β-	1836.0	0.0	3-	1398 940	3-	4 48	10	8 722	10	
161 Th	р В-	593 7	0.0	3/2+	550 236	3/2+	0.064	4	6 425	46	
$^{161}H_{0}$	p e	859.2	0.0	$\frac{5}{2}$	103.067	$\frac{0}{2}$	19	4	5.45	9	
$^{162}H_{0}$	e	2140.6	105.87	6-	1575.64	6-	1 61	11	6.061	31	
163Th	С В-	1785 1	100.01	$\frac{3}{2}$	766.20	$(3/2) \perp$	11.51	11	5 855	/3	
163ть	B- B-	1785.1	0.0	$\frac{3}{2}$	850.12	$(3/2) + (3/2) \perp$	11.5	5	6 113	40 40	
163ть	B- B-	1785.1	0.0	$\frac{3}{2}$	035.12	$(3/2) + (3/2) \perp$	4.0 15 /	14	5 446	43 /1	
163ть	р- В	1785.1	0.0	$\frac{3}{2+}$	1084.97	(3/2) + (3/2) +	10.4	3	6.14	41 8	
163Tm	p- B±le	2/30.0	0.0	$\frac{3}{2+1}$	540.56	(3/2) + 1/2 +	3.60	17	6 042	0 91	
165Tm	$\beta \pm lc$	2435.0 1501 3	0.0	$\frac{1}{2+}$	507 420	$\frac{1}{2}$	5.00	30	0.942 7 436	21 99	
165Tm	$\rho_{\pm/\epsilon}$	1591.5	0.0	$\frac{1}{2+}$	745 055	$\frac{1}{2+}$	5.90	30 2	7.430 7.201	22	
165 VL	\mathcal{E}	1091.0	0.0	1/2+ 5/9	140.900 1951.04	1/2+ 5/2	0.0 5.2	- 3 10	7.201 5.40	22	
10 166 To	$\rho + \epsilon$	2035	0.0	$\frac{3}{2}$	1201.04	0/2- 0+	0.2 26.0	20	5.49	9 90	D
166 To	$\rho + \epsilon$	7761	0.0	(2)+	100.04	2+	30.0	30 40	5.890	30 E	Г
166 ттта	$\rho + \varepsilon$	2028	0.0	(2)+	1210.70	2+	5.40	40	0.00	0 10	Р
166 T	$\rho + \epsilon$	3038 2028	0.0	2+	1500.017	2+	1.40	40	8.10 7.002	12	
16711 16711	$\rho + \varepsilon$	3038	0.0	2+ 7/0	1528.404	2+ 7 (0	1.03	1	7.903	3U 19	
1681Lo	р- 0	1010	0.0	1/2-	(45.01 205 72	(/ <i>Z</i> -	3.0 17.9	9 00	5.49 6.02	13	
168Tm	<i>p</i> -	2930	0.0	3+ 2+	895.73	3+ 2+	17.8	22	0.03	0	
169 x /1	ε	1070.9	0.0	3+ 7/0+	1000.00	3+ 7 (0)	0.009	3 10	(.(1	11	
169 Y D	ε	899.1	0.0	$\frac{1}{2+}$	316.14633	$\frac{1}{2+}$	0.1 10.5	10	8.29	1	
169 LU	$p + \varepsilon$	2293.0	0.0	$\frac{1}{2+}$	0.0	$\frac{1}{2+}$	10.5	10	8.002	42	
169 LU	$\beta + \varepsilon$	2293.0	0.0	7/2+	647.34	7/2+	0.53	7	8.98	0	
169 LU	$\beta + \varepsilon$	2293.0	0.0	7/2+	1070.77	7/2+	0.67	5	8.608	33	
¹⁶⁰ Lu	ε	2293.0	0.0	7/2+	1716.02	7/2+	1.69	7	7.511	20	
¹⁰⁹ Lu	ε	2293.0	0.0	7/2+	2065.04	7/2+	0.0125	11	8.697	43	
172'Tm	β -	1882	0.0	2-	1198.51	2-	0.243	25	9.301	46	
172 T	ε	2519.4	0.0	4-	1640.578	4-	1.35	16	8.68	5	
178 m	ε	670.2	0.0	7/2+	350.764	7/2+	22.1	4	8.357	13	
170'Ta	$\beta + \varepsilon$	3211	0.0	(1)-	1643.41	1-	3.2	5	7.60	7	
¹⁷⁶ Ta	$\beta + \varepsilon$	3211	0.0	(1)-	1722.05	1-	1.30	20	7.95	7	
¹⁷⁶ Ta	ε	3211	0.0	(1)-	2920.27	1-	7.5	9	5.62	13	
¹⁷⁷ Yb	β -	1397.5	0.0	9/2 +	121.6214	9/2+	7.5	6	7.280	35	
¹⁷⁷ Ta	ε	1166.0	0.0	7/2 +	745.91	(7/2)+	0.56	16	7.97	12	

Table 9
(continued $)$

Nuclide	Decay	$Q \; [\text{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \; [keV]$	Jπ	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
^{177}W	$\beta + \varepsilon$	2013	0.0	1/2-	216.61	1/2-	32.8	23	6.187	35	
^{177}W	ε	2013	0.0	1/2-	1487.72	(1/2)-	1.67	11	6.34	6	
^{177}W	ε	2013	0.0	1/2-	1512.44	(1/2)-	11.4	6	5.46	6	
179 Re	$\beta + \varepsilon$	2711	0.0	5/2 +	773.71	5/2 +	19.0	30	5.70	7	
180 Lu	β -	3.10E3	0.0	5+	1742.87	(5)+	9	1	6.02	10	Р
^{181}W	ε	205.1	0.0	9/2 +	136.28	9/2 +	0.086	3	8.185	41	
181 Re	ε	1717	0.0	5/2 +	1469.12	(5/2)+	2.3	3	6.41	9	
182 Ta	β -	1815.5	0.0	3-	1373.8301	3-	20.1	7	8.479	16	
^{182}Re	ε	2.80E3	0.0	7+	1971.09	(7)+	1.70	13	8.26	13	
$^{183}\mathrm{Os}$	$\beta + \varepsilon$	2.15E3	0.0	9/2 +	1002.51	(9/2)+	1.27	6	8.03	5	
¹⁸³ Ir	$\beta + \varepsilon$	3.46E3	0.0	5/2-	669.09	(5/2)-	2.20	40	7.54	9	Р
¹⁸³ Ir	$\beta + \varepsilon$	3.46E3	0.0	5/2-	2300.03	(5/2)-	8.1	10	6.14	8	Р
184 Ir	$\beta + \varepsilon$	4642	0.0	5-	1718.17	5-	7.4	8	7.567	48	Р
184 Ir	$\beta + \varepsilon$	4642	0.0	5-	1836.29	5-	2.8	5	7.94	8	Р
186 Ir	$\beta + \varepsilon$	3828	0.0	5+	1275.61	5+	3.70	40	8.454	48	
186 Ir	$\beta + \varepsilon$	3828	0.0	5+	1560.1	(5)+	2.64	24	8.482	40	
186 Au	$\beta + \varepsilon$	6150	0.0	3-	1407.79	3-	4.4	7	7.25	7	Р
190 Ir	ε	1954.2	0.0	4-	1583.82	4-	10.0	9	7.412	40	
191 Pt	ε	1010.5	0.0	3/2-	658.87	3/2-	0.83	15	7.85	8	
192 Ir	ε	1046.7	0.0	4 +	580.2800	4 +	0.670	11	9.617	10	
192 Ir	ε	1046.7	0.0	4 +	909.55	4 +	0.094	8	9.046	46	
192 Ir	β -	1452.9	0.0	4 +	784.5759	4 +	47.98	9	8.612	5	
192 Ir	β -	1452.9	0.0	4 +	1201.0452	4 +	5.60	3	8.156	13	
$^{192}\mathrm{Au}$	$\beta + \varepsilon$	3516	0.0	1-	1739.432	(1)-	4.0	5	7.61	6	
$^{194}\mathrm{Au}$	ε	2548.2	0.0	1-	1797.384	1-	11.7	4	7.235	15	
²⁰³ Po	$\beta + \varepsilon$	4214	0.0	5/2-	1609.82	(5/2)-	2.16	18	7.503	38	Р
^{203}At	$\beta + \varepsilon$	5148	0.0	9/2-	803.20	9/2-	1.59	11	7.548	33	Р
^{203}At	$\beta + \varepsilon$	5148	0.0	9/2-	1174.87	(9/2)-	1.41	10	7.486	33	Р
$^{205}\mathrm{Bi}$	$\beta + \varepsilon$	2704.6	0.0	9/2-	1575.35	9/2-	0.760	40	9.917	25	
^{205}At	$\beta + \varepsilon$	4537	0.0	9/2-	669.43	9/2-	5.9	6	7.392	46	Р
^{205}At	$\beta + \varepsilon$	4537	0.0	9/2-	719.28	9/2-	7.5	17	7.27	10	Р
^{205}At	$\beta + \varepsilon$	4537	0.0	9/2-	1426.05	9/2-	1.60	14	7.712	41	Р
207 Rn	$\beta + \varepsilon$	4593	0.0	5/2-	673.98	(5/2)-	11.0	8	6.702	33	Р
^{208}At	$\beta + \varepsilon$	4999	0.0	6+	2041.3	6+	3.8	12	7.84	14	
^{208}At	$\beta + \varepsilon$	4999	0.0	6+	2293.6	6+	4.1	6	7.72	6	
^{214}Bi	β -	3269	0.0	1-	1994.639	1-	1.192	21	7.621	16	
^{214}Bi	β -	3269	0.0	1-	2447.701	1-	2.78	6	6.576	23	
221 Rn	β -	1194	0.0	7/2 +	279.28	(7/2)+	5.9	6	6.607	46	
223 Fr	β -	1149.1	0.0	3/2-	50.093	3/2-	70	7	5.770	43	
224 Fr	β -	2923	0.0	1-	215.985	1-	43	6	6.62	6	
224 Fr	β -	2923	0.0	1-	1052.95	1-	10.3	14	6.62	6	
224 Fr	β -	2923	0.0	1-	1378.35	1-	5.6	7	6.58	6	
224 Fr	β -	2923	0.0	1-	1435.47	1-	2.8	4	6.82	6	
225 Rn	β -	2714	0.0	7/2-	559.68	7/2-	6.2	4	7.198	31	
225 Rn	β -	2714	0.0	7/2-	571.51	(7/2)-	1.11	8	7.936	34	
225 Rn	β -	2714	0.0	7/2-	778.64	7/2-	27.0	15	6.383	28	
225 Rn	β -	2714	0.0	7/2-	865.74	(7/2)-	5.4	3	7.006	28	
²²⁶ Fr	β -	3853	0.0	1-	253.726	1-	34	6	6.59	8	Р
²²⁶ Fr	β -	3853	0.0	1-	1048.78	1-	2.5	5	7.30	9	Р
²²⁷ Fr	β -	2505	0.0	1/2 +	120.711	1/2 +	4.9	16	7.22	14	
²²⁸ Ac	β -	2123.8	0.0	3+	1022.531	(3)+	3.11	15	8.403	21	
²²⁸ Ac	β -	2123.8	0.0	3+	1531.478	3+	7.6	4	7.091	24	
^{228}Ac	β -	2123.8	0.0	3+	1646.005	3+	4.19	19	7.041	21	

Table 9
(continued $)$

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P} \ [{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
²²⁸ Pa	ε	2152.7	0.0	3+	1645.933	3+	4.1	3	7.448	39	
228 Pa	ε	2152.7	0.0	3+	1893.017	3+	4.17	13	6.676	33	
228 Pa	ε	2152.7	0.0	3+	1944.916	3+	7.8	5	6.108	46	
231 Th	β -	391.5	0.0	5/2 +	183.4955	5/2 +	11.4	6	6.098	25	
234 Pa	β -	2193.9	0.0	4+	1023.9	4+	4.8	8	8.40	7	
234 Pa	β -	2193.9	0.0	4+	1723.4	4 +	34	4	6.20	5	
234 Pa	β -	2193.9	0.0	4+	1811.6	4 +	1.64	16	7.227	45	
$^{237}\mathrm{U}$	β -	518.5	0.0	1/2 +	332.385	1/2 +	3.4	3	7.353	38	
$^{238}\mathrm{Np}$	β -	1291.45	0.0	2+	44.051	2+	41.1	6	8.499	6	
$^{238}\mathrm{Np}$	β -	1291.45	0.0	2 +	983.02	2 +	0.26	3	8.67	5	
$^{238}\mathrm{Np}$	β -	1291.45	0.0	2 +	1028.542	2 +	44.8	5	6.220	5	
$^{239}\mathrm{U}$	β -	1261.7	0.0	5/2 +	0.0	5/2 +	18.7	24	6.72	6	
$^{239}\mathrm{Np}$	β -	722.8	0.0	5/2+	285.460	5/2+	45	3	6.971	29	
$^{245}\mathrm{Am}$	β -	895.9	0.0	(5/2)+	252.72	5/2+	15	2	6.61	6	
245 Bk	ε	809.3	0.0	3/2-	633.64	(3/2)-	2.6	3	7.21	5	
^{249}Es	ε	1452	0.0	7/2+	379.52	7/2 +	39	5	6.37	6	
^{249}Es	ε	1452	0.0	7/2+	442.98	(7/2)+	3.8	5	7.33	7	
^{254}Es	β -	1091.6	84.2	2 +	44.992	2 +	25.0	36	8.62	6	
^{254}Es	β -	1091.6	84.2	2 +	693.66	2 +	56	4	7.036	33	

15.4. $\Delta J=1$, $\Delta \pi=no$, not 0^+ \leftrightarrow 1^+

Table 10

List of allowed transitions with $\Delta J=1$ and $\Delta \pi=no$, but not $0^+ \leftrightarrow 1^+$.

Nuclide	Decay	$Q \; [\text{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
$^{7}\mathrm{Be}$	ε	861.89	0.0	3/2-	477.612	1/2-	10.44	4	3.48	6	
9 Li	β -	1.360645E4	0.0	3/2-	2429.4	5/2-	37.8	52	5.03	6	
9 Li	β -	1.360645E4	0.0	3/2-	4704	1/2-	2.29	35	5.78	7	
⁹ Li	β -	1.360645E4	0.0	3/2-	5590	5/2-	2.81	37	5.47	6	
⁹ Li	β -	1.360645E4	0.0	3/2-	11810	5/2-	2.65	27	2.574	49	
11 Li	β -	2.05511E4	0.0	3/2-	320.04	1/2-	7.7	8	5.660	46	
^{11}Li	β -	2.05511E4	0.0	3/2-	3889	5/2-	22.7	45	4.78	9	
^{11}Li	β -	2.05511E4	0.0	3/2-	5255	5/2-	2.4	5	5.58	9	
11 Li	β -	2.05511E4	0.0	3/2-	10590	5/2-	7.8	18	4.17	10	
$^{11}\mathrm{Be}$	β -	1.150946E4	0.0	1/2 +	7977.84	3/2 +	4.00	30	5.576	33	
$^{11}\mathrm{Be}$	β -	1.150946E4	0.0	1/2 +	9876	3/2+	3.1	4	4.23	6	
$^{12}\mathrm{B}$	β -	1.33694E4	0.0	1 +	4439.82	2 +	1.182	19	5.147	7	
^{12}N	$\beta +$	1.73381E4	0.0	1 +	4439.82	2 +	1.898	32	5.152	7	
$^{13}\mathrm{B}$	β-	1.34369E4	0.0	3/2-	0.0	1/2-	92.1	8	4.038	6	
^{13}O	$\beta + \varepsilon$	1.7770E4	0.0	3'/2-	0.0	1/2-	88.7	20	4.088	10	
$^{14}\mathrm{B}$	β-	2.0644E4	0.0	2-	6093.8	1-	79	6	4.129	37	Р
$^{14}\mathrm{B}$	β-	2.0644E4	0.0	2-	6728.2	3-	8.2	17	5.02	9	Р
^{16}N	β-	1.04209E4	0.0	2-	6129.89	3-	66.2	6	4.4871	43	
^{16}N	β-	1.04209E4	0.0	2-	7116.85	1-	4.8	4	5.116	36	
^{17}N	β-	8679	0.0	1/2-	4551.8	3/2-	37.8	11	4.421	15	
^{17}N	β-	8679	0.0	$\frac{1}{2}$	5387.1	3/2-	50.31	99	3.856	12^{-3}	
17 Ne	$\beta + \epsilon$	1 454875E4	0.0	$\frac{1}{2}$	4640	3/2-	16.54	14	4 581	6	
17Ne	$\beta + /\epsilon$	1.454875E4	0.0	$\frac{1}{2}$	5488	3/2-	59.20	40	3 8201	47	
^{18}N	β-72 β-	1.3896E4	0.0	1_	5530 17	2-	2.7	3	6 162	49	
^{18}N	β-	1.3896E4	0.0	1-	6880.45	<u>0</u> -	12.8	7	5.102	24	
^{18}N	β-	1.3896E4	0.0	1-	7771.07	2-	4.3	4	5.324	41	
^{19}N	р В-	1.0000 ± 1 1.2523E4	0.0	1/2-	3947.6	$\frac{2}{3}/2$ -	41.0	10	4.766	12	
190	р В -	4820.3	0.0	$\frac{1}{2}$ 5/2+	1554 038	$3/2 \pm$	54.4	12	4 621	10	
21 F	р В -	5684 2	0.0	5/2+	1001.000	3/2 +	96	30	5.67	14	
^{21}F	р В-	5684.2	0.0	$5/2 + 5/2 \pm$	1745 010	$\frac{5}{2}$	16.1	10	0.07 4 721	14 97	
$^{21}N_{P}$	р- В±/с	35/6 010	0.0	$\frac{3}{2}$	350 727	$5/2 \pm$	5.07	13	4.721	11	р
$^{21}M\sigma$	$\beta \perp /\epsilon$	1 30887E4	0.0	$5/2+5/2\perp$	0.0	$\frac{3}{2}$	16.0	40	4.002 5.26	11	P
$^{21}M\sigma$	$\beta \perp /\epsilon$	1.30887E4	0.0	$5/2 + 5/2 \pm$	1716.0	$\frac{5}{2}$	10.0	20	5.20	8	P
$^{21}M\sigma$	$\beta + \epsilon$	1.30887E4	0.0	5/2 + 5/2 +	1/10.0	$\frac{1}{2}$	10.5	20 5	0.11 4 487	23	л Р
$^{21}M\sigma$	$\beta \perp /\epsilon$	1.30887E4	0.0	$5/2+5/2\perp$	6512	$3/2 + 3/2 \pm$	10.5	6	4.407	$\frac{23}{27}$	P
$^{22}N_{P}$	$\beta \perp /\epsilon$	28/3 32	0.0	31	127453	$\frac{5}{2}$	00 044	14	7 4996	6	T
$^{23}\Omega$	β_{-}	1 13/E/	0.0	$\frac{1}{2}$	1214.00	$\frac{2}{3}/2 \perp$	17.1	$14 \\ 17$	1.4220	7	р
^{23}Ne	β- β-	1375 81	0.0	$\frac{1}{2}$	4000	$\frac{3}{2}$	67	1	4.20 5.979	7	P
$^{23}N_{\odot}$	β- β	4375.81	0.0	5/2+	2076.0	$\frac{3}{2}$	1 10	6	5.212	24	I D
^{23}Mc	β - β - β	4076.01	0.0	$\frac{3}{2}$	2010.3	1/2T 5/21	1.10 7.85	0	J.813 4 441	24 5	I D
24 A 1	$\rho_{\pm/\epsilon}$	4030.179 1 200477F4	0.0	3/2+	440.2 5925-19	$\frac{3}{2+}$	1.00	9 19	6 599	40	1
24 A 1	$\rho_{\pm/\epsilon}$	1.388477E4 1.388477E4	425.8	4+ 1	$1268\ 672$	$\frac{3+}{2+}$	1.40 2.7	13	0.388 5.80	40	
25No	$\rho + \epsilon$	1.300477124	420.0	1+1/2+	1306.072	$\frac{2+}{2}$	5.1 76.6	9	0.09 4 429	9 15	D
25 No	ρ- β	1322	0.0	$\frac{1}{2+}$	09.00	$\frac{3}{2+}$	70.0	20	4.432 5 20	10	Г D
25 No	ρ-	1322	0.0	1/2+ 5/2+	074 740	$\frac{3}{2+}$	2.1	0 00	5.50	10 6	Г
-~ina 25ni-	ρ-	3833.U 2835 0	0.0	5/2+	974.749	$\frac{3}{2+}$	27.40	22 14	5.048	0	Г D
-~ina 250:	ρ- α. /-	0000.U 1 074954	0.0	0/2+ E/0+	1011.772	$\frac{1}{2}$	9.48	14	5.030 E 06	ð 7	r D
-~ 51 25 C:	$p+\varepsilon$	1.2/43Ľ4 1.9749E4	0.0	$\frac{3}{2+}$	945	$\frac{3}{2+}$	20.U	40	0.00 F 10	(Г D
51 25 C:	$p+\varepsilon$	1.2/43Ľ4 1.9749E4	0.0	$\frac{3}{2+}$	1013	$\frac{1}{2}$	10.0	3U 20	0.10 E 400	9	Г D
-~ 51 25 C	$p + \varepsilon$	1.2/43E4	0.0	$\frac{5}{2+}$	2672	$\frac{3}{2+}$	4.80	3U 20	5.420	28	Г D
²⁰ S1 25G:	$\beta + \varepsilon$	1.2743E4	0.0	5/2+	4189	3/2+	2.990	30	5.254	8	P
²⁰ Sı	$\beta + \varepsilon$	1.2743E4	0.0	5/2+	7107	3/2+	3.70	20	4.169	25	Р

Table 10
(continued)

Nuclide	Decay	$Q \; [\text{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
^{26}F	β -	1.819E4	0.0	1 +	2018.0	2+	36	7	4.55	10	Р
26 F	β -	1.819E4	0.0	1 +	2018.0	2 +	36	7	4.55	10	Р
26 Na	β -	9353.8	0.0	3+	1808.81	2 +	87.80	7	4.7202	10	
26 Na	β -	9353.8	0.0	3+	4332.02	2 +	1.65	3	5.625	8	
26 Na	β -	9353.8	0.0	3+	4834.92	2 +	2.378	19	5.2571	38	
^{26}P	$\beta +$	1.811E4	0.0	(3)+	1797.27	2 +	44	12	4.85	12	Р
^{26}P	$\beta + \varepsilon$	1.811E4	0.0	(3)+	7501	2 +	2.40	20	5.14	6	Р
27 Na	β-	9068.8	0.0	5/2+	984.69	3/2 +	85.8	11	4.320	10	Р
^{27}Mg	β-	2610.27	0.0	1/2 +	1014.56	3/2+	29.06	9	4.9384	18	
28 Na	β-	1.4032E4	0.0	1+	4554.6	2^{+}	1.00	25	5.59	11	Р
^{28}Al	β-	4642.078	0.0	3+	1778.987	2 +	99.99	1	4.8719	10	
$^{28}\mathrm{P}$	$\beta + \varepsilon$	1.43449E4	0.0	3+	1779.030	2 +	69.1	7	4.8555	45	
$^{28}\mathrm{P}$	$\beta + \varepsilon$	1.43449E4	0.0	3+	4617.53	4+	1.29	18	6.00	6	
$^{28}\mathrm{P}$	$\beta + \varepsilon$	1.43449E4	0.0	3+	7933.52	2 +	2.84	20	4.677	31	
^{29}Mg	β-	7595.40	0.0	3/2+	0.0	5/2+	27	8	5.34	13	Р
^{29}Mg	β-	7595.40	0.0	3/2+	3061.7	(5/2)+	6.0	16	4.96	12	Р
^{29}Mg	β -	7595.40	0.0	3/2+	3184.54	5/2+	28	5	4.23	9	Р
^{29}Mg	β-	7595.40	0.0	3/2+	3433.0	1/2+	3.0	9	5.09	14	P
²⁹ Al	β-	3687.32	0.0	5/2+	1273.391	3/2+	89.9	3	5.0619	$42^{$	-
²⁹ Al	β-	3687.32	0.0	5/2+	2425.99	3/2+	6.3	$\tilde{2}$	5.043	14	
²⁹ P	$\beta + \varepsilon$	4942.23	0.0	$\frac{3}{2}$	1273.391	3/2+	1.260	20	4.814	7	Р
³⁰ Na	β-7,0 β-	1.73560E4	0.0	$\frac{1}{2+}$	4694 7	3+	2.1	3	6.03	6	P
³⁰ Na	р В-	1.73560E4	0.0	2+	4967.0	1+	17	2	5.08	5	P
³⁰ Na	р В-	1.73560E4	0.0	$\frac{2}{2+}$	5022.2	1+	6.3	8	5.50	6	P
^{30}Na	р В-	1.73560E4	0.0	2^{-1}	5898.1	1_	24	5	5.36	9	P
³⁰ Na	р В-	1.73560E4 1.73560E4	0.0	2^{+} 2+	6065.9	3+	2.4	4	5.62	6	P
³⁰ A1	р В-	8568.8	0.0	$\frac{2}{3+}$	2235 326	$\frac{0}{2+}$	17.1	9	5.02 5.627	24	P
30 <u>A</u> 1	β- β-	8568.8	0.0	3^+	3/08 50	$\frac{2}{2}$	67.3	11	4 586	10	P
30 41	β- β-	8568.8	0.0	3⊥ 3⊥	4810 31	$\frac{2}{2}$	57	2	5.069	10	P
31N ₂	β- β-	1 5368E4	0.0	$\frac{3}{2}$	2015.08	$\frac{2}{5}/2 \perp$	1.1	2	6.00	8	P
31No	р- В	1.5368E4	0.0	$\frac{3}{2}$	2010.00	$\frac{5}{2}$	1.1 91	2 1	4.68	8	D I
31 G ;	р- В	1.0300024 1.01007	0.0	$\frac{3}{2+}$	2245.05	$\frac{1}{2+}$	00 04463	47	4.00 5.5311	6	1
31 C	p- B L /c	5208 01	0.0	$\frac{3}{2}$	1966-13	$\frac{1}{2} + \frac{2}{2}$	1 080	30	4 075	10	
	$\rho_{\pm/\epsilon}$	1 20080F4	0.0	$\frac{1}{2+}$	1200.13	$\frac{3}{2+}$	7.0	30 20	4.975	12	D
31 Cl	ρ_{\pm}	1.20080E4 1.20080E4	0.0	$\frac{3}{2+}$	2224.06	1/2+ 5/2+	7.0 28.0	20	1.00 4.279	12	I D
	$\rho + \epsilon$	1.20080E4 1.20080E4	0.0	$\frac{3}{2+}$	2234.00 2076 44	$\frac{3}{2+}$	30.0 2.54	30 15	4.372	34 96	Г D
	$\rho + \epsilon$	1.20080E4	0.0	$\frac{3}{2+}$	3070.44 2002 76	$\frac{1}{2+}$	2.04	10	0.000 E 020	20	Г
31 C1	$\rho + \varepsilon$	1.20080E4 1.20080E4	0.0	$\frac{3}{2+}$	3283.70 4717-70	(5/2)+(5/2)+	4.40 1.55	20	5.039 5.077	24 25	Г D
	$\rho + \epsilon$	1.20080E4	0.0	$\frac{3}{2+}$	4111.19	(3/2)+	1.00	9	5.077	20	Г
32 \ 1	$\rho + \epsilon$	1.20080E4 1.2078E4	0.0	$\frac{3}{2+}$	4000.03 1041 4	(1/2)+	1.04	10	5.004	27 19	Г D
³² A1	ρ-	1.2976E4	0.0	1+ 1	1941.4	2+	4.7	13	0.28 5.00	12	Г D
32 Cl	ρ -	1.2970E4 1.26909E4	0.0	1+ 1	4230.8	2+	5.0	0	0.00 4 EQOE	12	Г
32Cl	$\rho + \varepsilon$	1.20000E4	0.0	1+	4220.4	2+	09.08	30	4.5295	32 16	
32 CI	$p+\varepsilon$	1.20808E4	0.0	1+	4281.9	2+	2.18	8 10	0.407	10	
32 CI	$p+\varepsilon$	1.20808E4	0.0	1+	0048.3 CCCF 4	2+	3.83	12	4.828	14	
33 A 1	$\rho + \varepsilon$	1.20808E4	0.0	1+	0005.4	2+	2.09	(4.684	15	р
33 G:	β-	1.2017E4	0.0	$\frac{5}{2+}$	0.0	3/2+	88	2	4.290	10	Р
33 C'	β-	5823.0	0.0	3/2+	1047 50	1/2+	93.7	7	4.963	13	
33D	p- 0	5823.U	0.0	$\frac{3}{2+}$	1847.50	$\frac{3}{2+}$	5.3	Ø	5.45	5 7	
33 A	p-	248.5 1 10100D4	0.0	1/2+	0.0	$\frac{3}{2+}$	10.70	40	5.031	(11	
³³ Ar	$\beta + \varepsilon$	1.16190E4	0.0	1/2+	0.0	3/2+	18.70	40	5.028	11	
³⁰ Ar	$\beta +$	1.16190E4	0.0	1/2+	2352.3	3/2+	1.70	30	5.55	8	D
³⁴ C	β-	5383.0	0.0	1+	2127.564	2+	14.8	20	4.94	6	Р
³⁴ Cl	$\beta + \varepsilon$	5491.604	146.36	3+	2127.564	2+	28.5	7	5.991	11	

Table	10
(contin	ued)

Nuclide	Decay	$Q \; [\text{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
^{34}Cl	$\beta + \varepsilon$	5491.604	146.36	3+	3304.212	2+	26.4	5	4.832	8	
^{35}Ar	$\beta + \varepsilon$	5966.2	0.0	3/2+	1219.22	1/2+	1.230	30	5.099	11	Р
³⁵ K	$\beta +$	1.18744E4	0.0	3/2+	1184.01	1/2+	2.2	7	5.77	14	Р
³⁵ K	$\beta + \varepsilon$	1.18744E4	0.0	3/2+	1750.7	(5/2)+	11.9	9	4.914	38	Р
³⁵ K	$\beta + \varepsilon$	1.18744E4	0.0	3/2+	4725.9	1/2 +	2.10	40	4.86	8	Р
³⁶ P	β -	1.0413E4	0.0	4-	5206.1	5-	1.9	3	6.40	7	Р
³⁶ P	β -	1.0413E4	0.0	4-	5251.2	3-	11.9	8	5.588	38	Р
³⁶ P	β -	1.0413E4	0.0	4-	5830.9	3-	57.3	15	4.669	26	Р
³⁶ K	$\beta + \varepsilon$	1.281436E4	0.0	2+	7338.7	3+	1.93	14	4.533	32	
$^{37}\mathrm{K}$	$\beta + \varepsilon$	6147.48	0.0	3/2 +	2796.11	5/2 +	2.07	11	3.798	23	Р
³⁸ Cl	β -	4916.71	0.0	2-	3810.187	3-	32.9	5	4.913	7	
³⁸ K	$\beta + \varepsilon$	5914.067	0.0	3+	2167.6	2 +	99.848	10	4.9845	11	
^{39}S	β -	6.64 E3	0.0	(7/2)-	1696.78	5/2-	68	7	5.07	5	Р
^{39}S	β -	6.64 E3	0.0	(7/2)-	2571.10	(9/2)-	12.8	16	5.41	6	Р
$^{39}\mathrm{Cl}$	β -	3442	0.0	3/2 +	2358.284	1/2 +	2.55	8	6.168	16	
$^{39}\mathrm{Cl}$	β -	3442	0.0	3/2 +	2503.418	(5/2)+	2.23	7	5.984	17	
^{40}Cl	β -	7482	0.0	2-	3680.53	3-	4.6	11	6.58	11	
^{40}Cl	β -	7482	0.0	2-	4082.60	3-	13.8	15	5.89	5	
^{40}Cl	β -	7482	0.0	2-	4301.01	(3)-	27	5	5.47	8	
$^{40}\mathrm{Cl}$	β -	7482	0.0	2-	5880.1	1-	5.2	5	4.92	6	
$^{40}\mathrm{Sc}$	$\beta + \varepsilon$	1.43230E4	0.0	4-	3735.8	3-	19	5	4.81	11	
$^{40}\mathrm{Sc}$	$\beta + \varepsilon$	1.43230E4	0.0	4-	4490.6	5-	17	5	4.69	13	
⁴¹ Ti	$\beta + \varepsilon$	1.2945E4	0.0	3/2 +	2666	5/2 +	4.1	9	5.05	10	Р
$^{41}\mathrm{Ti}$	$\beta + \varepsilon$	1.2945E4	0.0	3/2+	3414	1/2 +	5.0	6	4.79	5	Р
$^{41}\mathrm{Ti}$	$\beta + \varepsilon$	1.2945E4	0.0	3/2+	4247	5/2+	16.3	6	4.067	18	Р
$^{41}\mathrm{Ti}$	$\beta + \varepsilon$	1.2945E4	0.0	3/2+	4869	5/2+	3.6	5	4.55	6	Р
$^{41}\mathrm{Ti}$	$\beta + \varepsilon$	1.2945E4	0.0	3/2+	4929	5/2+	7.6	5	4.208	30	Р
$^{41}\mathrm{Ti}$	$\beta + \varepsilon$	1.2945E4	0.0	3/2+	5379	5/2+	3.73	12	4.382	17	Р
$^{41}\mathrm{Ti}$	$\beta + \varepsilon$	1.2945E4	0.0	3/2+	5840	5/2+	5.30	30	4.081	26	Р
$^{41}\mathrm{Ti}$	$\beta + \varepsilon$	1.2945E4	0.0	3/2+	5885	5/2+	1.10	20	4.75	8	Р
^{42}Sc	$\beta + \varepsilon$	6426.290	616.28	7+	3189.33	6+	100.		4.1725	28	
$^{43}\mathrm{K}$	β -	1833.48	0.0	3/2 +	1394.473	5/2 +	2.60	4	6.114	7	
$^{43}\mathrm{Sc}$	$\beta + \varepsilon$	2220.7	0.0	7/2-	372.9	5/2-	22.5	7	4.985	14	
43 Ti	$\beta + \varepsilon$	6873	0.0	7/2-	845.17	5/2-	2.60	40	4.79	7	Р
⁴³ Ti	$\beta + \varepsilon$	6873	0.0	7/2-	2288.40	5/2-	4.6	7	3.87	7	Р
$^{44}\mathrm{K}$	β -	5687.2	0.0	2-	3307.864	3-	28.5	5	6.143	8	
$^{44}\mathrm{K}$	β -	5687.2	0.0	2-	4358.43	3-	1.5	3	6.37	9	
$^{45}\mathrm{K}$	β -	4196.6	0.0	3/2 +	2392.13	1/2 +	10.0	8	5.997	38	
$^{46}\mathrm{K}$	β -	7725.7	0.0	2-	4404.48	3-	5.09	22	6.381	19	
$^{46}\mathrm{K}$	β -	7725.7	0.0	2-	5374.97	3-	5.52	13	5.694	11	
$^{47}\mathrm{K}$	β -	6632.7	0.0	1/2 +	2578.31	3/2 +	18.4	3	5.465	7	
^{47}Ca	β -	1992.2	0.0	7/2-	1297.12	5/2-	82.2	5	6.0399	38	
^{47}Ca	β -	1992.2	0.0	7/2-	1878.2	9/2-	0.037	8	6.73	10	
$^{47}\mathrm{Sc}$	β -	600.8	0.0	7/2-	0.0	5/2-	31.6	6	6.110	10	
$^{47}\mathrm{V}$	$\beta + \varepsilon$	2930.54	0.0	3/2-	0.0	5/2-	99.552	15	4.9144	40	
$ m ^{47}Cr$	$\beta + \varepsilon$	7444	0.0	3/2-	87.525	5/2-	3.9	13	5.07	15	Р
^{48}V	ε	4014.9	0.0	4+	3223.992	3+	3.252	18	6.577	5	
^{49}Ca	β -	5262.4	0.0	3/2-	4072.07	5/2-	8.198	25	5.0577	36	
$^{49}\mathrm{Cr}$	$\beta + \varepsilon$	2629.8	0.0	5/2-	0.0	7/2-	12.4	17	5.61	6	
$^{49}\mathrm{Cr}$	$\beta + \varepsilon$	2629.8	0.0	5/2-	152.9282	3/2-	50.3	19	4.828	17	
$^{50}\mathrm{Sc}$	β-	6894.7	0.0	5+	2674.6	4+	9.0	17	6.65	8	
$^{50}\mathrm{Sc}$	β -	6894.7	0.0	5+	3198.4	6+	88.3	17	5.401	9	
$^{51}\mathrm{Sc}$	β -	6482.6	0.0	(7/2)-	2144.0	5/2-	34.0	11	5.210	15	Р

Table 10
(continued)

Nuclide	Decay	$Q \; [\text{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
$^{51}\mathrm{Ti}$	β -	2470.14	0.0	3/2-	320.077	5/2-	91.9	4	4.9056	21	
$^{51}\mathrm{Cr}$	ε	752.39	0.0	7/2-	320.0835	5/2-	9.930	10	5.869	6	
^{51}Mn	$\beta + \varepsilon$	3207.49	0.0	5/2-	0.0	7/2-	99.591	12	5.3076	10	
51 Fe	$\beta + \varepsilon$	8054.0	0.0	5/2-	237	7/2-	5.0	13	4.88	11	Р
$^{52}\mathrm{V}$	β -	3976.48	0.0	3+	1434.081	2+	99.2	10	5.0091	44	
^{52}Mn	$\beta + \varepsilon$	4708.12	0.0	6+	3615.946	5 +	7.69	6	6.1235	41	
^{52}Mn	ε	4708.12	0.0	6+	4015.52	5 +	1.04	5	6.594	21	
52 Fe	$\beta + \varepsilon$	2379.29	6958.0	12 +	3837.2	11 +	100.		4.911	6	
$^{53}\mathrm{Ti}$	β -	4970.2	0.0	(3/2)-	1904.01	(5/2)-	37	3	4.938	37	Р
⁵³ Ti	β -	4970.2	0.0	(3/2)-	1957.6	(1/2)-	4.8	7	5.79	6	Р
⁵³ Ti	β -	4970.2	0.0	(3/2)-	2550.6	(1/2)-	4.5	13	5.41	13	Р
$^{53}\mathrm{Ti}$	β -	4970.2	0.0	(3/2)-	2829.5	(5/2)-	11.1	11	4.791	45	Р
53 Fe	$\beta + \varepsilon$	3742.9	0.0	7/2-	377.90	5/2-	42	8	5.07	8	
$^{54}\mathrm{Sc}$	β-	1.1306E4	0.0	(3)+	1495.76	(2)+	21	7	5.69	15	Р
$^{54}\mathrm{Sc}$	β-	1.1306E4	0.0	(3)+	2498.2	(4)+	33	4	5.27	5	Р
$^{54}\mathrm{Sc}$	β-	1.1306E4	0.0	(3) +	2516.83	(2)+	10	2	5.78	9	Р
$^{54}\mathrm{Co}$	$\beta + \varepsilon$	8244.55	197.1	7+	2948	6+	100.		5.189	6	
$^{55}\mathrm{Cr}$	β-	2602.22	0.0	3/2-	0.0	5/2-	99.958	4	5.03385	44	
55 Fe	έ	231.12	0.0	3'/2-	0.0	5'/2-	100		5.9861	35	
$^{55}\mathrm{Co}$	$\beta + \varepsilon$	3451.43	0.0	7'/2-	931.27	5'/2-	52.0	30	6.256	25	
$^{55}\mathrm{Co}$	$\beta + \varepsilon$	3451.43	0.0	7'/2-	2212.2	9/2-	1.87	16	6.115	37	
$^{56}{ m Mn}$	β-	3695.50	0.0	3+	846.7762	2+	56.6	7	7.111	5	
⁵⁶ Mn	β-	3695.50	0.0	3+	2657.547	2^{-1}	27.5	4	5.631	6	
⁵⁶ Mn	β-	3695.50	0.0	3+	2959.935	2^{-1}	14.5	3	5.347	9	
⁵⁶ Mn	β-	3695.50	0.0	3+	3369.91	$\frac{-}{2+}$	1.20	3	5.186	11	
56 Co	$\beta + \varepsilon$	4566.65	0.0	4+	3445.348	3^{-1}	21.90	40	6.979	8	
^{56}Co	ε - 7 -	4566.65	0.0	4+	3856.495	3+	16.85	5	6.6933	31	
56 Co	ε	4566.65	0.0	4+	4048.888	3+	3.965	13	7.0442	33	
56 Co	ε	4566.65	0.0	4+	4119.936	3+	9.940	18	6.5152	32	
56 Co	ε	4566.65	0.0	4+	4394.93	3+	0.2159	18	7.328	6	
$^{57}\mathrm{Cr}$	β-	4961.3	0.0	(3/2)-	0.0	5/2-	74	12	5.41	7	Р
⁵⁷ Mn	β-	2695.7	0.0	5/2-	14.41291	3/2-	81	3	4.814	18	
⁵⁷ Mn	β-	2695.7	0.0	5/2-	366.776	3/2-	1.62	7	6.252	20	
57 Co	ε	836.36	0.0	$\frac{3}{7}/2$ -	136.47390	5/2-	99.82	19	6.4543	30	
57 Co	ε	836.36	0.0	7/2-	706.438	5/2-	0.186	6	7.686	15	
⁵⁷ Ni	$\beta + \epsilon$	3261.7	0.0	3/2-	1504.830	1/2-	17.0	5	6.055	13	
⁵⁷ Ni	$\beta + \varepsilon$	3261.7	0.0	3/2-	1919.50	5/2-	12.30	40	5.743	14	
⁵⁷ Ni	$\beta + \varepsilon$	3261.7	0.0	3/2-	2133.06	5/2-	0.0340	19	8.134	24	
$^{57}\mathrm{Cu}$	$\beta + \varepsilon$	8774.95	0.0	3/2-	1112.6	1/2-	8.6	6	4.383	30	Р
^{58}Cu	$\beta + \varepsilon$	8561.02	0.0	1+	1454.56	$2^{-/-}$	1.40	40	6.21	12	P
^{58}Cu	$\beta + \varepsilon$	8561.02	0.0	1+	3264.64	2^{-1}	1.16	7	5.581	${26}$	P
⁵⁹ Mn	β-	5139.6	0.0	5/2-	726.28	3/2-	32	5	4.89	7	Р
⁵⁹ Mn	β-	5139.6	0.0	5/2-	1161.85	3/2-	10.5	15	5.17	6	P
⁵⁹ Fe	β-	1564.88	0.0	3/2-	1434.253	$\frac{3}{1/2}$	1.31	5	6.501	17	-
⁵⁹ Fe	β-	1564.88	0.0	3/2-	1481.63	5/2-	0.078	7	7.119	40	
59 Cu	$\beta + \varepsilon$	4798.38	0.0	3/2-	339.37	5/2-	5.97	10	5.846	8	Р
⁵⁹ Cu	$\beta + \epsilon$	4798.38	0.0	3/2-	464.92	$\frac{3}{1/2}$	3.40	15	6.018	19	P
⁵⁹ Cu	$\beta + \epsilon$	4798.38	0.0	$\frac{3}{2}$ -	1301.41	$\frac{1}{2}$	19.60	$\frac{1}{30}$	4.698	7	P
⁵⁹ Cu	$\beta + \varepsilon$	4798.38	0.0	3/2-	1679.70	5/2-	1.700	30	5.451	8	Р
59 Zn	$\beta + \epsilon$	9142.8	0.0	3/2-	491.4	1/2-	4.8	6	4.87	$\overline{5}$	P
⁵⁹ Zn	$\beta + \epsilon$	9142.8	0.0	$\frac{3}{2}$ -	914.2	$\frac{5}{2}$	1.10	20	5.40	8	P
60 Mn	β-	8445.2	0.0	1+	823	$\frac{2}{2+}$	4.2	12^{-5}	5.65	13	P
$^{60}\mathrm{Co}$	β-	2822.81	0.0	5+	2505.748	4+	99.88	3	7.5209	10	
	· · · · · · · · · · · · · · · · · · ·										

Table	10
(contin	ued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
⁶⁰ Cu	$\beta + \varepsilon$	6128.0	0.0	2+	2626.25	3+	2.90	30	6.773	46	
60 Cu	$\beta + \varepsilon$	6128.0	0.0	2 +	4020.49	1 +	1.40	12	5.673	38	
$^{61}\mathrm{Co}$	β -	1323.9	0.0	7/2-	67.412	5/2-	95.6	4	5.2512	25	
61 Cu	$\beta + \varepsilon$	2238.0	0.0	3/2-	67.416	5/2-	3.2	6	6.32	8	
61 Cu	$\beta + \varepsilon$	2238.0	0.0	3/2-	282.955	1/2-	9.6	18	5.56	8	
$^{61}\mathrm{Cu}$	$\beta + \varepsilon$	2238.0	0.0	3/2-	656.017	1/2-	13.7	25	4.94	8	
61 Cu	$\beta + \varepsilon$	2238.0	0.0	3/2-	908.620	5/2-	1.30	24	5.73	8	
61 Zn	$\beta + \varepsilon$	5635	0.0	3/2-	474.98	1/2-	10.9	6	5.982	25	Р
61 Zn	$\beta + \varepsilon$	5635	0.0	3/2-	2792.98	5/2-	1.74	15	5.220	41	Р
61 Ga	$\beta + \varepsilon$	9214	0.0	3/2-	88.2	1/2-	1.9	6	5.36	14	Р
61 Ga	$\beta + \varepsilon$	9214	0.0	3/2-	123.3	5/2-	1.20	40	5.55	15	Р
$^{62}\mathrm{Co}$	β -	5322	0.0	(2)+	3059.2	3+	1.00	25	6.46	11	Р
$^{62}\mathrm{Co}$	β-	5322	22	(5)+	2336.4	4+	64.0	15	6.141	16	Р
62 Co	β-	5322	22	(5)+	3176.7	4+	19.6	6	6.047	21	Р
62 Co	β-	5322	22	(5)+	3277.8	4+	5.0	4	6.553	39	Р
62 Co	β-	5322	22	(5)+	4055.2	4+	10.2	6	5.413	36	Р
63 Co	β-	3661	0.0	7/2-	87.15	5/2-	93	5	4.816	26	
$^{63}\mathrm{Co}$	β-	3661	0.0	7'/2-	1068.99	(5/2)-	3.71	24	5.609	32	Р
⁶³ Ni	β-	66.977	0.0	1/2-	0.0	3/2-	100		6.688	6	
63 Zn	$\beta + \varepsilon$	3366.4	0.0	3'/2-	669.66	1/2-	7.90	30	5.830	17	
63 Zn	$\beta + \varepsilon$	3366.4	0.0	3'/2-	962.09	5'/2-	6.10	40	5.619	29	
$^{65}\mathrm{Co}$	β-	5940.6	0.0	(7/2)-	0.0	5/2-	91.7	8	4.449	12	
⁶⁵ Ni	β -	2137.9	0.0	5/2-	0.0	3/2-	60.0	3	6.5887	23	
⁶⁵ Ni	β-	2137.9	0.0	5/2-	1481.83	$\frac{3}{7}/2$ -	28.4	2	4.9177	35^{-5}	
⁶⁵ Zn	$\beta + \varepsilon$	1351.65	0.0	5/2-	0.0	3/2-	49.96	10	7.451	8	
65 Ga	$\beta + \epsilon$	3254.5	0.0	3/2-	768.84	5/2-	2.2	5^{-3}	5.76	10	Р
65 Ga	$\beta + \epsilon$	3254.5	0.0	3/2-	866.93	1/2-	8.4	17	5.06	9	P
65 Ga	$\beta + \varepsilon$	3254.5	0.0	3/2-	1047.43	5/2-	2.7	6	5.34	10	P
65 Ga	$\beta + \varepsilon$	3254.5	0.0	3/2-	1343.94	5/2-	1.10	22	5.36	9	P
65 Ge	$\beta + \varepsilon$	6179.3	0.0	3/2-	62.0	(1/2)-	30	8	5.49	12	-
65 Ge	$\beta + \varepsilon$	6179.3	0.0	3/2-	190.8	5/2-	4.4	10	6.27	10	
^{66}Cu	β- β-	2640.9	0.0	1+	1039.21	2^{+}	9.01	9	5.4430	46	
67 Ga	E	1001.2	0.0	$\frac{1}{3}/2$ -	93.310	$\frac{1}{2}$	52.5	11	5.249	16	
67 Ga	ε	1001.2	0.0	3/2-	887.693	$\frac{1}{5}/2$ -	0.281	4	5.655	23	
67 Ge	$\beta + \varepsilon$	4205.4	0.0	1/2-	828.33	3/2-	1.10	30	6.99	$\frac{-0}{12}$	
67 Ge	$\beta + \varepsilon$	4205.4	0.0	1/2-	1639.92	3/2-	9.1	5	5.324	25	
67 Ge	$\beta + /\varepsilon$	4205.4	0.0	1/2-	1809.84	3/2-	5 40	40	5 363	33	
^{68}As	$\beta + \varepsilon$	8084.3	0.0	3+	2268.6	4+	3.10	40	7.03	6	Р
⁶⁸ As	$\beta + \varepsilon$	8084.3	0.0	3+	2457.7	2+	3.5	8	6.90	10	P
⁶⁸ As	$\beta + \varepsilon$	8084.3	0.0	3+	2830.9	4+	3.34	22	6.755	29	P
⁶⁸ As	$\beta + /\varepsilon$	8084.3	0.0	3+	3023.6	2+	4 00	30	6 585	33	P
⁶⁸ As	$\beta + /\varepsilon$	8084.3	0.0	3+	3522.5	$\frac{2}{2+}$	1.00	10	6 783	31	P
⁶⁸ As	$\beta + /\varepsilon$	8084.3	0.0	3+	3809.7	$\frac{2}{2+}$	1.10	10	6 686	36	P
^{68}Cu	β-70 β-	4440 1	0.0	0 1+	1077.7	2+ 2+	38	4	5.000 5.177	46	P
^{68}Cu	р В-	4440 1	0.0	1+	2339.5	$\frac{2}{2+}$	16.0	12	4.679	34	P
^{68}Cu	р В -	4440.1	0.0	1+	2800.0 2821 4	2^{+} 2^{+}	1 7	4	5 19	10	P
68 Ga	$\beta + 1 \epsilon$	2021 1	0.0	+ 1+	1077.36	$\frac{2}{2+}$	2 000	30	5 499	0	Ŧ
^{69}Cn	β- β-	2681 7	0.0	$\frac{1}{3}/2$ -	0.0	$\frac{2}{1/2}$	51	8	5 37	7	
⁶⁹ Cu	р В-	2681.7	0.0	3/2-	531 30	$\frac{1}{2}$	2.5	6	6.27	11	
$^{69}C_{11}$	β-	2681 7	0.0	3/2	1180 73	5/2-	$\frac{2.0}{4.2}$	7	5 41	8	
69 Zn	р В-	909 9	0.0	$\frac{1}{2}$	0.0	3/2	90 0086	2	4 501	7	
⁶⁹ Ge	$\beta \pm l \epsilon$	2227 1	0.0	$\frac{1}{2}$	0.0	$3/2^{-}$	31	8	6 50	11	
69 Ce	$\beta \perp /c$	2221.1 9997 1	0.0	$5/2^{-}$ 5/2_	879 00	$3/2^{-}$	11 8	16	6.00 6.00	6	
<u>ue</u>	PTC	4441.1	0.0	0/2-	012.00	0/2-	11.0	10	0.00	U	

Table 10
(continued $)$

Nuclide	Decay	$Q \; [\text{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
69 Ge	ε	2227.1	0.0	5/2-	1336.61	7/2-	4.4	7	6.05	7	
69 Ge	ε	2227.1	0.0	5/2-	1487.96	7/2-	0.18	3	7.27	7	
69 Ge	ε	2227.1	0.0	5/2-	1525.86	3/2-	0.77	10	6.60	6	
^{69}Ge	ε	2227.1	0.0	5/2-	1891.51	3/2-	0.71	9	5.98	6	
^{69}Ge	ε	2227.1	0.0	5/2-	1924.02	7/2-	1.26	16	5.64	6	
^{69}As	$\beta + \varepsilon$	3988	0.0	5/2-	232.736	3/2-	14.6	5	6.048	27	
^{69}As	$\beta + \varepsilon$	3988	0.0	5/2-	1767.14	3/2-	1.01	7	5.811	46	
^{70}As	$\beta + \varepsilon$	6228.1	0.0	4+	2451.30	3+	5.90	20	6.995	15	
^{70}As	$\beta + \varepsilon$	6228.1	0.0	4+	3046.43	3+	34.7	21	5.774	26	
70 Cu	β -	6588.4	0.0	6-	3038.30	5-	58	3	5.255	23	Р
71 Zn	β -	2810.3	155.62	9/2 +	2247.272	7/2 +	5.8	1	6.005	10	
$^{71}\mathrm{Ge}$	ε	232.47	0.0	1/2-	0.0	3/2-	100		4.3461	27	
$^{71}\mathrm{As}$	$\beta + \varepsilon$	2013.4	0.0	5/2-	499.923	3/2-	1.88	5	7.206	15	
^{71}As	ε	2013.4	0.0	5/2-	1095.516	3/2-	4.57	13	6.346	17	
^{71}As	ε	2013.4	0.0	5/2-	1139.446	3/2-	1.01	3	6.959	17	
^{71}As	ε	2013.4	0.0	5/2-	1298.734	3/2-	0.220	11	7.443	25	
^{71}As	ε	2013.4	0.0	5/2-	1406.651	(7/2)-	0.215	7	7.309	20	
^{71}As	ε	2013.4	0.0	5/2-	1506.414	$\frac{1}{7/2}$	0.175	6	7.240	21	
^{71}As	ε	2013.4	0.0	5/2-	1598.533	3/2-	0.231	18	6.941	38	
$^{71}\mathrm{As}$	ε	2013.4	0.0	5'/2-	1743.446	3'/2-	0.076	5	7.039	36	
^{71}As	ε	2013.4	0.0	5/2-	1965.06	3/2-	0.00115	25	7.20	14	
72 Ga	β-	3997.6	0.0	3-	3036.018	2-	28.87	12	6.3225	23	
72 Ga	β-	3997.6	0.0	3-	3342.135	(2)-	15.71	6	5.9750	25	
^{72}As	$\beta + \varepsilon$	4343.60	0.0	2-	2514.76	3-	1.39	5	7.239	16	
^{72}As	$\beta + \varepsilon$	4343.60	0.0	2-	2939.95	1-	1.760	40	6.747	12	
^{72}As	$\beta + \varepsilon$	4343.60	0.0	2-	2943.43	3-	0.583	16	7.225	14	
^{72}As	ε	4343.60	0.0	2-	3325.10	(3)-	0.073	4	7.834	25	
^{72}As	ε	4343.60	0.0	2-	3550.66	(1)-	0.078	7	7.585	40	
$^{73}\mathrm{Br}$	$\beta + \varepsilon$	4582	0.0	$\frac{1}{2}$	25.70	3/2-	22	5	5.70	10	Р
⁷³ Kr	$\beta + \varepsilon$	7094	0.0	(3/2)-	0.0	1/2-	36	9	5.68	11	
⁷³ Zn	β-	4105.9	0.0	1/2-	217.69	3/2-	5.6	14	6.20	11	Р
73 Zn	β-	4105.9	0.0	1/2-	911.03	3/2-	1.8	5	6.32	12	P
⁷³ Zn	β-	4105.9	0.0	1/2-	2109.07	3/2-	2.6	7	5.29	12	P
73 Ga	β-	1598.2	0.0	1/2-	364.07	3/2-	78.6	10	5.842	7	-
73 Ga	β-	1598.2	0.0	1/2-	392.46	3/2-	7.1	4	6.847	25	
^{73}As	F	344.8	0.0	$\frac{1}{3}/2$ -	66 722	$\frac{3}{1/2}$	100	-	5 417	$\frac{-0}{20}$	
73 Se	$\beta + \epsilon$	2725	25.71	3/2-	67.09	5/2-	3.00	40	6.26	-© 6	
73 Se	$\beta + \epsilon$	2725	25.71	3/2-	84.19	(1/2)-	1.55	17	6.53	$\tilde{5}$	
73 Se	$\beta + \epsilon$	2725	25.71	3/2-	574.43	(1/2)-	1.37	12	6.062	43	
75 Ge	β-	1178 56	0.0	1/2-	0.0	$\frac{(-)}{3/2}$	87.1	13	5 190	6	
75 Ge	β-	1178 56	0.0	1/2-	264 60	3/2-	11.5	12	5.650	45	
^{75}Br	$\beta + l \epsilon$	3062.5	0.0	3/2-	427.80	5/2-	6.3	10	6.28	7	Р
^{75}Br	$\beta + \epsilon$	3062.5	0.0	3/2-	663.89	5/2-	4 90	30	6.20 6.147	28	P
^{75}Br	$\beta + \epsilon$	3062.5	0.0	3/2-	1073.77	5/2-	1.00	10	6 354	20 40	P
75Kr	$\beta + \epsilon$	4783	0.0	5/2 + 5/2 +	154 68	(3/2) +	39.5	14	5.617	40 17	P
75Kr	$\beta + \epsilon$	4783	0.0	5/2+	374.20	$(0/2)^+$ $(7/2)^+$	6.11	22	6 306	18	P
⁷⁶ Rb	B+10	8534 6	0.0	1_	2227 28	2-	7 00	40	6 238	26	Ŧ
⁷⁶ Bb	$\beta + 1 \epsilon$	8534.6	0.0	- 1-	$3024\ 42$	- 2-	7 7	5	5.230	$\frac{20}{29}$	
76 A s	β-70 β-	2960.6	0.0	2-	2429 146	- 3-	1 52	3	6 978	9	
^{76}Br	$\beta + l \epsilon$	4963	0.0	- 1_	2670 35	2-	1.52	15	7 497	40	
77 Kr	$\beta \perp /c$	3065 4	0.0	$\frac{1}{5/2}$	2010.00	$\frac{2}{(3/2)}$	41.5	20	5 483	-10 21	Р
⁷⁷ Bb	$\beta + 1c$	5330 A	0.0	$\frac{3}{2}$	270.21	$(3/2)^{\pm}$ 5/2-	12.0	$\frac{20}{25}$	6 25	21 8	P
77Rh	$\beta \perp l_{c}$	5330 A	0.0	3/2-	240.00 /50.99	$\frac{3}{2}$	12.3 7 Q	20 14	6 30	8	Р
100	ρτιε	0.6660	0.0	0/2-	409.00	1/2-	1.0	1.4	0.09	0	T

Table 10
(continued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	Jπ	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
Ge	β -	2703.5	0.0	7/2+	475.48	9/2+	16.0	10	7.948	27	
77 Ge	β -	2703.5	0.0	7/2+	631.88	5/2 +	21.4	17	7.691	35	
77 Ge	β -	2703.5	0.0	7/2+	1528.34	5/2+	1.87	11	7.763	26	
77 Ge	β -	2703.5	0.0	7/2+	1560.47	5/2+	7.5	4	7.114	23	
$^{77}\mathrm{Ge}$	β -	2703.5	0.0	7/2 +	2000.19	5/2 +	8.07	21	6.296	12	
77 Ge	β -	2703.5	0.0	7/2 +	2110.94	5/2 +	2.32	7	6.571	14	
77 Ge	β -	2703.5	0.0	7/2 +	2341.75	(5/2)+	2.37	6	5.823	13	
77 Ge	β -	2703.5	159.71	1/2-	0.0	3/2-	58	4	4.975	30	
77 Ge	β -	2703.5	159.71	1/2-	215.53	3/2-	22	4	5.25	8	
^{77}As	β -	683.2	0.0	3/2-	0.0	1/2-	97.0	3	5.7284	42	
^{77}As	β -	683.2	0.0	3/2-	249.800	5/2-	0.63	10	7.22	7	
^{77}As	β -	683.2	0.0	3/2-	439.493	5/2-	0.0017	3	8.96	8	
$^{77}\mathrm{Br}$	$\beta + \varepsilon$	1364.7	0.0	3/2-	0.0	1/2-	44.5	13	5.749	14	
$^{77}\mathrm{Br}$	$\beta + \varepsilon$	1364.7	0.0	3/2-	249.75	5/2-	0.54	9	7.48	7	
$^{77}\mathrm{Br}$	ε	1364.7	0.0	3/2-	439.43	5/2-	1.46	7	6.884	22	
$^{77}\mathrm{Br}$	ε	1364.7	0.0	3/2-	817.80	1/2-	10.0	3	5.585	15	
$^{77}\mathrm{Br}$	ε	1364.7	0.0	3/2-	824.39	(5/2)-	4.7	1	5.902	12	
$^{77}\mathrm{Br}$	ε	1364.7	0.0	3/2-	1230.64	(5/2)-	0.038	3	6.726	42	
^{78}As	β-	4209	0.0	2-	3144.52	3-	2.5	3	6.62	5	
$^{78}\mathrm{Br}$	$\beta + \varepsilon$	3573.8	0.0	1+	613.71	2+	13.30	40	5.087	14	
⁷⁹ Rb	$\beta + \varepsilon$	3639.5	0.0	5/2+	129.76	$\frac{-}{7/2+}$	11.9	13	6.130	48	Р
⁷⁹ Rb	$\beta + \epsilon$	3639.5	0.0	5/2+	688.16	3/2+	50.5	23	5.053	22	P
79 Ge	β-70	4109	0.0	(1/2)-	0.0	3/2-	60.0 60	-3	5.000	28	P
79 Ge	р В-	4109	0.0	(1/2)-	109.51	(3/2)-	22.4	14	5 569	33	P
79 Ge	р В-	4109	0.0	(1/2) (1/2)-	1505.91	(3/2)-	12.1	8	5.000 5.027	39	P
^{79}As	р В-	2281	0.0	$\frac{1}{2}$	95.5	(0/2) 1/2-	94.2	5	5.021 5.287	9	1
⁷⁹ As	р В-	2281	0.0	3/2-	364 5	5/2-	1 46	15	6.201 6.861	45	
79 Kr	$\beta + l \epsilon$	1625.8	0.0	$\frac{1}{2}$	0.0	3/2	62 7	13	5 631	10	
79Kr	$\beta + \epsilon$	1625.8	0.0	1/2 1/2	261 32	$\frac{3}{2}$	11.8	5	6 159	10	
79 Kr	р 1 / С с	1625.8	0.0	1/2	606.02	$3/2_{-}$	12.1	5	5 886	19	
79Kr	c	1625.8	0.0	$\frac{1}{2}$	1332.31	$\frac{3}{2}$	12.1 1.97	7	5.757	15 28	
⁸⁰ Δ s	с В-	5544.9	0.0	1/2- 1⊥	666 14	$\frac{5}{2}$	26	י 2	5.81	20 5	р
80 A s	p- B	5544.0	0.0	⊥ 1⊥	1448.07	$\frac{2}{2}$	20	3	6.84	12	л р
80 A c	β- β	5544.0	0.0	⊥⊤ 1⊥	1940.97	$2\pm$	1.1	5	6.48	6	I D
80 \mathbf{Pr}	β - β - β	1870.46	0.0	1 T	1300.0 665 8	$2\pm$	1.4	10	4 052	40	1
80 \mathbf{Pr}	$\rho_{\pm/\epsilon}$	2004 4	0.0	1+ 1+	616.6	$\frac{2+}{2+}$	1.10 6.2	6	4.900	40	
80ph	p- B L la	2004.4 5718.0	0.0	1+	616 8	$2\pm$	0.2	0 96	5.990	42 5	D
пр 80рь	$\rho + \epsilon$	5718.0	0.0	1+	010.0 1256 5	$\frac{2+}{2+}$	21.0 2.10	20 30	5.20	5	Г D
81 D L	ρ_{\pm}/ϵ	0710.0	0.0	1+ 2/9	1200.0 100.72	$\frac{2+}{1/2}$	2.10	20	5.00 5.151	0	1
81DL	$\rho + \epsilon$	2239	0.0	3/2- 2/9	190.72	$\frac{1}{2}$ -(5/2)	04.0 5.0	30 10	5.01	21	
81 Gm	$\rho + \epsilon$	2239	0.0	3/2- 1/9	201.240	$(3/2)^{-}$	0.0 20	10	5.01 E 90	9 7	D
81 Gm	$\rho + \varepsilon$	3929 2020	0.0	$\frac{1}{2}$	501.240	$(3/2)^{-}$	50 0 5	0 10	5.80 E 99	l G	Г D
81 C	$\rho + \varepsilon$	3929	0.0	1/2-	909.089	$(3/2)^{-}$	9.5	12	0.62 5.67	5	Г D
**Sr 81 C -	$\rho + \varepsilon$	3929	0.0	1/2- 5/0	1381.89	(3/2)-	0.U 1.19	0	5.07	0 40	P D
^{or} Ga ⁸¹	p-	8063.7	0.0	5/2-	3697.95	(1/2)-	1.13	11	6.079	42	Р
⁰¹ As 81 A	β-	3855.7	0.0	3/2-	0.0	1/2-	66.3	15	5.287	11	
^{S1} AS	β-	3855.7	0.0	3/2-	490.91	(5/2)-	8.94	15	5.898	13	
⁸¹ As	β-	3855.7	0.0	3/2-	623.95	5/2-	1.58	13	6.574	37	
°*Se 8237	β- 0 - 1	1588.0	0.0	1/2-	0.0	3/2-	98.73	10	5.0271	32	D
⁰² Y 8237	$\beta + \varepsilon$	7946	0.0	1+	573.5	2+	21	6	5.48	12	Р
⁰² Y 82D	$\beta + \varepsilon$	7946	0.0	1+	1175.6	2+	1.20	40	6.52	15	Р
°²Br 8251	β-	3093.1	0.0	5-	2648.368	4-	99.1	13	5.064	7	
°²Rb	$\beta + \varepsilon$	4404.0	0.0	1+	776.523	2+	14.10	40	4.886	13	
°²Rb	$\beta + \varepsilon$	4404.0	69.0	5-	2648.43	4-	86.4	11	4.958	7	

Table	10
(contin	ued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
83 Se	β -	3673.2	0.0	9/2 +	2647.187	(7/2)+	30.7	3	4.877	9	
83 Se	β -	3673.2	0.0	9/2 +	2694.305	(7/2)+	26.3	2	4.867	9	
83 Se	β -	3673.2	228.92	1/2-	0.0	3/2-	31.0	7	5.978	10	Р
83 Se	β -	3673.2	228.92	1/2-	1030.65	(3/2)-	33.2	11	5.369	15	Р
$^{83}\mathrm{Br}$	β -	976.9	0.0	3/2-	41.5567	1/2-	98.6	4	5.044	7	
83 Sr	$\beta + \varepsilon$	2273	0.0	7/2+	42.0780	9/2 +	23	7	6.63	13	
83 Sr	$\beta + \varepsilon$	2273	0.0	7/2+	423.613	5/2+	14.7	12	6.46	5	
$^{83}\mathrm{Sr}$	$\beta + \varepsilon$	2273	0.0	7/2+	1242.93	(5/2)+	1.90	14	6.72	6	
83 Sr	ε	2273	0.0	7/2+	1798.57	(5/2)+	0.53	7	6.59	8	
$^{83}\mathrm{Sr}$	ε	2273	0.0	7/2+	1952.04	5/2+	4.7	4	5.29	7	
$^{83}\mathrm{Sr}$	ε	2273	0.0	7/2+	2189.73	9/2+	0.38	3	5.10	13	
$^{84}\mathrm{Br}$	β-	4656	0.0	2-	2699.93	3-	7.3	9	6.78	6	
$^{84}\mathrm{Br}$	β-	4656	0.0	2-	3927.30	1-	11.5	13	4.93	8	
$^{84}\mathrm{Br}$	β-	4656	3.2E + 2	(6)-	2768.6	5-	100		5.14	9	
^{85}Y	$\beta + \varepsilon$	3261	19.8	(9/2)+	231.80	7/2 +	5.8	18	7.19	14	
^{85}Y	$\beta + \varepsilon$	3261	19.8	(9/2)+	1220.75	(11/2)+	1.72	16	6.813	47	
85 Y	$\beta + \varepsilon$	3261	19.8	(9/2)+	2123.78	(7/2)+	11.7	10	5.284	47	
$^{85}\overline{\mathrm{Y}}$	$\beta + \epsilon$	3261	19.8	(9/2)+	2172.02	(7/2)+	7.8	6	5.423	44	
85 Y	ε	3261	19.8	(9/2)+	2351.73	(7/2)+	5.0	4	5.460	47	
85 Se	β-	6161.8	0.0	(5/2)+	3741.7	(3/2)+	9.7	17	5.26	8	Р
⁸⁵ Se	β-	6161.8	0.0	(5/2)+	4028.8	(3/2)+	73	12	5.15	7	P
^{85}Br	β-	2904.9	0.0	3/2-	304 88	$\frac{1}{2}$	96	2	5.134	13	1
85 Kr	р В-	687 0	304 86	$\frac{0}{2}$	151 195	$\frac{1}{2}$	78 5	10	5 266	7	
⁸⁵ Sr	$\beta \pm l \epsilon$	1064 1	238 79	1/2	151 191	3/2	13.3	8	4 51	5	
86V	$\beta + \epsilon$	1004.1 5240	200.19	1/2- A_	2672.98	5-	8.4	7	7.084	38	
^{86}V	$\beta \perp / \epsilon$	5240 5240	0.0		2012.30	0- 2_	24.8	9	6 306	20	
$^{1}_{86V}$	$\beta \perp /\epsilon$	5240 5240	0.0	4- /_	3055.90	5- 5-	24.0	24	7.162	$\frac{20}{37}$	
$^{1}_{86V}$	$\beta \perp /\epsilon$	5240 5240	0.0	4- /_	3185 34	0- (3)_	5.6	$\frac{24}{12}$	6.78	91	
^{86}V	$\beta \perp / \epsilon$	5240 5240	0.0	4- /_	33105.54 3317.74	$(5)^{-}$	5.0 4.6	12	6.74	7	
$^{1}_{86V}$	$\beta \perp /\epsilon$	5240 5240	0.0	4- /_	3686 77	(<i>U</i>)- 3_	4.0	8	7 051	1 3/	
87V	$\rho_{1/c}$	1861.7	0.0	4- 1/9	873 338	0- 3/9	03.4	4	5 458	0	
88 _B b	B	5312.62	0.0	2	2734 128	3/2-	$\frac{55.4}{13.50}$	-4 -21	6.788	9 7	
88V	ρ- c	3622.02	0.0	2- 1	2734.120 2734.120	0- 2	13.33	21	6.866	0	
1 88V	e	3022.0 3622.6	0.0	4- 1	2734.130	0- 5	94.4	5 12	6.01	9 11	
1 89Dh	e B	3022.0	0.0	4- 2/9		(1/9)	0.000	10	6.012	11 96	
пр 897.	ρ-	4497	0.0	$\frac{3}{2}$	2200.14 2520.07	$(1/2)^{-}$	0 072	э 5	0.013	<u>อ</u> 0 อิจ	
89 7	2	2000.2 0000 0	0.0	9/2+	2529.97	1/2+	0.073	ວ ະ	7.044	32 35	
89 7 n	E B L /c	2000.2 10000 1	0.0 507.00	9/2+	2500.47	$\frac{11}{2+}$	0.100	0 15	1.200	20 19	D
90 NL	$\rho + \epsilon$	2000.2	001.00	1/2-	1007.4	3/2-	0.00	10	4.321	12	Г
91Te	$\rho + \epsilon$	0111.0 6000	120.2	0+ (1/2)	1155.01	1+ 2/9	4.04	9 40	0.104 5.601	12	D
°-10 9177-	$\rho + \varepsilon$	0222	109.0	$(1/2)^{-}$	1100.91	3/2- 2/9	44.0	40	0.091	42 F	r D
91 TT-	$p+\varepsilon$	0222 cooo	139.3	$(1/2)^{-}$	2083.30	$\frac{3}{2}$	4.2	Э С	0.23	Э 40	P D
°-10 91 M	$p+\varepsilon$	0222	139.3	$(1/2)^{-1/2}$	2090.35	(3/2)-	0.9	0	5.041	40	P D
91 M.	$p+\varepsilon$	4429	052.9	1/2-	1312.00	3/2- 2/2	18.1	14	4.800	34 25	P D
91 M	$\beta + \varepsilon$	4429	652.9	1/2-	1012.53	3/2-	24.2	19	4.469	35 94	P
92 x	$\rho + \varepsilon$	4429	652.9	1/2-	2345.24	(3/2)-	1.70	13	5.049	34 49	Р
°- Y 92m	β- 0 · /	3643	0.0	2-	2339.92	3- 7 -	0.5	(7.019	48	р
93m	$\beta + \varepsilon$	7882.9	0.0	(8)+	4917.4	(2, 0)	2.12	13	5.744	31	Р
93 T	ε	3201.0	391.84	1/2-	2044.6	(3/2)-	14.3	0	4.358	22	
93 D 1	ε	3201.0	391.84	1/2- 5/0	3220.4	(3/2)-	1.05	9	4.054	40	
93D1	β- 0	7400	0.0	5/2- 5/2	3847.62	(7/2)-	3.73	24	5.719	28	
⁹³ Rb	β-	7466	0.0	5/2-	3867.40	(7/2)-	5.2	4	5.565	34	
²² Kb	β-	7466	0.0	5/2-	4913.09	(7/2)-	1.22	9	5.554	33	
⁵⁵ Tc	$\beta + \varepsilon$	3201.0	0.0	9/2+	1362.96	7/2+	65.3	6	4.924	11	

Table 10
(continued $)$

Nuclide	Decay	$Q \; [\text{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
⁹³ Tc	$\beta + \varepsilon$	3201.0	0.0	9/2+	1520.28	7/2+	23.8	9	5.251	19	
^{94}Y	β -	4918	0.0	2-	2057.64	3-	5.3	5	7.442	41	
$^{94}\mathrm{Tc}$	$\beta + \varepsilon$	4255.7	0.0	7+	2423.47	6+	81.3	19	5.074	13	Р
$^{94}\mathrm{Tc}$	$\beta + \varepsilon$	4255.7	0.0	7+	2872.7	6+	1.70	30	6.45	8	Р
$^{94}\mathrm{Tc}$	$\beta + \varepsilon$	4255.7	0.0	7+	2955.6	8+	4.00	30	6.019	34	Р
$^{94}\mathrm{Tc}$	$\beta + \varepsilon$	4255.7	0.0	7+	3165.80	6+	3.50	30	5.921	38	Р
$^{94}\mathrm{Tc}$	ε	4255.7	0.0	7+	3339.57	6+	7.9	4	5.413	24	Р
$^{94}\mathrm{Tc}$	$\beta + \varepsilon$	4255.7	76	(2)+	2739.91	1 +	9.30	40	5.097	22	
$^{94}\mathrm{Tc}$	$\beta + \varepsilon$	4255.7	76	(2) +	3128.66	1 +	1.60	16	5.597	45	
95 Rh	$\beta + \varepsilon$	5117	0.0	(9/2)+	2246.9	11/2 +	3.36	17	5.564	25	
^{95}Y	β-	4452	0.0	1/2-	3249.15	(3/2)-	3.54	24	5.834	31	
^{95}Y	β-	4452	0.0	1/2-	3575.78	(3/2)-	7.4	6	4.997	38	
$^{95}\mathrm{Zr}$	β-	1126.3	0.0	5'/2+	724.195	7/2+	44.34	22	7.0068	42	
95 Zr	β-	1126.3	0.0	5/2+	756.728	7/2+	54.46	22	6.7953	43	
95 Nb	β-	925.60	0.0	9/2+	765.803	7/2+	99.970	6	5.1178	42	
⁹⁵ Tc	E	1691	0.0	9/2+	765.793	7/2+	93.77	6	4.959	11	
⁹⁵ Tc	ε	1691	0.0	9/2+	1073.720	7/2+	4.13	ů 4	5.955	14	
⁹⁵ Ru	$\beta + \varepsilon$	2564	0.0	5/2+	336.45	7/2+	37.0	11	5.282	16	
⁹⁵ Bu	$\beta + \epsilon$	2564	0.0	5/2+	1178.62	7/2+	6.20	30	5.463	24	
⁹⁵ Bu	F I I C	2564	0.0	5/2+	1785.35	(7/2)+	1.55	19	5 55	6	
⁹⁵ Bu	E	2564	0.0	5/2+	2086 21	3/2+	4 41	24	4.660	35	
⁹⁵ Ru	e	2564	0.0	5/2+	2168.36	$\frac{5}{2}$	1.11	7	4 843	35	
95 Ru	c	2564 2564	0.0	$5/2 + 5/2 \pm$	2100.50 2267.58	$(7/2) \perp$	1.55	8	4.80	5	
⁹⁶ Nb	С В-	3102.06	0.0	$6 \perp$	2/38 508	(1/2)1 5⊥	96.7	10	4.00 5.815	9	
96Tc	ρ- ε	2073	0.0	0 7⊥	2430.500 2440.71	$6 \pm$	50.1 70	13	5 253	27	
96Tc	c	2073	0.0	7⊥	2440.71 2755.04	0 6⊥	10.5	4 19	5.200 5.042	40	
96Tc	$\beta \perp l \epsilon$	2073	34.93	• i ∕1⊥	1078 /1	0 3 _	2 00	12 30	5.042 5.107	40	
96ph	$\rho_{\pm/\epsilon}$	2913	0.0	4+ 6+	1970.41 2277.57	0+ 5+	2.90	50	5 422	41 94	
96ph	ρ_{\pm}/ϵ	6303	0.0	0+	4777.40	5+ 5+	2.04	12	5.432 5.127	24 20	
96ph	$\rho_{\pm/\epsilon}$	6303	0.0	0+	4111.49	5+ 5+	2.04	10	5 970	29 43	
96 D L	ρ_{\pm}/ϵ	6202	52.0	0+	4949.03 920.51	$\frac{1}{2}$	1.14	20	0.219 6 17	40	D
96 D L	$\rho + \epsilon$	6202	52.0 52.0	3+ 2+	0.02.01 1021.12	2+	10.0 6.2	30 15	5.95	10	Г D
пп 96 рь	$\rho + \epsilon$	6202	52.0 52.0	3+ 2+	1951.15	2+	0.3	10	0.00 6.00	10	Г D
96 D L	$\rho + \epsilon$	0393	52.0	3+	2203.90	2+	1.70	40	0.22 5.02	10	r D
96 D L	$\rho + \epsilon$	0393	52.0	0+ 2+	2010.01	2+	2.20	40	0.95 F F 0	0	r D
96 D L	$p+/\varepsilon$	0393	52.0	3+ 2+	2739.80	2+	3.9 1.90	1	0.08 5.09	8	Р D
96D1	$p+/\varepsilon$	0393	52.0	3+ 2+	3090.14	2+	1.80	40	5.08 5.44	10	Р D
96Dh	$p+/\varepsilon$	0393	52.0	3+ 2+	3200.98	2+ 4 +	2.3 1.70	0 40	0.44 5 55	9	Р D
97 D.	$\rho + \epsilon$	1104	52.0	3+ 5/9+	3291.3 915 760	$\frac{4+}{7/9}$	1.70	40 20	0.00 E E 9E	10	Г
97 D u	2	1104	0.0	0/2+ 5/2+	210.709	$\frac{1}{2+}$	01.45	20 22	$0.000 \\ 7.607$	10 91	
97 D	8	1104	0.0	0/2+ 5/0+	000.425	$\frac{1}{2+}$	0.0495	23	1.021 C E 41	51	
97 DL	ε	1104	0.0	$\frac{3}{2+}$	909.801	$\frac{1}{2+}$	0.105	3 40	0.041 5.010	44 96	
97D1	$p+/\varepsilon$	3023	0.0	9/2+	421.34	$\frac{1}{2+}$	08.20	40	5.219	20 F	
97D1	$\beta + \varepsilon$	3523	0.0	9/2+	840.18	(/2+	8.1	8	5.82	5	
97 DI	$p + \varepsilon$	3523	0.0	9/2+	1199.02	(11/2)+	1.50	10	0.27 F 0.7	5	
97 Rh	$\beta + \varepsilon$	3523	0.0	9/2+	1932.32	7/2+	3.60	30	5.367	43	
97D1	$\beta + \varepsilon$	3523	0.0	9/2+	2150.9	(/2+	1.63	20	5.57	0 91	
97D1	$\beta + \varepsilon$	3523	258.76	1/2-	2197.71	3/2-	21.1	8	4.771	31	
97D1	$\beta + \varepsilon$	3523	258.76	1/2-	2245.90	3/2-	18.90	40	4.788	29	
97 NI	$\beta + \varepsilon$	3523	258.76	1/2-	2564.91	3/2-	9.9	10	4.85	5 10	
97 Rh	$\beta + \varepsilon$	3523	258.76	1/2-	2647.83	3/2-	7.7	6	4.900	48	
97 Rh	ε	3523	258.76	1/2-	2929.77	3/2-	2.0	3	5.23	8	
"' Rh	ε	3523	258.76	1/2-	3374.7	3/2-	2.33	25	4.50	10	ъ
⁹ 'Rb	β -	1.00615 E4	0.0	3/2 +	687.09	5/2 +	12.8	11	5.514	37	Р

Table 10	
(continued)	

Nuclide	Decay	$Q \; [\text{keV}]$	$E_{\rm P} \ [{\rm keV}]$	$J\pi$	$E_D \; [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
^{97}Y	β -	6821	667.52	9/2+	1264.35	7/2 +	31.6	24	5.173	35	Р
^{97}Y	β -	6821	667.52	9/2 +	2234.36	(7/2)+	43.1	21	4.707	24	Р
$^{97}\mathrm{Nb}$	β -	1941.9	0.0	9/2 +	658.172	7/2 +	98.1	3	5.382	7	
$^{97}\mathrm{Nb}$	β -	1941.9	0.0	9/2 +	1024.528	7/2 +	1.12	2	6.774	12	
^{98}Y	β -	8993	0.0	0-	4165.18	1-	37	4	4.279	47	Р
^{98}Y	β -	8993	0.0	0-	4271.11	1-	4.0	5	5.20	5	Р
^{98}Y	β-	8993	0.0	0-	4399.07	1-	2.9	4	5.29	6	Р
^{98}Y	β-	8993	0.0	0-	4452.58	1-	14.2	15	4.576	46	Р
^{98}Y	β-	8993	0.0	0-	4492.35	1-	2.29	24	5.352	46	Р
$^{98}\mathrm{Nb}$	β-	4591	0.0	1 +	787.29	2 +	3.0	3	5.662	44	
$^{98}\mathrm{Nb}$	β-	4591	0.0	1 +	1432.37	2 +	5.2	5	5.074	43	
$^{98}\mathrm{Nb}$	β-	4591	0.0	1 +	1758.91	2+	7.6	7	4.706	41	
$^{98}\mathrm{Nb}$	β-	4591	0.0	1+	2207.0	2+	1.13	11	5.220	43	
$^{98}\mathrm{Nb}$	β-	4591	84	(5)+	2223.823	4+	15.9	2	7.152	8	
$^{98}\mathrm{Nb}$	β-	4591	84	(5)+	2678.839	6+	27.9	5	6.540	10	
⁹⁸ Nb	β-	4591	84	(5)+	2767.62	4+	7.7	1	7.019	9	
⁹⁸ Nb	β-	4591	84	(5)+	3021.71	4+	6.37	8	6.851	9	
⁹⁸ Nb	β-	4591	84	(5)+	3050.92	4+	2.4	1	7244	19	
⁹⁸ Nb	р В-	4591	84	(5)+	3326.36	4+	3 30	6	6 789	11	
⁹⁸ Nb	β-	4591	84	(5)+	3623.50	4+	1.26	9	6 795	33	
⁹⁹ Bh	$\beta + l \epsilon$	2041	64.3	9/2+	340.75	$\frac{1}{7/2+}$	65	5	5 186	36	
^{99}Bh	$\beta + \epsilon$	2041	64 3	9/2+	617 79	7/2 + 7/2 +	14.1	12	5.669	40	
99 Rh	ρ1/c	2041	64.3	$\frac{3}{2}$	1261 10	$7/2 + 7/2 \perp$	14.1 197	6	5.003 5.207	40 39	
99Pd	c B⊥/c	3/02	04.0	$(5/2) \perp$	201.13	$(7/2) \perp$	12.1	9	5.201	32 8	
99pd	$\beta \pm lc$	3402	0.0	(5/2) + (5/2) +	200.3 850.7	(7/2) + (7/2) +	45	9 13	5.65	8	
99 D d	$\beta + lc$	3402	0.0	(5/2) + (5/2) +	1597.4	(1/2) + (2/2) +	1.20	10	5.05	15	
99 D d	$\beta + lc$	3402	0.0	(5/2) + (5/2) +	2181.0	(3/2) + (3/2) +	1.20	40	1 04	10	
99 A g	$\rho_{\pm/\epsilon}$	5402 5470	0.0	(0/2)+	2101.0	(3/2)+ (7/2)+	4.1 21.0	30	4.94 5.629	9 43	D
99 A g	$\rho_{\pm/\epsilon}$	5470 5470	0.0	(9/2)+ (0/2)+	204.382	(1/2)+(11/2)+	5.0	$\frac{30}{7}$	5.052 6.01	40	I D
99 A g	$\rho_{\pm/\epsilon}$	5470 5470	0.0	(9/2)+	1469.44	(11/2)+ (11/2)+	0.2 4.2	6	0.01 5.97	6	I D
99 NIL	ρ_{\pm}/ε	0470 2625	0.0	(9/2)+	1400.44	(11/2)+	4.2	11	0.01 4 79	6	Г D
99 NIL	ρ- β	3033 2625	0.0	9/2+	255.52	7/2+7/2+	02	11 9	4.75	10	Г D
100 99 Mb	ρ-	3033 2625	0.0	9/2+	000.00	7/2+	1.5	ა ი	0.15 5 02	10	Г
99 Mb	ρ-	3033 2625	0.0 265.97	$\frac{9}{2+}$	1142.01	(1/2+	1.4	3 10	0.95 5 19	9 7	Г D
100 99 Mb	ρ-	3033 2625	303.27 265 97	$\frac{1}{2}$	2041.20	$(3/2)^{-}$	1.0	10	0.12 E 01	7	Г
99 N L	ρ-	3039 9695	505.27 265.97	1/2-	2080.95	$(3/2)^{-}$	1.58	10	0.81 5 71	1	Г D
°° IND 99мг-	р- 0	3033 1957 0	305.27	1/2-	2729.9	(3/2)-	1.54	23	$\frac{0.11}{7.401}$	8 19	Р
99Mo	р- 0	1337.8	0.0	1/2+	1141.802 1172.22	$\frac{3}{2+}$	0.111	3	1.401 8.06	13	
100 DL	ρ- 0 - /-	1507.0	0.0	1/2+	1172.22	$\frac{3}{2+}$	0.0019	4	0.90 5.020	9 10	
100 Rfi 100 D L	$p+/\varepsilon$	3030	0.0	1- 1	2409.388	2- 0	19.90	20 C	0.938 4.072	18 96	
100 KH	ε	3030	0.0	1-	2915.542	2-	08.0	0	4.973	20 19	
100 ND	β- 0	6402	0.0	1+	1463.95	2+	3.4	9	5.80	13	
100 ND	β-	6402	314	(5)+	1847.16	0+	3.6	10	6.07	9	
100 ND	β-	6402	314	(5)+	2103.07	4+	12.5	19	5.43	1	
¹⁰⁰ Nb	β -	6402	314	(5)+	2564.23	(4)+	12.3	11	5.235	43	
^{101}Pd	$\beta + \varepsilon$	1980.3	0.0	5/2+	181.87	(7/2)+	57.1	13	5.557	11	
¹⁰¹ Pd	$\beta + \varepsilon$	1980.3	0.0	$\frac{5}{2+}$	747.86	(7/2)+	21.6	20	5.607	41	
¹⁰¹ Pd	ε	1980.3	0.0	5/2+	1359.47	1/2+	2.7	3	5.899	49	D
¹⁰¹ Nb	β-	4628.5	0.0	(5/2)+	13.5	3/2+	40	13	5.30	14	Р
¹⁰¹ Nb	β-	4628.5	0.0	(5/2)+	289.7	3/2+	27	8	5.35	13	Р
¹⁰¹ Nb	β-	4628.5	0.0	(5/2)+	351.6	3/2+	1.33	5	6.633	25	Р
¹⁰¹ Nb	β-	4628.5	0.0	(5/2)+	479.4	3/2+	8.3	24	5.78	13	Р
¹⁰¹ Mo	β -	2825	0.0	1/2+	1028.076	3/2+	7.5	8	6.40	5	
^{101}Mo	β -	2825	0.0	1/2 +	1806.38	3/2+	3.3	1	5.798	42	

Table	10
(contin	ued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
^{101}Mo	β -	2825	0.0	1/2 +	1897.97	3/2 +	2.61	7	5.749	45	
^{101}Mo	β -	2825	0.0	1/2 +	2047.72	(3/2)+	20.6	4	4.57	5	
$^{101}\mathrm{Tc}$	β -	1614	0.0	9/2 +	306.83	7/2 +	90.3	2	4.780	32	
$^{101}\mathrm{Tc}$	β -	1614	0.0	9/2 +	545.06	7/2 +	6.44	16	5.593	39	
$^{101}\mathrm{Tc}$	β -	1614	0.0	9/2 +	842.79	(7/2)+	1.91	5	5.60	5	
101 Rh	ε	546	157.41	9/2 +	306.858	7/2 +	83	7	5.057	40	
$^{101}\mathrm{Rh}$	ε	546	157.41	9/2 +	545.118	7/2 +	4.8	5	5.43	6	
102 Rh	ε	2323	140	6+	2219.17	5+	67	3	7.199	32	
$^{102}\mathrm{Tc}$	β-	4534	0.0	1 +	475.02	2 +	3.5	4	6.02	5	Р
$^{102}\mathrm{Tc}$	β-	4534	0.0	1 +	1580.5	2 +	1.17	15	5.90	6	Р
$^{103}\mathrm{Tc}$	β-	2663	0.0	5/2 +	0.0	3/2 +	34	8	5.25	10	
$^{103}\mathrm{Tc}$	β-	2663	0.0	5/2+	213.52	7/2+	2.5	5	6.24	9	
$^{103}\mathrm{Tc}$	β-	2663	0.0	5/2+	346.383	3/2+	30	4	5.06	6	
$^{103}\mathrm{Tc}$	β-	2663	0.0	5/2+	661.73	(3/2)+	1.10	17	6.23	7	
$^{103}\mathrm{Ru}$	β-	764.5	0.0	3/2+	536.838	5/2+	92.0	4	5.754	14	
103 Ru	β-	764.5	0.0	3/2+	650.093	5/2+	6.50	6	5.969	28	
103 Pd	E	574.7	0.0	5/2+	39.748	7/2+	99.9	1	5.880	5	
103 Ag	$\beta + \varepsilon$	2654.3	0.0	7/2+	0.0	5/2+	16	$\overline{5}$	5.86	14	
103 Ag	$\beta + \varepsilon$	2654.3	0.0	7/2+	266.87	5/2+	40.0	30	5.265	33	
103 Ag	$\beta + \varepsilon$	2654.3	0.0	7/2+	1182.85	(5/2)+	3.530	30	5.701	7	
103 Ag	$\beta + /\epsilon$	2654.3	0.0	7/2+	1273 97	(5/2)+	20.6	14	4 875	30	
103 Cd	$\beta + /\epsilon$	4151 1	0.0	(5/2)+	0.0	$\frac{(0/2)}{7/2+}$	12.0	23	6.05	8	Р
103 Cd	$\beta + \epsilon$	4151.1	0.0	$(5/2)^+$	1311 68	(7/2) +	16	5	6.06	14	P
^{103}Cd	$\beta + \epsilon$	4151.1	0.0	$(5/2)^+$	1422.07	$(1/2)^+$ $(3/2)^+$	1.0	20	6.18	0	P
^{103}Cd	$\beta \perp / \epsilon$	4151.1	0.0	$(5/2)^+$ $(5/2)^+$	1422.07 1705.14	$(3/2)^+$ $3/2\perp$	1.02	20	5.34	8	P
103Cd	$\beta + c$	4151.1	0.0	$(5/2)^+$ $(5/2)^+$	2100.14	$\frac{3}{2}$	4.4	7	1 00	7	D
104 Bh	B	2435.8	0.0	(0/2)⊺ 1⊥	555.81	$(0/2)^+$	1.00	20	5.811	46	1
$104 \Lambda \sigma$	$\beta = \beta \pm 1c$	2433.8 4978-7	0.0	17 51	2082.38	4⊤ 1⊥	16.8	20 17	5 5 2 4	40	
$104 \Lambda \sigma$	$\beta \pm l \epsilon$	4210.1	0.0	$5\pm$	2082.38 2181.56	4+ 1+	10.8	$17 \\ 17$	5.524	44	
104 A g	$\beta + lc$	4278.7	0.0	5- 5-	2101.00	4	24.0	20	5.000	49 20	
104 A g	$\rho_{\pm/\epsilon}$	4210.1	0.0	5+ 5+	2200.50 2105.1	4+ 1	15 15	50	5.090	59	
1051n	ρ_{\pm}/ϵ	4210.1	0.0	0/2 +	121 10	4+ 7/9+	4.0	0	5.41	17	D
105 Tm	$\rho + \epsilon$	4095	0.0	9/2+	131.10	(7/2)	23.9	9	5.780 6.14	11	Г D
105 T.n	$\rho + \epsilon$	4095	0.0	9/2+	200.30	(7/2)+	9.9	24 7	0.14 6.44	11	Г D
105T.o	$p + \varepsilon$	4095	0.0	9/2+	004.39 700.70	(1/2)+	3.2 6.6	(E	0.44	10	r D
105 D	$\rho + \varepsilon$	4095	0.0	9/2+	799.79	11/2+ 5/0+	0.0	57	0.000	34	Г
105 D	р- 0	1910.7	0.0	$\frac{3}{2+}$	(24.244	$\frac{3}{2+}$	48.4	10	0.189	8	
105 D	p-	1910.7	0.0	$\frac{3}{2+}$	180.881	1/2+	17.10	18	0.000	0	
105 Ru	р- 0	1910.7	0.0	$\frac{3}{2+}$	909.484	$\frac{3}{2+}$	4.47	9	0.849	10 C	
105 Rfl	р- 0	500.0 566.6	0.0	$\frac{1}{2+}$	0.0	$\frac{3}{2+}$	17.44	29 25	0./34 F 100	0	
105 A	<i>p</i> -	300.0	0.0	1/2+	319.235	$\frac{3}{2+}$	17.44	20 17	5.188	14 46	
105 Ag	ε	1347.1	0.0	1/2-	1088.1	3/2-	17.5	17	6.386	40	
105 Cd	$\beta + \varepsilon$	2737.0	0.0	5/2+	25.470	7/2+	57.0	40	5.300	31	
¹⁰⁵ Cd	$\beta + \varepsilon$	2737.0	0.0	5/2+	1557.881	3/2+	2.26	16	5.661	33	
¹⁰⁵ Cd	ε	2737.0	0.0	5/2+	1922.97	(7/2)+	2.95	20	5.216	33	
¹⁰⁵ Cd	ε	2737.0	0.0	5/2+	2333.34	3/2+	4.4	3	4.408	36	
¹⁰⁰ Ag	ε	2965.1	89.66	6+	2756.85	5+	92	3	5.100	17	
¹⁰⁰ Ag	ε	2965.1	89.66	6+	2951.84	5+	8.1	6	5.099	45	
100 In	$\beta + \varepsilon$	6524	0.0	7+	2491.72	6+	10.6	20	5.97	8	Р
¹⁰⁰ In	$\beta + \varepsilon$	6524	0.0	7+	2502.92	6+	8.3	14	6.07	7	Р
¹⁰⁰ In	$\beta + \varepsilon$	6524	0.0	7+	2924.67	6+	3.50	40	6.19	5	Р
¹⁰⁶ In	$\beta + \varepsilon$	6524	0.0	7+	3043.91	8+	39.8	11	5.054	16	Р
¹⁰⁶ Rh	β -	3545	0.0	1 +	511.862	2+	8.1	3	5.894	17	
¹⁰⁶ Rh	β -	3545	0.0	1 +	1562.26	2+	1.77	6	5.787	16	

Table	10
(contin	ued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P}~[{\rm keV}]$	Jπ	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
¹⁰⁶ Rh	β-	3545	137	(6)+	2757.94	5+	85	10	5.24	6	
106 Rh	β-	3545	137	(6)+	2953.18	5+	14.5	18	5.64	6	
^{106}Ag	$\beta + \varepsilon$	2965.1	0.0	1+	511.85	2+	16.3	16	5.266	43	
107 Ru	β -	3001	0.0	(5/2)+	0.0	7/2 +	68	4	5.807	28	
107 Rh	β -	1509	0.0	7/2+	302.76	5/2 +	64	5	5.017	39	
107 Rh	β -	1509	0.0	7/2 +	567.65	5/2 +	1.8	2	6.16	5	
107 Rh	β -	1509	0.0	7/2 +	670.07	5/2 +	9	1	5.28	5	
$^{107}\mathrm{Cd}$	$\beta + \varepsilon$	1416.4	0.0	5/2 +	93.126	7/2 +	99.90	20	4.966	11	
107 In	$\beta + \varepsilon$	3424	0.0	9/2 +	204.96	7/2 +	38.0	30	5.617	35	
107 In	$\beta + \varepsilon$	3424	0.0	9/2 +	505.50	7/2 +	3.40	40	6.46	5	
107 In	$\beta + \varepsilon$	3424	0.0	9/2 +	932.99	11/2 +	2.80	10	6.236	20	
107 In	$\beta + \varepsilon$	3424	0.0	9/2 +	1268.32	7/2 +	8.9	6	5.502	33	
107 In	$\beta + \varepsilon$	3424	0.0	9/2+	1377.37	(7/2)+	3.60	30	5.823	39	
107 In	$\beta + \varepsilon$	3424	0.0	9/2+	1776.37	7/2+	3.40	40	5.60	5	
107 In	$\beta + \varepsilon$	3424	0.0	9/2+	1922.18	7/2+	3.10	30	5.547	46	
107 In	$\beta + \varepsilon$	3424	0.0	9/2+	2006.31	7/2+	3.90	30	5.394	39	
^{108}Ag	β-	1645.6	0.0	1+	632.98	2^{+}	1.76	10	5.372	25	
108 In	$\beta + \varepsilon$	5133	0.0	7+	2541.09	6+	11.0	23	5.97	9	
¹⁰⁸ In	$\beta + \varepsilon$	5133	0.0	7+	2994.02	6+	8.1	8	5.784	46	
108 In	$\beta + \varepsilon$	5133	0.0	7+	3110.10	(8)+	5.2	7	5.90	6	
¹⁰⁸ In	$\beta + \varepsilon$	5133	0.0	7+	3816.07	6+	3.10	30	5.680	47	
108In	ε ε	5133	0.0	7+	4512 44	6+	1.5	2	5.32	6	
108 Bh	<u>в</u> -	4493	0.0	1+	434 1	2^{+}	23	6	5.32	11	Р
108 Bh	р В-	4493	0.0	1+	931.4	$\frac{2}{2+}$	6.3	17	6.05	12	P
109 Bh	β- β-	2607.2	0.0	$\frac{1}{7}/2 \pm$	326 8689	$\frac{2}{5/2+}$	67	7	4 886	46	1
109Rh	β- β-	2607.2	0.0	$7/2 + 7/2 \pm$	540 6753	$5/2+5/2\perp$	97	10	5 550	40 45	
109 Pd	B- B-	1112.0	0.0	$5/2 \pm$	88 0338	$\frac{5}{2}$	100	10	6 151	18	
109Cd	ρ- ε	1112.9 915.1	0.0	$5/2 \pm 5/2 \pm$	88.0341	$7/2 \pm 7/2 \pm$	100	4	6.010	10 25	
109In	$\beta \pm lc$	215.1	0.0	$\frac{0}{2+}$	203.40	$7/2 \pm 7/2 \pm$	68.0	6	5 285	20 14	
109Tn	$\beta + lc$	2014.8	0.0	$\frac{3}{2}$	622.88	7/2 + 7/2 +	5 25	25	6.127	14 95	
109Tn	ρτιε	2014.8	0.0	$\frac{3}{2}$	025.88	7/2 + 7/2 +	0.00 4.6	20 2	5.0127	$\frac{20}{25}$	
109 T m	e	2014.8	0.0	9/2+	997.00 1259.15	(7/2)	4.0 8.05	2 10	5 286	20 01	
109Tn	e	2014.8	0.0	9/2+	1602.10	(7/2)+	8.03	19 15	J.200	21	
109 Cm	e	2014.0	0.0	$\frac{9}{2+}$	1022.40	(1/2)+	0.07	10 7	4.000	24 26	
109 Cm	$\rho + \varepsilon$	3039 2050	0.0	5/2+ 5/2+	2501.02	$\frac{3}{2+}$	0.7 5.00	1	4.740	30 90	
1090-	$\rho + \varepsilon$	3039	0.0	0/2+ 5/0+	2091.07	$\frac{1}{2+}$	5.00 1.59	30 10	4.905	28 C	
110T	ε	3839	0.0	$\frac{3}{2+}$	2801.72	(/2+	1.52	19	5.28 6.97	0	
110 T	ε	3878	0.0	$\frac{1}{7}$	2870.734	0+	2.33	20	0.27	0 20	
110 In	ε	3878	0.0	(+	3004.08	0+	1.1	3 11	5.502	32 20	
110 In	ε	3878	0.0	(+7)	3121.50	0+	43.8	11	4.742	30 94	
110 In	ε	3878	0.0	(+	3187.30	8+	29.6	12	4.831	34	
110In	ε	3878	0.0	7+	3239.517	0+	4.10	13	5.619	34	
110 In	ε	3878	0.0	7+	3525.22	0+ 0+	4.21	14	5.065	48	
¹¹⁰ Ag	β-	2890.7	0.0	1+	657.51	2+	4.44	24	5.546	24	
¹¹⁰ Ag	β-	2890.7	117.59	6+ 5 (2)	2926.7465	5+	67.7	5	5.370	22	
¹¹¹ Pd	β -	2229.6	0.0	5/2+	59.87	7/2+	95.3	4	5.9020	43	
¹¹¹ In	ε	860.2	0.0	9/2+	416.63	7/2+	100.000	5	5.037	20	
¹¹¹ Sn	$\beta + \varepsilon$	2453	0.0	7/2+	0.0	9/2+	90.7	6	4.755	9	
¹¹¹ Sn	ε	2453	0.0	7/2+	1610.51	9/2+	1.49	10	5.416	31	
¹¹² In	$\beta + \varepsilon$	2584.7	0.0	1+	617.519	2+	5.9	5	5.220	39	
¹¹³ Sn	$\beta + \varepsilon$	1039.0	77.38	7/2+	0.0	9/2+	100.		3.62	11	
¹¹³ Sb	$\beta + \varepsilon$	3911	0.0	5/2+	498.01	3/2+	87.0	26	4.721	17	P
¹¹³ Sb	$\beta + \varepsilon$	3911	0.0	5/2+	1013.22	3/2+	2.60	13	5.906	25	Р
^{113}Sb	$\beta + \varepsilon$	3911	0.0	5/2 +	1556.36	3/2 +	1.79	10	5.705	27	Р

Table 10)
(continue	ed)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
^{114}Sb	$\beta + \varepsilon$	6063	0.0	3+	1299.92	2 +	68.7	8	5.304	11	Р
^{114}Sb	$\beta + \varepsilon$	6063	0.0	3+	2187.5	4 +	3.9	10	6.07	11	Р
^{114}Sb	$\beta + \varepsilon$	6063	0.0	3+	2239.2	2 +	1.58	20	6.43	6	Р
114 Sb	$\beta + \varepsilon$	6063	0.0	3+	3781.9	2 +	1.10	30	5.59	12	Р
114 Rh	β -	7.78 E3	0.0	1 +	1391.66	2 +	9	3	6.06	15	Р
114 In	ε	1445.13	190.2682	5 +	1283.67	4 +	3.25	24	7.558	35	
$^{115}\mathrm{Sb}$	$\beta + \varepsilon$	3030	0.0	5/2 +	497.3	3/2 +	96.3	44	4.774	23	
^{115}Ag	β-	3102	0.0	1/2-	2156.00	(3/2)-	7.4	4	5.562	41	
$^{115}\mathrm{Cd}$	β-	1451.9	0.0	1/2 +	828.59	3/2+	3.3	4	7.49	5	
116 In	β-	3276.22	127.267	5+	2390.921	4+	54.2	6	5.280	5	
116 In	β-	3276.22	127.267	5 +	2529.205	4 +	32.5	3	5.2690	42	
116 In	β-	3276.22	127.267	5 +	2801.206	4 +	10.3	1	5.1941	45	
116 In	β-	3276.22	127.267	5 +	3046.126	4 +	2.82	4	4.992	6	
$^{116}\mathrm{Sb}$	$\beta + \varepsilon$	4704	0.0	3+	1293.550	2 +	58	5	5.270	44	
$^{116}\mathrm{Sb}$	$\beta + \varepsilon$	4704	0.0	3+	2225.215	2 +	40.0	30	4.811	40	
$^{116}\mathrm{Sb}$	$\beta + \varepsilon$	4704	0.0	3+	2843.61	2 +	1.52	14	5.842	46	
$^{116}\mathrm{Sb}$	$\beta + \varepsilon$	4704	383	8-	2908.808	7-	82.0	40	4.886	32	Р
^{116}Sb	$\beta + \varepsilon$	4704	383	8-	3209.953	7-	14.8	7	5.445	32	Р
117 Te	$\beta + \varepsilon$	3544	0.0	$\frac{1}{2+}$	923.9	$\frac{3}{2+}$	4.3	7	6.49	7	P
¹¹⁷ Cd	β-	2525	0.0	1/2+	1712.544	3/2+	3.4	5	6.55	6	-
¹¹⁷ Cd	β-	2525	0.0	1/2+	1997.366	3/2+	8.2	9	5.51	5	
¹¹⁷ Cd	β-	2525	0.0	1/2+	2022.23	3/2+	2.2	3	6.01	6	
117 Cd	β-	2525	0.0	1/2+	2064.15	3/2+	1.5	$\tilde{2}$	6.05	ő	
¹¹⁷ Cd	β-	2525	0.0	1/2+	2001.10 217174	3/2+	1.9	-3	5.60	7	
117 Sh	$\beta + l \epsilon$	1758	0.0	5/2+	158.6	3/2+	99.0	7	4 899	. 11	
118 Sb	$\beta + /\epsilon$	3656 6	250	8-	257484	7-	98.5	5	4 985	11	
¹¹⁸ I	$\beta + /\epsilon$	6720	0.0	2-	1944.34	3-	8.05	5	6 837	20	Р
¹¹⁹ I	$\beta + \epsilon$	3405	0.0	$\frac{2}{5/2+}$	$257\ 484$	3/2+	83.7	25	5.048	20	P
119 In	β-γε	2366	0.0	9/2+	787.01	$\frac{3}{2}$	93	20	4426	38	1
^{119}Sb	р F	2800 589	0.0	5/2+	23 871	3/2+	100	•	5 091	18	
119 Te	e	2293.0	0.0	1/2+	1749 64	3/2+	4 5	3	6.051	30	
119 Te	e e	2293.0	260.96	$\frac{1}{2}$	2129.82	9/2	1.8	1	7.074	26	
119 Te	e e	2293.0	260.96	$\frac{11}{2}$	2129.02 2278.92	$\frac{3}{2}$	6.6	1	6 102	13	
119 Te	e	2293.0	260.96	$\frac{11}{2}$	2210:02	9/2	0.0	2	7 399	30	
¹¹⁹ Te	e	2293.0	260.96	$\frac{11}{2}$	2200.0	9/2-	4.9	1	5 888	17	
120 Sh	B±/c	2295.0	200.50	11/2-	1171.2	$\frac{3}{2}$	1.18	8	5.644	26	
120 T	$\beta \perp /c$	5615	0.0	2_	2083.3	2 3_	0.1	7	6 882	20	Р
120In	β-	5370	0.0	$\frac{2}{1+}$	11725	$\frac{5}{2+}$	16.3	14	5.002	04 43	P
120In	β- β-	5370 5370	0.0 70	(5)+	2194 25	$4 \pm$	10.5 14.7	14 99	6.02	40 8	P
120In	β- β-	5370 5370	70 70	(5)+	2465.61	4+ 4+	2.0	6	6.72	14	P
120In	β- β-	5370 5370	70	(5) + (5) +	2403.01	+ 1_	2.0	3	6.42	6	P
120In	B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-	5370 5370	70 70	(5) + (5) +	2645.04	4 6-1	1 15	19	6.82	7	Г Р
120_{In}	р- в	5370 5370	70 70	$(5)_{\pm}$	2085.02 3057.01	0+ 1+	1.15	12	0.82	6	I D
120_{In}	р- в	5370 5370	70 70	$(5)_{\pm}$	3170.06	4	40.5	19	4.93 5.97	6	I D
120 In	р- в	5370 5370	70 70	$(5)_{\pm}$	3179.00	(4)	55	4	5.65	7	I D
111 120 In	β- β	5370 5370	70	(5)+	2428 22	(4)+ 4	0.0 1.50	4 19	5.05 6.11	7	I D
120_{In}	р- В	5370 5370	70	$(5)^+$	9490.29 3777 10	4+⊤ 1⊥	1.09 1.09	14 99	0.11 5 49	1	ı D
111 121 T	$\beta - \beta \pm 1 c$	9907	10	(J)+ 5/9+	3777.19 919 107	4+ 2/2+	0.00 86 54	22 18	0.42 5 190	0 14	T
и 121 т	$\mu \pm /\epsilon$	2291 2207	0.0	5/2+	414.197 522 054	$\frac{3}{2+}$	00.04 7 1	10	0.109 0.109	14 46	
1 121 C J	$\rho + \epsilon$	4291 4761	0.0	$\frac{3}{2}$	002.004 1040.90	$\frac{3}{2+}$	(.1 6.2	1 19	0.000 6.00	40 Q	D
121 Cd	ρ- β	4701 4761	0.0	3/2+ 3/2+	1040.30	(3/2)+(5/2)+	0.5 7 0	14 6	0.00 5 204	0	ı D
121 In	ρ- β	4101 2260	0.0	$\frac{3}{2+}$	4204.89 025 59	(3/2)+ 7/2	1.0	10	0.004 4 957	40 40	Г
1f1 121 c	ρ- ρ	3302 409 F	0.0	$\frac{9}{2+}$	920.08	1/2+ 5/2 -	100	10	4.337	49	
Sn	ρ -	402.0	0.0	<i>3/2</i> +	0.0	3/2+	100		0.110	9	

Table 10
(continued)

Nuclide	Decay	$Q \; [\rm keV]$	$E_{\rm P} \; [\rm keV]$	$J\pi$	$E_D \; [keV]$	Jπ	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
$^{121}{\rm Te}$	ε	1056	0.0	1/2+	507.597	3/2+	18.4	6	6.91	5	
¹²² Cs	$\beta + \varepsilon$	7210	0.0	1+	331.17	2+	37.0	40	5.426	49	Р
¹²² In	β-	6.37E3	0.0	1+	1140.31	2+	16	4	5.39	14	Р
¹²² In	β -	$6.37\mathrm{E3}$	0.0	1+	2153.48	2+	2.8	8	5.74	15	Р
¹²² In	β -	$6.37\mathrm{E3}$	40	5+	2142.12	4+	11.6	20	5.98	9	Р
¹²² In	β -	$6.37\mathrm{E3}$	40	5+	2555.57	6+	1.47	22	6.68	8	Р
¹²² In	β -	$6.37\mathrm{E3}$	40	5+	2973.46	4 +	11.9	4	5.56	5	Р
¹²² In	β -	$6.37\mathrm{E3}$	40	5+	3082.18	4+	3.0	3	6.10	7	Р
¹²² In	β -	$6.37\mathrm{E3}$	40	5+	3233.79	4+	16.9	4	5.26	6	Р
122 In	β -	$6.37\mathrm{E3}$	40	5+	3305.75	4+	35.1	9	4.90	6	Р
122 In	β -	$6.37\mathrm{E3}$	40	5+	3627.09	4 +	1.40	21	6.10	9	Р
122 In	β -	$6.37\mathrm{E3}$	40	5+	3670.36	4+	2.59	18	5.81	7	Р
122 In	β -	$6.37\mathrm{E3}$	40	5+	3882.15	4 +	3.77	18	5.50	7	Р
^{122}I	$\beta + \varepsilon$	4234	0.0	1+	564.117	2+	14.0	40	5.43	12	
^{123}I	$\beta + \varepsilon$	1228.4	0.0	5/2 +	159.00	3/2 +	97.0	5	5.286	6	
^{123}I	ε	1228.4	0.0	5/2 +	687.97	3/2 +	1.51	5	6.478	17	
123 Sn	β -	1408.2	24.6	3/2 +	160.33	5/2 +	99.9	3	5.2740	35	
124 In	β -	7364	0.0	3+	2101.58	4 +	2.4	6	6.54	11	Р
124 In	β -	7364	0.0	3+	2129.39	2 +	17.7	20	5.66	5	Р
124 In	β -	7364	0.0	3+	2426.38	2 +	1.84	18	6.535	46	Р
124 In	β -	7364	0.0	3+	2702.99	2 +	1.90	25	6.41	6	Р
124 In	β -	7364	0.0	3+	2878.35	2 +	1.30	22	6.50	8	Р
124 In	β -	7364	0.0	3+	3214.19	2 +	25	3	5.07	6	Р
124 In	β-	7364	0.0	3+	3264.15	2 +	1.30	14	6.33	5	Р
124 In	β-	7364	0.0	3+	3741.23	(2)+	2.6	3	5.80	5	Р
124 In	β-	7364	0.0	3+	3761.6	2+	1.00	13	6.20	6	Р
124 In	β-	7364	0.0	3+	3917.16	2 +	9.4	8	5.148	43	Р
$^{124}\mathrm{Sb}$	β-	2905.07	0.0	3-	2701.622	2-	0.558	7	8.156	6	
^{124}I	ε	3159.6	0.0	2-	2293.68	3-	11.64	18	6.898	9	
^{124}I	ε	3159.6	0.0	2-	2693.73	3-	0.941	14	7.427	10	
^{124}I	ε	3159.6	0.0	2-	2834.88	3-	4.27	6	6.433	11	
124 I	ε	3159.6	0.0	2-	2886.00	3-	1.05	3	6.878	16	
^{124}Cs	$\beta + \varepsilon$	5926	0.0	1 +	354.10	2 +	35	5	5.13	6	Р
^{124}Cs	$\beta + \varepsilon$	5926	0.0	1 +	846.55	2 +	3.5	5	5.92	6	Р
^{124}Cs	$\beta + \varepsilon$	5926	0.0	1 +	1628.64	2 +	2.10	30	5.76	6	Р
^{124}Cs	$\beta + \varepsilon$	5926	0.0	1 +	2519.59	2 +	1.42	21	5.43	6	Р
^{125}I	ε	185.77	0.0	5/2 +	35.4925	3/2 +	100		5.4503	38	
125 In	β-	5481.3	0.0	9'/2+	854.69	7/2+	1.9	3	6.28	7	Р
125 In	β-	5481.3	0.0	9'/2+	1059.26	7/2+	9.6	13	5.49	6	Р
125 In	β-	5481.3	0.0	9/2+	1362.52	7/2+	79	10	4.44	6	Р
^{125}Sn	β-	2361.4	27.50	3/2+	331.958	5/2+	98.4	15	5.486	13	
$^{125}\mathrm{Sb}$	β-	766.7	0.0	7/2+	463.365	5/2+	40.3	4	8.074	11	
$^{125}\mathrm{Sb}$	β-	766.7	0.0	7/2+	671.443	5/2+	13.42	17	6.976	30	
^{126}Cs	$\beta + \varepsilon$	4796	0.0	1+	388.62	2^{+}	29.9	16	5.169	24	Р
^{126}Cs	$\beta + \varepsilon$	4796	0.0	1 +	879.86	2+	3.9	5	5.79	6	Р
^{126}Cs	$\beta + \varepsilon$	4796	0.0	1+	1678.56	2+	2.15	11	5.581	23	Р
127 Xe	ε	662.3	0.0	1/2+	202.860	3/2+	53.0	14	6.642	13	
127 Xe	ε	662.3	0.0	1/2+	618.4	3/2+	0.0143	9	7.46	9	
^{127}Cs	$\beta + \varepsilon$	2081	0.0	1/2+	124.748	3/2+	5.80	30	6.817	24	
^{127}Cs	$\beta + \varepsilon$	2081	0.0	1/2+	587.053	3/2+	9.59	18	6.330	12	
^{127}Cs	$\beta + \varepsilon$	2081	0.0	1/2+	931.065	3/2+	1.160	40	7.012	18	
¹²⁷ Ba	$\beta + \varepsilon$	3422	0.0	1/2+	138.90	(3/2)+	1.20	30	6.83	11	Р
127 Ba	$\beta + \varepsilon$	3422	0.0	1/2+	180.97	3/2+	29.0	40	5.42	6	Р
	· /			'		'					

Table 10
(continued $)$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nuclide	Decay	$Q \; [\text{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
	$^{127}\mathrm{Sb}$	β -	1582.2	0.0	7/2 +	473.24	5/2 +	23.4	16	7.840	31	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{127}\mathrm{Sb}$	β -	1582.2	0.0	7/2 +	783.4	5/2 +	18.0	11	7.433	29	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{127}\mathrm{Sb}$	β -	1582.2	0.0	7/2 +	1140.9	5/2 +	1.55	20	7.61	6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{127}\mathrm{Sb}$	β -	1582.2	0.0	7/2 +	1155.4	5/2 +	0.9	3	7.80	15	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{127}\mathrm{Sb}$	β -	1582.2	0.0	7/2 +	1290.3	5/2 +	0.77	22	7.32	13	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{127}\mathrm{Te}$	β -	702.7	0.0	3/2 +	0.0	5/2 +	98.79	16	5.523	9	
	$^{127}{ m Te}$	β -	702.7	0.0	3/2 +	417.93	5/2 +	1.19	16	6.13	6	
	^{128}Cs	$\beta + \varepsilon$	3929	0.0	1 +	442.911	2+	22.8	12	5.123	23	
	^{128}Cs	$\beta + \varepsilon$	3929	0.0	1 +	969.475	2 +	2.00	11	5.861	24	
	128 In	β -	9171	0.0	(3)+	2104.07	(2)+	12.6	10	5.811	38	Р
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	128 In	β -	9171	0.0	(3)+	2258.36	(2)+	3.6	7	6.31	9	Р
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	128 In	β -	9171	0.0	(3)+	2578.62	(2)+	2.36	21	6.403	42	Р
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	128 In	β -	9171	0.0	(3)+	3225.6	(2)+	1.24	14	6.48	5	Р
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	128 In	β -	9171	0.0	(3)+	3519.86	(2)+	18.5	19	5.209	47	Р
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	128 In	β -	9171	0.0	(3)+	3886.39	(2)+	3.9	4	5.756	47	Р
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	128 In	β -	9171	0.0	(3)+	3954.85	(2)+	5.9	5	5.551	40	Р
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	128 In	β -	9171	0.0	(3)+	4038.01	(2)+	2.29	24	5.932	48	Р
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	128 In	β -	9171	0.0	(3)+	4297.70	(2)+	12.9	12	5.082	43	Р
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{128}\mathrm{Sb}$	β-	4364	0.0	8-	2337.85	(7)-	19	4	7.94	9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{128}I	β-	2122.5	0.0	1 +	442.901	2+	11.56	12	6.531	6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	128 I	β-	2122.5	0.0	1 +	969.465	2 +	1.500	18	6.791	7	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{129}\mathrm{Te}$	β-	1502.3	105.51	11/2-	1401.43	(9/2)-	0.15	3	8.52	9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{129}Cs	ε	1197.0	0.0	1/2+	318.179	3/2+	2.40	14	7.166	26	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{129}Cs	ε	1197.0	0.0	1/2+	588.533	3/2+	4.9	3	6.523	28	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{129}Cs	ε	1197.0	0.0	1/2+	904.318	3/2+	0.066	4	7.708	32	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	129 Ba	$\beta + \varepsilon$	2438	0.0	1/2+	135.69	3/2+	8.8	5	6.40	5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	129 Ba	$\beta + \varepsilon$	2438	0.0	1/2+	220.74	3/2+	23.5	9	5.924	48	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	129 Ba	ε	2438	8.42	7/2+	1648.04	(9/2)+	59.5	13	4.52	6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{129}Sn	β-	4039	0.0	3/2+	644.96	(5/2) +	71	2	5.890	21	Р
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{129}\mathrm{Sb}$	β-	2376	0.0	7/2+	544.64	5/2+	2.74	17	8.285	34	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{129}\mathrm{Sb}$	β-	2376	0.0	7/2+	633.85	5/2+	1.08	4	8.604	27	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{129}\mathrm{Sb}$	β-	2376	0.0	7/2+	966.86	5/2+	2.29	13	7.918	36	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{129}\mathrm{Sb}$	β-	2376	0.0	7/2+	1600.05	5/2+	2.94	5	6.847	44	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{129}\mathrm{Sb}$	β-	2376	0.0	7/2+	1656.12	5/2+	1.410	23	7.051	47	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{129}\mathrm{Sb}$	β-	2376	0.0	7/2+	1727.95	(9/2)+	29.9	5	5.57	5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{129}\mathrm{Sb}$	β-	2376	0.0	7'/2+	1753.32	$\frac{1}{5/2+}$	2.16	5	6.65	5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{129}\mathrm{Sb}$	β-	2376	0.0	7'/2+	1843.62	(9/2)+	25.5	4	5.34	6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{129}\mathrm{Sb}$	β-	2376	0.0	7'/2+	1871.61	3/2+	1.533	23	6.48	7	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{129}\mathrm{Sb}$	β-	2376	0.0	7'/2+	2071.42	5/2+	2.46	4	5.55	11	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{129}\mathrm{Sb}$	β-	2376	0.0	7'/2+	2114.62	5/2+	2.06	4	5.41	12	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{129}\mathrm{Te}$	β-	1502.3	0.0	3/2+	27.80	5/2+	89	13	5.85	6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{129}\mathrm{Te}$	β-	1502.3	0.0	3/2+	487.35	5/2+	9.3	7	6.217	33	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{130}I	β-	2944.3	0.0	$5^{'}+$	1944.128	6+	47	4	6.539	37	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{131}Cs	ε	358.00	0.0	5/2 +	0.0	3/2 +	100		5.5808	27	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	131 Ba	$\beta + \varepsilon$	1376.62	0.0	1/2+	216.080	3/2+	21.7	5	7.411	40	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	131 Ba	ε	1376.62	0.0	1/2+	373.246	3/2+	20.2	3	7.311	42	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	131 Ba	ε	1376.62	0.0	1/2+	585.039	3/2+	1.24	2	8.309	42	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{131}\mathrm{Ba}$	ε	1376.62	0.0	1/2+	696.471	3/2+	0.567	11	8.512	42	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{131}\mathrm{Ba}$	ε	1376.62	0.0	1/2+	1047.670	3/2+	1.47	2	7.422	42	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{131}\mathrm{Ba}$	ε	1376.62	0.0	1/2+	1170.637	3/2+	0.190	13	7.85	5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	131 La	$\beta + \varepsilon$	2910	0.0	3/2+	0.0	1/2+	13.6	24	6.26	8	
¹³¹ La $\beta + \varepsilon$ 2910 0.0 3/2+ 365.164 1/2+ 21.1 7 5.856 26	131 La	$\beta + \varepsilon$	2910	0.0	3/2+	316.585	5/2+	2.08	19	6.889	45	
	131 La	$\beta + \varepsilon$	2910	0.0	3/2+	365.164	1/2+	21.1	7	5.856	26	

Table 10	
(continued)

Nuclide	Decay	$Q \; [\text{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
$^{131}{ m Te}$	β -	2231.7	0.0	3/2 +	149.716	5/2 +	59.3	5	6.1723	41	
$^{131}\mathrm{Te}$	β -	2231.7	0.0	3/2 +	876.725	1/2 +	1.175	16	7.142	6	
$^{131}\mathrm{Te}$	β -	2231.7	182.25	11/2-	1899.142	13/2-	16.4	6	6.377	16	
^{131}I	β -	970.8	0.0	7/2 +	364.490	5/2 +	89.6	8	6.6772	42	
^{131}I	β -	970.8	0.0	7/2 +	722.909	5/2 +	2.08	3	7.025	7	
^{132}Cs	ε	2126.3	0.0	2+	1803.711	3+	1.29	5	7.196	18	
^{132}I	β-	3575.5	0.0	4 +	2424.78	3+	2.5	2	7.307	35	
^{132}I	β-	3575.5	0.0	4+	2583.78	5+	3.2	2	6.960	28	
^{132}I	β-	3575.5	0.0	4+	2613.44	5+	8.2	4	6.503	22	
132 I	β-	3575.5	0.0	4+	2669.99	3+	3.4	2	6.790	27	
^{132}I	β-	3575.5	0.0	4+	2838.85	5+	13.0	8	5.887	28	
133 La	$\beta + \varepsilon$	2059	0.0	5/2 +	12.326	3/2 +	91	7	5.544	38	
133 La	$\beta + \varepsilon$	2059	0.0	5/2+	302.395	3/2+	2.15	11	7.011	30	
¹³³ La	$\beta + \varepsilon$	2059	0.0	5/2+	858.499	3/2+	1.16	6	6.929	36	
133 Ce	$\beta + \varepsilon$	3076	37.2	9/2-	1857.39	7/2-	2.43	13	6.802	43	
133 Ce	ε - 7 -	3076	37.2	9/2-	2018.26	7/2-	4.54	25^{-3}	6.408	45	
¹³³ I	<u>в</u> -	1786	0.0	$\frac{3}{7}/2+$	529 872	5/2+	83.4	23	6 884	14	
¹³³ I	р В-	1786	0.0	7/2+	1298 234	5/2+	3 78	9	6.001	21	
$133 X_{P}$	р В-	427 4	0.0	3/2+	80 9979	5/2+	98.5	13	5.656	21 11	
133 Ra	ρ- ε	517 <i>A</i>	0.0	$\frac{3}{2}$	383 8401	$\frac{3}{2}$	14 5	10	0.000 8.03	5	
134 ₁	B	4082.4	0.0	$(4) \pm$	1010 50	$\frac{3}{2}$	2 2	4 6	7.83	8	
$134C_{a}$	β- β	2052.4	0.0	(4)⊤ 4⊥	1642 225	3^+	5.5 2.400	0	0.6020	18	
134 ₁	p- Bila	2030.04	0.0	4+ 1	604 7222	3+	2.499	9 16	9.0929 6.020	10	
Lа 135т	$\rho + \epsilon$	0701 0624 0	0.0	$\frac{1+}{7/9+}$	1004.7222 1260.416	2+ 5/2+	0.04 02.6	10	0.030 7.080	20 16	
135 T	ρ-	2054.2	0.0	$\frac{1}{2+}$	1200.410	$\frac{3}{2+}$	25.0	0	7.000	10	
135 T	р- 0	2034.2	0.0	$\frac{1}{2+}$	1457.500	$\frac{3}{2+}$	6.5	ა ი	7.120	18	
135 T	р- 0	2034.2	0.0	$\frac{1}{2+}$	1000.288	9/2+	8.0	ა ი	(.139 c.700	17	
135T	β-	2634.2	0.0	7/2+	1791.213	$\frac{5}{2+}$	8.8	3	6.722	17	
135T	β-	2634.2	0.0	7/2+	1968.323	(9/2)+	8.0	3	6.400	19	
135 v	β-	2634.2	0.0	7/2+	2045.892	5/2+	1.11	5	7.072	22	
¹³⁵ Xe	β-	1168.6	0.0	3/2+	249.763	5/2+	96.1	4	5.982	7	
¹³⁵ Xe	β-	1168.6	0.0	3/2+	608.148	5/2+	3.09	11	6.719	18	
¹³⁵ La	$\beta + \varepsilon$	1207	0.0	5/2+	0.0	3/2+	98.10	30	5.705	15	
¹³⁰ Cs	β-	2548.2	0.0	5+	2207.134	6+	80.8	11	6.138	10	
^{130}Cs	β-	2548.2	0.0	5+	2356.57	4+	0.21	3	7.92	6	
¹³⁶ La	$\beta + \varepsilon$	2.85 E3	0.0	1+	818.52	2+	1.55	6	5.929	33	
¹³⁷ Nd	$\beta + \varepsilon$	3618	0.0	1/2 +	580.63	3/2 +	20.5	22	6.03	5	Р
¹³⁷ Nd	$\beta + \varepsilon$	3618	0.0	1/2 +	761.52	3/2 +	11.5	17	6.18	7	Р
¹³⁷ Pm	$\beta + \varepsilon$	5511	0.0	11/2-	1100.4	13/2-	8.5	20	5.93	10	Р
$^{137}\mathrm{Ce}$	$\beta + \varepsilon$	1222.1	0.0	3/2 +	10.59	5/2 +	97.84	8	5.411	15	
$^{137}\mathrm{Ce}$	ε	1222.1	0.0	3/2 +	447.17	5/2 +	1.95	7	6.709	22	
$^{137}\mathrm{Pr}$	$\beta + \varepsilon$	2717	0.0	5/2 +	0.0	3/2 +	93.5	8	5.472	8	
138 Pr	$\beta + \varepsilon$	4437	364	7-	2765.24	6-	7.00	30	6.434	24	
$^{139}\mathrm{Ce}$	ε	264.6	0.0	3/2 +	165.8576	5/2 +	100		5.466	28	
139 Pr	$\beta + \varepsilon$	2129.1	0.0	5/2 +	0.0	3/2 +	98.750	40	5.6710	43	
$^{139}\mathrm{Nd}$	$\beta + \varepsilon$	2812	0.0	3/2+	0.0	5/2+	85.0	20	5.179	17	Р
$^{139}\mathrm{Nd}$	$\beta + \varepsilon$	2812	0.0	3/2+	588.82	5/2+	2.6	5	6.38	8	Р
$^{139}\mathrm{Nd}$	$\beta + \varepsilon$	2812	231.15	11/2-	1624.37	9/2-	9.9	10	6.40	5	Р
$^{139}\mathrm{Nd}$	ε	2812	231.15	11/2-	2174.55	9/2-	7.4	6	6.09	5	Р
$^{139}\mathrm{Pm}$	$\beta + \varepsilon$	4516	0.0	(5/2)+	0.0	3'/2+	71	5	5.290	33	Р
$^{139}\mathrm{Pm}$	$\beta + \varepsilon$	4516	0.0	(5/2)+	463.10	(3/2)+	6.9	12	6.08	8	Р
$^{140}\mathrm{Pm}$	$\beta + \varepsilon$	6045	0.0	1+	773.48	2+ .	2.8	5	5.59	8	Р
^{140}Pm	$\beta + \varepsilon$	6045	0.0	1+	1489.30	(2)+	1.79	23	5.47	6	Р
140 Pm	$\beta + \varepsilon$	6045	431	8-	2221.51	7-	91.2	22	5.214	19	
	1 1										

Table 10
(continued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
¹⁴⁰ Eu	$\beta + \varepsilon$	8.47 E3	0.0	1+	530.95	2+	20.0	40	4.86	9	Р
140 Eu	$\beta + \varepsilon$	8.47E3	0.0	1 +	990.64	2+	1.60	40	5.83	11	Р
140 Eu	$\beta + \varepsilon$	8.47 E3	0.0	1+	2284.14	2+	1.31	20	5.49	7	Р
^{140}Cs	β -	6218	0.0	1-	2932.58	2-	5.42	24	6.713	20	
141 Sm	$\beta + \varepsilon$	4589	0.0	1/2 +	403.97	3/2 +	32.0	7	5.880	14	Р
^{141}Sm	$\beta + \varepsilon$	4589	0.0	1/2 +	728.27	3/2 +	2.80	40	6.78	6	Р
$^{141}\mathrm{Sm}$	$\beta + \varepsilon$	4589	0.0	1/2 +	1292.56	(3/2)+	8.7	5	6.003	27	Р
$^{141}\mathrm{Sm}$	$\beta + \varepsilon$	4589	175.9	11/2-	1166.95	(9/2)-	3.1	8	6.96	11	Р
$^{141}\mathrm{Sm}$	$\beta + \varepsilon$	4589	175.9	11/2-	1983.27	9/2-	14.8	1	5.88	3	Р
$^{141}\mathrm{Eu}$	$\beta + \varepsilon$	6008	0.0	5/2+	1.58	3/2+	73	5	5.116	31	Р
$^{141}\mathrm{Eu}$	$\beta + \varepsilon$	6008	0.0	5/2+	384.46	3/2+	7.0	17	5.99	11	Р
$^{141}\mathrm{Nd}$	$\beta + \varepsilon$	1823.0	0.0	3/2+	0.0	5/2+	98.23	9	5.297	6	
$^{141}\mathrm{Pm}$	$\beta + \varepsilon$	3669	0.0	5/2+	0.0	3/2+	89.9	7	5.474	7	
^{142}Cs	β-	7328	0.0	0-	1326.48	1-	16.9	10	5.78	5	
142 La	β-	4509	0.0	2-	2187.20	1-	3.2	2	8.288	28	
^{143}Eu	$\beta + \varepsilon$	5276	0.0	$\frac{-}{5/2+}$	0.0	$\frac{-}{3/2+}$	80.0	20^{-}	5.377	12^{-3}	Р
¹⁴³ Eu	$\beta + /\varepsilon$	5276	0.0	5/2+	1566 1	(3/2)+	1 70	$\frac{-0}{20}$	6.34	5	P
^{143}Eu	$\beta + /\epsilon$	5276	0.0	5/2+	1715.0	(3/2) + (3/2) +	1 33	13	6.376	43	P
$^{143}E_{11}$	$\beta + \epsilon$	5276	0.0	5/2+	1912 7	$(3/2)^+$ $(3/2)^+$	4 40	40	5 758	40 40	P
^{143}Gd	$\beta + \epsilon$	6.01E3	0.0	(1/2) +	258.82	$(3/2)^+$ $(3/2)^+$	58 3	20	5.100	8	P
^{143}Cd	$\beta \perp / \epsilon$	6.01E3	152.6	$(1/2)^{+}$ 11/2-	1057.65	$(3/2)^+$ 13/2	9.4	20	6.09	9	P
143 S m	$\beta + /c$	0.01L5 2442 5	152.0	$\frac{11}{2}$	1057.05	5/2-	9.4 05.2	5	4.0721	9 49	1
144 Dm	$\rho + \epsilon$	0440.0 2007 4	0.0	$\frac{3}{2+}$	0.0	3/2+ 1	90.0	0	4.9721	42 17	
144 Dm	ρ-	2997.4	0.0	0- E	2100.07	1-	1.00	4	0.337	11	
Pm 14415	ε	2331.9	0.0	- 0-	2204.79	4-	0.6		8.49	8	ъ
144 D	$p + \varepsilon$	6346	0.0	1+	1660.1	2+	8.0	5	4.944	28	P
145 g	$\beta + \varepsilon$	6346	0.0	1+	2423.3	2+	1.01	8	5.490	35	P
¹⁴⁵ Cs	β-	7462	0.0	3/2+	547.09	(5/2)+	3.5	5	6.27	6	Р
¹⁴⁵ Eu	$\beta + \varepsilon$	2659.9	0.0	5/2+	1547.302	3/2+	19.3	8	7.414	19	
¹⁴⁵ Eu	ε	2659.9	0.0	5/2+	1627.74	3/2+	0.650	40	8.819	27	
¹⁴⁵ Eu	ε	2659.9	0.0	5/2+	1857.69	7/2+	0.603	23	8.622	17	
¹⁴⁵ Eu	ε	2659.9	0.0	5/2 +	2385.89	3/2+	0.342	15	7.844	22	
¹⁴⁵ Gd	$\beta + \varepsilon$	5065	0.0	1/2 +	1041.71	3/2 +	8.1	6	6.778	34	
¹⁴⁵ Gd	$\beta + \varepsilon$	5065	0.0	1/2 +	1758.03	3/2 +	34.3	20	5.806	28	
145 Gd	$\beta + \varepsilon$	5065	0.0	1/2 +	2642.2	3/2 +	2.24	12	6.560	26	
$^{146}\mathrm{Tb}$	$\beta + \varepsilon$	8322	0.0	1 +	1972.02	2 +	8.9	18	5.45	23	Р
$^{146}\mathrm{Tb}$	$\beta + \varepsilon$	8322	0.0	1 +	3185.95	2 +	1.27	18	5.84	23	Р
146 Eu	$\beta + \varepsilon$	3879	0.0	4-	1380.289	3-	12.3	10	8.290	36	
146 Eu	$\beta + \varepsilon$	3879	0.0	4-	2083.426	5-	2.43	18	8.641	33	
$^{146}\mathrm{Eu}$	$\beta + \varepsilon$	3879	0.0	4-	2788.223	5-	4.43	16	7.926	17	
$^{146}\mathrm{Eu}$	ε	3879	0.0	4-	3259.924	5-	2.19	9	7.714	21	
$^{146}\mathrm{Eu}$	ε	3879	0.0	4-	3461.557	5-	3.0	4	7.21	6	
$^{147}\mathrm{Eu}$	ε	1721.4	0.0	5/2 +	1054.218	3/2 +	5.62	16	8.092	17	
$^{147}\mathrm{Gd}$	$\beta + \varepsilon$	2187.7	0.0	7'/2-	995.17	9/2-	19.8	13	6.924	29	
$^{147}\mathrm{Gd}$	ε	2187.7	0.0	7'/2-	1360.34	9/2-	6.1	6	7.104	43	
$^{147}\mathrm{Gd}$	ε	2187.7	0.0	7'/2-	1554.29	9'/2-	37.1	18	6.073	22	
¹⁴⁸ Pm	β-	2470	0.0	1-	2057.961	2-	1.36	4	7.933	$25^{}$	
$^{148}E_{11}$	F	3039	0.0	5-	2031 423	4-	4 43	16	8 927	19	
^{148}En	ε	3039	0.0	5-	2815.583	4-	0.80	3	8.23	5	
149 Th	$\beta + 1 \epsilon$	3638 5	0.0	$\frac{1}{2+}$	1026 840	$\frac{1}{3/2+}$	4.76	18	7.387	17	
149 Th	$\beta + /\epsilon$	3638 5	0.0	$\frac{1}{2}$	1655 10	(3/2) +	1.35	7	7 631	23	
¹⁴⁹ Tb	$\beta \perp /c$	3638 5	0.0	$\frac{1}{2}$	2158 26	$(3/2)^{+}$	4 39	15	6 851	<u>16</u>	
149Th	$\beta \perp /c$	3638 5	0.0 25 Q	1/ 47 11 /9	2100.00	$(0/2)^{+}$ 0/2	4.92 100	10	1 / 11	6	
149 Dvr	ρ_{\pm}/ϵ	3705	0.0	11/2- 7/9	290.0 295 19	$\frac{9}{2}$	75	Б	4.410 5 617	36	D
Dy	$p + \varepsilon$	9199	0.0	1/2-	020.12	9/2-	1.0	0	0.017	30	Г
Table 10											

(continued)											

Nuclide	Decay	$Q \; [\text{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \; [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
¹⁴⁹ Dy	$\beta + \varepsilon$	3795	0.0	7/2-	1420.55	(9/2)-	1.15	9	6.154	40	Р
149 Dy	$\beta + \varepsilon$	3795	0.0	7/2-	1426.13	9/2-	2.08	11	5.894	31	Р
$^{149}\mathrm{Dy}$	$\beta + \varepsilon$	3795	0.0	7/2-	1697.49	9/2-	1.69	10	5.855	33	Р
¹⁴⁹ Dy	$\beta + \varepsilon$	3795	0.0	7/2-	1728.36	5/2-	8.10	40	5.159	30	Р
¹⁴⁹ Dy	$\beta + \varepsilon$	3795	0.0	7'/2-	1841.63	9/2-	15.5	5	4.821	25	Р
¹⁴⁹ Dy	$\beta + \varepsilon$	3795	0.0	7'/2-	1876.88	5/2-	18.4	6	4.729	26	Р
149 Dy	$\beta + \varepsilon$	3795	0.0	7/2-	1883.08	(9/2)-	8.60	30	5.056	26	Р
149 Dv	$\beta + \varepsilon$	3795	0.0	7'/2-	1953.13	9/2-	3.99	7	5.354	23	Р
149 Dv	$\beta + \varepsilon$	3795	0.0	7'/2-	2161.04	(9/2)-	1.08	9	5.810	42	Р
$^{149} \mathrm{Nd}$	β-	1688.9	0.0	5/2-	270.170	7/2-	17.5	18	6.825	45	
$^{149}\mathrm{Nd}$	β-	1688.9	0.0	5'/2-	462.191	3'/2-	1.2	3	7.75	11	
149 Nd	β-	1688.9	0.0	5/2-	654.843	7/2-	19.3	8	6.270	18	
149 Gd	E	1314.1	0.0	7/2-	795.030	9/2-	33.0	18	6.705	27	
149 Gd	ε	1314.1	0.0	7/2-	1097.591	(9/2)-	1.18	7	7.283	36	
149 Gd	ε	1314.1	0.0	7/2-	1231.253	9/2-	0.268	15	6.72	9	
150 Tb	$\beta + \epsilon$	4658	0.0	(2)-	1134.304	3-	3.4	6	7.89	8	
¹⁵¹ Nd	β- β-	2443 1	0.0	$\frac{(-)}{3/2+}$	0.0	$\frac{5}{2+}$	14.6	18	6.91	5	
¹⁵¹ Nd	р В-	2443 1	0.0	3/2+	324 682	5/2+	3.9	5	7.24	6	
¹⁵¹ Nd	р В -	2443 1	0.0	3/2+	426.451	$\frac{0}{2}$	2.6	2	7 326	34	
¹⁵¹ Nd	р В-	2443.1	0.0	3/2+	914 309	5/2+	2.0 8 7	6	6.331	30	
¹⁵¹ Nd	р В -	2443 1	0.0	3/2+	1297 682	5/2+	17.9	16	5 545	39	
¹⁵¹ Nd	β_ β_	2440.1	0.0	$\frac{3}{2}$	1892.05	$(5/2) \perp$	1 / 9	10	5 /00	30	
151 Pm	β- β-	1100.2	0.0	$5/2+5/2\perp$	306.79	$(3/2)^+$ $3/2\perp$	1.45 1 7	3	0.4 <i>55</i> 8 32	52 8	
151 pm	B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-	1100.2	0.0	5/2+5/2+	303.13	$\frac{5}{2}$	2.2	4	8.00	5	
$151 p_m$	р- в	1190.2	0.0	$5/2 \pm 5/2 \pm$	323.941 344.000	$\frac{1}{2}$		5	6.85	5	
151 Dm	р- в	1190.2	0.0	5/2 + 5/2 +	591 10	$\frac{3}{2}$	42	10	0.00	5	
151 Cd	ρ- 6	1130.2	0.0	$\frac{5}{2}$	240.813	$\frac{3}{2}$	0.11	10	6.23	18	
152 Fu	E B	404.2	45 5008	1/2-	1214.61	9/2- 1	9.9 1.57	1 25	7 20	40	
Еu 152ть	$\beta - \beta + lc$	2000	45.5998	0- 0	1314.02 1192.186	1- 2	1.57	20 19	7.20 8.501	1 37	
152 Th	ρ_{\pm}/ϵ	3990	501 74	2- 9 I	1123.100 2204.11	0- 7	1.07	10 19	4 709	07 90	D
1521Lo	$\rho + \epsilon$	5990 6512	160	0+ 0+	2394.11 2427.20	1+ 81	50.0	10	4.790	30 16	Г D
152Ho	$\rho + \epsilon$	0010 6512	160	9+	2437.39	0+ 0+	0.0	20 6	4.014 5.204	10	Г D
110 15211	$\rho + \epsilon$	0010 6512	160	9+ 0+	2103.19	0+ 10+	9.2	40	5.004	29 19	Г
1521L	$p + \varepsilon$	0010	160	9+ 0+	3173.3 2194.0	10+	1.40	40 20	5.91	12	Г D
152 Dm	$\rho + \varepsilon$	0010	100	9+ 1+	5164.0 191 et	10+	1.20	20 19	0.97	(41	Г
152 D	ρ- ρ	3509	0.0	1+	121.00	2+	20.0	10	0.000	41	
152 Dm	ρ- ρ	3509 2500	0.0 1 FE + 9	1+ 4	1292.00	$\frac{2+}{2}$	1.10	10	7.404	40	D
Pm 152 D m	р- 0	3009	1.5E+2 1.5E+2	4-	1041.08 1570.21	პ- ე	1.01	21 15	1.19	9	P D
152 Dm	ρ-	3509	1.5E+2	4-	1079.01	0- E	1.55	10 E	1.41 E 64	9	Г
P III 152 F.u	ρ-	3309 1974 F	1.0L+2	4- 2	1500 2010	0- 0	01 04 79	0 11	0.1220	10	Г
152 Eu	ε	1874.5	0.0	ა- ი	1640.822	2-	24.78	11	9.1328	39 C	
152 Eu	ε	1874.5	0.0	პ- ე	1049.833	Z- 4	0.928	9	10.120 10.907	0	
152 Eu	ε	1874.5	0.0	პ- ი	1682.07	4-	0.00364	10	12.307	20	
¹⁰² Eu 152D	ε	1874.5	0.0	3- 0	1822.03	4-	0.0049	12	10.43	11	
¹⁰² Eu 152D	ε	1874.5	45.5998	0-	963.40	1-	26	3	5.96	5	
¹⁰⁷ Еи 153р	β- 0	1818.8	0.0	3- 5 / 2	1643.421	2- 2./2	1.833	12	9.628	6 0	
¹⁰⁰ Pm 153p	β-	1912	0.0	5/2-	35.845	3/2-	24	5	5.88	9	
¹⁰⁰ Pm	β- 2	1912	0.0	5/2-	127.299	3/2-	42	6	5.55	6	
¹⁵⁵ Sm	β-	807.4	0.0	3/2+	0.0	$\frac{5}{2+}$	19.5	9	7.351	20	
¹⁵⁵ Sm	β-	807.4	0.0	3/2+	172.85318	$\frac{5}{2+}$	30.4	5	6.794	7	
¹⁰⁰ Sm	β- 2	807.4	0.0	3/2+	694.18	5/2+	0.0231	4	7.506	11	
¹⁵³ Sm	β-	807.4	0.0	3/2+	706.62	5/2+	0.0234	4	7.346	12	
153 Gd	ε	484.5	0.0	3/2-	97.43103	5/2-	39.2	5	7.763	8	
100 Tb	$\beta + \varepsilon$	1569.3	0.0	5/2 +	212.014	3/2+	51.0	30	6.835	26	

Table 10
(continued $)$

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_P \ [keV]$	Jπ	$E_D \ [keV]$	Jπ	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
¹⁵³ Tb	$\beta + \varepsilon$	1569.3	0.0	5/2+	412.91	3/2+	0.054	13	9.67	10	
153 Tb	ε	1569.3	0.0	5/2+	709.04	3/2+	0.40	3	8.528	33	
153 Tb	ε	1569.3	0.0	5/2+	731.62	7/2 +	0.64	5	8.299	35	
153 Tb	ε	1569.3	0.0	5/2+	782.569	3/2 +	1.56	12	7.855	34	
$^{153}\mathrm{Tb}$	ε	1569.3	0.0	5/2 +	865.595	3/2 +	0.60	4	8.167	30	
$^{153}\mathrm{Tb}$	ε	1569.3	0.0	5/2 +	945.159	3/2 +	3.50	18	7.290	24	
$^{153}\mathrm{Tb}$	ε	1569.3	0.0	5/2 +	1066.36	3/2 +	0.303	17	8.149	26	
$^{153}\mathrm{Tb}$	ε	1569.3	0.0	5/2 +	1101.619	3/2 +	2.66	14	7.137	25	
154 Ho	$\beta + \varepsilon$	5755	0.0	2-	1207.98	3-	12.5	9	6.573	32	Р
$^{154}\mathrm{Eu}$	β -	1968.0	0.0	3-	1397.506	2-	36.3	3	9.7936	42	
$^{154}\mathrm{Eu}$	β -	1968.0	0.0	3-	1719.560	2-	28.6	2	8.714	5	
155 Sm	β -	1627.1	0.0	3/2-	104.320	5/2-	92.5	14	5.591	7	
$^{155}\mathrm{Eu}$	β-	252.0	0.0	5/2+	105.3088	3/2+	46.2	24	7.530	24	
155 Eu	β-	252.0	0.0	5/2+	117.9971	7/2+	1.7	3	8.84	8	
$^{155}\mathrm{Tb}$	ε	820	0.0	3/2+	86.530	5/2+	5.9	19	7.57	14	
$^{155}\mathrm{Tb}$	ε	820	0.0	3/2+	266.601	5/2+	17.9	10	6.825	31	
$^{155}\mathrm{Tb}$	ε	820	0.0	3/2+	326.017	5/2+	0.66	5	8.151	40	
$^{155}\mathrm{Tb}$	ε	820	0.0	3/2+	367.512	1/2 +	7.1	4	7.035	34	
$^{155}\mathrm{Tb}$	ε	820	0.0	3/2+	488.678	5/2+	0.93	7	7.614	47	
$^{155}\mathrm{Dv}$	$\beta + \varepsilon$	2094.5	0.0	3/2-	226.916	5/2-	66.6	17	6.295	14	
155 Dv	$\beta + \varepsilon$	2094.5	0.0	3/2-	1062.074	5/2-	1.280	40	7.470	16	
155 Dv	ε ε	2094.5	0.0	3/2-	1155.482	5/2-	9.4	8	6.518	$\frac{-3}{38}$	
155 Dv	ε	2094.5	0.0	3/2-	1492.635	5/2-	1.61	4	6.873	14	
155 Dv	E	2094 5	0.0	3/2-	1638 848	5/2-	2.9	7	6.35	11	
^{155}Dv	e e	2094 5	0.0	3/2-	1664 913	5/2-	$\frac{2.0}{4.70}$	14	6.087	16	
^{155}Dv	e e	2094 5	0.0	3/2-	1750.098	5/2-	2.19	7	6 202	18	
156 Ta	$\beta + \epsilon$	1.182E4	102	0/ <u>-</u> 0+	1959	8+	37	12	4 47	17	Р
157 Eu	β-	1364.8	102	5/2+	474 632	$3/2 \pm$	22	2	6 987	40	1
157 Dv	e E	1330	0.0	3/2	326 346	5/2	96	3	5 493	40 15	
$^{157}H_{0}$	$\beta \pm l \epsilon$	2592	0.0	$\frac{5}{2}$	341 118	5/2	56 56	5	4 918	41	
157Ho	$\beta \perp / \epsilon$	2592	0.0	$7/2_{-}$	896 57	$(5/2)_{-}$	12.0	20	5.31	7	
157Er	$\beta \perp / \epsilon$	3/10	0.0	3/2-	301 32	$(0/2)^{-}$ 5/2-	15.0	20	6.04	6	р
158ть	ρτ/c c	1910 1	0.0	3/2-	$1023 \ 705$	0/2- 2	10.0	20 17	0.04	0 30	1
158ть	c	1219.1 1910.1	0.0	0- 2	1150,000	2- 1	44.4	10	9.470 10.50	52 7	
159 C J	E B	1219.1 070 7	0.0	ง- 2/9	1109.009 262.5451	4- 5/9	12 10	6	6.7713	1 97	
159Dw	ρ- 2	910.1 964 79	0.0	0/2- 2/9	262 546	5/2-	0.00010	5	5.67	21	
Dу 159гг	\mathcal{E}	004.70 0769 5	0.0	3/2- 2/9	505.540 694 51	5/2- 5/9	0.00019	-0 40	5.07	24 5	
159 F.	$\rho + \epsilon$	2700.0	0.0	3/2- 2/9	640.15	5/2- 5/9	33.0 26.0	40 20	5.59	0 5	
159 En	$\rho + \epsilon$	2700.0	0.0	3/2- 2/9	1559.2	5/2- 5/9	20.0	30 15	5.08	0 6	
159 En	$\rho + \epsilon$	2700.0	0.0	3/2- 2/9	1690.0	0/2- E/0	1.04	10	6.30	0	
Ег 160-ть	$\rho + \varepsilon$	2708.0	0.0	3/2- 2	1060.0	0/2- 0	1.10	20 10	0.44	0	
160 TL	ρ-	1000.0	0.0	ე- ე	1204.7470	2- 0	40.4	10	8.100	10	
1 D 160 ml	р- 0	1830.0	0.0	პ- ე	1338.000	Z- 4	9.92	20	8.304	9	
160 mi	p-	1836.0	0.0	პ- ი	1386.430	4-	1.015	21	9.408	10	
161 II	β-	1836.0	0.0	3-	1535.151	4- 5 /0	0.235	0	9.474	12	
¹⁰¹ Ho	ε	859.2	0.0	7/2-	25.656	5/2-	76	14	4.93	8	
¹⁰¹ Ho 16211	ε	859.2	0.0	7/2-	201.077	9/2-	1.8	3	6.34	'7 • •	
¹⁰² Ho 162m	ε	2140.6	105.87	6-	1485.70	5- 0	36.7	'7 C	4.820	11	D
¹⁰² Tm	$\beta + \varepsilon$	4857	0.0	1-	1572.90	2-	8.6	9	6.489	46	Р
¹⁰³ Tb	β-	1785.1	0.0	3/2+	737.49	1/2+	11.4	11	5.903	43	
¹⁰⁹ Tb	β-	1785.1	0.0	3/2+	884.24	1/2+	34.8	24	5.182	31	
¹⁰³ Tb	β-	1785.1	0.0	3/2+	915.67	5/2+	1.6	3	6.46	8	
¹⁰³ Tb	β -	1785.1	0.0	3/2+	949.34	(5/2)+	4.5	5	5.955	49	
¹⁶³ Tb	β -	1785.1	0.0	3/2 +	1058.81	1/2 +	1.4	3	6.25	9	

Table	10
(contin	ued)

Nuclide	Decay	$Q \; [\text{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
¹⁶³ Ho	ε	2.831	0.0	7/2-	0.0	5/2-	100		5.116	13	
$^{163}\mathrm{Er}$	$\beta + \varepsilon$	1210.6	0.0	5/2-	0.0	7/2-	99.891	21	4.892	5	
163 Tm	$\beta + \varepsilon$	2439.0	0.0	1/2 +	462.48	3/2 +	1.96	12	7.245	27	
163 Tm	$\beta + \varepsilon$	2439.0	0.0	1/2 +	619.36	3/2 +	2.57	10	7.049	17	
163 Tm	$\beta + \varepsilon$	2439.0	0.0	1/2 +	1369.46	3/2 +	7.84	26	6.080	15	
$^{163}\mathrm{Tm}$	ε	2439.0	0.0	1/2 +	1514.61	3/2 +	2.72	12	6.406	20	
$^{163}\mathrm{Tm}$	ε	2439.0	0.0	1/2 +	1538.79	3/2 +	16.9	6	5.589	16	
$^{163}\mathrm{Tm}$	ε	2439.0	0.0	1/2 +	1569.80	3/2 +	9.7	3	5.797	14	
$^{163}\mathrm{Tm}$	ε	2439.0	0.0	1/2 +	1593.03	3/2 +	2.46	9	6.368	17	
$^{163}\mathrm{Tm}$	ε	2439.0	0.0	1/2 +	1653.15	3/2 +	1.11	5	6.646	20	
$^{163}\mathrm{Tm}$	ε	2439.0	0.0	1/2 +	1722.39	3/2 +	2.86	11	6.149	17	
$^{163}\mathrm{Tm}$	ε	2439.0	0.0	1/2 +	1801.56	3/2 +	12.9	4	5.385	15	
$^{163}\mathrm{Tm}$	ε	2439.0	0.0	1/2 +	1826.49	3/2+	5.33	17	5.732	15	
$^{163}\mathrm{Tm}$	ε	2439.0	0.0	1/2 +	1853.54	3/2+	2.06	8	6.102	18	
$^{163}\mathrm{Tm}$	ε	2439.0	0.0	1/2 +	1872.79	(3/2)+	2.48	14	5.989	25	
164 Ho	ε	987.1	0.0	1 +	73.39	2+	19	2	4.907	46	
164 Ho	β -	962.1	0.0	1 +	91.39	2 +	12	2	5.81	7	
$^{164}\mathrm{Tm}$	$\beta + \varepsilon$	4034	0.0	1 +	91.396	2 +	22.0	20	5.319	46	
165 Dy	β-	1285.7	0.0	7/2 +	995.095	5/2 +	1.7	2	5.72	5	
165 Dy	β-	1285.7	108.160	1/2-	515.467	3/2-	1.9	1	5.238	23	
$^{165}\mathrm{Er}$	ε	376.7	0.0	5/2-	0.0	7'/2-	100		4.7145	41	
$^{165}\mathrm{Tm}$	$\beta + \varepsilon$	1591.3	0.0	1/2+	534.562	3'/2+	1.50	10	8.007	29	
$^{165}\mathrm{Tm}$	ε	1591.3	0.0	1/2+	589.781	3/2+	5.3	2	7.410	17	
$^{165}\mathrm{Tm}$	ε	1591.3	0.0	1/2+	853.514	3/2+	10.2	5	6.844	22	
$^{165}\mathrm{Tm}$	ε	1591.3	0.0	1/2+	999.866	3/2+	0.41	3	8.033	32	
$^{165}\mathrm{Tm}$	ε	1591.3	0.0	1/2+	1103.522	3/2+	0.7	1	7.62	6	
$^{165}\mathrm{Tm}$	ε	1591.3	0.0	1/2+	1411.784	3/2+	0.52	3	6.700	27	
$^{165}\mathrm{Tm}$	ε	1591.3	0.0	1/2+	1427.405	3/2+	7.0	4	5.463	28	
$^{165}\mathrm{Yb}$	ε	2635	0.0	5/2-	1581.76	7/2-	3.5	7	5.41	9	
166 Ho	β-	1853.8	0.0	0 ⁻	1662.436	1-	0.302	5	6.980	9	
166 Ho	β-	1853.8	0.0	0-	1830.425	1-	0.0342	6	5.143	47	
166 Ho	β-	1853.8	5.969	7-	1786.969	6-	73.9	10	8.867	16	
166 Ho	β-	1853.8	5.969	7-	1827.552	6-	17.23	16	8.428	34	
$^{166}\mathrm{Tm}$	ε	3038	0.0	2+	2132.951	3+	59	4	5.679	32	
$^{166}\mathrm{Tm}$	ε	3038	0.0	2+	2160.121	3+	16.2	11	6.212	33	
¹⁶⁶ Tm	ε	3038	0.0	2^{+}	2172.757	3+	2.35	18	7.037	36	
¹⁶⁶ Tm	ε	3038	0.0	2^{+}	2290.997	(3)+	1.36	11	7.139	39	
166 Lu	$\beta + \varepsilon$	5573	0.	6-	1505.38	(5)-	3.2	6	6.38	8	Р
¹⁶⁷ Ho	β-	1010	0.0	7/2-	346.50	5/2-	21	6	5.96	13	
¹⁶⁷ Ho	β-	1010	0.0	7/2-	667.86	(5/2)-	43	12	4.69	12	
$^{167}\mathrm{Tm}$	E	746.1	0.0	1/2+	531.54	3/2+	1.64	23	7.27	6	
167 Yb	$\beta + \epsilon$	1953.2	0.0	5/2-	292.802	$\frac{3}{2}$	95	5	4.638	24	
¹⁶⁸ Ho	β-	2930	0.0	3+	821 113	$\frac{1}{2+}$	68	8	5 51	6	
¹⁶⁸ Ho	β-	2930	0.0	3+	994 67	4+	1 74	23	6.95	ő	
¹⁶⁸ Ho	β-	2930	0.0	3+	2192.98	2+	1.84	23	5.38	9	
168Tm	م ج	1676 9	0.0	3+	821 1643	$\frac{2}{2+}$	11.98	10	8 7828	47	
168Tm	E	1676.9	0.0	3+	1276 298	$\frac{1}{2+}$	0.0199	16	10.842	35	
168Tm	E	1676.9	0.0	3+	1411 100	4+	0.0029	9	11.26	14	
168Tm	E	1676.9	0.0	3+	1493 26	2+	0.0015	5	11 14	15	
168Lu	$\beta + 1 \epsilon$	4507	202.81	3+	2204.00	(4)+	41	7	5.02	8	Р
169 Vb	۲ ۱/۵ ۶	899 1	0.01	7/2+	332 117	9/2 +	0 0143	17	10.89	5	Ŧ
169 Yb	c e	899.1	0.0	7/2 +	433 521	$(9/2) \perp$	0 114	0	9.800	34	
169Vh	c e	899.1	0.0	$7/2 \pm$	633 2021	$5/2 \pm$	0.114	17	10 252	8	
10	L	000.1	0.0	• / 4 1	000.492	0/41	0.01000	т I	10.202	0	

Table	10
(contin	ued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{P} \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
169 Yb	ε	899.1	0.0	7/2 +	781.796	(5/2)+	6.72E-4	8	10.475	12	
169 Lu	$\beta + \varepsilon$	2293.0	0.0	7/2 +	590.67	(5/2)+	0.43	8	9.10	8	
169 Lu	$\beta + \varepsilon$	2293.0	0.0	7/2 +	707.03	9/2 +	0.80	16	8.77	9	
169 Lu	$\beta + \varepsilon$	2293.0	0.0	7/2 +	761.822	(5/2)+	0.54	11	8.91	9	
169 Lu	$\beta + \varepsilon$	2293.0	0.0	7/2 +	886.80	9/2 +	0.495	20	8.867	19	
169 Lu	$\beta + \varepsilon$	2293.0	0.0	7/2 +	1141.44	(9/2)+	0.111	11	9.335	44	
169 Lu	ε	2293.0	0.0	7/2 +	1658.10	5/2 +	4.86	13	7.143	15	
169 Lu	ε	2293.0	0.0	7/2 +	1694.48	5/2 +	0.121	8	8.691	30	
169 Lu	ε	2293.0	0.0	7/2 +	1908.63	5/2 +	2.12	9	7.016	22	
171 Er	β -	1492.4	0.0	5/2-	424.948	7/2-	94	4	6.448	19	
171 Lu	ε	1478.4	0.0	7/2+	935.261	9/2+	3.87	10	7.857	14	
171 Lu	ε	1478.4	0.0	7/2+	984.037	(9/2)+	0.139	4	9.211	15	
171 Lu	ε	1478.4	0.0	7/2+	1093.30	9/2+	0.148	4	8.938	15	
$^{172}\mathrm{Tm}$	β-	1882	0.0	2-	1154.91	1-	0.95	9	8.802	43	
172 Lu	$\beta + \varepsilon$	2519.4	0.0	4-	1353.02	(5)-	0.090	20	10.11	10	
^{172}Lu	ε	2519.4	0.0	4-	1706.455	5-	0.93	15	8.77	7	
173 Lu	ε	670.2	0.0	7/2 +	412.967	9/2 +	3.04	14	8.990	23	
$^{173}\mathrm{Hf}$	$\beta + \varepsilon$	1469	0.0	1/2-	263.310	3/2-	32.0	9	6.792	26	
$^{173}\mathrm{Hf}$	ε	1469	0.0	1/2-	1162.435	3'/2-	1.75	5	6.74	10	
$^{174}\mathrm{Tm}$	β-	3080	0.0	(4)-	1884.5	(5)-	83	5	4.78	7	Р
$^{174}\mathrm{Tm}$	β-	3080	0.0	(4)-	2378.7	(5)-	14.3	8	4.72	11	Р
174 Lu	ε	1374.2	0.0	1-	1318.314	2-	5.2	1	7.088	35	
¹⁷⁴ Ta	$\beta + \varepsilon$	4104	0.0	3+	297.38	4+	61	$\overline{5}$	6.448	48	Р
174 Ta	$\beta + \varepsilon$	4104	0.0	3+	1062.17	4+	2.10	20	7.61	5	P
174 Ta	$\beta + \epsilon$	4104	0.0	3+	1503.29	(4)+	5.1	5	7.04	$\tilde{5}$	P
175 Yb	β-	470.1	0.0	7/2-	396.328	9/2-	20.4	4	4.523	23	-
¹⁷⁶ Ta	$\beta + \varepsilon$	3211	0.0	(1)-	1247.69	2-	11.0	20	7.27	8	
¹⁷⁶ Ta	$\beta + \epsilon$	3211	0.0	(1)	1958.19	- 2-	8.0	10	7.00	6	
¹⁷⁶ Ta	ε	3211	0.0	(1)	2265.28	(2)-	1.1	2	7.60	9	
¹⁷⁶ Ta	ε	3211	0.0	(1)	2470.84	2-	7	1	6.57	8	
¹⁷⁶ Ta	E	3211	0.0	(1)	2912 27	$(0)_{-}$	6 1	9	5 74	14	
¹⁷⁶ Ta	E	3211	0.0	(1)	2944 19	2-	73	9	5 54	15	
177 Yb	<u>в</u> -	1397 5	0.0	9/2+	0.0	$\frac{-}{7/2+}$	59.4	5	6 5288	40	
177 Yb	β-	1397.5	0.0	9/2+	1149 97	7/2+	1 17	5	5.669	20	
¹⁷⁷ Yb	р В-	1397.5	0.0	9/2+	1230 620	$\frac{11}{2+}$	6.6	3	4 381	$\frac{-0}{22}$	
177 Vb	р В-	1397.5	0.0	9/2+	1200.020 1241 50	7/2+	3.60	17	4553	23	
^{177}Lu	р В-	496.8	0.0	$\frac{3}{2}$ + $\frac{7}{2}$ +	321 3162	9/2+	11.66	11	6 148	20 7	
177Та	р Е	1166.0	0.0	7/2+7/2+	321.3162	9/2+	1 4	4	8 24	12	
177Та	E	1166.0	0.0	7/2+7/2+	847 41	9/2+	0.19	6	8 15	14	
177 W	$\beta \pm l \epsilon$	2013	0.0	$1/2_{-}$	372 57	3/2	3.10	6	7.05	7	
177 W	p 1 / C	2013	0.0	$\frac{1}{2}$	1044-80	3/2-	2.76	19	6 697	42	
177 W	c c	2013	0.0	$\frac{1}{2}$	1253.08	$\frac{3}{2}$	15.8	8	5 714	44	
177 W	c	2013	0.0	$\frac{1}{2^{-1}}$	1255.00 1476.31	$\frac{3}{2}$	57	4	5.89	6	
177 W	c	2013	0.0	$\frac{1}{2}$	1543.46	$(0/2)^{-}$ 3/9	2.58	16	6.04	7	
179T 11	B	1404	0.0	$\frac{1}{2}$	1040.40	0/2-	2.30 87	3	6.774	17	
179 To	ρ- 6	1404	0.0	$\frac{1}{2}$	0.0	$\frac{3}{2}$	100	5	6 519	10	
179 W	$\mathcal{B} \perp \mathcal{I}_{\mathcal{C}}$	105.58	0.0	$\frac{1}{2+}$	0.0	$9/2 \pm 0/2$	100	5	0.512	10	
179 R.o.	$\rho_{\pm/\epsilon}$	1002 9711	0.0	5/21	30.7 790-10	$\frac{9}{2}$ -3/21	99.4 45 0	0 70	4.040 5 250	10 /1	
179 B o	$\mu \pm /\epsilon$	2711 9711	0.0	5/2+ 5/9+	140.19 855 97	$\frac{3}{2+}$	40.0 2 06	40 10	0.000 6 602	41 /3	
179 Ro	$\beta \pm /c$	2711 9711	0.0	5/2+	1606 25	(3/2)	2.00 6.0	1 <i>9</i> 5	5 621	40 //	
179 B o	$\rho \pm /\epsilon$	2711 9711	0.0	5/2+ 5/2+	1620.00	(3/2)+(7/2)+	17.6	0 17	5.004 5.152	44 11	
179 D c	μτ/ε ε	2711 9711	0.0	5/2+	1000.20	(1/2)+(7/2)+	2 Q	14 2	5.100 5 76	44 5	
ne 179∎+	c B I /a	2111 5011	0.0	$\frac{J}{2+}$	1000.09	(1/2)+	ა.ა იი	ა ი	0.70 5 11	0	D
гı	$\rho + \varepsilon$	0014	0.0	1/2-	193.1	(ə/∠)-	90	0	0.11	9	Г

Table	10
(contin	ued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_P \ [keV]$	$J\pi$	$E_{\rm D}~[{\rm keV}]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
¹⁸⁰ Lu	β -	$3.10\mathrm{E3}$	0.0	5+	1607.97	(4)+	78	2	5.24	8	Р
180 Ta	ε	845.8	0.0	1+	93.3240	2+	25	1	6.039	18	
¹⁸⁰ Ta	β -	702.6	0.0	1+	103.6	2+	3.9	7	7.11	8	
180 Re	$\beta + \varepsilon$	3799	0.0	(1)-	1006.35	2-	79.0	40	4.549	24	Р
180 Re	$\beta + \varepsilon$	3799	0.0	(1)-	1831.69	2-	11.70	40	5.024	20	Р
^{181}W	ε	205.1	0.0	9/2 +	0.0	7/2 +	26	4	7.27	7	
$^{181}\mathrm{Re}$	ε	1717	0.0	5/2 +	1365.59	3/2 +	22.7	25	5.79	7	
$^{181}\mathrm{Re}$	ε	1717	0.0	5/2 +	1498.14	7/2 +	1.6	4	6.42	13	
^{181}Os	$\beta + \varepsilon$	2967	0.0	1/2-	599.67	3/2-	7.0	23	7.09	14	
$^{181}\mathrm{Os}$	$\beta + \varepsilon$	2967	0.0	1/2-	1442.66	3/2-	3.9	7	6.93	8	
$^{181}\mathrm{Os}$	ε	2967	0.0	1/2-	2172.3	3/2-	4.9	7	6.23	7	
$^{181}\mathrm{Os}$	ε	2967	0.0	1/2-	2482.3	3/2-	1.04	18	6.43	10	
182 Ta	β -	1815.5	0.0	3-	1289.1498	2-	43.2	9	8.400	10	
182 Ta	β-	1815.5	0.0	3-	1487.5018	4-	1.3	3	9.25	10	
182 Ta	β-	1815.5	0.0	3-	1553.2240	4-	29.23	25	7.584	9	
$^{182}\mathrm{Re}$	$\beta + \varepsilon$	2.80E3	0.0	7+	1756.77	6+	16.4	8	7.49	10	
183 Ta	β-	1072.1	0.0	7/2 +	622.77	(9/2)+	6.2	9	7.66	6	
$^{183}\mathrm{Os}$	$\beta + \varepsilon$	2.15E3	0.0	9/2+	851.54	(7/2)+	5.20	9	7.526	43	
183 Ir	$\beta + \varepsilon$	3.46E3	0.0	5/2-	453.05	3/2-	4.9	13	7.27	12	Р
183 Ir	$\beta + \varepsilon$	3.46E3	0.0	5/2-	486.99	7/2-	4.9	15	7.26	14	Р
183 Ir	$\beta + \varepsilon$	3.46E3	0.0	5/2-	582.21	(3/2)-	2.5	5	7.52	10	Р
¹⁸³ Ir	$\beta + \varepsilon$	3.46E3	0.0	5/2-	620.78	7/2-	3.1	7	7.41	11	P
¹⁸³ Ir	$\beta + \epsilon$	3.46E3	0.0	5/2-	2273.79	(7/2)-	7.6	10	6.19	8	P
184 Ir	$\beta + /\epsilon$	4642	0.0	©/ <u>−</u> 5-	1620.72	4-	2.3	6	8 11	11	P
184 Ir	$\beta + /\epsilon$	4642	0.0	5-	1707 57	(4)-	1.84	24	8.18	6	P
184 Ir	$\beta + /\epsilon$	4642	0.0	5-	1832.78	(-) 6-	4.1	-17	7 78	7	P
184 Ir	$\beta + /\epsilon$	4642	0.0	5-	1840.39	(6)-	1.91	24	8 11	6	P
186Ir	$\beta + /\epsilon$	3828	0.0	5+	868.93	(0) 6+	22.3	11	7 833	22	1
186Ir	$\beta + \epsilon$	3828	0.0	5+	1070.48	4+	5.1	6	8 40	5	
186Ir	$\beta + /\epsilon$	3828	0.0	5+	1351.99	4+	3.4	6	8.46	8	
186Ir	$\beta + \epsilon$	3828	0.0	5+	1460.72	4+	1.8	5	8.69	12	
186 Ir	$\beta + \epsilon$	3828	0.0	5+	1491.28	6+	8.40	40	8.009	22	
186 Ir	$\beta + \epsilon$	3828	0.0	5+	1812.45	(6)+	2.10	40	8 36	6	
186 _{Ir}	$\beta \perp /c$	3828	0.0	5-L	2031 3	(0) ∕I⊥	2.10	18	8 276	30	
186 ₁	$\beta + \epsilon$	3828	0.0	5+ 5+	2051.5	± ∕1⊥	10.6	10	7 632	30 30	
186 ₁	$\beta + \epsilon$	3828	0.0	5+ 5+	2001.05	$(6) \pm$	1 5 2	25	1.052 8.10	7	
186 A	$\beta + lc$	6150	0.0	0⊤ 2	1633.00	(0) + 4	1.52	20 20	7 78	1 10	D
186 A 11	$\beta \pm l \epsilon$	6150	0.0	ง- ว	1033.00 1838-11	4- (4)	8.0	50	6.840	12 30	I D
187 W	ρ_{\pm}/ϵ	1212 5	0.0	0- 2/0	685 707	(4)- 5/9	70.7	10	6 402	19 19	1
187 D+	$\beta = \beta + \beta = \beta$	1312.5	0.0	3/2-	288 73	$\frac{1}{2}$	1 70	19 20	0.402	12	
187 D+	ρ_{\pm}/ϵ	2804	0.0	0/2- 2/9	500.75 721.10	1/2- 5/9	2.50	30 40	7.94	8 7	
1881.	$\rho_{\pm/\epsilon}$	2004	0.0	3/2- 1	731.19	$\frac{0}{2}$	2.00	40	7.03 6.705	1	
11 189 D+	2	2192	0.0	1- 2/0	2340.09	(2)- E/9	9.0	0	0.795	44 19	
190 D a	E Q	1960	0.0	$\frac{3}{2}$	1104.41	0/2- 2	0.0	17	0.98 5 100	12	
ке 190т	ρ-	3124.8	0.0	(2)-	1380.91	ა- -	98.0	3	5.199 C 411	29	
190 T	ε	1954.2	0.0	4-	1081.00	0- (F)	47	2	6.411 5.940	20	
190 T	ε	1954.2	0.0	4-	1872.10	(5)-	3.7	3	5.849	42	
-•°°Ir 1910	ε	1954.2	376.4	(11)-	171.070	(10)-	91.4	2	5.0103	39 10	
191 D	<i>p</i> -	313.0 1010 5	0.0	9/2-	171.278	$\frac{11}{2}$ -	100	-	5.411	10	
-°- Рt 192т	ε	1010.5	0.0	3/2-	(99.75	(3/2)-	0.32	í	(.69	10	
1921r 1921	ε	1046.7	0.0	4+	690.3705	3+ 2+	3.93	6 10	8.574		
102 1	β-	1452.9	0.0	4+	920.91854	3+	41.42	12	8.342	6	
102 Ir	β-	1452.9	0.0	4+	1406.37	3+	0.0059	5	8.87	8	
¹³² Au	$\beta + \varepsilon$	3516	0.0	1-	2257.26	(2)-	2.60	40	7.48	'7	

Table	10
(contin	ued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
^{193}Os	β -	1141.9	0.0	3/2-	740.348	5/2-	0.32	1	8.251	16	
194 Au	ε	2548.2	0.0	1-	1961.328	2-	3.40	11	7.534	15	
194 Au	ε	2548.2	0.0	1-	2239.635	(2)-	0.454	16	7.749	18	
195 Ir	β -	1101.6	100	11/2-	562.78	9/2-	7.7	13	6.66	7	
195 Ir	β -	1101.6	100	11/2-	814.48	9/2-	36	6	5.26	8	
195 Ir	β -	1101.6	100	11/2-	895.34	9/2-	1.9	3	6.21	7	
195 Ir	β -	1101.6	100	11/2-	930.67	9/2-	5.0	9	5.62	8	
195 Hg	ε	1554	0.0	1/2-	1110.78	3/2-	2.1	3	6.94	9	
$^{196}\mathrm{Au}$	ε	1505.8	0.0	2-	1447.3	(3)-	0.210	9	6.51	6	
198 Tl	$\beta + \varepsilon$	3426	543.5	7+	1815.8	6+	1.16	17	7.97	6	Р
199 Pt	β -	1705.1	0.0	5/2-	734.64	7/2-	6.36	7	6.539	7	
^{200}Au	β -	2263	962	12-	2641.60	11-	84	1	6.23	27	
200 Tl	ε	2456	0.0	2-	2151.35	3-	0.014	4	9.14	13	
$^{201}\mathrm{Bi}$	$\beta + \varepsilon$	3842	0.0	9/2-	936.1	7/2-	5.0	9	7.68	8	
$^{201}\mathrm{Bi}$	$\beta + \varepsilon$	3842	0.0	9/2-	990.5	7/2-	4.3	8	7.70	8	
$^{201}\mathrm{Bi}$	$\beta + \varepsilon$	3842	0.0	9/2-	1325.4	7/2-	5.6	4	7.461	36	
$^{201}\mathrm{Bi}$	ε	3842	0.0	9/2-	2788.8	11/2-	3.00	40	6.93	6	
²⁰³ Bi	$\beta + \varepsilon$	3262	0.0	9/2-	1536.5	(7/2)-	8.0	5	7.802	31	
²⁰³ Bi	$\beta + \varepsilon$	3262	0.0	9/2-	1592.9	(7/2)-	1.22	23	8.59	8	
²⁰³ Po	$\beta + \varepsilon$	4214	0.0	5'/2-	908.72	7/2-	9.0	30	7.13	15	Р
²⁰³ Po	$\beta + \varepsilon$	4214	0.0	5/2-	1090.98	7/2-	15.4	22	6.84	6	Р
203 Po	$\beta + \varepsilon$	4214	0.0	5/2-	1123.72	(7/2)-	20.0	16	6.711	36	Р
²⁰³ Po	$\beta + \varepsilon$	4214	0.0	5/2-	1352.84	7/2-	2.9	6	7.47	9	Р
²⁰³ At	$\beta + \varepsilon$	5148	0.0	9/2-	639.33	7/2-	7.9	5	6.901	30	Р
²⁰³ At	$\beta + \varepsilon$	5148	0.0	9/2-	719.03	7/2-	6.40	40	6.969	30	P
²⁰³ At	$\beta + \varepsilon$	5148	0.0	9/2-	1029.28	(7/2)-	1.72	14	7.444	38	Р
203 At	$\beta + \varepsilon$	5148	0.0	9/2-	1112.77	(7/2)-	1.85	12	7.387	31	Р
²⁰³ At	$\beta + \varepsilon$	5148	0.0	9/2-	1153.62	(7/2)-	1.51	10	7.463	31	P
^{204}Bi	$\beta + \varepsilon$	4464	0.0	6+	3215.21	5+	1.35	17	8.26	6	-
²⁰⁵ Bi	$\beta + \varepsilon$	2704.6	0.0	9/2-	703.44	7/2-	16.34	19	9.111	10	
²⁰⁵ Bi	$\beta + \varepsilon$	2704.6	0.0	9/2-	1614.32	7/2-	11.16	13	8.717	11	
²⁰⁵ Bi	ε	2704.6	0.0	9/2-	1764.37	$\frac{7}{2}$	32.6	7	8.113	15	
²⁰⁵ Bi	ε	2704.6	0.0	9/2-	1775.80	7/2-	5.52	10	8.873	14	
²⁰⁵ Bi	ε	2704.6	0.0	9/2-	2521.47	(7/2)-	0.32	6	8.35	9	
²⁰⁵ Po	$\beta + \epsilon$	3544	0.0	5/2-	849.84	$\frac{(1)}{7/2}$	14.3	18	7.17	6	
^{205}Po	$\beta + \epsilon$	3544	0.0	5/2-	1001.22	$\frac{7}{2}$	38.9	19	6.677	30	
²⁰⁵ Po	$\beta + \epsilon$	3544	0.0	5/2-	1239.12	7/2-	4.50	30	7.519	36	
²⁰⁵ Po	$\beta + \varepsilon$	3544	0.0	5/2-	2386.10	(3/2)-	2.08	19	7.218	46	
²⁰⁵ At	$\beta + \varepsilon$	4537	0.0	9/2-	783.00	$\frac{(3/2)}{7/2}$	6.6	6	7.307	42	Р
²⁰⁵ At	$\beta + \varepsilon$	4537	0.0	9/2-	872.10	7/2-	3.7	7	7.53	8	P
²⁰⁵ At	$\beta + \epsilon$	4537	0.0	9/2-	1030.38	(11/2)-	5.6	6	7.299	49	P
²⁰⁵ At	$\beta + \epsilon$	4537	0.0	9/2-	1167.81	(12/2)	2.37	18	7.628	36	P
205 At	$\beta + /\epsilon$	4537	0.0	9/2-	1651.35	7/2-	1 94	11	7.520	29	P
²⁰⁶ At	$\beta + /\epsilon$	5749	0.0	(5)+	1177 80	4+	18	6	7.18	15	1
206 At	$\beta + \epsilon$	5749	0.0	(5)+	1573.38	6+	38.0	40	6 734	47	
207 Bi	р 1 / С Е	2397 4	0.0	$9/2_{-}$	2339 935	$\frac{0}{7}/2$ -	7.03	3	8 366	47	
^{207}Po	$\beta + \epsilon$	2909	0.0	5/2-	2000.000 742.76	$7/2_{-}$	11.00	7	7.591	28	
$^{207}P_{0}$	$\beta + 1 \varepsilon$	2909	0.0	5/2-	992.46	7/2-	64 1	14	6 715	11	
207 At	$\beta + 1 \epsilon$	3918	0.0	$9/2_{-}$	588 323	$7/2_{-}$	5.8	11	7 83	8	
207 At	$\beta + 1 \varepsilon$	3918	0.0	9/2-	907 046	7/2-	3.0	7	7.96	9	
207 At	$\beta + 1 \epsilon$	3918	0.0	$9/2_{-}$	1171 586	$7/2_{-}$	1 10	30	8.35	12	
207 At	$\beta + 1 \epsilon$	3918	0.0	9/2-	1511.00	7/2-	1 44	11	8 106	35	
207Bn	$\beta \pm 1c$	4593	0.0	$5/2^{-}$ 5/2-	3/1 55	$7/2_{-}$	16.1	21	6.64	6	Р
1011	P1/C	1000	0.0	0/2-	044.00	• / 4-	10.1	<i>4</i> ⊥	0.04	0	Ŧ

Table 10
(continued $)$

Nuclide	Decay	$Q \; [\text{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
207 Rn	$\beta + \varepsilon$	4593	0.0	5/2-	747.19	7/2-	28.0	30	6.273	47	Р
^{208}At	$\beta + \varepsilon$	4999	0.0	6+	2335.4	7+	6.50	49	7.506	34	
^{208}At	$\beta + \varepsilon$	4999	0.0	6+	2526.3	5+	1.74	21	8.01	5	
^{208}At	$\beta + \varepsilon$	4999	0.0	6+	2556.3	7+	22.9	16	6.874	32	
221 Rn	β -	1194	0.0	7/2 +	234.63	(5/2)+	1.86	17	7.179	42	
221 Rn	β -	1194	0.0	7/2 +	253.53	(5/2)+	6.1	6	6.635	45	
221 Rn	β -	1194	0.0	7/2 +	294.76	(9/2)+	27.2	20	5.916	35	
222 Fr	β -	2058	0.0	2-	242.11	1-	1.7	4	7.99	10	
222 Fr	β -	2058	0.0	2-	317.29	3-	54	9	6.42	7	
223 Fr	β -	1149.1	0.0	3/2-	79.652	(5/2)-	15	2	6.40	6	
223 Fr	β -	1149.1	0.0	3/2-	369.351	(5/2)-	1.7	1	6.865	26	
225 Rn	β -	2714	0.0	7/2-	721.06	(5/2)-	3.97	24	7.263	30	
228 Fr	β-	4444	0.0	2-	474.18	1-	7.16	6	7.330	12	Р
228 Fr	β-	4444	0.0	2-	537.49	3-	7.4	13	7.29	8	Р
^{228}Ac	β-	2123.8	0.0	3+	968.972	2 +	29.9	10	7.493	15	
^{228}Ac	β-	2123.8	0.0	3+	1153.465	2 +	5.8	9	7.94	7	
^{228}Ac	β-	2123.8	0.0	3+	1431.981	4+	1.2	4	8.12	14	
^{228}Ac	β-	2123.8	0.0	3+	1638.283	2 +	1.15	5	7.625	20	
^{228}Ac	β-	2123.8	0.0	3+	1724.288	2 +	1.76	5	7.164	15	
228 Pa	$\beta + \varepsilon$	2152.7	0.0	3+	968.986	2 +	1.02	19	8.89	8	
228 Pa	ε	2152.7	0.0	3+	1432.036	4+	31.8	21	6.916	36	
228 Pa	ε	2152.7	0.0	3+	1724.301	2 +	2.9	2	7.419	38	
228 Pa	ε	2152.7	0.0	3+	1804.690	4+	1.44	18	7.49	6	
231 Th	β-	391.5	0.0	5/2 +	247.320	7/2 +	2.9	5	6.20	8	
234 Pa	β-	2193.9	0.0	4+	1090.9	5+	1.18	22	8.92	8	
234 Pa	β-	2193.9	0.0	4+	1552.6	5+	20.4	18	6.870	40	
234 Pa	β-	2193.9	0.0	4+	1737.4	3+	1.20	14	7.61	5	
237 Pu	ε	220.1	0.0	7/2-	59.545	5/2-	8.4	8	7.462	44	
$^{238}\mathrm{Np}$	β -	1291.45	0.0	2^{+}	1069.924	3^{+}	11.51	11	6.577	5	
$^{239}\mathrm{U}$	β-	1261.7	0.0	5/2 +	31.1309	7/2 +	9.4	19	6.98	9	
^{239}Np	β-	722.8	0.0	5/2+	330.125	7/2+	7	2	7.63	12	
²³⁹ Np	β-	722.8	0.0	5/2+	511.81	7/2+	1.70	6	7.392	16	
$^{241}\mathrm{Cm}$	ε	767.4	0.0	1/2+	653.23	3/2+	0.310	25	8.365	38	
$^{241}\mathrm{Cm}$	ε	767.4	0.0	1/2+	670.24	3/2+	0.67	5	7.862	37	
$^{245}\mathrm{Am}$	β-	895.9	0.0	(5/2)+	0.0	7/2+	78	2	6.384	12	
$^{245}\mathrm{Am}$	β-	895.9	0.0	(5/2)+	295.60	7/2+	6.6	8	6.87	5	
$^{245}\mathrm{Bk}$	ε	809.3	0.0	3/2-	661.53	5/2-	0.59	6	7.598	47	
^{249}Es	$\beta + \varepsilon$	1452	0.0	7/2+	144.96	5/2+	6.7	18	7.33	12	
^{249}Es	ε	1452	0.0	7/2+	437.56	9/2+	8.6	12	6.98	7	
$^{254}\mathrm{Es}$	β -	1091.6	84.2	2^{+}	733.54	3+	16	4	7.46	11	

16. First Forbidden Transitions

16.1. First forbidden non-unique ($\Delta J{=}0$)

Table 11

List of first forbidden transitions with $\Delta J=0$ and $\Delta \pi=yes$.

Nuclide	Decay	$Q \; [\text{keV}]$	$E_{\rm P} \ [\rm keV]$	Jπ	$E_D [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
¹¹ Be	β -	1.150946E4	0.0	1/2+	2124.693	1/2-	31.4	18	6.648	25	
^{15}C	β-	9771.7	0.0	1/2+	0.0	1/2-	36.8	8	5.934	9	
¹⁷ N	β -	8679	0.0	1/2-	870.756	1/2 +	2.73	56	6.85	10	
²⁰ N	β -	1.797 E4	0.0	2-	1673.60	2+	30.1	20	5.844	32	Р
^{20}N	β -	1.797 E4	0.0	2-	4071.1	2+	5.9	13	6.22	10	Р
^{21}N	β -	1.717 E4	0.0	1/2-	1222	1/2 +	3.5	4	6.52	6	Р
^{38}Cl	β -	4916.71	0.0	2-	2167.467	2 +	11.1	2	7.022	8	
^{40}Cl	β -	7482	0.0	2-	2524.03	2 +	1.7	5	7.54	13	
^{40}Cl	β -	7482	0.0	2-	3207.89	2 +	2.1	4	7.15	8	
$^{40}\mathrm{Cl}$	β -	7482	0.0	2-	3918.82	2 +	5.5	12	6.38	10	
$^{42}\mathrm{K}$	β -	3525.26	0.0	2-	1524.6	2 +	17.64	9	7.5575	23	
$^{43}\mathrm{K}$	β-	1833.48	0.0	3/2 +	593.394	3/2-	4.06	13	7.604	14	
$^{44}\mathrm{Ti}$	ε	267.4	0.0	0 +	146.1914	0-	99.6	11	6.498	23	
$^{46}\mathrm{K}$	β-	7725.7	0.0	2-	1346.00	2 +	27.4	21	6.935	33	
$^{46}\mathrm{K}$	β-	7725.7	0.0	2-	4385.91	2 +	4.39	16	6.456	16	
^{71}As	$\beta + \varepsilon$	2013.4	0.0	5/2-	525.111	5/2 +	3.04	8	6.977	15	
^{71}As	ε	2013.4	0.0	5'/2-	1205.129	5/2+	0.725	19	7.034	17	
71 As	ε	2013.4	0.0	5/2-	1558.742	5/2+	0.250	7	6.988	20	
^{72}Cu	β-	8362.5	0.0	2-	652.70	2+	16	4	6.51	11	Р
^{72}Cu	β-	8362.5	0.0	2-	1657.30	2+	6.4	10	6.63	7	Р
72 Ga	β-	3997.6	0.0	3-	2065.347	3^{-1}	3.21	3	8.4711	41	-
^{72}As	$\beta + \epsilon$	4343 60	0.0	2-	834.01	2^{+}	67.8	15	7 215	10	
^{72}As	$\beta + /\epsilon$	4343 60	0.0	2-	1463 99	$\frac{-}{2+}$	6.62	20	7 697	13	
72 As	$\beta + /\epsilon$	4343 60	0.0	- 2-	2402.31	$\frac{-}{2+}$	0.380	$\frac{20}{20}$	7 926	23	
72 As	$\beta + /\epsilon$	4343 60	0.0	- 2-	3094 29	$\frac{-}{2+}$	0.232	21	7.523 7 513	<u>-</u> 0	
72 As	F F	4343 60	0.0	2-	3419 76	$\frac{2}{2+}$	0.202	19	7.510 7 59	8	
$72 \Delta_s$	e	4343.60	0.0	2 2_	3708.62	$\frac{2}{2+}$	0.100	4	7.357	22	
$72 \Delta_S$	e	4343 60	0.0	2 2_	3872.2	$\frac{2}{2+}$	0.004 0.0052	10	8 30	8	
74 A s	$\beta \pm l \epsilon$	2562 4	0.0	2 2_	595.86	$\frac{2}{2+}$	59.0	40	6 978	30	
74 A s	$\beta + \epsilon$	2502.4 2562 4	0.0	2- 2-	1204 36	$\frac{2}{2+}$	0.820	40	8 259	23	
74 A s	p 1 / C	2562.4	0.0	2 2_	2107.80	$\frac{2}{2}$	0.020	40	8 297	20 36	
74 A s	ß	1353.1	0.0	2-	634.78	$\frac{2}{2}$	15.4	11	7 648	30 31	
75So	р- с	866.04	0.0	2- 5./2⊥	270 5428	$\frac{2}{5}/2$	10.4 0.1	11	7.040	8	
75 So	c	866.04	0.0	$5/2 \pm 5/2 \pm$	579.41	$5/2^{-}$	2.1 0.0387	5	0.000	7	
76 A g	e B	2060.6	0.0	$\frac{3}{2}$	550 100	0/2- 2	21.7	9 2	9.099 8 1730	49	
76 A g	р- в	2900.0	0.0	2-	$1016\ 152$	$\frac{2+}{2+}$	6.00	- 5 15	8 262	42	
76 Λ α	р- в	2900.0	0.0	2- 2	1210.100 1787.648	$\frac{2+}{2+}$	0.90	10	8.202	9	
ΑS 76 Λ α	ρ- β	2900.0	0.0	2- 2	2514.62	(2)	1.09	5 6	8.191 8.468	0	
76 D.	$\beta = \beta$	2900.0	0.0	2- 1	2014.03	$(2) \pm$	12.4	5	6 222	10	
$76D_{\rm m}$	$\rho + \epsilon$	4905	0.0	1-	2950.55	1+	12.4	40	0.332 6 101	20	
76 Dr	$\rho + \varepsilon$	4905	0.0	1- 1	3331.83 2604 E6	1+	0.70	40	0.101	22	
77 O -	$\rho + \varepsilon$	4905	0.0	1-	3004.30	$\frac{1+}{7}$	1.62	12	0.380	30 97	
77 D	ρ-	2705.5	0.0	1/2+	1109.03	(2/2)	19.2	12	7.100	21	
78 C -	E Q	1304.7	0.0	3/2- 0	911.49	(3/2)+	0.140	10	1.200	20 11	р
Taga 78 C	р- 0	0100.0	0.0	2- 0	1180.51	2+	(.1	18 C	0.51	11	r D
¹⁰ Ga 78 A	p-	8158.0	0.0	2-	1842.73	2+	2.9	0	0.77	9	Р
·~As 78 A	p- 0	4209	0.0	2-	013.84	2+	18.5	25 02	7.92	6 7	
**AS 83D1	<i>p</i> -	4209	0.0	2- 5 /0	1308.66	2+ 5 /0	14.0	23	(.62	(
⁵⁵ Kb 84D1	ε	920.0	0.0	5/2-	799.49	5/2+	0.90	10	0.88	b 11	
°4Kp	$\beta + \varepsilon$	2680.4	0.0	2-	881.615	2+	68.6	16	7.120	11	

Table 11
(continued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
84 Rb	ε	2680.4	0.0	2-	1897.784	2+	1.09	4	8.086	17	
^{84}Br	β -	4656	0.0	2-	881.61	2+	13.5	16	7.73	5	
^{84}Br	β -	4656	0.0	2-	1897.63	2+	11.7	22	7.20	8	
^{84}Br	β -	4656	0.0	2-	2623.01	2+	1.7	3	7.48	8	
^{84}Br	β -	4656	0.0	2-	2759.1	2 +	1.12	23	7.54	9	
85 Se	β -	6161.8	0.0	(5/2)+	345.19	5/2-	11	3	6.88	12	Р
86 Rb	β -	1776.10	0.0	2-	1077.0	2 +	8.64	4	7.9525	23	
^{86}Y	$\beta + \varepsilon$	5240	0.0	4-	2229.89	4 +	4.4	11	7.76	11	
^{86}Y	$\beta + \varepsilon$	5240	0.0	4-	2878.38	(4)+	1.24	21	7.72	7	
^{86}Y	$\beta + \varepsilon$	5240	0.0	4-	3926.10	(4)+	6.68	18	6.123	22	
87 Kr	β -	3888.27	0.0	5/2 +	402.588	5/2-	41	3	7.487	32	
88 Rb	β -	5312.62	0.0	2-	1836.077	2 +	4.93	24	7.785	21	
88 Rb	β -	5312.62	0.0	2-	3218.55	2 +	1.038	12	7.528	5	
89 Rb	β -	4497	0.0	3/2-	3508.71	(3/2)+	1.65	9	5.978	25	
90 Kr	β -	4406	0.0	0 +	0.0	0-	29	4	5.93	6	
90 Rb	β -	6585	0.0	0-	0.0	0 +	33	4	7.37	5	
^{90}Y	β -	2275.64	0.0	2-	2186.273	2 +	1.4E-6	3	11.03	9	
^{91}Y	β -	1544.3	0.0	1/2-	1204.81	1/2 +	0.26	4	8.93	7	
$^{91}\mathrm{Nb}$	ε	1257.6	104.60	1/2-	1204.68	1/2 +	2.02	8	6.798	29	
^{92}Y	β -	3643	0.0	2-	934.49	2 +	3.5	10	8.58	12	
$^{93}\mathrm{Tc}$	$\beta + \varepsilon$	3201.0	391.84	1/2-	943.7	1/2 +	2.00	30	6.52	7	
$^{93}\mathrm{Rb}$	β -	7466	0.0	5/2-	0.0	5/2 +	35	3	6.160	37	
^{93}Y	β -	2895	0.0	1/2-	947.14	1/2 +	2.7	5	8.55	8	
^{94}Y	β -	4918	0.0	2-	918.75	2 +	39.6	22	7.199	24	
^{94}Y	β -	4918	0.0	2-	1671.39	2 +	3.3	4	7.88	5	
95 Sr	β -	6091	0.0	1/2 +	0.0	1/2-	55.7	25	6.181	20	Р
^{95}Y	β -	4452	0.0	1/2-	953.86	1/2 +	1.9	5	8.00	11	
$^{95}\mathrm{Nb}$	β -	925.60	234.70	1/2-	786.201	1/2 +	0.071	9	8.47	6	
$^{95}\mathrm{Tc}$	ε	1691	38.91	1/2-	786.2017	1/2 +	38.0	5	7.234	19	
$^{95}\mathrm{Tc}$	ε	1691	38.91	1/2-	1039.270	1/2 +	30.1	5	7.057	20	
$^{96}\mathrm{Rb}$	β -	1.1564E4	0.0	2-	814.93	2 +	20.9	24	5.65	5	Р
$^{96}\mathrm{Rb}$	β -	1.1564E4	0.0	2-	1506.84	2 +	7.6	7	5.958	40	Р
⁹⁶ Y	β -	7109	0.0	0-	0.0	0+	95.5	5	5.616	5	
⁹⁶ Y	β -	7109	0.0	0-	1581.34	0+	1.26	10	6.999	35	
97 Ru	ε	1104	0.0	5/2 +	656.899	5/2-	0.0326	10	8.349	20	
97 Rh	$\beta + \varepsilon$	3523	258.76	1/2-	908.29	1/2 +	1.7	5	6.83	13	
97 Rb	β -	1.00615E4	0.0	3/2 +	644.73	(3/2)-	7.0	6	5.785	37	Р
⁹⁷ Y	β -	6821	0.0	1/2-	0.0	1/2 +	40	10	5.76	11	Р
97 Zr	β -	2666.1	0.0	1/2 +	743.402	1/2-	87.3	9	7.254	6	
⁹⁸ Y	β -	8993	0.0	0-	1436.16	0+	5.5	7	5.99	6	Р
⁹⁸ Y	β-	8993	0.0	0-	1859.37	0+	11.1	12	5.568	47	Р
99 Rh	$\beta + \varepsilon$	2041	0.0	1/2-	618.09	(1/2)+	45.7	23	7.031	26	
⁹⁹ Nb	β -	3635	365.27	1/2-	0.0	1/2+	63	5	6.155	49	Р
⁹⁹ Nb	β -	3635	365.27	1/2-	525.193	1/2+	1.04	17	7.67	8	Р
⁹⁹ Mo	β -	1357.8	0.0	1/2+	142.6836	1/2-	82.2	4	7.1249	24	
101 Mo	β -	2825	0.0	1/2+	207.517	1/2-	12.8	5	6.838	24	
¹⁰¹ Rh	ε	546	0.0	1/2-	325.233	1/2+	89	8	6.92	6	
103 Ru	β -	764.5	0.0	3/2+	294.964	3/2-	0.280	5	9.303	11	
¹⁰³ Pd	ε	574.7	0.0	5/2+	357.43	5/2-	0.0248	8	8.651	18	_
¹⁰³ Cd	$\beta + \varepsilon$	4151.1	0.0	(5/2)+	590.79	(5/2)-	2.10	30	6.45	6	Р
^{105}Ag	ε	1347.1	0.0	1/2-	344.6	1/2+	67	7	7.035	46	
^{100}Ag	ε	1347.1	0.0	1/2-	673.2	1/2 +	2.9	3	8.044	46	
¹⁰⁸ In	$\beta + \varepsilon$	5133	0.0	7+	3057.35	7-	1.16	12	6.587	48	

Table 11
(continued $)$

Nuclide	Decay	$Q \; [\text{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
109 Sn	$\beta + \varepsilon$	3859	0.0	5/2 +	1440.67	5/2-	1.04	12	6.38	5	
111 Pd	β -	2229.6	172.2	11/2-	959.0	11/2 +	1.6	5	8.12	14	
^{111}Ag	β -	1036.8	0.0	1/2-	0.0	1/2 +	92	5	7.344	24	
113 Sn	ε	1039.0	0.0	1/2 +	391.699	1/2-	97.79	8	7.033	5	
115 In	β -	497.489	326.244	1/2-	0.0	1/2 +	5.0	7	6.68	6	
^{115}Ag	β -	3102	0.0	1/2-	0.0	1/2 +	60	15	6.70	11	
^{115}Cd	β -	1451.9	0.0	1/2 +	336.242	1/2-	62.4	12	7.127	8	
$^{117}\mathrm{Cd}$	β -	2525	0.0	1/2 +	315.302	1/2-	21	2	7.431	42	
117 In	β -	1454.7	315.302	1/2-	0.0	1/2 +	18.3	13	7.013	31	
118 I	$\beta + \varepsilon$	6720	0.0	2-	605.56	2 +	34.3	15	6.779	27	Р
118 I	$\beta + \varepsilon$	6720	0.0	2-	1150.66	2 +	6.6	12	7.28	8	Р
$^{119}\mathrm{Te}$	$\beta + \varepsilon$	2293.0	260.96	11/2-	1407.33	11/2 +	7.00	10	7.384	9	
^{120}I	$\beta + \varepsilon$	5615	0.0	2-	560.29	2 +	32.6	8	7.137	13	Р
^{120}I	$\beta + \varepsilon$	5615	0.0	2-	1201.4	2 +	3.2	6	7.83	8	Р
^{120}I	$\beta + \varepsilon$	5615	0.0	2-	1535.0	2 +	2.42	23	7.775	42	Р
^{120}I	$\beta + \varepsilon$	5615	0.0	2-	2937.0	2 +	2.52	21	6.899	37	Р
^{120}I	$\beta + \varepsilon$	5615	0.0	2-	3494.1	2 +	1.86	22	6.69	5	Р
121 In	β-	3362	313.6	1/2-	60.18	1/2 +	69	15	6.25	10	
$^{122}\mathrm{Sb}$	ε	1605.7	0.0	2-	1140.68	2+	0.75	4	7.271	27	
$^{122}\mathrm{Sb}$	β -	1979.1	0.0	2-	564.26	2 +	66.8	2	7.6361	28	
$^{122}\mathrm{Sb}$	β-	1979.1	0.0	2-	1256.92	2 +	4.6	5	7.721	47	
^{123}Sn	β-	1408.2	0.0	11/2-	1088.65	11/2 +	0.60	12	9.06	9	
124 I	$\beta + \varepsilon$	3159.6	0.0	2-	602.74	2+	36.9	6	7.523	8	
124 I	$\beta + \varepsilon$	3159.6	0.0	2-	1325.51	2 +	5.71	10	7.898	9	
124 I	$\beta + \varepsilon$	3159.6	0.0	2-	2039.34	2+	0.027	6	9.76	10	
124 I	$\beta + \varepsilon$	3159.6	0.0	2-	2091.67	2+	0.203	5	8.844	12	
124 I	ε	3159.6	0.0	2-	2322.97	2+	0.183	6	8.670	15	
124 I	ε	3159.6	0.0	2-	2454.06	2+	0.354	20	8.230	25	
^{124}I	ε	3159.6	0.0	2-	2521.33	2+	0.181	4	8.431	11	
^{124}I	ε	3159.6	0.0	2-	2641.20	2 +	0.402	8	7.894	11	
^{124}I	ε	3159.6	0.0	2-	2681.45	2+	0.391	14	7.832	17	
^{125}Sn	β-	2361.4	0.0	11/2-	1089.51	11/2 +	3.0	9	9.33	13	
^{125}Sb	β-	766.7	0.0	7/2+	525.227	7/2-	1.609	19	9.155	13	
^{126}I	$\beta + \varepsilon$	2153.7	0.0	2-	666.338	2+	28.9	7	7.478	12	
^{126}I	ε	2153.7	0.0	2-	1420.166	2+	4.46	10	7.656	13	
^{126}I	ε	2153.7	0.0	2-	2045.11	2+	0.0070	4	8.59	5	
^{126}I	β-	1235.9	0.0	2-	388.634	2+	33.4	6	7.826	11	
^{126}I	β -	1235.9	0.0	2-	879.879	2+	3.62	6	7.501	17	
$^{127}\mathrm{Sb}$	β-	1582.2	0.0	7/2 +	631.0	7/2-	4.6	6	8.30	6	
$^{127}\mathrm{Sb}$	β-	1582.2	0.0	7/2+	785.2	7/2-	4.5	3	8.032	31	
129 Te	β-	1502.3	105.51	11/2-	695.89	11/2 +	3.0	6	9.38	9	
^{129}Sb	β-	2376	0.0	7/2+	759.83	7/2-	3.77	6	7.932	24	
^{131}I	β-	970.8	0.0	7/2+	666.934	7/2-	0.645	23	7.818	16	
133 Ce	$\beta + \varepsilon$	3076	37.2	9/2-	563.348	9/2+	1.83	17	7.66	5	
133 Ce	$\beta + \varepsilon$	3076	37.2	9/2-	950.35	(9/2)+	2.07	21	7.40	5	
¹³³ Ba	ε ε	517.4	288.252	11/2-	632.59	$\frac{(3)}{11/2+}$	0.0103	7	8.08	6	
^{136}Cs	β-	2548.2	0.0	5+	2140.225	5-	13.6	10	7.167	33	
137 Xe	β-	4162.36	0.0	7/2-	0.0	$\frac{1}{7}/2+$	67	3	6.599	20	
$^{137}\mathrm{Ce}$	ε	1222.1	254.29	11/2-	762.30	11/2 +	0.197	14	8.212	31	
^{138}Cs	β-	5375	0.0	3-	2445.64	3+	44	1	7.080	12	
^{138}Cs	β-	5375	79.9	6-	2090.7	6+	14.4	25^{-}	6.77	8	Р
^{138}Cs	β-	5375	79.9	6-	2203.2	6+	2.0	$^{-5}$	7.57	11	P
^{139}Cs	β-	4212.8	0.0	7/2 +	0.0	7/2-	84.5	31	6.923	16	
				,		'					

Table 11
(continued $)$

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \; [keV]$	Jπ	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
139 Ba	β -	2308.5	0.0	7/2-	0.0	7/2+	69.98	31	6.8787	20	
^{140}Ba	β -	1044	0.0	0+	581.073	0-	24.7	3	7.105	26	
140 La	β -	3762.2	0.0	3-	2412.02	3+	43.9	4	7.6498	43	
^{141}Sm	$\beta + \varepsilon$	4589	175.9	11/2-	974.06	11/2 +	5.6	11	6.79	9	Р
^{141}Cs	β -	5255	0.0	7/2 +	55.001	(7/2)-	60	11	6.12	8	
$^{141}\mathrm{Ce}$	β -	583.5	0.0	7/2-	145.440	7/2 +	70.0	6	7.024	5	
^{142}Cs	β -	7328	0.0	0-	0.0	0+	40.6	20	5.78	4	
^{142}Cs	β -	7328	0.0	0-	1535.53	0+	3.3	2	6.42	5	
142 La	β -	4509	0.0	2-	641.287	2 +	3.7	2	9.15	3	
^{142}La	β -	4509	0.0	2-	2004.32	2 +	1.6	1	8.724	28	
^{142}La	β -	4509	0.0	2-	2364.56	2 +	1.5	1	8.478	29	
^{142}La	β-	4509	0.0	2-	2542.66	2 +	17.3	4	7.265	12	
142 La	β-	4509	0.0	2-	2696.47	2 +	6.7	2	7.537	14	
142 La	β-	4509	0.0	2-	3304.4	2 +	1.0	1	7.682	44	
142 La	β-	4509	0.0	2-	3612.1	2 +	5.0	2	6.512	20	
142 La	β-	4509	0.0	2-	4043.0	2 +	1.5	1	6.048	35	
$^{142}\mathrm{Pr}$	β-	2163.7	0.0	2-	1575.6	2 +	3.7	5	7.14	6	
$^{143}\mathrm{Gd}$	$\beta + \varepsilon$	6.01 E3	152.6	11/2-	1057.33	11/2 +	3.3	5	6.55	11	Р
$^{143}\mathrm{Gd}$	$\beta + \varepsilon$	6.01 E3	152.6	11'/2-	1256.87	11/2 +	1.40	20	6.84	10	Р
^{143}Cs	β-	6262	0.0	3/2+	228.83	(3/2)-	12	2	5.96	7	Р
^{143}Cs	β-	6262	0.0	3/2+	306.56	(3/2)-	5.8	10	6.25	7	Р
$^{143}\mathrm{Ce}$	β-	1461.8	0.0	3/2-	350.624	3/2+	48.2	5	7.227	5	
$^{143}\mathrm{Ce}$	β-	1461.8	0.0	3/2-	1160.601	(3/2)+	0.461	8	7.299	12	
143 Pr	β-	934.1	0.0	7/2+	0.0	7/2-	100	-	7.6497	24	
144 Ce	β-	318.6	0.0	0+	0.0	0-	76.88	35	7.4704	41	
144 Pr	β-	2997.4	0.0	0-	0.0	$\overset{\circ}{0+}$	97.9	4	6.5752	26	
145 Pr	β-	1806	0.0	$\frac{3}{7}/2+$	0.0	$\frac{3}{7}/2$ -	97.6	1	7.003	-* 7	
145 Pm	E	164.5	0.0	5/2+	72.4	5/2-	10.3	5	8.092	46	
^{145}Sm	ε	616.1	0.0	$\frac{3}{2}$	61.22	$\frac{3}{2}$	91.4	8	7.826	8	
¹⁴⁵ Eu	ε	2659.9	0.0	5/2+	1658.562	5/2-	16.4	10	7.390	27	
^{145}Eu	ε	2659.9	0.0	5/2+	1996.959	5/2-	7.4	4	7.358	 24	
^{145}Eu	E	2659.9	0.0	5/2+	2346.39	5/2-	0.456	17	7 854	19	
¹⁴⁶ Eu	$\beta + \epsilon$	3879	0.0	4-	1381 292	$\frac{3}{2}$	16.9	13	8 151	34	
¹⁴⁶ Eu	$\beta + /\epsilon$	3879	0.0	4-	2280 882	4+	7 03	24	8 071	16	
¹⁴⁶ Eu	$\beta + \epsilon$	3879	0.0	4-	2439.070	4+	6.1	6	8.037	43	
¹⁴⁶ Eu	$\beta + \epsilon$	3879	0.0	4-	2531 933	4+	2.79	8	8 317	10	
^{146}En	$\beta + \epsilon$	3879	0.0		$2678\ 274$	4 4+	6.77	21	7 828	15	
¹⁴⁷ Nd	β-7/C β-	895.2	0.0	$\frac{1}{5/2}$	91 1052	$\frac{1}{5}/2+$	80.9	5	7.020 7 4404	32	
¹⁴⁷ Nd	р В-	895.2	0.0	5/2-	530 996	5/2+	15.2	4	6 999	02 12	
¹⁴⁷ Nd	β- β-	895.2	0.0	5/2-	685 901	5/2+	2 23	8	7.061	16	
147Eu	p B±/c	1721 /	0.0	$5/2 \pm 5/2 \pm 100$	121 212	5/2	20.0	16	8 317	35	
^{147}En	p1/c	1721.4 1791.4	0.0	$5/2 + 5/2 \pm$	1077 049	$5/2^{-}$ 5/2-	20.5 9.5	3	7 832	18	
147Cd	$\beta \pm lc$	2187.4	0.0	$\frac{5}{2}$	778.01	$\frac{5}{2}$	2.00	40	7.052	6	
^{147}Cd	$\beta + \epsilon$	2107.7	0.0	$\frac{1}{2}$	1100.01	7/2 + 7/2 +	2.50	40 6	7.51 7 110	26	
148Fu	pt/c	2101.1	0.0	5	2147516	1/2⊤ 5⊥	10.2 17.2	0 23	8.23	20 6	
148 F.u	c	3030	0.0	5- 5	2147.010 2014.017	5- 5-	0.4	20 2	8.25 8.418	10	
148 F.u	e	3039	0.0	5- 5	2214.217 2641.227	5+ 5+	9.4 1.44	5	8 550	19	
148F1	ت د	3039 3030	0.0	J- 5_	2041.237 9797-91	0+ 5⊥	1.44 0.101	16	0.000	5	
148En	e C	3039	0.0	5- 5	2121.01 2801 726	0+ 5⊥	0.191 8 49	-10 10	9.19 7 962	5 48	
148En	c	3039	0.0	5- 5	2001.130 2830 665	0⊤ 5⊥	0.40 6 09	20 20	7.200 7.91	40 6	
ւը 1491ե	e Bille	3638 K	0.0	ປ- 1 /9 ⊨	2030.003 1905 66	$\frac{1}{9}$	0.90	20 0	6 495	19	
149 N J	$\rho + \varepsilon$	JUJO.J 1688 0	0.0	1/2+ 5/9	1200.00 911 909	$(1/2)^{-}$	39.8 94.7	9 16	0.420	12	
149 N J	р- 0	1000.9	0.0	0/2- E/0	211.308	$\frac{3}{2+}$	24.1 2.21	10	0.142	20 16	
ina	ρ -	1008.9	0.0	0/ <i>2</i> -	390.774	3/2+	3.31	12	1.394	10	

Table 11
(continued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{P} \ [keV]$	$J\pi$	$E_D \; [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
149 Pm	β -	1071.5	0.0	7/2 +	0.0	7/2-	95.6	5	7.1414	37	
149 Pm	β -	1071.5	0.0	7/2 +	636.54	7/2-	0.027	2	9.328	33	
149 Eu	ε	694.6	0.0	5/2 +	22.5002	5/2-	77	4	7.549	24	
149 Eu	ε	694.6	0.0	5/2 +	277.072	5/2-	5.30	6	8.264	11	
149 Eu	ε	694.6	0.0	5/2 +	558.374	5/2-	0.164	5	8.594	38	
$^{149}\mathrm{Gd}$	$\beta + \varepsilon$	1314.1	0.0	7/2-	149.732	7/2 +	34.2	19	7.432	26	
$^{149}\mathrm{Gd}$	ε	1314.1	0.0	7/2-	534.295	7/2 +	1.05	7	8.581	31	
$^{149}\mathrm{Gd}$	ε	1314.1	0.0	7/2-	938.609	7/2 +	14.0	8	6.768	29	
150 Eu	$\beta + \varepsilon$	2259	41.7	0-	0.0	0+	6.9	19	7.51	12	
$^{150}\mathrm{Eu}$	$\beta + \varepsilon$	2259	41.7	0-	740.38	0 +	2.7	5	7.53	8	
$^{150}\mathrm{Eu}$	β-	971.7	42.7	0-	0.0	0 +	89	2	6.513	12	
$^{150}\mathrm{Tb}$	$\beta + \varepsilon$	4658	0.0	(2)-	638.047	2 +	25.0	40	7.26	7	
$^{150}\mathrm{Tb}$	$\beta + \varepsilon$	4658	0.0	(2)-	1430.471	(2)+	1.7	5	8.05	13	
$^{150}\mathrm{Tb}$	$\beta + \varepsilon$	4658	0.0	(2)-	1518.368	2+	3.30	40	7.72	6	
$^{150}\mathrm{Tb}$	$\beta + \varepsilon$	4658	0.0	(2)-	1955.373	2+	3.40	40	7.50	6	
$^{150}\mathrm{Tb}$	$\beta + \varepsilon$	4658	0.0	(2)-	2091.625	2+	6.6	9	7.15	6	
$^{150}\mathrm{Tb}$	$\beta + \epsilon$	4658	0.0	$(2)^{-}$	2179.909	$\frac{-}{2+}$	2.00	30	7.63	7	
150 Th	$\beta + /\varepsilon$	4658	0.0	(2)-	2408 53	$\frac{-}{2+}$	1.30	20	7 70	7	
151 Nd	β-7,2 β-	2443 1	0.0	$\frac{(-)}{3/2+}$	$540\ 372$	$\frac{2}{3}/2$ -	3.09	$\frac{20}{24}$	7.10	34	
151 Pm	β-	1190.2	0.0	5/2+	168 40	(5/2)-	1 4	3	8 63	9	
151Sm	р В-	76.6	0.0	5/2-	0.0	$\frac{(0/2)}{5/2+}$	99.09	6	7.587	39	
^{151}Gd	e e	464.2	0.0	$\frac{0}{2}$	21 501	$\frac{5}{2}$	74	6	7 329	37	
151 Cd	c	464.2	0.0	$\frac{7}{2}$	21.501	$(7/2) \perp$	1.99	9	8.034	37 41	
$152_{F_{11}}$	ß	1818 8	45 5008	0	0.0	(1/2)	70	3	7 476	10	
152ть	p- B L /c	2000	40.0990	0- 2	344.9700	$0\pm$	10	17	8.08	6	
152ть	$\rho_{\pm/\epsilon}$	3990	0.0	2- 2	020 560	$\frac{2+}{2+}$	8.06	11	7 000	10	
то 152ть	$\rho + \epsilon$	3990	0.0	2- 2	930.300	$\frac{2+}{2+}$	$\frac{8.00}{2.70}$	22 10	1.999 9.274	19	
то 152 ть	$\rho + \epsilon$	3990	0.0	2- 0	1210 255	2+	2.19	10	0.374	22 22	
	$p+/\varepsilon$	3990	0.0	2- 2	1318.300	2+	2.73	9 E	8.280	22 10	
I D 152mi	$\rho + \varepsilon$	3990	0.0	2- 0	1005.00	2+	2.30	5 C	0.220	19	
152mi	$p+\varepsilon$	3990	0.0	2- 0	1941.17	2+	4.28	0 C	7.791	21	
152mi	$p+\varepsilon$	3990	0.0	2- 0	2240.80	2+	3.73	0	7.091	24	
152mi	$p + \varepsilon$	3990	0.0	2-	2709.43	2+	1.050	30	(.(0)	32	
152m	$\beta + \varepsilon$	3990	0.0	2-	2719.64	2+	1.390	30	7.833	33	
152m	$\beta + \varepsilon$	3990	0.0	2-	2729.17	2+	1.000	30	7.970	35	
152 Tb	$\beta + \varepsilon$	3990	0.0	2-	2880.67	2+	1.820	30	7.594	35	D
¹⁰² Ho	$\beta + \varepsilon$	6513	160	9+	2906.0	9-	2.10	30	5.85	6	Р
¹⁵² Pm	β-	3509	1.5E+2	4-	366.52	4+	19	6	7.13	15	Р
¹⁵² Pm	β-	3509	1.5E+2	4-	1371.63	4+	2.0	3	7.46	10	Р
¹⁵² Pm	β -	3509	1.5E+2	4-	2895.45	4+	1.06	17	5.93	22	Р
¹⁵² Eu	ε	1874.5	0.0	3-	1233.8626	3+	17.09	8	9.8833	32	
¹⁵² Eu	β-	1818.8	0.0	3-	1434.020	3+	2.432	15	10.5937	37	
¹⁵⁵ Sm	β -	807.4	0.0	3/2+	636.47	3/2-	0.0649	6	7.611	7	
¹⁵³ Gd	ε	484.5	0.0	3/2-	103.18016	3/2+	44.2	10	7.697	11	
¹⁵³ Tb	$\beta + \varepsilon$	1569.3	0.0	5/2+	41.549	5/2-	16	5	7.45	14	
¹⁵³ Tb	$\beta + \varepsilon$	1569.3	0.0	5/2+	109.742	(5/2)-	3.5	11	8.06	14	
¹⁵³ Tb	$\beta + \varepsilon$	1569.3	0.0	5/2 +	249.562	5/2-	2.01	13	8.214	29	
¹⁵³ Tb	ε	1569.3	0.0	5/2 +	548.665	5/2-	0.34	7	8.75	9	
$^{153}\mathrm{Tb}$	ε	1569.3	0.0	5/2 +	607.13	5/2-	0.11	3	9.19	12	
¹⁵⁴ Ho	$\beta + \varepsilon$	5755	0.0	2-	334.62	2 +	15.7	18	6.82	5	Р
¹⁵⁴ Ho	$\beta + \varepsilon$	5755	0.0	2-	905.26	2+	10.4	8	6.778	34	Р
154 Ho	$\beta + \varepsilon$	5755	0.0	2-	1027.20	2 +	9.6	6	6.762	28	Р
154 Eu	β -	1968.0	0.0	3-	1127.804	3+	16.8	5	10.712	13	
154 Eu	β -	1968.0	0.0	3-	1660.910	3+	0.822	13	10.550	8	

Table 11
(continued $)$

Nuclide	Decay	$Q \; [\text{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
155 Sm	β -	1627.1	0.0	3/2-	245.734	3/2 +	4.62	12	6.732	11	
155 Eu	β -	252.0	0.0	5/2 +	60.0098	5/2-	8.2	4	8.645	22	
$^{155}\mathrm{Tb}$	ε	820	0.0	3/2 +	286.944	3/2-	1.18	7	7.970	33	
$^{155}\mathrm{Tb}$	ε	820	0.0	3/2 +	450.609	3/2-	0.054	7	8.96	6	
$^{155}\mathrm{Tb}$	ε	820	0.0	3/2 +	592.060	3/2-	0.183	15	7.94	6	
$^{155}\mathrm{Tb}$	ε	820	0.0	3/2 +	614.791	3/2-	0.051	4	8.38	7	
155 Dy	$\beta + \varepsilon$	2094.5	0.0	3/2-	0.0	3/2 +	1.50	40	8.06	12	
156 Eu	β -	2452.5	0.0	0 +	1952.38	0-	0.92	8	8.880	39	
157 Eu	β -	1364.8	0.0	5/2 +	434.427	5/2-	15	1	7.222	30	
$^{157}\mathrm{Tb}$	ε	60.05	0.0	3/2+	0.0	3/2-	99.89	1	7.079	44	
$^{159}\mathrm{Gd}$	β -	970.7	0.0	3/2-	0.0	3/2+	58.6	10	6.805	7	
$^{159}\mathrm{Dy}$	ε	364.73	0.0	3/2-	0.0	3/2+	73.4	14	7.278	8	
$^{159}\mathrm{Er}$	$\beta + \varepsilon$	2768.5	0.0	3/2-	814.99	3/2+	1.10	20	6.97	8	
$^{160}\mathrm{Tb}$	β-	1836.0	0.0	3-	1049.1017	3+	6.49	16	9.431	11	
$^{161}\mathrm{Tb}$	β-	593.7	0.0	3/2 +	74.56670	3/2-	65	4	6.789	27	
$^{161}\mathrm{Tb}$	β-	593.7	0.0	3/2+	418.238	3/2-	0.0331	21	8.564	29	
$^{163}\mathrm{Tb}$	β-	1785.1	0.0	3/2+	421.88	(3/2)-	9.1	15	6.42	7	
$^{163}\mathrm{Tm}$	$\beta + \varepsilon$	2439.0	0.0	1/2+	345.62	1/2-	5.5	5	6.853	40	
$^{165}\mathrm{Dv}$	β-	1285.7	0.0	7/2+	0.0	7'/2-	83	2	6.247	11	
$^{165}\mathrm{Tm}$	$\beta + \varepsilon$	1591.3	0.0	1/2+	297.372	1/2-	35.9	18	6.812	22	
$^{165}\mathrm{Tm}$	ε	1591.3	0.0	1/2+	589.905	1/2-	4.9	2	7.444	18	
$^{165}\mathrm{Tm}$	ε	1591.3	0.0	1/2+	920.727	1/2-	3.8	2	7.184	23	
¹⁶⁶ Ho	β-	1853.8	0.0	0-	0.0	0+	48.8	12^{-12}	8.165	11	
¹⁶⁶ Ho	β-	1853.8	0.0	<u>0</u> -	1460.025	0^{+}	0.943	13	7.487	7	
¹⁶⁶ Lu	$\beta + \epsilon$	5573	0	ő-	667.95	6+	57	12	6 46	9	Р
167 Tm	ε ε	746 1	0.0	$\frac{1}{2}$	207 801	1/2-	69	18	6 59	11	-
¹⁶⁸ Ho	β-	2930	0.0	3+	1541.35	3-	2.2	3	6.30	7	
168Tm	р F	1676.9	0.0	3+	1431 454	3-	0.151	11	9.459	33	
168Tm	e e	1676.9	0.0	3+	1541 5520	3-	43.66	12	6 299	18	
169 Er	β-	353.5	0.0	1/2-	0.0	$\frac{0}{1/2+}$	55	5	6.517	40	
169 Yb	E	899.1	0.0	$\frac{1}{7}/2+$	379.26678	$\frac{1}{7}/2$ -	81.1	9	7.054	5	
$^{169}L_{11}$	$\beta + \epsilon$	2293.0	0.0	7/2+	647 847	7/2-	2.06	7	8 392	16	
$^{169}L_{11}$	$\beta + /\epsilon$	2293.0	0.0	7/2+	807 079	(7/2)-	0.62	7	8.820	49	
$^{169}L_{11}$	$\beta + /\epsilon$	2293.0	0.0	7/2+	960.612	7/2-	25.2	7	7 111	14	
$^{169}L_{11}$	р 1 / С Е	2293.0	0.0	7/2+	$1343\ 57$	$(7/2)_{-}$	1 38	6	8 064	20	
$^{169}L_{11}$	e e	2293.0	0.0	7/2+	1449 781	(1/2) 7/2-	15.8	4	6 896	14	
$^{169}L_{11}$	e e	2293.0	0.0	7/2+	$1463\ 412$	$7/2_{-}$	5.07	17	7.375	17	
$^{169}L_{11}$	e e	2293.0	0.0	7/2+	1689 290	7/2-	1.62	5	7.572	16	
$^{169}L_{11}$	e e	2293.0	0.0	7/2+	1708 52	7/2-	0.84	7	7.827	37	
$^{169}L_{11}$	e e	2293.0	0.0	7/2+	1781 696	$7/2_{-}$	3.25	8	7 111	15	
169Lu	e	2293.0	0.0	7/2 + 7/2	1973.97	$7/2_{-}$	1.02	g	7.111 7 144	41	
$^{169}L_{11}$	e	2293.0	0.0	7/2 + 7/2 +	2029.87	$7/2_{-}$	1.02	6	6 893	20	
170Hf	e	1052	0.0	0+	407.47	$(0)_{-}$	6.0	17	6.030	2 <i>3</i> 13	
171Er	С В-	1492 4	0.0	$5/2_{-}$	013.02	$(0) = 5/2 \perp$	0.0 2 10	8	7 150	10 16	
171Tm	β- β-	96 5	0.0	$\frac{5}{2}$	0.0	$\frac{5}{2}$	2.13 98.04	14	6 306	10	
171Lu	ρ- β⊥/ε	1478 4	0.0	$\frac{1}{2}$	208 019	$\frac{1}{2^{-}}$	3 89	14 94	8 652	14 28	
$171L_{11}$	6 P I / C	1478 /	0.0	$\frac{1}{2} \frac{4}{7}$	835 083	$7/2_{-}$	61 5	24 16	6.817	14	
171 Lu	c c	1478 /	0.0	$7/2 \pm 7/9 \pm$	1024 627	$7/2^{-}$	0 2 2 5	15	8 010	30	
171 L 11	c c	1478 /	0.0	7/2⊥ 7/2⊥	1924.027	$7/2^{-}$	0.220	0	6 800	36	
172Tm	с В_	1889	0.0	1/⊿⊤ 2_	78 750	1/ 4- 2⊥	36	5	0.099 8.67	7	
172Tm	ρ- β-	1889	0.0	2- 2-	1117 80	$\frac{2}{2}$	0 901	24	0.07	37	
172Tm	ρ- β_	1889	0.0	2- 2_	1/65 8/0	$2\pm$	10.291	24 10	5.551 6.058	76 76	
172Tm	р- В	1889	0.0	2- 9	1400.049	$2\pm$	1 10	10	7 883	40 43	
T 111	ρ-	1002	0.0	∠-	1470.02	4T	1.10	TÜ	1.000	40	

Table 11
(continued $)$

Nuclide	Decay	$Q \; [\text{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
$^{172}\mathrm{Tm}$	β -	1882	0.0	2-	1608.417	2 +	10.0	10	6.37	5	
^{172}Lu	$\beta + \varepsilon$	2519.4	0.0	4-	1286.50	4 +	0.059	10	10.35	7	
^{172}Lu	ε	2519.4	0.0	4-	1803.113	4 +	0.60	10	8.84	7	
^{172}Lu	ε	2519.4	0.0	4-	2073.128	4 +	65.8	11	6.346	12	
172 Lu	ε	2519.4	0.0	4-	2181.28	(4)+	0.015	5	9.71	15	
172 Lu	ε	2519.4	0.0	4-	2285.410	4 +	6.00	15	6.718	19	
172 Lu	ε	2519.4	0.0	4-	2343.725	4 +	2.41	6	6.784	23	
173 Lu	ε	670.2	0.0	7/2 +	78.647	7/2-	50	3	8.611	27	
173 Lu	ε	670.2	0.0	7/2+	636.128	7/2-	2.93	6	6.43	6	
$^{173}\mathrm{Hf}$	$\beta + \varepsilon$	1469	0.0	1/2-	425.320	1/2 +	37.4	9	6.592	27	
174 Lu	ε	1374.2	170.83	6-	1518.10	6+	0.62	2	6.28	8	
$^{175}\mathrm{Tm}$	β-	2.38E3	0.0	1/2 +	919.9	1/2-	12.4	9	6.39	7	
$^{175}\mathrm{Yb}$	β-	470.1	0.0	7/2-	0.0	7/2+	72.9	5	6.4976	47	
175 Ta	$\beta + \varepsilon$	2073	0.0	7/2+	348.35	7/2-	26.5	18	6.885	35	
176 Ta	$\beta + \varepsilon$	3211	0.0	(1)-	1672.36	(1)+	4.9	8	7.40	7	
176 Ta	$\beta + \varepsilon$	3211	0.0	(1)-	1862.82	1+	9.0	10	7.02	5	
177 Yb	β-	1397.5	0.0	9/2+	150.3986	9/2-	18.5	17	6.852	40	
^{177}Lu	β-	496.8	0.0	7/2+	0.0	7/2-	79.44	23	6.7653	27	
¹⁷⁷ Lu	β-	496.8	970.1757	$\frac{23}{2}$	1315.4502	$\frac{23}{2+}$	77.30	8	6.512	7	
¹⁷⁷ Ta	$\beta + \varepsilon$	1166.0	0.0	$\frac{20}{7/2+}$	0.0	$\frac{20}{7/2}$	62	9	6.89	6	
¹⁷⁷ Ta	ε	1166.0	0.0	7/2+	604.49	7/2-	0.16	5	8.79	14	
177Ta	e e	1166.0	0.0	7/2+	1057.74	$7/2_{-}$	0.61	17	6.31	13	
177W	$\beta \pm l \epsilon$	2013	0.0	$1/2_{-}$	487.64	1/2 +	9.6	10	6.57	5	
179L.11	β-7C β-	1404	0.0	$\frac{1}{2}$	214 33	$\frac{1}{2}$	11	3	7 41	12	
181µf	р В-	1036 1	0.0	1/2	615.12	$1/2 \pm 1/2 \pm$	03	0 २	7 288	15	
181W	ρ- ε	205.1	0.0	$\frac{1}{2}$	6.24	$\frac{1}{2}$	55 74	1	6 782	$\frac{10}{27}$	
181 Bo	c	1717	0.0	$\frac{3}{2+}$ 5/2+	124885	$\frac{3}{2}$	18	4	0.182 7.18	21	
182 To	e B	1815 5	0.0	$\frac{3}{2}$	1240.00 1221.1152	3	1.0 2.27	5	0.540	10	
182Bo	ρ- ε	1010.0 2 80F3	0.0		1016 04	$\frac{3+}{(7)}$	2.37	0	9.540 8.80	10	
182 Do	c	2.80E3	0.0	7 I	1060.33	$(7)^{-}$	0.40	5	7 14	15	
182Do	e	2.80E3	0.0	7 + 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	1900.33	$(7)^{-}$	23	5	7.14 7.10	15	
183 To	E B	2.00E5 1072-1	0.0	$\frac{7}{2}$	1970.37	$(1)^{-}$	24 02	5	6 052	10	
183D	ρ-	1072.1	0.0	1/2+ 5/2+	403.0000	1/2- 5/0	95	12	0.952	00 19	
183D	ε	550 550	0.0	$\frac{3}{2+}$	99.0602	0/2- 5/2	4.4	15	8.09 7.57	15	
183 O-	е 0 г. / -	000 0.1559	0.0	$\frac{3}{2+}$	291.7280	$\frac{3}{2}$	15.0	10	7.97 C 504	0.25	
183 Os	$p+/\varepsilon$	2.15E3 9.15E9	0.0	9/2+	490.20	9/2-	74.0	14	0.594	30	
183 OS	ε	2.15E3	0.0	9/2+	1554.09	(9/2)-	2.45	4	7.12	9	
183 O	$p + \varepsilon$	2.15E3	170.70	1/2-	878.91	1/2+	1.70	30 10	(.99	8	
183T	$p + \varepsilon$	2.15E3	170.70	1/2-	1101.95	(1/2)+	45.0	10	6.406	45	Ъ
184 T	$p+\varepsilon$	3.40E3	0.0	0/2- F	800.00	(3/2)+	1.9	0 20	(.55	12	Г D
184T	$p + \varepsilon$	4642	0.0	0- F	1428.25	5+	3.20	30	8.041	42 96	P D
¹⁰⁴ Ir	$\beta + \varepsilon$	4642	0.0	5- 1 (2	2399.05	(5)+	5.20	40	7.446	30	Р
¹⁰⁰ Os	ε	1013.14	0.0	1/2-	646.119	1/2+	77	3	7.383	17	
¹⁰⁰ Os	ε	1013.14	0.0	1/2-	880.282	1/2+	7.1	3	7.204	19	
¹⁰⁰ Ir	$\beta + \varepsilon$	3828	0.0	5+	1628.57	5-	2.90	24	8.411	37	_
¹⁸⁰ Au	$\beta + \varepsilon$	6150	0.0	3-	956.55	3+	6.6	8	7.23	6	P
¹⁸⁰ Au	$\beta + \varepsilon$	6150	0.0	3-	1417.90	(3)+	1.72	15	7.658	44	Р
¹⁰ /lr	$\beta + \varepsilon$	1670	0.0	3/2+	501.44	3/2-	11.40	30	7.033	29	
¹⁸ Ir	ε	1670	0.0	3/2+	725.76	3/2-	1.05	5	7.872	38	
¹⁸⁷ Pt	$\beta + \varepsilon$	2864	0.0	3/2-	189.59	3/2+	10.2	12	7.25	5	
¹⁸⁷ Pt	$\beta + \varepsilon$	2864	0.0	3/2-	819.06	3/2+	13.2	13	6.868	47	
¹⁸⁸ Ir	ε	2792	0.0	1-	2098.98	(1)+	9.2	9	7.236	45	
¹⁸⁸ Ir	ε	2792	0.0	1-	2214.60	(1)+	26.6	22	6.599	40	
¹⁸⁸ Ir	ε	2792	0.0	1-	2347.49	(1)+	1.02	12	7.76	6	

Table	11
(contin	ued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
^{189}Re	β -	1008	0.0	5/2 +	233.54	5/2-	0.21	4	9.28	8	
$^{189}\mathrm{Re}$	β -	1008	0.0	5/2 +	275.90	5/2-	5.6	10	7.77	8	
$^{189}\mathrm{Re}$	β -	1008	0.0	5/2 +	672.18	5/2-	0.045	13	8.74	13	
^{189}Re	β -	1008	0.0	5/2 +	716.82	5/2-	0.32	8	7.68	12	
189 Ir	ε	537	0.0	3/2 +	0.0	3/2-	40	7	7.23	8	
189 Ir	ε	537	0.0	3/2+	95.23	3/2-	11.6	17	7.58	7	
189 Pt	$\beta + \varepsilon$	1980	0.0	3/2-	721.41	3/2+	21	6	6.89	12	
$^{190}\mathrm{Re}$	β-	3124.8	0.0	(2)-	1995.59	(2)+	1.1	2	6.45	8	Р
190 Ir	ε	1954.2	0.0	4-	955.24	4+	5.1	8	8.67	7	
190 Ir	ε	1954.2	0.0	4-	1163.11	4 +	25	3	7.76	5	
$^{191}\mathrm{Pt}$	ε	1010.5	0.0	3/2-	178.934	3/2 +	11.4	18	7.56	7	
$^{191}\mathrm{Pt}$	ε	1010.5	0.0	3/2-	538.839	3/2+	33	5	6.55	7	
191 Pt	ε	1010.5	0.0	3'/2-	762.52	3/2+	0.37	7	7.82	8	
$^{192}\mathrm{Au}$	$\beta + \varepsilon$	3516	0.0	1-	2149.385	1+	2.70	40	7.54	7	
$^{192}\mathrm{Au}$	$\beta + \varepsilon$	3516	0.0	1-	2319.11	1 +	4.0	5	7.25	6	
$^{192}\mathrm{Au}$	$\beta + \varepsilon$	3516	0.0	1-	2335.465	1+	11.4	14	6.78	6	
^{193}Os	β-	1141.9	0.0	3/2-	0.0	3/2+	59	3	7.541	22	
^{193}Os	β-	1141.9	0.0	3/2-	180.070	3/2+	1.5	2	8.87	6	
^{193}Os	β-	1141.9	0.0	3/2-	460.552	3/2+	7.74	11	7.634	8	
^{193}Os	β-	1141.9	0.0	3/2-	712.197	3/2+	0.513	8	8.142	10	
¹⁹³ Au	ε	1075	0.0	3/2+	114.158	3/2-	12.4	18	7.11	6	
¹⁹³ Au	ε	1075	0.0	3/2+	187.81	3/2-	26	4	6.71	7	
¹⁹³ Au	e e	1075	0.0	3/2+	269.83	(3/2)-	157	20	6.84	6	
¹⁹³ Au	e e	1075	0.0	3/2+	439.05	(3/2)-	37	5	7.24	6	
$^{193}H\sigma$	$\beta \pm l \epsilon$	2343	0.0	3/2	224.81	(3/2)	35.0	40	6 75	5	
¹⁹³ Ho	$\beta + \epsilon$	2343	0.0	3/2	1118.97	(3/2) + (3/2) +	24.0	30	6.41	6	
^{194}Os	β-70 β-	96.6	0.0	0/2	43 119	$(0/2)^{-1}$	24.0 76	10	6.39	8	
194 A 11	ρ- ε	2548.2	0.0	1_	1024 282	0- 1⊥	4 16	10	$\frac{0.55}{7506}$	15	
194 A 11	c	2548.2	0.0	1-	20/3 715	1_ 1_	4.10	16	7.000 7.234	15 15	
194 A 11	e	2548.2	0.0	1_	2040.110	1+	0.62	8	7.97	6	
194 A 11	c	2548.2	0.0	1-	2114.102 2215 530	1_ 1_	6.9	4	6.648	26	
194 A 11	c	2548.2	0.0	1-	2210.000	⊥ 1⊥	0.5	- - 	7320	20 18	
194 A 11	c	2548.2	0.0	1-	22565.100	1_ 1_	0.033 0.0731	$\frac{25}{25}$	7 010	10 22	
194 A 11	c	2548.2	0.0	1-	2303.332 2412.744	⊥ 1⊥	0.0751	20	7 699	40	
194ph	$\beta \perp l c$	2540.2	0.0	1- 0-	102 14	(0)	3.40	20	6.673	40 37	
1951r	ρ_{\pm}/ε	2750	0.0	0+ 3/2+	192.14 211.20	$(0)^{-}$	3.40 4 2	20 11	0.075 7.20	37 19	
11 195 A	ρ-	226.8	0.0	$\frac{3}{2+}$	211.30	0/2- 2/9	4.5	10	6 5 9 0	12	
195 A 11	c c	220.8	0.0	$\frac{3}{2+}$	90.000 100.46	3/2- 3/2	0.0142	19	0.009	19 6	
195 A	e	220.8	0.0	$\frac{3}{2+}$	199.40 211.4071	3/2-	0.0142 0.0105	20	7.20	11	
Ац 1951 г	e B L /c	220.8 1554	0.0	$\frac{3}{2+}$	61 424	3/2- 1/9+	0.0195 71	20 11	1.49 6.57	11	
1951Lg	$\rho + \epsilon$	1554	176.07	1/2- 12/9+	01.434	$\frac{1}{2+}$	65	5	0.57	1	
1951Lg	e	1554	176.07	$\frac{13}{2+}$	070.00 1550.60	13/2-	0.5	ม 19	1.019 6.61	40 91	
пg 195тті	\mathcal{E}	1004	170.07	$\frac{13}{2+}$	1009.00	15/2-	1.40	12	0.01	21 6	
195 TI	$\rho + \epsilon$	2000	0.0	1/2+	1400.00	1/2-	2.40	30 15	6.00	5	
196 A	$p+/\varepsilon$	2898	0.0	1/2+	1400.92	1/2-	15.4	10	0.28	0 14	
196 AU	$\rho + \varepsilon$	1505.8	0.0	2-	300.73	2+	07.0	21 10	7.400	14	
196 AU	ε	1505.8	0.0	2-	088.70	2+	24.6	10	7.583	18	
¹⁹⁶ Au 196mi	β-	687.2	0.0	2-	426.10	2+	6.85	25 C	7.093	23	р
11 196 mi	$p+\varepsilon$	4329	0.0	∠- 0	425.07	2+	31	0 C	(.11 7.005	(Г D
ייי ד <u>ו</u> 196 ות	$p + \varepsilon$	4329	0.0	2- 0 -	2012.3	(2)+	0.4	0	(.295 6.45	44	Р
197 P.	$p+\varepsilon$	2148	0.0	0+	191.7	U-	11.0	3U 20	0.45	12	
⁴⁰ 'Pt 197m	β- 0 - 1	(20.0	0.0	1/2-	77.35	1/2+	81.2	30	6.401	10	
197 DI	$\beta + \varepsilon$	2186	0.0	1/2+	0.0	1/2-	53	12	6.51	10	ъ
191 Pb	$\beta + \varepsilon$	3609	0.0	3/2-	1155.96	3/2+	8.9	22	6.10	14	Р

Table 11
(continued $)$

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_P \ [keV]$	Jπ	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
¹⁹⁷ Pb	$\beta + \varepsilon$	3609	319.31	13/2 +	1304.23	13/2-	4.4	14	7.20	14	Р
¹⁹⁷ Pb	$\beta + \varepsilon$	3609	319.31	13/2 +	1553.76	(13/2)-	3.5	8	7.20	10	Р
¹⁹⁷ Pb	$\beta + \varepsilon$	3609	319.31	13/2 +	1994.89	13/2-	2.9	6	7.08	9	Р
¹⁹⁷ Pb	$\beta + \varepsilon$	3609	319.31	13/2 +	2011.04	13/2-	1.5	5	7.36	15	Р
197 Pb	$\beta + \varepsilon$	3609	319.31	13/2 +	2113.90	13/2-	5.4	11	6.76	9	Р
$^{198}\mathrm{Au}$	β -	1373.52	0.0	2-	411.80250	2 +	98.990	9	7.4588	8	
$^{198}\mathrm{Au}$	β -	1373.52	0.0	2-	1087.6874	2 +	0.986	6	7.6997	36	
198 Tl	$\beta + \varepsilon$	3426	0.0	2-	1087.67	2 +	7.3	8	7.71	6	
$^{198}\mathrm{Tl}$	$\beta + \varepsilon$	3426	0.0	2-	1612.42	2 +	9.3	13	7.36	7	
$^{198}\mathrm{Tl}$	$\beta + \varepsilon$	3426	0.0	2-	1832.58	2 +	11.7	15	7.14	7	
$^{198}\mathrm{Tl}$	$\beta + \varepsilon$	3426	0.0	2-	1858.82	2 +	4.9	7	7.51	8	
$^{198}\mathrm{Tl}$	$\beta + \varepsilon$	3426	0.0	2-	2267.7	2 +	1.54	21	7.73	7	
$^{198}\mathrm{Tl}$	ε	3426	0.0	2-	2465.42	2 +	1.54	22	7.56	8	
$^{198}\mathrm{Tl}$	ε	3426	0.0	2-	2782.74	2 +	1.10	13	7.32	7	
199 Pt	β-	1705.1	0.0	5/2-	317.174	5/2 +	3.28	7	7.389	10	
199 Pt	β-	1705.1	0.0	5/2-	542.884	5/2+	12.01	12	6.543	6	
$^{199}\mathrm{Au}$	β-	452.3	0.0	3'/2+	208.20494	3/2-	21.5	4	6.210	9	
199 Tl	$\beta + \varepsilon$	1487	0.0	1/2+	0.0	1/2-	48	5	6.61	5	
¹⁹⁹ Pb	$\beta + \varepsilon$	2828	0.0	3/2-	366.89	3'/2+	17.0	40	6.87	11	
200 Tl	$\beta + \varepsilon$	2456	0.0	2-	367.943	2^{+}	25.2	6	7.752	$15^{}$	
200 Tl	ε	2456	0.0	2-	1573.665	2^{+}	30	3	6.880	46	
200 Tl	ε	2456	0.0	- 2-	1593.426	$\frac{-}{2+}$	1.4	4	8.19	12	
200 Tl	E	2456	0.0	- 2-	1730 925	2+	5.8	6	7 407	48	
200 Tl	e e	2456	0.0	- 2-	1882 857	$\frac{2}{2+}$	77	7	7 055	44	
200Tl	e e	2456	0.0	- 2-	1972.276	2+	1.30	14	7.66	5	
200 TI	e	2456	0.0	2 2_	2126 856	2^{+}	0.66	8	7.55	6	
200 TI	e	2456	0.0	2-	2120:000	2^{+}	0.00	19	7.30 7.37	8	
200 TI	c	2456	0.0	2- 2_	2200.90	$2 + 2 \perp$	0.149	3	7.65	10	
200Ph	c c	2450 796	0.0	$\frac{2}{0+}$	$147\ 634$	0-	68	3	6.173	20	
201 TI	c	180	0.0	$1/2 \perp$	167.48	$\frac{1}{2}$	30.8	4	6.17	5	
201 Ph	c B⊥/c	1010	0.0	$\frac{1}{2}$	602 52	$\frac{1}{2}$	62	8	7.45	6	
201 ph	$\rho_{1/c}$	1010	0.0	$5/2^{-}$	1470.85	5/2 + 5/2 +	2.66	18	6.81	6	
201 B;	$\beta \pm l \epsilon$	3842	0.0	$0/2^{-}$	1415 4	0/2 + 0/2 +	2.00	8	7.57	8	
201_{B} ;	$\beta \pm lc$	3842	0.0	$\frac{9}{2}$	1410.4 1737.3	$\frac{3}{2+}$ 0/2+	4.2	5	7.46	6	
201 p;	$\beta + lc$	3842	0.0	$\frac{9}{2}$	1875.6	$\frac{3}{2+}$	0.9 0.0	30	7.40	6	
201 p;	$\rho_{\pm/\epsilon}$	3842	0.0	9/2-0/2	1070.0 2110.5	9/2+ 0/2+	2.20	30	7.05 7.71	11	
$201_{D};$	$\rho_{\pm/\epsilon}$	2042 2042	0.0	9/2-0/2	2119.0	9/2+	1.40 6.0	50	6 991	11	
DI 202 TI	$\rho + \epsilon$	3042 1364 0	0.0	9/2- 2	2300.0 430.512	9/2+	0.9	10	0.821 7 481	44 11	
202 TI	E	1304.9	0.0	2- 2	459.512	2+	94.5	10 6	7.401 9.905	11	
203Dh	2	1304.9	0.0	2- 5 /9	909.92 690 5160	2+ 5/2+	0.09	0	6.000 6.005	40 97	
203D:	\mathcal{E}	970	0.0	$\frac{0}{2}$	1547.7	$\frac{3}{2+}$	4.70	0	0.890	21 6	
203 DI	$\rho + \varepsilon$	3202	0.0	9/2-	1047.7	9/2+	5.0 0.00		0.10	0	
203D:	$p+/\varepsilon$	3202	0.0	9/2-	1041.5	9/2+	2.20	40	8.30	8 7	
203 D	ε	3202	0.0	9/2-	2008.8	9/2+	3.0	0 10	7.30 6.907	1	
200 B1 203 D1	ε	3262	0.0	9/2-	2713.3	9/2+	21.2	10	6.295	38	
200 B1	ε	3262	0.0	9/2-	2753.6	(9/2)+	7.8	5	6.652	45	
²⁰³ Bi	ε	3262	0.0	9/2-	2794.2	(9/2)+	1.45	20	7.30	7	D
²⁰³ Po	$\beta + \varepsilon$	4214	0.0	5/2-	1488.14	5/2+	5.6	10	7.13	8	Р
²⁰³ At	$\beta + \varepsilon$	5148	0.0	9/2-	1129.27	9/2+	3.4	6	7.12	8	Р
²⁰⁰ At 204 D:	$\beta + \varepsilon$	5148	0.0	9/2-	1379.62	(9/2)+	3.70	30	7.003	38	Р
²⁰⁴ Bi	$\beta + \varepsilon$	4464	0.0	6+	3397.48	6-	1.68	20	8.01	5	
²⁰⁴ Bi	ε	4464	0.0	6+	3637.91	6-	9.8	10	7.009	48	
²⁰⁴ Bi	ε	4464	0.0	6+	4094.29	6-	1.02	11	7.18	6	
²⁰⁴ Bi	ε	4464	0.0	6+	4183.88	6-	1.56	17	6.69	7	

Table 11
(continued $)$

Nuclide	Decay	$Q \; [\text{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
205 Hg	β-	1533.1	0.0	1/2-	0.0	1/2+	96.8	15	5.348	11	
²⁰⁵ Bi	$\beta + \varepsilon$	2704.6	0.0	9/2-	1593.57	9/2 +	8.21	10	8.869	12	
²⁰⁵ Bi	ε	2704.6	0.0	9/2-	2488.08	(9/2)+	1.08	3	8.045	37	
²⁰⁵ Bi	ε	2704.6	0.0	9/2-	2565.12	9/2+	9.32	13	6.50	6	
²⁰⁵ Bi	ε	2704.6	0.0	9/2-	2606.87	9/2 +	3.69	7	6.34	8	
²⁰⁵ Po	$\beta + \varepsilon$	3544	0.0	5/2-	1970.25	5/2 +	6.5	5	7.005	40	
205 At	$\beta + \varepsilon$	4537	0.0	9/2-	1400.80	9/2 +	6.6	5	7.105	36	Р
205 At	$\beta + \varepsilon$	4537	0.0	9/2-	1539.94	9/2 +	2.85	17	7.422	30	Р
205 At	$\beta + \varepsilon$	4537	0.0	9/2-	1912.00	9/2 +	3.80	40	7.163	48	Р
^{205}At	$\beta + \varepsilon$	4537	0.0	9/2-	2355.56	9/2 +	3.60	30	7.009	40	Р
^{205}At	$\beta + \varepsilon$	4537	0.0	9/2-	2799.20	(9/2)+	2.73	14	6.918	28	Р
^{205}At	$\beta + \varepsilon$	4537	0.0	9/2-	2930.82	(9/2)+	1.83	9	7.020	28	Р
$^{206}\mathrm{Hg}$	β -	1308	0.0	0 +	0.0	0-	62	7	5.50	6	
206 Tl	β -	1532.2	0.0	0-	0.0	0 +	99.885	14	5.2711	14	
207 Tl	β -	1418	0.0	1/2 +	0.0	1/2-	99.729	10	5.202	6	
207 Po	ε	2909	0.0	5/2-	2405.68	5/2+	3.12	9	6.759	21	
^{207}At	$\beta + \varepsilon$	3918	0.0	9/2-	2230.244	9/2+	11.3	6	6.881	26	
^{207}At	$\beta + \varepsilon$	3918	0.0	9'/2-	2294.21	(9/2)+	1.04	7	7.882	32	
^{207}At	$\beta + \varepsilon$	3918	0.0	9'/2-	2303.301	9/2+	17.5	8	6.651	24	
208 Tl	β-	4998.4	0.0	$5^{'}+$	3197.717	5-	49.1	7	5.703	6	
208 Tl	β-	4998.4	0.0	5+	3708.41	5-	24.2	3	5.472	6	
208 Tl	β-	4998.4	0.0	5+	3960.93	5-	3.18	6	6.013	9	
^{208}At	$\beta + \varepsilon$	4999	0.0	6+	3564.5	6-	25.9	15	6.325	28	
209 Tl	β-	3970	0.0	1/2 +	2149.42	1/2-	97	4	5.275	19	
209 Pb	β-	644.0	0.0	9/2+	0.0	9'/2-	100		5.6267	27	
²⁰⁹ At	$\beta + \varepsilon$	3482	0.0	9/2-	2312.04	9/2+	70.9	19	6.222	14	
$^{210}\mathrm{Pb}$	β-	63.5	0.0	$0^{'}+$	46.539	0-	84	3	5.557	43	
²¹⁰ At	$\beta + \varepsilon$	3981	0.0	(5)+	2910.0	5-	70.0	30	6.319	30	
^{210}At	ε	3981	0.0	(5)+	3026.2	5-	19	1	6.778	33	
^{210}At	ε	3981	0.0	(5)+	3428.3	5-	2.2	1	7.183	34	
$^{211}\mathrm{Pb}$	β-	1366	0.0	9/2+	0.0	9/2-	91.32	12	6.084	6	
$^{211}\mathrm{Pb}$	β-	1366	0.0	9/2+	831.960	9'/2-	6.28	10	5.826	15	
211 At	ε	785.3	0.0	9/2-	0.0	9/2+	57.93	1	6.056	6	
211 Rn	ε	2892	0.0	1/2-	2479.2	(1/2)+	68	4	5.677	34	
²¹³ Bi	β-	1422	0.0	$\frac{9}{2}$	0.0	9/2+	65.9	4	6.416	6	
^{214}Bi	β-	3269	0.0	1-	1764.520	1+	16.90	11	6.733	12	
^{214}Bi	β-	3269	0.0	1-	2118.535	1+	4.33	4	6.900	16	
^{214}Bi	β-	3269	0.0	1-	2204.103	1+	5.56	5	6.671	17	
221 Rn	β-	1194	0.0	7/2 +	108.387	(7/2)-	8.1	25	6.73	13	
221 Rn	β-	1194	0.0	7/2+	195.788	(7/2)-	2.1	3	7.19	6	
222 Fr	β-	2058	0.0	2-	111.12	2+	38	12	6.75	14	
225 Rn	β-	2714	0.0	$\frac{-}{7/2}$	198.23	(7/2)+	3.3	6	7.73	8	
225 Rn	β-	2714	0.0	$\frac{7}{2}$	293.23	(7/2)+	2.88	25	7.725	39	
225 Rn	β-	2714	0.0	$\frac{7}{2}$	665.18	(7/2) +	1 11	-0	7 862	38	
227 Fr	β-	2505	0.0	1/2+	296 576	1/2-	3.0	6	7.30	9	
227 Fr	β-	2505	0.0	1/2+	675 863	1/2-	48.6	20	5.784	19	
228 Fr	β-	4444	0.0	2-	770 71	2+	1.85	19	7 783	46	Р
228 Fr	β-	4444	0.0	- 2-	846 14	2+	3.0	3	7.538	45	P
228 Fr	β-	4444	0.0	- 2-	$1013\ 24$	$\frac{1}{2+}$	2.8	4	7.49	6	P
228 Fr	р В-	4444	0.0	- 2-	2138.3	$\frac{1}{2+}$	1.22	13	7.10	48	Р
228 Fr	β-	4444	0.0	2-	2161.3	$\frac{2}{2+}$	2.29	24	6 884	47	P
²²⁸ Ac	р В-	2123.8	0.0	- 3+	396 083	3-	11.65	24	8 537	9	*
²²⁸ Ac	р В-	2123.8	0.0	3+	$1168\ 377$	3-	3 11	7	8 187	11	
110	\sim		0.0	91	1100.011		0.11	•	0.101	**	

Table 11	
(continued)	

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
$^{231}\mathrm{Ac}$	β-	1947	0.0	1/2+	554.651	(1/2)-	88	5	5.623	29	
231 Th	β -	391.5	0.0	5/2 +	77.694	5/2-	0.53	8	7.99	7	
²³³ Pa	β -	570.3	0.0	3/2-	311.905	3/2+	25	4	7.49	7	
²³³ Pa	β -	570.3	0.0	3/2-	415.761	3/2+	28	3	6.74	5	
$^{237}\mathrm{U}$	β-	518.5	0.0	1/2 +	281.368	1/2-	51	4	6.503	34	
237 Pu	ε	220.1	0.0	7/2-	33.207	7/2+	11.8	14	7.54	5	
^{238}Np	β -	1291.45	0.0	2 +	985.47	2-	0.521	7	8.362	6	
^{238}Am	$\beta + \varepsilon$	2.26 E3	0.0	1 +	605.13	1-	14.8	18	7.05	6	
$^{238}\mathrm{Am}$	$\beta + \varepsilon$	2.26 E3	0.0	1 +	962.85	1-	54	6	6.26	7	
$^{238}\mathrm{Am}$	ε	2.26 E3	0.0	1 +	1447.25	1-	1.12	14	7.49	10	
$^{238}\mathrm{Am}$	ε	2.26 E3	0.0	1 +	1621.29	1-	4.1	5	6.68	12	
$^{238}\mathrm{Am}$	ε	2.26 E3	0.0	1 +	1636.42	1-	1.89	24	7.00	12	
$^{239}\mathrm{U}$	β -	1261.7	0.0	5/2 +	74.6640	5/2-	69.0	14	6.059	9	
^{239}Np	β-	722.8	0.0	5/2+	505.2	5/2-	0.0074	2	9.795	13	
^{239}Am	ε	802.1	0.0	(5/2)-	285.46	5/2+	71	8	6.090	49	
$^{241}\mathrm{Cm}$	ε	767.4	0.0	1/2 +	652.089	(1/2)-	26.7	12	6.440	24	
$^{243}\mathrm{Cm}$	ε	6.9	0.0	5/2+	0.0	5/2-	0.29	3	7.37	43	
^{249}Es	ε	1452	0.0	7/2 +	852.19	(7/2)-	2.2	3	7.04	8	
^{249}Es	ε	1452	0.0	7/2+	1218.50	(7/2)-	1.6	2	6.05	21	
$^{250}\mathrm{Bk}$	β -	1781.7	0.0	2-	1031.852	2+	83.4	16	6.346	10	

16.2. First forbidden non-unique ($\Delta J=1$)

Table 12

List of first forbidden transitions with $\Delta J=1$ and $\Delta \pi=$ yes.

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
¹¹ Be	β -	1.150946E4	0.0	1/2 +	0.0	3/2-	54.7	20	6.830	16	
³³ Mg	β -	1.3460E4	0.0	3/2-	0.0	(5/2)+	37	8	5.23	9	Р
⁴⁵ K	β -	4196.6	0.0	3/2 +	174.28	5/2-	7.9	8	7.605	46	
^{48}V	ε	4014.9	0.0	4+	3358.80	3-	0.138	11	7.786	35	
66 Ga	$\beta + \varepsilon$	5175.5	0.0	0+	3380.944	1-	2.01	17	6.530	38	
^{70}As	$\beta + \varepsilon$	6228.1	0.0	4 +	2562.05	3-	1.70	40	7.46	10	
72 Ga	β -	3997.6	0.0	3-	834.416	2 +	6.80	15	9.051	10	
72 Ga	β -	3997.6	0.0	3-	1464.295	2 +	9.38	6	8.4973	29	
^{72}As	$\beta + \varepsilon$	4343.60	0.0	2-	2064.87	3+	0.047	15	9.22	14	
$^{73}\mathrm{Kr}$	$\beta + \varepsilon$	7094	0.0	(3/2)-	286.09	(5/2)+	3.8	10	6.56	12	
$^{74}\mathrm{As}$	ε	2562.4	0.0	2-	1696.97	(3)+	0.0071	18	9.92	11	
$^{75}\mathrm{Se}$	ε	866.04	0.0	5/2 +	821.73	7/2-	0.000160	0 10	9.642	28	
$^{75}\mathrm{Br}$	$\beta + \varepsilon$	3062.5	0.0	3/2-	1198.61	5/2+	1.59	15	6.070	42	Р
$^{76}\mathrm{Br}$	$\beta + \varepsilon$	4963	0.0	1-	0.0	0+	6.0	10	8.94	7	
$^{76}\mathrm{Br}$	$\beta + \varepsilon$	4963	0.0	1-	559.17	2 +	28.1	11	7.968	19	
$^{76}\mathrm{Br}$	$\beta + \varepsilon$	4963	0.0	1-	1122.33	0 +	1.78	16	8.819	40	
^{76}Br	$\beta + \varepsilon$	4963	0.0	1-	1216.35	2+	3.9	12^{-3}	8.41	13	
^{76}Br	$\beta + /\varepsilon$	4963	0.0	1-	3069.98	2+	18.9	8	6.026	21	
77 As	β-70 β-	683.2	0.0	3/2-	301 169	$\frac{5}{2+}$	0.013	2	8.72	-1 7	
77Br	$\beta + \epsilon$	1364.7	0.0	3/2-	301.09	5/2+	0.010	$\frac{1}{2}$	8.39	9	
81 Kr	p 1 / C	280.85	0.0	$\frac{5}{2}$	275 991	5/2	0.000	2	0.38	13	
83 S r	B±/c	200.00	0.0	$7/2 + 7/2 \pm$	210.001	5/2	23.5	20	5.00 6.667	10	
83 S r	$\beta + c$	2210 2273	0.0	7/2 + 7/2 +	1102.00	$0/2^{-}$	20.0	20	0.007	42 14	
8550	$\rho_{T/c}$	6161.8	0.0	(5/2)	1102.90	$\frac{3}{2}$	21	6	9.11 6.54	14 Q	D
85 c	ρ-	1064.1	0.0	(0/2)+	0.0 969 06	3/2- 7/9	0.0192	7	0.04	6	1
87 Kr	E B	1004.1	0.0	$\frac{9}{2+}$	0.00	1/2-	20.5	1 00	9.10 7.002	0 91	
881Zm	ρ-	3000.21 2017 7	0.0	$\frac{3}{2+}$	106 202	$\frac{3}{2}$	30.3 2.0	22	1.823	31 7	
89D1	ρ-	2917.7	0.0	0+	190.292	(1)-	2.0	ა 19	0.00	1	
90 DI	p-	4497	100.0	3/2-	0.0	$\frac{3}{2+}$	18.8	13	7.031	3U 10	
°°KD 90D1	β-	6585 CFOF	106.90	პ- ი	831.07	2+	15	4	(.69	12	
90 D1	β-	6585	106.90	პ- ი	1655.89	4+	3.5	0	8.03	1	
⁹⁰ Rb	β-	6585	106.90	3-	1892.34	2+	4.2	4	7.856	42	
9357	β-	4141	0.0	5/2+	2543.93	3/2-	3.8	3	6.125	37	
95 Pl	β-	2895	0.0	1/2-	266.87	3/2+	4.9	9	8.83	8	D
⁹⁵ Rb	β-	9227	0.0	5/2-	556.06	(7/2)+	6.0	12	6.04	9	Р
⁹⁵ Rb	β-	9227	0.0	5/2-	1121.01	3/2+	2.5	6	6.28	10	Р
⁹⁵ Sr	β-	6091	0.0	1/2+	685.8	3/2-	8.9	7	6.742	34	Р
95 Y	β -	4452	0.0	1/2-	2372.17	3/2+	3.79	22	6.749	26	
⁹⁵ Nb	β-	925.60	234.70	1/2-	204.116	3/2+	2.4	3	8.37	5	
⁹⁵ Tc	$\beta + \varepsilon$	1691	38.91	1/2-	204.1177	3/2+	7.68	10	8.364	18	
95 Tc	ε	1691	38.91	1/2-	820.627	3/2+	5.95	8	8.006	19	
95 Tc	ε	1691	38.91	1/2-	1620.25	3/2 +	0.0511	25	8.10	6	
⁹⁶ Rh	$\beta + \varepsilon$	6393	0.0	6+	2588.36	5-	1.72	7	6.814	19	
97 Ru	ε	1104	0.0	5/2 +	580.33	3/2-	0.0020	3	9.70	7	
$^{97}\mathrm{Rh}$	$\beta + \varepsilon$	3523	258.76	1/2-	189.24	3/2 +	12.4	21	6.49	8	
$^{97}\mathrm{Rh}$	$\beta + \varepsilon$	3523	258.76	1/2-	771.38	3/2 +	3.1	6	6.67	9	
$^{97}\mathrm{Rb}$	β-	1.00615E4	0.0	3/2 +	713.82	(5/2)-	3.1	4	6.12	6	Р
$^{97}\mathrm{Zr}$	β -	2666.1	0.0	1/2 +	1251.186	3/2-	4.27	8	8.034	10	
$^{99}\mathrm{Rh}$	$\beta + \varepsilon$	2041	0.0	1/2-	322.43	3/2 +	5.0	5	8.185	45	
$^{99}\mathrm{Nb}$	β-	3635	365.27	1/2-	351.20	3/2+	1.5	4	7.60	12	Р
$^{99}\mathrm{Nb}$	β-	3635	365.27	1/2-	548.71	3/2+	1.50	22	7.50	7	Р
$^{99}\mathrm{Nb}$	β-	3635	365.27	1/2-	792.92	3/2+	1.16	19	7.47	8	Р

Table 12	
(continued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
⁹⁹ Nb	β -	3635	365.27	1/2-	890.58	3/2 +	1.47	20	7.31	7	Р
^{99}Mo	β -	1357.8	0.0	1/2 +	509.125	3/2-	1.16	2	8.393	8	
^{99}Mo	β -	1357.8	0.0	1/2 +	671.500	3/2-	0.057	3	9.370	23	
^{99}Mo	β -	1357.8	0.0	1/2 +	1129.123	(3/2)-	0.012	1	8.446	37	
100 Rh	$\beta + \varepsilon$	3636	0.0	1-	0.0	0+	2.9	$\overline{7}$	8.57	11	
100 Rh	$\beta + \varepsilon$	3636	0.0	1-	539.511	2 +	1.7	5	8.42	13	
$^{101}\mathrm{Rh}$	ε	546	0.0	1/2-	422.23	3/2 +	0.84	8	8.38	8	
$^{103}\mathrm{Ru}$	β-	764.5	0.0	3/2+	0.0	1/2-	0.87	5	9.548	25	
$^{103}\mathrm{Ru}$	β-	764.5	0.0	3/2+	357.408	5/2-	0.0083	5	10.622	27	
$^{103}\mathrm{Pd}$	ε	574.7	0.0	5/2+	295.00	3'/2-	0.00044	11	10.64	11	
$^{105}\mathrm{Ag}$	$\beta + \varepsilon$	1347.1	0.0	1/2-	280.5	3/2+	1.20	40	8.84	14	
^{105}Ag	ε	1347.1	0.0	1/2-	560.7	3/2+	0.14	4	9.50	12	
$^{105}\mathrm{Ag}$	ε	1347.1	0.0	1/2-	650.8	(3/2)+	7.2	7	7.678	43	
^{106}Ag	ε	2965.1	89.66	6+	2397.6	(5)-	0.10	3	8.79	13	
¹⁰⁸ In	$\beta + \varepsilon$	5133	0.0	7+	2975.11	6-	1.26	14	6.60	5	
110 Ag	β-	2890.7	117.59	6+	2539.672	5-	0.061	5	10.828	36	
¹¹⁰ Ag	β-	2890.7	117.59	6+	2659.857	5-	0.036	5	10.63	6	
$^{110}A\sigma$	β-	2890.7	117.59	6+	2842.62	(5)-	0.0232	9	9 785	20	
111 A σ	р В-	1036.8	0.0	1/2-	342.13	$\frac{3}{2+}$	7 1	5	7 826	31	
113Sn	p e	1039.0	0.0	1/2 + 1/2 +	646 833	3/2-	2 21	8	8 221	17	
$115 \Delta \sigma$	С В-	3102	0.0	1/2	229.04	(3/2) +	12.5	15	7.221	5	
^{115}Cd	β- β-	1451.0	0.0	$1/2^{-1}$	507.04	$(3/2)^{+}$ 3/2	12.0 1 17	6	8 428	22	
^{117}Cd	β- β	1401.9 9595	0.0	$\frac{1}{2}$	588 652	$\frac{3}{2}$	$\frac{1.17}{3.7}$	6	7.05	22 7	
117 In	β- β	1454 7	215 202	$\frac{1}{2}$	158.6	$\frac{3}{2}$	0.7	10	$7.30 \\ 7.197$	1 15	
111 118 _T	p- Bilo	1404.7	0.0	1/2-	1901 7	$\frac{3}{2+}$	9.7	10	7 426	40 96	D
и 119та	$\rho_{\pm/\epsilon}$	0720	0.0	2- 1 /9	1091.7	(3)+	2.10	10	7.430	30 20	Г
те 119та	e	2293.0	260.06	$\frac{1}{2+}$	1413.21	$\frac{3}{2}$	1.20	9	7.045	02 11	
те 120т	$\rho + \varepsilon$	2293.0 EG1E	200.90	11/2-	970.90	9/2+	0.28	1	9.07	11	D
121 C J	$\rho + \varepsilon$	0010 4761	0.0	2- 2/9+	2400.0	1+1/9	0.74 2.2	24 10	6 70	29 19	Г D
121 C J	ρ-	4701	0.0	$\frac{3}{2+}$	515.09 1079.00	1/2- 5/2	ა.ა 1 0	10 6	0.70 6.50	15	Г D
121 I	ρ-	4701	0.0	$\frac{3}{2+}$	1078.99	$\frac{3}{2}$	1.9	0	0.39	14	Г
121m	ρ-	3302	313.0	1/2-	1101.8	3/2+	2.0	4	(.10	9	
121 m	ε	1056	293.991	11/2-	946.991	9/2+	0.079	8	9.93	8	
121 T	ε	1056	293.991	11/2-	1035.433	9/2+	0.078	8	9.70	10	
123 g	ε	1056	293.991	11/2-	1144.66	9/2+	0.00148	22	11.01	15	
120 Sn	β-	1408.2	0.0	11/2-	1030.23	9/2+	0.031	7	10.59	10	
¹²¹ Sb	β-	2905.07	0.0	3-	602.7278	2+	23.2	3	10.280	6	
¹²⁴ Sb	β-	2905.07	0.0	3-	1248.582	4+	2.57	13	10.662	22	
¹²⁴ Sb	β-	2905.07	0.0	3-	1325.512	2+	4.88	5	10.3022	45	
¹²⁴ Sb	β-	2905.07	0.0	3-	1957.915	4+	2.144	20	9.8196	41	
¹²⁴ Sb	β-	2905.07	0.0	3-	2039.288	2+	3.994	23	9.4076	25	
¹²⁴ Sb	β-	2905.07	0.0	3-	2091.680	2+	0.685	6	10.0758	38	
¹²⁴ Sb	β -	2905.07	0.0	3-	2182.39	2+	0.45	5	10.075	48	
¹²⁴ Sb	β -	2905.07	0.0	3-	2224.839	4+	0.091	4	10.677	19	
^{124}Sb	β -	2905.07	0.0	3-	2323.41	2+	0.059	6	10.629	44	
^{124}Sb	β -	2905.07	0.0	3-	2454.96	2+	0.0079	14	11.12	8	
¹²⁴ Sb	β -	2905.07	0.0	3-	2483.277	4+	0.326	5	9.414	7	
¹²⁴ Sb	β -	2905.07	0.0	3-	2521.48	2+	0.0545	16	10.054	13	
$^{124}\mathrm{Sb}$	β -	2905.07	0.0	3-	2682.50	2 +	0.022	4	9.68	8	
$^{124}\mathrm{Sb}$	β -	2905.07	0.0	3-	2711.012	4+	0.106	4	8.812	16	
$^{124}\mathrm{Sb}$	β -	2905.07	0.0	3-	2807.55	2 +	0.00147	20	9.74	6	
$^{124}\mathrm{Sb}$	β -	2905.07	0.0	3-	2814.56	2 +	0.023	4	8.45	8	
^{125}Sn	β -	2361.4	0.0	11/2-	1806.70	(9/2)+	0.13	4	9.40	13	
^{125}Sn	β -	2361.4	0.0	11/2-	2240.73	9/2 +	0.58	16	6.61	12	

Table 12
(continued)

Nuclide	Decay	$Q \; [\text{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
$^{125}\mathrm{Sb}$	β -	766.7	0.0	7/2 +	321.090	9/2-	7.18	8	9.374	8	
$^{129}{ m Te}$	β -	1502.3	105.51	11/2-	729.57	(9/2)+	0.70	14	9.95	9	
$^{130}\mathrm{Sb}$	β -	5067	5.36	(4)+	2101.14	5-	3.1	3	7.485	43	Р
$^{133}\mathrm{Ce}$	$\beta + \varepsilon$	3076	37.2	9/2-	130.804	7/2 +	2.7	8	7.74	13	
$^{133}\mathrm{Ce}$	$\beta + \varepsilon$	3076	37.2	9/2-	495.02	7/2 +	1.33	9	7.841	42	
^{133}I	β -	1786	0.0	7/2 +	743.752	9/2-	1.83	6	8.241	17	
137 Xe	β -	4162.36	0.0	7/2-	455.490	5/2+	31	3	6.717	42	
$^{138}\mathrm{Xe}$	β-	2915	0.0	0+	412.263	1-	15.0	8	6.885	24	
^{138}Cs	β-	5375	0.0	3-	1898.64	4+	13.7	7	7.900	23	
^{138}Cs	β-	5375	0.0	3-	2217.92	2 +	12.9	4	7.750	15	
^{138}Cs	β-	5375	0.0	3-	2307.59	4+	7.3	3	7.944	19	
^{138}Cs	β-	5375	0.0	3-	2639.53	2+	8.8	3	7.656	16	
^{138}Cs	β-	5375	0.0	3-	2779.44	4+	1.59	8	8.304	23	
^{138}Cs	β-	5375	79.9	6-	2415.2	5+	2.8	6	7.30	9	Р
^{139}Cs	β-	4212.8	0.0	$\frac{7}{2+}$	1283.32	(9/2)-	6.2	13	7.39	9	-
^{139}Ba	β-	2308 5	0.0	$7/2_{-}$	165 859	5/2+	29.68	31	7 1201	46	
^{140}Cs	р В-	6218	0.0	1_	0.0	0+	35.9	17	7 093	21	
^{140}Cs	р В -	6218	0.0	1_	602 31	$2 \pm$	14.9	18	7.000 7.28	5	
140 Cs	β_ β_	6218	0.0	1_	1510.64	$\frac{2}{2}$	37	3	7.549	36	
140 Cs	β- β-	6218	0.0	1-	1823.80	$0\perp$	1.65	11	7.549 7 770	20 20	
$140 C_{\rm S}$	p- ß	6218	0.0	1-	102 5 .00	2^{\perp}	2.05	3	7 355	23 47	
$140C_{\rm c}$	β- β	6218	0.0	1-	2251.21	2⊤ 2⊥	2.8	0	7.555 7.460	41 28	
140 Do	ρ- β	1044	0.0	1-	42 9122	2十 1	1.05	9 10	7.409 8.06	10 11	
- Da 140 р.	ρ-	1044	0.0	0+	43.0132	1-	40	10	$\frac{8.00}{7.820}$	11	
°Ба 1401 -	р- 0	1044	0.0	0+	407.000	1-	9.0	2 10	(.839	23 19	
°Lа 140т	р- 0	3702.2	0.0	პ- ე	1590.24	2+	5.9	10	9.32	12	
140т 140т	p-	3762.2	0.0	კ- ი	2083.26	4+	20.2	9	8.351	19	
¹¹⁰ La 140 1	β-	3762.2	0.0	3-	2347.89	2+	4.97	5	8.6727	46	
¹⁴⁰ La	β-	3762.2	0.0	3-	2480.93	4+	1.124	20	9.155	8	
¹⁴⁰ La	β-	3762.2	0.0	3-	2515.77	4+	5.63	5	8.4106	42	
¹⁴⁰ La	β-	3762.2	0.0	3-	2521.43	2+	11.05	8	8.1102	36	
¹⁴⁰ La	β-	3762.2	0.0	3-	2899.66	2+	0.109	7	9.537	28	
¹⁴⁰ La	β-	3762.2	0.0	3-	3001.12	2+	0.082	9	9.467	48	
¹⁴⁰ La	β-	3762.2	0.0	3-	3118.55	2+	0.0248	10	9.731	18	
¹⁴⁰ La	β-	3762.2	0.0	3-	3320.4	2+	0.0038	3	9.991	35	
141 Sm	$\beta + \varepsilon$	4589	175.9	11/2-	837.10	9/2+	3.7	4	7.04	3	Р
¹⁴¹ Ce	β -	583.5	0.0	7/2-	0.0	5/2+	30.0	6	7.803	8	
¹⁴² Ba	β -	2182	0.0	0+	255.303	1-	3.5	7	6.97	9	
^{142}Ba	β -	2182	0.0	0+	432.30	1-	4.3	2	6.714	23	
^{142}La	β -	4509	0.0	2-	2397.92	1 +	17.8	4	7.376	11	
^{142}La	β -	4509	0.0	2-	2666.7	1+	3.1	2	7.899	29	
^{142}La	β -	4509	0.0	2-	3675.6	1+	1.2	1	7.017	38	
^{142}La	β -	4509	0.0	2-	3717.43	1 +	1.0	1	7.018	45	
^{143}Gd	$\beta + \varepsilon$	6.01 E3	152.6	11/2-	906.94	9/2 +	1.20	40	7.05	17	Р
^{143}Cs	β -	6262	0.0	3/2 +	534.83	5/2-	1.2	2	6.86	7	Р
^{143}Cs	β -	6262	0.0	3/2 +	729.27	5/2-	1.6	3	6.67	8	Р
$^{143}\mathrm{Ce}$	β -	1461.8	0.0	3/2-	57.360	5/2 +	36.8	23	7.726	27	
$^{143}\mathrm{Ce}$	β-	1461.8	0.0	3/2-	721.927	5/2+	13.47	16	7.144	7	
$^{143}\mathrm{Ce}$	β -	1461.8	0.0	3/2-	740.261	(1/2)+	0.038	3	9.655	35	
$^{143}\mathrm{Ce}$	β-	1461.8	0.0	3/2-	1060.218	5/2+	0.214	11	8.040	23	
$^{143}\mathrm{Pm}$	$\beta + \varepsilon$	1041.6	0.0	5/2+	0.0	7/2-	61.3	25	8.433	21	
$^{143}\mathrm{Pm}$	ε	1041.6	0.0	5/2+	741.98	3'/2-	38.7	25	7.467	32	
$^{144}\mathrm{Ce}$	β-	318.6	0.0	$0^{'}+$	80.111	1-	3.87	21	8.365	24	
$^{144}\mathrm{Ce}$	β-	318.6	0.0	0 +	133.5172	1-	19.25	28	7.321	9	

Table 12
(continued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
144 Pm	ε	2331.9	0.0	5-	1314.662	4+	55.3	13	8.593	20	
144 Pm	ε	2331.9	0.0	5-	1791.433	6+	42.0	8	8.134	19	
144 Pm	ε	2331.9	0.0	5-	2109.964	4 +	0.0043	1	11.254	24	
^{145}Cs	β -	7462	0.0	3/2 +	175.28	(1/2)-	7.3	11	6.05	7	Р
^{145}Cs	β -	7462	0.0	3/2 +	198.69	(5/2)-	8.5	24	5.98	12	Р
145 Pr	β -	1806	0.0	7/2 +	748.278	9/2-	1.04	2	8.093	14	
145 Pm	ε	164.5	0.0	5/2 +	0.0	7/2-	82.5	10	7.900	22	
$^{145}\mathrm{Pm}$	ε	164.5	0.0	5/2+	67.2	3/2-	7.2	4	8.322	45	
$^{145}\mathrm{Sm}$	ε	616.1	0.0	7/2-	0.0	5/2+	8.6	8	8.949	41	
$^{145}\mathrm{Eu}$	$\beta + \varepsilon$	2659.9	0.0	5/2+	0.0	7/2-	7.25	10	8.709	7	
$^{145}\mathrm{Eu}$	$\beta + \varepsilon$	2659.9	0.0	5/2+	893.788	3/2-	43.4	40	7.483	40	
$^{145}\mathrm{Eu}$	ε	2659.9	0.0	5/2+	1876.64	7/2-	1.33	7	8.257	23	
$^{145}\mathrm{Eu}$	ε	2659.9	0.0	5/2+	1972.719	3/2-	0.611	26	8.475	19	
$^{145}\mathrm{Eu}$	ε	2659.9	0.0	5/2+	2133.420	3'/2-	0.465	16	8.345	16	
$^{145}\mathrm{Gd}$	$\beta + \varepsilon$	5065	0.0	1/2 +	1600.26	3'/2-	1.25	12	7.321	43	
145 Gd	$\beta + \varepsilon$	5065	0.0	1/2+	1761.32	3'/2-	1.25	10	7.243	37	
^{146}Gd	ε ε	1032	0.0	0+	384.80	1-	72.1	14	7.288	16	
^{146}Ba	β-	4354.9	0.0	0+	439.04	1-	1.4	4	6.18	12	Р
146 Pm	م ج	1471.6	0.0	3-	453.83	2+	42.2	22	9 456	24	-
146 Pm	e e	1471.6	0.0	3-	1043 5	4+	0.36		10.73	11	
146 Pm	<u>в</u> -	1542.0	0.0	3-	$747\ 24$	2^{+}	32.0	15	10.111	22	
¹⁴⁷ Nd	р В -	895.2	0.0	5/2-	410 516	$\frac{2}{3}/2 \pm$	0.64	6	8 785	41	
¹⁴⁷ Nd	β- β-	895.2	0.0	5/2-	489 245	$\frac{5}{2}$	0.83	4	8 416	-11 -21	
147Nd	β_ β_	895.2	0.0	$5/2_{-}$	680 435	$7/2 \perp$	0.09	6	8 /01	21	
147 Pm	β- β-	224.06	0.0	$\frac{5}{2}$	191 993	$5/2_{-}$	0.0569	- 0 - 23	10 660	2 <i>3</i> 18	
147 _{E11}	$\beta = \beta \pm 1 c$	1791 4	0.0	$5/2 \pm$	121.225	$\frac{5}{2}$	17.0	20 22	8.47	6	
147 Fu	$\beta + c$	1721.4 1791 4	0.0	5/2 + 5/2 +	107 284	$\frac{1}{2^{-}}$	25.0	20 11	8 104	22	
147 Fu	ρτ/ε	1721.4 1791.4	0.0	$5/2 \pm 5/2 \pm$	708731	3/2-	18.7	5	7867	16	
147 F 11	c	1721.4 1791.4	0.0	$5/2 \pm 5/2 \pm$	1440 113	$\frac{3}{2}$	0.203	10	8 513	10 91	
147 F.u	c	1721.4 1791.4	0.0	5/2+	1449.110	2/2	0.295	10	7803	21 91	
147 C J	$\mathcal{B} \perp \mathcal{I}_{\mathcal{C}}$	1721.4 2187.7	0.0	$\frac{3}{2+}$	1455.220	5/2-	1.10	4 20	0.01	21 14	
147 C d	$\rho_{\pm/\epsilon}$	2101.1	0.0	$\frac{1}{2}$	1005.64	5/2+	0.00	20	9.01 6.650	14 20	
148 Dm	e G	2101.1	0.0	1/2- 1	1905.04	$\frac{3}{2+}$	1.05	10	0.050 0.165	10	
гш 148 р т	ρ- β	2470	0.0	1- 1	550 274	0+	0.4	11	9.105	10	
гш 148 р аз	ρ-	2470	0.0	1-	1494 46	2+ 0+	9.4	3	9.490	10	
148 D	ρ-	2470	0.0	1-	1424.40	0+	0.230	9	10.090	19	
148 D	р- 0	2470	0.0	1- 1	1404.217	2+	0.093	4	10.454	21 10	
148D	р- 0	2470	0.0	1- 1	1004.100	2+	0.018	4	10.81	10	
148 D m	ρ-	2470	0.0	1- 1	1921.00	0+	0.0158	14	10.344 9.76	47	
148 F	р- 0 - / -	2470	0.0	1- r	2314.01	2+ 4 +	0.0091	10	8.70	9	
148 EU	$p+\varepsilon$	3039	0.0	0- F	1/33.4/0	4+	12.7	23	8.70	ð 91	
148E	$p+\varepsilon$	3039	0.0	0- F	1894.832	4+ C +	2.62	18	9.270	31	
148D	$\beta + \varepsilon$	3039	0.0	0- -	1905.864	0+ C +	10.20	40	8.670	20	
148D	ε	3039	0.0	5- -	2095.593	0+	3.34	10	8.990	18	
¹⁴⁰ Eu	ε	3039	0.0	5-	2111.058	4+	2.7	3	9.07	5	
¹⁴⁰ Eu	ε	3039	0.0	5-	2194.052	6+	1.35	4	9.283	18	
¹⁴⁰ Eu	ε	3039	0.0	5-	2228.057	4+	0.29	5	9.91	8	
¹⁴⁰ Eu 1485	ε	3039	0.0	5-	2327.426	4+	2.41	9	8.873	22	
¹⁴⁰ Eu	ε	3039	0.0	5-	2490.017	4+	2.51	7	8.615	23	
¹⁴⁰ Eu	ε	3039	0.0	5-	2524.390	4+	4.2	3	8.331	37	
¹⁴⁸ Eu	ε	3039	0.0	5-	2673.07	4+	0.216	10	9.293	35	
¹⁴⁰ Eu	ε	3039	0.0	5-	2723.517	4+	1.34	4	8.354	36	
¹⁴⁹ Tb	$\beta + \varepsilon$	3638.5	0.0	1/2+	1992.49	3/2-	8.50	30	6.654	16	
149 Pm	β -	1071.5	0.0	7/2 +	277.093	5/2-	0.027	2	10.223	32	

Table	12
(contin	ued)

Nuclide	Decay	$Q \; [\text{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
149 Pm	β -	1071.5	0.0	7/2 +	285.948	9/2-	3.4	2	8.105	26	
$^{149}\mathrm{Pm}$	β -	1071.5	0.0	7/2 +	558.352	5/2-	0.035	3	9.455	38	
$^{149}\mathrm{Pm}$	β -	1071.5	0.0	7/2 +	590.883	9/2-	0.090	7	8.950	34	
149 Pm	β -	1071.5	0.0	7/2 +	785.23	5/2-	0.00037	7	10.60	8	
149 Eu	ε	694.6	0.0	5/2 +	350.036	3/2-	5.53	6	8.059	13	
149 Eu	ε	694.6	0.0	5/2 +	528.592	3/2-	1.308	16	7.923	28	
$^{149}\mathrm{Eu}$	ε	694.6	0.0	5/2+	636.421	7/2-	0.00048	2	9.88	13	
$^{149}\mathrm{Gd}$	ε	1314.1	0.0	7/2-	812.631	5/2+	0.264	22	8.770	38	
$^{149}\mathrm{Gd}$	ε	1314.1	0.0	7'/2-	875.939	5/2+	0.337	19	8.535	28	
$^{149}\mathrm{Gd}$	ε	1314.1	0.0	7'/2-	933.119	(9/2)+	0.88	5	7.983	29	
$^{149}\mathrm{Gd}$	ε	1314.1	0.0	7'/2-	1220.56	3/2+	0.0043	6	8.70	9	
$^{151}\mathrm{Pm}$	β-	1190.2	0.0	5'/2+	104.833	3/2-	3.0	9	8.39	13	
$^{151}\mathrm{Pm}$	β-	1190.2	0.0	5/2+	208.995	(7/2)-	2.3	3	8.35	6	
151 Pm	β -	1190.2	0.0	5/2+	490.32	(7/2)-	0.47	6	8.52	6	
151 Sm	β-	76.6	0.0	5/2-	21.543	7/2+	0.91	6	9.190	49	
151 Gd	F	464 2	0.0	$\frac{3}{7}/2$ -	260.45	5/2+	0.16	2	9.21	6	
^{151}Gd	e e	464 2	0.0	$7/2_{-}$	307.27	(5/2)+	0.028	6	9.67	10	
$^{152}H_{0}$	$\beta \pm l \epsilon$	6513	160	9+	3227.6	(0/2) 8-	1.00	30	6.03	13	Р
$152_{F_{11}}$	$\beta + c$	1874.5	100	3	1217.0	0- 2⊥	1.00	5	11.83	10	1
152 F 11	$\beta \pm lc$	1874.5	0.0	ડ- ર	366 4705	$4 \pm$	0.850	40	11.05 11.065	14 91	
152 E.,	ρ_{\pm}/ϵ	1074.5	0.0	0- 9	210 452	4+ 0+	1.000	40 15	11.900	21 6	
152 E.	$\rho_{\pm/\epsilon}$	1074.0	0.0	ე- ე	1022.060	2+ 4 +	1.170	10	11.010 12.010	0	
152 Eu	ε	1874.5	0.0	პ- ე	1022.909	4+	0.233	4	12.010	8	
¹⁰ -Eu 152D	ε	1874.5	0.0	კ- ი	1085.8408	2+	21.50	11	9.9750	32	
¹⁰² Eu 152D	ε	1874.5	0.0	3-	1292.753	2+	0.625	8	11.231	6	
¹⁰² Eu 152D	ε	1874.5	0.0	3-	1371.721	4+	0.853	17	10.959	9	
¹⁵² Eu	ε	1874.5	0.0	3-	1612.88	4+	0.0205	6	11.939	13	
¹⁵² Eu	ε	1874.5	0.0	3-	1757.001	4+	0.054	3	10.618	26	
¹⁵² Eu	ε	1874.5	0.0	3-	1769.130	2+	0.0816	21	10.296	15	
¹⁵² Eu	ε	1874.5	0.0	3-	1776.56	2+	0.0086	6	11.174	32	
¹⁵² Eu	β -	1818.8	0.0	3-	344.2789	2+	8.25	19	12.116	10	
¹⁵² Eu	β -	1818.8	0.0	3-	755.3960	4+	0.914	10	12.5416	49	
¹⁵² Eu	β -	1818.8	0.0	3-	930.546	2+	0.284	6	12.767	9	
152 Eu	β -	1818.8	0.0	3-	1109.200	2+	0.264	9	12.455	15	
152 Eu	β -	1818.8	0.0	3-	1282.24	4 +	0.0232	12	13.095	23	
152 Eu	β -	1818.8	0.0	3-	1318.456	2+	0.0189	10	13.081	23	
152 Eu	β -	1818.8	0.0	3-	1550.17	4+	0.0456	22	11.816	21	
152 Eu	β -	1818.8	0.0	3-	1605.596	2 +	0.1068	22	11.128	10	
$^{153}\mathrm{Sm}$	β -	807.4	0.0	3/2 +	97.43099	5/2-	0.58	6	8.682	45	
$^{153}\mathrm{Gd}$	ε	484.5	0.0	3/2-	172.85318	5/2+	16.0	5	7.939	15	
$^{153}\mathrm{Tb}$	$\beta + \varepsilon$	1569.3	0.0	5/2+	361.480	3/2-	0.30	7	8.96	10	
$^{153}\mathrm{Tb}$	ε	1569.3	0.0	5/2+	636.503	7/2-	0.43	3	8.570	31	
$^{153}\mathrm{Tb}$	ε	1569.3	0.0	5/2+	857.611	3/2-	1.14	9	7.899	35	
$^{154}\mathrm{Eu}$	ε	717.2	0.0	3-	266.67	$4^{'}+$	0.0051	13	12.88	11	
$^{154}\mathrm{Eu}$	β-	1968.0	0.0	3-	123.071	2+	10.0	12	12.21	5	
^{154}Eu	β-	1968.0	0.0	3-	371.000	4+	0.19	5	13.69	11	
^{154}Eu	β-	1968.0	0.0	3-	1047.584	4+	0.131	4	12.961	13	
^{154}Eu	β-	1968.0	0.0	3-	1263 778	4+	0.728	8	11 806	5	
^{154}En	р В-	1968.0	0.0	3-	1418 146	2+	0.120	3	12.274	12	
^{154}En	р В-	1968.0	0.0	3-	1531 984	$\frac{1}{2+}$	0.100	10	11 459	14	
^{154}En	р В-	1968 0	0.0	3-	1645.85	<u>-</u>	0.020 0.179	4	11 906	11	
155Sm	р В-	1627 1	0.0	3/2-	307 39	$\frac{1}{5/2}$	1 01	т 11	7 0/0	25	
155 F.1	ρ- β_	252.0	0.0	5/2- 5/9⊥	01.52	3/2⊤ 3/2	177	11	8 684	$\frac{25}{27}$	
155 F.,	p- B	252.0	0.0	5/2+	146 0609	5/2- 7/9	11.1 0.79	11 7	8 001	2-1 1.1	
шu	ρ-	404.0	0.0	J/4⊤	140.0090	1/4-	0.14	1	0.901	44	

Table 12
(continued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
$^{155}\mathrm{Tb}$	ε	820	0.0	3/2 +	59.9994	5/2-	5.2	5	7.657	44	
$^{155}\mathrm{Tb}$	ε	820	0.0	3/2 +	321.293	5/2-	0.305	22	8.495	38	
$^{155}\mathrm{Tb}$	ε	820	0.0	3/2 +	451.572	1/2-	0.020	3	9.39	7	
$^{155}\mathrm{Tb}$	ε	820	0.0	3/2 +	454.459	5/2-	0.104	9	8.662	48	
$^{155}\mathrm{Tb}$	ε	820	0.0	3/2 +	559.319	1/2-	0.139	11	8.20	6	
$^{155}\mathrm{Tb}$	ε	820	0.0	3/2 +	647.770	5/2-	0.054	5	8.16	8	
$^{155}\mathrm{Tb}$	ε	820	0.0	3/2 +	658.96	5/2-	0.0039	4	9.22	9	
155 Dy	$\beta + \varepsilon$	2094.5	0.0	3/2-	65.4609	5/2+	1.10	20	8.16	8	
$^{156}\mathrm{Er}$	ε	1327	0.0	0 +	215.74	1-	2.6	5	5.81	10	
$^{156}\mathrm{Pm}$	β -	5194	0.0	4 +	1515.04	5-	23.0	15	6.032	30	Р
$^{156}\mathrm{Eu}$	β-	2452.5	0.0	0 +	1242.47	1-	5.3	5	9.472	41	
$^{156}\mathrm{Eu}$	β-	2452.5	0.0	0 +	1366.45	1-	2.1	2	9.701	42	
$^{156}\mathrm{Eu}$	β-	2452.5	0.0	0 +	1946.46	1-	0.39	4	9.270	46	
156 Eu	β-	2452.5	0.0	0 +	1962	1-	0.059	13	10.05	10	
^{156}Eu	β-	2452.5	0.0	0 +	2205.47	1-	2.2	2	7.503	44	
^{156}Eu	β-	2452.5	0.0	0 +	2259.95	1-	0.052	5	8.788	48	
¹⁵⁶ Eu	β-	2452 5	0.0	0+	229344	1-	0.90	7	7 291	45	
^{156}Eu	р В-	2452.5	0.0	0+	2344.4	1-	0.010	2	8 73	10	
157 Th	e E	60.05	0.0	$3/2 \pm$	54 54	$5/2_{-}$	0.010	1	7 10	9	
¹⁵⁸ Th	c c	1219 1	0.0	3_	261 4572	$\frac{5}{2^{-}}$	3.25	6	12164	28	
158Th	c	1210.1	0.0	0 २_	1187 145	±+ 9⊥	3.02	17	8 166	20 49	
158Th	e B	1219.1 026 2	0.0	0- 2	08 0180	2⊤ 2⊥	5.52 15.5	2	12108	49 25	
158ть	ρ- β	930.3	0.0	0- 9	90.9100 217 120	2 + 4 +	10.0	1	12.108	10	
159 C J	ρ-	930.3	0.0	ง- ១/១	517.139	4+ 5 /9 i	1.1	10	12.800	40 15	
159 D	ρ-	970.7	0.0	3/2- 2/2	57.9905	$\frac{3}{2+}$	20.0	10	7.017	10	
159 D	ε	304.73	0.0	3/2-	07.998 249.990	$\frac{3}{2+}$	20.0	14	(.540	23	
159 Dy	ε	304.73	0.0	3/2-	348.289	5/2+	0.0012		8.253	40	
160 m	$p + \varepsilon$	2768.5	0.0	3/2-	671.20	$\frac{5}{2+}$	1.7	5	0.85	13	
160 Tb	β-	1836.0	0.0	3-	283.8220	4+	0.15	5	12.15	14	
¹⁰⁰ Tb	β-	1836.0	0.0	3-	966.1686	2+	28.1	6	8.949	10	
¹⁰⁰ Tb	β-	1836.0	0.0	3-	1155.812	4+	0.214	6	10.692	12	
¹⁰¹ Tb	β-	593.7	0.0	3/2+	131.7585	5/2-	25.7	16	7.023	27	
¹⁰¹ Tb	β-	593.7	0.0	3/2+	366.968	1/2-	0.065	5	8.620	34	
¹⁰¹ Tb	β-	593.7	0.0	3/2+	451.455	5/2-	0.0100	11	8.801	49	_
102 Tm	$\beta + \varepsilon$	4857	0.0	1-	102.04	2+	4.1	10	7.43	11	Р
¹⁶³ Tb	β-	1785.1	0.0	3/2+	475.34	(5/2)-	3.9	6	6.73	7	
163 Tm	$\beta + \varepsilon$	2439.0	0.0	1/2 +	404.00	3/2-	1.90	30	7.29	7	
163 Tm	$\beta + \varepsilon$	2439.0	0.0	1/2+	717.39	3/2-	1.42	7	7.255	22	
163 Tm	ε	2439.0	0.0	1/2 +	2052.50	3/2-	1.15	7	5.953	28	
¹⁶⁵ Dy	β -	1285.7	0.0	7/2 +	94.700	9/2-	15	2	6.87	6	
$^{165}\mathrm{Tm}$	$\beta + \varepsilon$	1591.3	0.0	1/2 +	356.530	3/2-	12.2	7	7.238	25	
$^{165}\mathrm{Tm}$	ε	1591.3	0.0	1/2 +	608.498	3/2-	1.50	8	7.941	23	
$^{165}\mathrm{Tm}$	ε	1591.3	0.0	1/2 +	962.415	3/2-	0.9	1	7.749	48	
$^{165}\mathrm{Tm}$	ε	1591.3	0.0	1/2 +	1289.092	3/2-	0.39	2	7.395	23	
$^{165}\mathrm{Tm}$	ε	1591.3	0.0	1/2 +	1416.90	3/2-	0.12	2	7.30	7	
166 Dy	β-	485.9	0.0	0 +	82.4695	1-	97	6	5.967	27	
166 Dy	β-	485.9	0.0	0 +	373.13	(1)-	0.016	5	8.00	14	
$^{166}\mathrm{Ho}$	β-	1853.8	5.969	7-	545.451	6+	3.3	3	14.334	40	
$^{166}\mathrm{Ho}$	β-	1853.8	5.969	7-	911.204	8+	1.16	7	14.270	26	
$^{166}\mathrm{Ho}$	β-	1853.8	5.969	7-	1215.963	6+	2.27	18	13.389	35	
$^{166}\mathrm{Ho}$	β-	1853.8	5.969	7-	1555.739	8+	0.385	6	13.080	8	
$^{167}\mathrm{Tm}$	έ	746.1	0.0	1/2 +	264.873	3/2-	29	7	6.85	10	
¹⁶⁸ Ho	β-	2930	0.0	3+	1093.93	á-	1.5	5	6.93	15	
$^{168}\mathrm{Tm}$	έ	1676.9	0.0	3+	1094.0449	4-	46.6	14	7.834	14	

Table 12
(continued)

Nuclide	Decay	$Q \; [\text{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
$^{168}\mathrm{Tm}$	ε	1676.9	0.0	3+	1403.718	(2)-	0.0234	13	10.382	25	
$^{168}\mathrm{Tm}$	ε	1676.9	0.0	3+	1569.452	(2)-	0.591	8	7.849	25	
$^{168}\mathrm{Tm}$	ε	1676.9	0.0	3+	1615.339	4-	0.70	4	6.891	48	
$^{169}\mathrm{Er}$	β -	353.5	0.0	1/2-	8.41017	3/2 +	45	5	6.570	48	
$^{169}\mathrm{Yb}$	ε	899.1	0.0	7/2+	345.028	5/2-	0.0139	11	10.881	34	
$^{169}\mathrm{Yb}$	ε	899.1	0.0	7/2+	430.121	(9/2)-	0.00440	15	11.220	15	
$^{169}\mathrm{Yb}$	ε	899.1	0.0	7/2+	472.88128	9/2-	12.27	16	7.681	6	
169 Lu	$\beta + \varepsilon$	2293.0	0.0	7/2+	389.523	9/2-	0.79	20	8.94	11	
169 Lu	$\beta + \varepsilon$	2293.0	0.0	7/2+	569.837	5/2-	1.01	8	8.743	35	
169 Lu	$\beta + \varepsilon$	2293.0	0.0	7/2+	748.923	(9/2)-	0.67	10	8.82	7	
^{169}Lu	$\beta + \varepsilon$	2293.0	0.0	7/2+	911.38	(5/2)-	0.145	17	9.38	5	
^{169}Lu	$\beta + \varepsilon$	2293.0	0.0	7/2+	1078.335	9/2-	3.14	10	7.933	15	
^{169}Lu	ε	2293.0	0.0	7/2+	1406.35	9/2-	0.69	9	8.30	6	
^{169}Ln	ε	2293.0	0.0	7/2+	1540.69	9/2-	0.69	9	8.15	6	
¹⁶⁹ Lu	E	2293.0	0.0	7/2+	1554 876	9/2-	1 63	15	7 759	41	
¹⁶⁹ Lu	e e	2293.0	0.0	7/2+	1972.35	$9/2_{-}$	0.41	6	7 55	7	
170Tm	e	312.2	0.0	1_	1012:00	0 + 2	0.11	8	10.022	35	
170Tm	c	312.2	0.0	1-	0.0 78 7	$\frac{0}{2}$	0.102	3	10.022	35 46	
170 Tm	e B	068.6	0.0	1-	10.1	4 1 0	0.02 <i>3</i> 81.0	5	8 0026	40 21	
170 Tm	ρ- β	908.0	0.0	1-	0.0 84 25476	0+	01.9 18 1	5	0.9920	19 19	
170 T	ρ -	900.0	0.0	1-	04.20470	2+ 1	10.1	0 20	9.507	12	
-•• Lu 170т	$p + \varepsilon$	3438 2459	0.0	0+	1504.05 1510.07	1- 1	0.90	3U 10	9.15	10	
170 LU	$p+\varepsilon$	3458	0.0	0+	1512.37	1-	0.59	18	9.24	13	
170Lu	$\beta + \varepsilon$	3458	0.0	0+	2126.14	1-	10.4	5	7.647	27	
170Lu	$\beta + \varepsilon$	3458	0.0	0+	2275.49	1-	1.88	12	8.282	34	
170Lu	$\beta + \varepsilon$	3458	0.0	0+	2364.06	1-	14.9	7	7.312	29	
170Lu	$\beta + \varepsilon$	3458	0.0	0+	2367.65	(1)-	5.16	25	7.769	30	
¹⁷⁰ Lu	ε	3458	0.0	0+	2496.20	1-	1.77	11	8.119	35	
¹⁷⁰ Lu	ε	3458	0.0	0+	2536.97	1-	0.39	4	8.74	5	
¹⁷⁰ Lu	ε	3458	0.0	0+	2748.08	1-	4.73	22	7.411	35	
¹⁷⁰ Lu	ε	3458	0.0	0+	2775.66	1-	2.81	15	7.600	38	
¹⁷⁰ Lu	ε	3458	0.0	0+	2929.60	1-	3.68	20	7.239	44	
¹⁷⁰ Lu	ε	3458	0.0	0+	2939.73	1-	7.3	4	6.923	45	
¹⁷⁰ Lu	ε	3458	0.0	0+	2947.84	1-	3.35	15	7.246	43	
^{170}Lu	ε	3458	0.0	0+	2969.45	1-	0.62	4	7.937	49	
170 Lu	ε	3458	0.0	0 +	2975.32	1-	0.70	6	7.87	6	
170 Lu	ε	3458	0.0	0 +	3007.6	1-	0.26	7	8.24	12	
170 Lu	ε	3458	0.0	0 +	3067.62	1-	0.61	5	7.72	6	
170 Lu	ε	3458	0.0	0 +	3115.58	1-	2.11	13	7.05	6	
170 Lu	ε	3458	0.0	0 +	3123.94	1-	0.29	7	7.89	12	
170 Lu	ε	3458	0.0	0 +	3149.09	1-	0.60	5	7.49	7	
170 Lu	ε	3458	0.0	0 +	3165.59	1-	1.13	6	7.16	7	
170 Lu	ε	3458	0.0	0 +	3179.76	1-	0.50	4	7.46	8	
170 Lu	ε	3458	0.0	0 +	3195.58	1-	0.52	5	7.38	9	
170 Lu	ε	3458	0.0	0 +	3213.27	1-	0.27	8	7.59	15	
¹⁷⁰ Lu	ε	3458	0.0	0+	3274.17	1-	0.22	4	7.35	15	
¹⁷⁰ Lu	ε	3458	0.0	0+	3384.87	1-	0.097	19	6.4	5	
¹⁷⁰ Hf	Ē	1052	0.0	0 +	164.71	-	2.7	-9	7.42	15	
¹⁷⁰ Hf	ε	1052	0.0	$\tilde{0+}$	244.81	1-	1.0	3	7.76	14	
¹⁷⁰ Hf	E	1052	0.0	$\tilde{0+}$	470 24	1-	3.0	9	6.97	14	
171 Tm	<u>в</u> -	96.5	0.0	1/2 +	66 731	$\frac{1}{3}/2$ -	1.96	14	6 55	6	
¹⁷¹ Lu	$\beta + l \epsilon$	1478 4	0.0	$\frac{1}{2}$	317 310	9/2	1.88	0	8 879	22	
$^{171}L_{11}$	۲ ۱/۵ ۶	1478 4	0.0	$7/2 \perp$	944 25	5/2-5/2-	0.070	4	9 584	26	
171 Lu	c e	1478 4	0.0	$7/2 \pm 7/2 \pm 7/2$	048 271	$0/2^{-}$ $0/2_{-}$	0.010	-= 15	7 497	20 11	
шu	C	1410.4	0.0	•/ <i>4</i> ⊤	940.011	3/4-	0.00	10	1.441	тт	

Table 12	
(continued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_{\rm D}~[{\rm keV}]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
^{171}Lu	ε	1478.4	0.0	7/2 +	1080.971	5/2-	0.158	10	8.941	29	
172 Er	β -	891.0	0.0	0 +	407.338	(1)-	4.2	14	7.42	15	
$^{172}\mathrm{Er}$	β -	891.0	0.0	0 +	535.140	(1)-	46.6	24	5.937	29	
$^{172}\mathrm{Tm}$	β -	1882	0.0	2-	1172.322	3+	6.5	7	7.932	48	
$^{172}\mathrm{Tm}$	β -	1882	0.0	2-	1549.06	3+	2.39	22	7.269	45	
$^{172}\mathrm{Tm}$	β -	1882	0.0	2-	1662.740	3+	1.29	12	6.96	5	
$^{172}\mathrm{Tm}$	β-	1882	0.0	2-	1700.57	3+	0.229	22	7.45	6	
172 Lu	$\beta + \varepsilon$	2519.4	0.0	4-	1172.386	3+	6.7	17	8.37	11	
172 Lu	ε	2519.4	0.0	4-	1662.815	3+	3.72	11	8.213	15	
^{172}Lu	ε	2519.4	0.0	4-	1700.651	3+	3.01	13	8.263	20	
^{172}Lu	ε	2519.4	0.0	4-	1927.022	5+	0.54	5	8.705	41	
^{172}Lu	ε	2519.4	0.0	4-	2175.103	3+	2.29	14	7.545	29	
^{172}Lu	ε	2519.4	0.0	4-	2192.154	5+	5.86	13	7.085	16	
173 Lu	ε	670.2	0.0	7/2 +	179.364	9/2-	20.9	7	8.810	17	
$^{173}\mathrm{Hf}$	$\beta + \varepsilon$	1469	0.0	1/2-	434.914	3'/2+	21.3	6	6.828	29	
174 Lu	$\beta + \varepsilon$	1374.2	0.0	1-	0.0	0+	38.3	30	9.888	35	
^{174}Lu	$\beta + \epsilon$	1374.2	0.0	1-	76.468	2+	57	5	9.664	39	
175 Tm	β-	2.38E3	0.0	$\frac{1}{2+}$	992.0	$\frac{-}{3/2}$ -	5.5	4	6.65	7	
175 Vb	р В-	470 1	0.0	$\frac{1}{2}$	113 806	9/2+	6.7	4	7139	26	
¹⁷⁵ Ta	$\beta + \epsilon$	2073	0.0	7/2+	185.92	9/2-	8.2	20	7 48	11	
175 Ta	$\beta + /\varepsilon$	2073	0.0	7/2+	474 97	9/2-	5.90	<u>-</u> 0	7.468	35	
176Lu	β-70 β-	1193.03	0.0	7-	596.82	6+	99.61	4	19 2403	27	
¹⁷⁶ Lu	р В -	1193.03	0.0	- 7-	997.73	8+	0.39	4	20.076	45	
¹⁷⁶ Lu	р В-	1193.03	123.0	1_	0.0	0+	39	- - 2	6 921	-10 -22	
176I II	p- B	1103.03	123.0	1	88 361	2^+	61	2	6.615	15	
$176 T_{0}$	$\beta = \beta \pm lc$	2011	125.0	(1)	1012.02	$(2)_{\perp}$	8.0	10	7.013	10 6	
$176 T_{0}$	ρτ/ε	3211	0.0	$(1)^{-}$	2817.02	$(2)_{\pm}$	2.0	10 3	6 51	11	
177 Vh	E B	$\frac{5211}{13075}$	0.0	$(1)^{-}$	2017.00	$(2) \pm 11/9$	2.0	ี่ วา	7 662	11	
177T II	ρ- β	1097.0	0.0	$\frac{9}{2+}$	112 0408	$\frac{11}{2}$	1.80	21	7.002	49 19	
ЦЦ 177 То	p- Bilo	490.8	0.0	7/2+7/2+	112.9490	9/2-0/2	0.09 25	24 11	7.047	14	
177 W	ρ_{\pm}/ϵ	2012	0.0	$1/2 \pm 1/9$	112.9498	9/2- 2/2+	35	11	6.86	14	
177 W	$\rho_{\pm/\epsilon}$	2013	0.0	1/2-	491.44	3/2+	4.9	11 E	0.80 5.60	10 6	
179 T	E Q	2013	0.0	$\frac{1}{2}$	1470.08	(3/2)+	9.5	0 6	5.00	0	
179D -	ρ- 0 - 1 -	1404	0.0	1/2+ F/2+	557.70	9/2- 7/9	1.9	40	1.99	14	
181 W	$p+/\varepsilon$	2/11	0.0	$\frac{3}{2+}$		(/2- 11/0	1.70	40	0.80	10	
W 181 D	ε	205.1	0.0	9/2+	108.00	11/2-	0.0185	10	8.45	0 11	
¹⁰¹ Ke 181 D	$p + \varepsilon$	1717	0.0	5/2+	409.21	(/2-	4.9	12	7.71	11	
¹⁰¹ Ke 181 D -	$p + \varepsilon$	1/1/	0.0	5/2+	475.05	(/2- 7/9	10.3	25 7	1.34 7.96	11	
¹⁰¹ Ke 181D	$\beta + \varepsilon$	1717	0.0	5/2+	001.75 700.00	1/2-	2.2		7.80 C.04	14	
¹⁰¹ Ke 182m	ε		0.0	$\frac{5}{2+}$	(20.28	3/2-	10	5	6.94	14	
¹⁰² 1a 182m	β- 0	1815.5	0.0	პ- ი	100.10598	2+	0.058	0	13.102	45	
¹⁰² Ta 182m	β-	1815.5	0.0	3-	329.4268	4+	0.096	10	12.647	45	
¹⁰² Ta 182 T	β-	1815.5	0.0	3-	1221.4001	2+	3.2	5	9.71	7	
¹⁰² Ta 182 T	β-	1815.5	0.0	3-	1442.836	4+	0.565	8	9.789	8	
¹⁰² Ta	β -	1815.5	0.0	3-	1510.25	4+	0.142	4	10.109	14	
¹⁰² Re	ε	2.80E3	0.0	7+	1829.53	6-	14	4	7.49	16	
¹⁰² Re	ε	2.80E3	0.0	7+	1960.79	6-	2.8	6	8.06	15	
¹⁰² Re	ε	2.80E3	0.0	7+	2114.43	(8)-	1.03	19	8.30	17	
¹⁰² Re	ε	2.80E3	0.0	7+	2204.56	(8)-	4.5	3	7.53	18	
¹⁸³ Ta	β -	1072.1	0.0	7/2+	595.339	9/2-	0.94	11	8.57	5	
¹⁸³ Re	ε	556	0.0	5/2+	208.8114	3/2-	69	7	7.22	5	
¹⁸³ Re	ε	556	0.0	5/2+	412.1017	7/2-	0.59	14	8.25	13	
¹⁸³ Re	ε	556	0.0	5/2+	453.0779	7/2-	4.7	5	6.85	15	
^{183}Os	$\beta + \varepsilon$	2.15 E3	0.0	9/2 +	664.09	11/2-	17.80	40	7.115	38	

Table 12	
(continued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
^{183}Os	$\beta + \varepsilon$	2.15E3	170.70	1/2-	1034.73	(3/2)+	2.6	5	7.70	9	
^{183}Os	$\beta + \varepsilon$	2.15E3	170.70	1/2-	1107.89	(3/2)+	18.6	6	6.792	45	
183 Ir	$\beta + \varepsilon$	3.46E3	0.0	5/2-	896.76	7/2 +	1.10	30	7.75	13	Р
183 Ir	$\beta + \varepsilon$	3.46E3	0.0	5/2-	1977.95	(3/2)+	2.20	40	6.93	10	Р
184 Ir	$\beta + \varepsilon$	4642	0.0	5-	774.17	6+	8.1	22	7.88	12	Р
184 Ir	$\beta + \varepsilon$	4642	0.0	5-	1225.04	4 +	5.6	5	7.873	40	Р
184 Ir	$\beta + \varepsilon$	4642	0.0	5-	1500.63	4 +	1.95	17	8.229	39	Р
184 Ir	$\beta + \varepsilon$	4642	0.0	5-	1613.18	6+	2.20	19	8.134	39	Р
184 Ir	$\beta + \varepsilon$	4642	0.0	5-	1877.61	6+	1.82	15	8.115	38	Р
$^{184}\mathrm{Pt}$	$\beta + \varepsilon$	2278	0.0	0 +	499.93	1-	2.5	6	6.55	11	
$^{185}\mathrm{W}$	β-	431.2	0.0	3/2-	0.0	5/2 +	99.928	3	7.5890	29	
$^{185}\mathrm{Os}$	ε	1013.14	0.0	1/2-	717.432	3'/2+	5.0	4	8.342	35	
^{185}Os	ε	1013.14	0.0	1/2-	874.815	3/2+	6.4	3	7.306	21	
^{185}Os	ε	1013.14	0.0	1'/2-	931.06	(3/2)+	0.049	2	8.604	20	
186 Re	ε	581.3	0.0	1-	0.0	(0) + (0)	5.83	10	7.533	9	
¹⁸⁶ Re	ε	581.3	0.0	1-	122.64	2+	1.67	1	7.844	5	
186 Re	<u>в</u> -	1072 7	0.0	1-	0.0	0+	70.93	17	7 8160	16	
186 Be	р В-	1072.7	0.0	1-	137 15	2+	21.48	7	8 1226	19	
186Be	β- β-	1072.7	0.0	1	767.10	$\frac{2}{2+}$	0.0628	7	9.024	6	
186 A 11	$\beta + \epsilon$	6150	0.0	3_	101.41	2^{+} 2^{+}	25	7	5.024 6.89	12	Р
186 A 11	$\beta \perp / \epsilon$	6150	0.0	0 3_	490.34	2 ∕\⊥	14.6	18	7.03	6	P
186 A 11	$\beta + c$	6150	0.0	0- 2	430.34 607.15	+ 9⊥	8.4	16	7.00	0	л Р
186 A 11	$\beta + /c$	6150	0.0	0- 2	708.40	2⊤ 2⊥	5.2	10	7.25	9	I D
186 A 11	$\beta + /c$	6150	0.0	0- 2	001 51	4⊤ 4⊥	3.0	5	7.44	6	I D
186 A	ρ_{\pm}/ϵ	6150	0.0	ე- ე	991.01 1176.02	4+ 0+	0.9 1 99	20	7.44	5	I D
186 A	$\rho + \varepsilon$	6150	0.0	ე- ე	1170.03	2+ 4 -	1.00	20	7.10	0 46	r D
186 A	$\rho + \varepsilon$	6150	0.0	ე- ე	2150 6	4+	0.20 1.19	3U 19	7.405	40	r D
18611	$p+\varepsilon$	0150	0.0	3- 0	2159.0	4+	1.18	12	7.509	49	P D
18611	$p + \varepsilon$	3170 2170	0.0	0+	113.94	1- 1	3.0	(5.98	11	Р D
187117	$p+\varepsilon$	3170	0.0	0+	189.74	1- 5 /0 -	2.30	30	0.00	(Р
187 T	p-	1312.5	0.0	3/2-	107.49	5/2+	11.0	24	8.32	9	
187 Ir 187 I	$\beta + \varepsilon$	1670	0.0	3/2+	187.42	5/2-	5.50	40	7.567	39	
187 II 187 I	ε	1670	0.0	3/2+	586.31	5/2-	3.33	14	7.498	34	
¹⁰ 'Ir	ε	1670	0.0	3/2+	711.29	5/2-	4.58	16	7.246	35	
¹⁰ 'Pt	$\beta + \varepsilon$	2864	0.0	3/2-	106.480	1/2+	11.6	13	7.22	5	
¹⁰ 'Pt	$\beta + \varepsilon$	2864	0.0	3/2-	110.075	5/2+	15.7	18	7.09	5	
¹⁰ 'Pt	$\beta + \varepsilon$	2864	0.0	3/2-	311.66	5/2+	14.4	15	7.047	48	
100 W	β-	349.0	0.0	0+	0.0	1-	98.98	9	7.261	12	
100 W	β-	349.0	0.0	0+	290.6796	1-	0.89	5	6.89	8	
¹⁸⁸ Re	β-	2120.42	0.0	1-	0.0	0+	70.7	6	8.2062	37	
¹⁸⁸ Re	β-	2120.42	0.0	1-	155.044	2+	25.8	5	8.516	8	
188 Re	β-	2120.42	0.0	1-	633.045	2+	1.85	13	9.200	31	
¹⁸⁸ Ir	$\beta + \varepsilon$	2792	0.0	1-	0.0	0+	0.64	6	9.708	41	
¹⁸⁸ Ir	$\beta + \varepsilon$	2792	0.0	1-	155.031	2+	3.00	40	8.98	6	
¹⁸⁸ Ir	$\beta + \varepsilon$	2792	0.0	1-	633.033	2+	5.4	6	8.521	49	
188 Ir	$\beta + \varepsilon$	2792	0.0	1-	1304.84	2+	0.45	12	9.25	12	
188 Ir	$\beta + \varepsilon$	2792	0.0	1-	1457.39	2 +	2.80	30	8.361	48	
188 Ir	$\beta + \varepsilon$	2792	0.0	1-	1478.08	0+	0.32	5	9.29	7	
188 Ir	$\beta + /\varepsilon$	2792	0.0	1-	1620.47	2 +	2.70	25	8.258	42	
188 Ir	$\beta + \varepsilon$	2792	0.0	1-	1729.50	2 +	4.80	40	7.918	38	
188 Ir	ε	2792	0.0	1-	1807.59	2 +	3.2	3	8.024	42	
188 Ir	ε	2792	0.0	1-	1842.85	(2)+	8.2	8	7.581	44	
188 Ir	ε	2792	0.0	1-	1965.00	(2)+	0.71	7	8.515	45	
188 Ir	ε	2792	0.0	1-	2068.55	(2)+	1.61	16	8.034	46	

Table 12
(continued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
188 Ir	ε	2792	0.0	1-	2166.02	(2)+	0.93	9	8.134	45	
188 Ir	ε	2792	0.0	1-	2204.72	2+	5.4	5	7.308	44	
188 Ir	ε	2792	0.0	1-	2251.94	2+	7.0	9	7.11	6	
188 Hg	$\beta + \varepsilon$	2173	0.0	0+	114.2	(1)-	2.50	30	6.03	6	
188 Hg	$\beta + \varepsilon$	2173	0.0	0 +	304.9	(1)-	7.20	40	5.475	32	
^{189}Re	β -	1008	0.0	5/2 +	0.0	3/2-	62	7	7.21	5	
$^{189}\mathrm{Re}$	β -	1008	0.0	5/2 +	216.68	7/2-	13	2	7.52	7	
$^{189}\mathrm{Re}$	β -	1008	0.0	5/2+	219.399	7/2-	7.4	13	7.76	8	
$^{189}\mathrm{Re}$	β-	1008	0.0	5/2+	549.89	3/2-	0.24	5	8.45	9	
$^{189}\mathrm{Re}$	β-	1008	0.0	5/2+	599.57	3/2-	1.3	2	7.55	7	
189 Ir	ε	537	0.0	3/2+	69.512	5/2-	35	5	7.15	7	
189 Ir	ε	537	0.0	3/2+	233.53	5/2-	1.09	12	8.21	7	
189 Ir	ε	537	0.0	3/2+	275.84	5/2-	10.1	11	7.08	8	
189 Pt	$\beta + \varepsilon$	1980	0.0	3/2-	317.68	5/2+	15.0	40	7.29	12	
190 Ir	ε	1954.2	0.0	4-	1446.02	(5)+	1.1	1	8.690	40	
$^{191}\mathrm{Pt}$	ε	1010.5	0.0	3/2-	82.405	1/2+	25	7	7.32	12	
191 Pt	ε	1010.5	0.0	3/2-	351.139	(5/2)+	12.7	17	7.29	6	
¹⁹¹ Pt	ε	1010.5	0.0	3/2-	747.78	(5/2)+	0.30	5	7.97	7	
192 Ir	β-	1452.9	0.0	4+	1378.03	3-	0.1026	17	8.261	43	
¹⁹² Au	$\beta + \varepsilon$	3516	0.0	1-	316.50645	$\tilde{2}+$	11.3	16	7.75	6	
¹⁹² Au	$\beta + \epsilon$	3516	0.0	1-	612.46318	2+	3.9	7	8.10	8	
¹⁹² Au	$\beta + /\varepsilon$	3516	0.0	1-	2047.89	(2)+	1 11	14	7 99	6	
¹⁹² Au	$\beta + /\varepsilon$	3516	0.0	1_	2171.37	(-)	2.40	40	7.58	7	
¹⁹² Au	$\beta + \epsilon$	3516	0.0	1_	22171.57 2237.52	(2) +	8.0	10	7.00	6	
¹⁹³ Os	β-	1141 9	0.0	3/2_	73 037	$(2)^+$ 1/2+	17	3	7.01	8	
193 Os	β_ β_	1141.9	0.0	$\frac{3}{2}$	138 9/6	$\frac{1}{2}$	10.6	2	8.084	0	
193 Os	β- β-	1141.9	0.0	$\frac{3}{2}$	361 858	5/2+	0.72	2	8 868	13	
193 Os	β_ β_	1141.9	0.0	$\frac{3}{2}$	557 396	$(1/2) \perp$	2 33	4	7 929	10	
193 Os	β- β-	1141.9	0.0	3/2-	559 293	$(1/2)^+$ 5/2+	0.72	1	8 434	0	
19305	β_ β_	1141.9	0.0	$\frac{3}{2}$	695.142	$5/2 + 5/2 \pm$	0.12	3	8 930	16	
193 Os	p- ß	1141.9 11/11.0	0.0	$\frac{3}{2}$	848.005	5/2 + 5/2 +	0.055	8	0.350	10	
193 Os	β- β	1141.9 11/11.0	0.0	$\frac{3}{2}$	064 41	$\frac{5}{2+1}$	0.0019	2	9.410	40 20	
193 D+	ρ- ε	56 63	0.0	$\frac{5}{2}$	0.0	$\frac{1}{2}$	100	2	7 23	5	
193 A	$\mathcal{B} \perp \mathcal{I}_{\mathcal{C}}$	1075	0.0	$\frac{1}{2}$	14 276	$\frac{3}{2+}$	20.0	40	6.00	0	
193 A	$\rho_{\pm/\epsilon}$	1075	0.0	$\frac{3}{2+}$	14.270	$\frac{3}{2}$	20.0	40	0.99	9	
193 A	E	1075	0.0	$\frac{3}{2+}$	401.24	$(5/2)^{-}$	3.0 2.7	1	7.30	0 7	
Ац 194т.	E Q	1070	0.0	$\frac{3}{2+}$	491.24	$(3/2)^{-}$	2.1 0E 1	4 10	7.30 8.204	10	
194 Tn	ρ- β	2220.0 0000 0	0.0	1- 1	228 475	0+	0.2	19 19	8.304 0.00	10 6	
194 I.m	ρ-	2220.0	0.0	1-	328.473 699.099	2+	9.0 1.06	$13 \\ 17$	9.00	0	
194 T.,	ρ-	2220.0	0.0	1- 1	1967 909	2+	1.20	17	9.39	0 C	
194 A	р- 0 - / -	2228.3	0.0	1- 1	1207.203	0+	1.78	24	8.03	0	
194 AU	$p+\varepsilon$	2048.2	0.0	1- 1	0.0	0+	23.0	20	8.083	38 10	
194 AU	$p+\varepsilon$	2548.2	0.0	1- 1	328.474	2+	29.1	12 C	(.845	18	
194 AU	$p+\varepsilon$	2548.2	0.0	1-	1267.198	0+	0.49	0	9.11	5 10	
194 Au	$\beta + \varepsilon$	2548.2	0.0	1-	1479.270	0+	1.130	40	8.581	16	
¹⁰⁴ Au	$\beta + \varepsilon$	2548.2	0.0	1-	1512.002	2+	0.499	21	8.907	19	
194 AU	ε	2548.2	0.0	1-	1547.273	0+	1.36	5	8.440	16	
¹⁹⁴ Au	ε	2548.2	0.0	1- 1	1622.197	2+	0.128	15	9.39	5	
104 AU	ε	2548.2	0.0	1-	1670.656	2+	2.27	8	8.094	16	
¹⁹⁴ Au	ε	2548.2	0.0	1-	1778.579	2+	0.89	3	8.377	15	
¹⁹⁴ Au	ε	2548.2	0.0	1-	1816.585	(2)+	0.069	9	9.44	6	
^{194}Au	ε	2548.2	0.0	1-	1893.574	0+	0.039	8	9.58	9	
¹⁹⁴ Au	ε	2548.2	0.0	1-	1930.369	2+	0.470	16	8.444	16	
¹⁹⁴ Au	ε	2548.2	0.0	1-	2053.016	(2)+	0.072	6	9.041	37	

Table 12	
(continued)

Nuclide	Decay	$Q \; [\text{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
$^{194}\mathrm{Au}$	ε	2548.2	0.0	1-	2063.739	2+	0.266	11	8.451	19	
$^{194}\mathrm{Au}$	ε	2548.2	0.0	1-	2085.474	0 +	0.77	3	7.944	18	
$^{194}\mathrm{Au}$	ε	2548.2	0.0	1-	2109.088	(2)+	0.154	6	8.589	18	
$^{194}\mathrm{Au}$	ε	2548.2	0.0	1-	2163.745	0 +	0.81	8	7.732	43	
$^{194}\mathrm{Au}$	ε	2548.2	0.0	1-	2311.879	2 +	0.427	15	7.473	19	
$^{194}\mathrm{Au}$	ε	2548.2	0.0	1-	2356.065	0 +	0.31	5	7.36	7	
$^{194}\mathrm{Au}$	ε	2548.2	0.0	1-	2397.320	2 +	0.068	3	7.694	29	
$^{194}\mathrm{Hg}$	ε	28.0	0.0	0 +	0.0	1-	100		7.41	20	
195 Ir	β-	1101.6	100	11/2-	259.28	13/2 +	33	7	6.61	9	
195 Ir	β-	1101.6	100	11/2-	432.03	9/2+	7.3	12	6.96	7	
$^{195}\mathrm{Au}$	ε	226.8	0.0	3/2+	0.0	1/2-	9.5	4	8.147	19	
$^{195}\mathrm{Au}$	ε	226.8	0.0	3/2+	129.734	5'/2-	32.2	15	6.404	27	
$^{195}\mathrm{Hg}$	$\beta + \varepsilon$	1554	0.0	1/2-	0.0	3/2+	10.0	20	7.46	9	
¹⁹⁵ Hg	$\beta + \epsilon$	1554	0.0	$\frac{1}{2}$	241.56	3/2+	1.90	40	8.03	9	
¹⁹⁵ Hg	ε ε	1554	0.0	1/2-	841.23	3/2+	9.4	11	6.76	6	
¹⁹⁵ Hø	E	1554	0.0	$\frac{1}{2}$	1172.44	3/2+	3.3	5	6 59	10	
¹¹⁹⁵ Ho	$\beta + \epsilon$	1554	176.07	$\frac{1}{2}$ 13/2+	318 59	$\frac{5}{2}$	32.0	30	7455	45	
¹⁹⁵ Hσ	$\beta + \epsilon$	1554	176.07	13/2 + 13/2 +	706.48	$\frac{11}{2}$ 15/2-	1.77	16	8 417	40	
195Hg	p1/c	1554	176.07	$13/2 + 13/2 \perp$	1280 52	$\frac{10}{2}$ 11/2	0.41	7	8.26	0	
195Hg	c	1554	176.07	$13/2 + 13/2 \pm$	1346.20	$\frac{11}{2}$	0.41	6	7.89	8	
195 TI	$\beta \pm lc$	2858	110.01	10/2 $1/2\perp$	505.48	(3/2)	3.20	40	7.85	6	
195 TI	ρ_{\pm}/c	2858	0.0	$\frac{1}{2}$	600.63	$(3/2)^{-}$	12.20	40 12	6.70	5	
195 TI	ρ_{\pm}/ϵ	2858	0.0	$\frac{1}{2+}$	803.12	3/2-	12.3 2.20	10	0.79	9 9	
196 Dh	ρ_{\pm}/ϵ	2000	0.0	$1/2 \pm$	266 5	3/2- 1	2.20	40	6.01	0	
г D 196 рь	$\rho + \epsilon$	2140	0.0	0+	402.0	1-	20.0	40 91	6.00	0	
197 D4	$\rho + \varepsilon$	2140	0.0	0+	495.9	1-	11.0	21	0.28	9	
197 D+	ρ-	720.0	0.0	$\frac{1}{2}$	0.0	$\frac{3}{2+}$	10.0	20	1.40 6.992	11	
197 D4	ρ-	720.0	200 50	1/2-	208.78	$\frac{3}{2+}$	0.2	0	0.000	42 F	
Pt 19711	p-	720.0 500 5	399.59	$\frac{13}{2+}$	409.0	$\frac{11}{2}$	3.3 0 C	47	0.84	$\frac{1}{27}$	
пg 197тт	е 0 г. / -	099.0	298.93	$\frac{13}{2+}$	409.17	$\frac{11}{2}$ -	0.0	1	0.110	31	
197 mi	$p+\varepsilon$	2180	0.0	1/2+	578.01	(3/2)-	21.0	40	0.03	8	
197 TL	$p + \varepsilon$	2180	0.0	1/2+	585.38	(3/2)-	4.7	10	1.21	9	
197 D1	$p + \varepsilon$	2180	0.0	1/2+	892.53	(3/2)-	1.60	40	7.55	11	ъ
197 PD	$p + \varepsilon$	3609	319.31	$\frac{13}{2+}$	1382.91	11/2-	0.1	16	7.02	11	P D
¹⁰⁷ PD	$p + \varepsilon$	3609	319.31	$\frac{13}{2+}$	1720.27	15/2-	3.5	8	7.13	10	P
¹⁰ 'Pb	$\beta + \varepsilon$	3609	319.31	13/2+	1954.01	11/2-	6.9	15	6.73	10	P
¹⁰ Pb	$\beta + \varepsilon$	3609	319.31	13/2+	2570.03	15/2-	1.02	22	7.21	9	Р
198 TI	$\beta + \varepsilon$	3426	0.0	2-	1847.20	3+	5.9	8	7.43	7	
198 TI	$\beta + \varepsilon$	3426	0.0	2-	2360.76	3+	6.3	8	7.04	7	ъ
¹⁹⁰ TI 108TI	$\beta + \varepsilon$	3426	543.5	7+	1909.7	6-	8.4	17	7.07	9	P
¹⁹⁰ 11	$\beta + \varepsilon$	3426	543.5	(+ 0 -	2059.1	6-	2.10	30	7.60	6	Р
¹⁹⁰ Pb	$\beta + \varepsilon$	1461	0.0	0+	290.31	1-	27	8	6.18	13	
¹³⁰ Pb	$\beta + \varepsilon$	1461	0.0	0+	382.10	1-	5.9	10	6.77	8	
¹³⁰ Pb	ε	1461	0.0	0+	648.90	1-	2.9	3	6.81	5	
¹⁹⁰ Pb	ε	1461	0.0	0+	865.33	1-	10.5	11	5.95	5	
¹⁹⁹ Pt	β-	1705.1	0.0	5/2-	0.0	3/2+	70.7	12	6.389	8	
^{199}Pt	β-	1705.1	0.0	5/2-	323.605	3/2+	1.54	10	7.710	28	
199 Pt	β-	1705.1	0.0	5/2-	791.760	3/2+	4.26	5	6.620	7	
¹⁹⁹ Au	β-	452.3	0.0	3/2+	0.0	1/2-	6.5	13	7.59	9	
¹⁹⁹ Au	β-	452.3	0.0	3/2+	158.37859	5/2-	72.0	13	5.941	8	
¹⁹⁹ Tl	$\beta + \varepsilon$	1487	0.0	1/2+	208.20616	3/2-	9.3	17	7.19	8	
¹⁹⁹ Tl	ε	1487	0.0	1/2+	403.51	3/2-	1.77	23	7.75	7	
¹⁹⁹ Tl	ε	1487	0.0	1/2+	492.297	3/2-	7.3	8	7.06	6	
$^{199}\mathrm{Pb}$	$\beta + \varepsilon$	2828	0.0	3/2-	0.0	1/2 +	30	10	6.76	15	

Table 12	
(continued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
¹⁹⁹ Pb	$\beta + \varepsilon$	2828	0.0	3/2-	720.35	(5/2)+	2.4	8	7.57	15	
200 Tl	ε	2456	0.0	2-	1630.892	1 +	0.38	12	8.71	14	
²⁰⁰ Tl	ε	2456	0.0	2-	1718.303	1+	0.33	7	8.67	9	
200 Tl	ε	2456	0.0	2-	1734.344	3+	2.4	5	7.79	9	
200 Tl	ε	2456	0.0	2-	1775.582	3+	13.6	12	6.976	42	
200 Tl	ε	2456	0.0	2-	1845.778	3+	1.33	13	7.880	46	
200 Tl	ε	2456	0.0	2-	1974.336	(3)+	0.116	20	8.70	8	
200 Tl	ε	2456	0.0	2-	2061.253	1+	0.088	10	8.62	6	
200 Tl	ε	2456	0.0	2-	2114.357	(3)+	0.27	4	7.98	7	
200 Tl	ε	2456	0.0	2-	2229.265	1+	0.14	3	7.80	10	
200 Tl	ε	2456	0.0	2-	2296.28	1+	0.057	7	7.73	8	
200 Tl	ε	2456	0.0	2-	2343.595	(3)+	0.060	8	7.17	12	
200 Tl	ε	2456	0.0	2-	2370.042	1+	0.048	7	6.86	13	
$^{200}\mathrm{Pb}$	ε	796	0.0	0 +	257.183	1-	2.2	7	7.48	14	
$^{200}\mathrm{Pb}$	ε	796	0.0	0 +	289.92	1-	9.0	10	6.81	6	
$^{200}\mathrm{Pb}$	ε	796	0.0	0 +	450.56	1-	5.10	19	6.655	45	
$^{200}\mathrm{Pb}$	ε	796	0.0	0 +	525.54	1-	14.3	6	5.93	6	
$^{200}\mathrm{Pb}$	ε	796	0.0	0+	605.45	1-	1.20	9	6.58	10	
201 Tl	ε	482	0.0	1/2+	32.169	3/2-	11.9	4	7.15	4	
$^{201}\mathrm{Pb}$	$\beta + \varepsilon$	1910	0.0	5/2-	331.17	3/2+	52	6	6.76	5	
²⁰¹ Pb	ε	1910	0.0	5/2-	1238.83	3/2+	7.4	6	6.806	47	
^{201}Pb	ε	1910	0.0	5/2-	1420.04	7/2+	1.56	16	7.18	6	
201 Bi	$\beta + \varepsilon$	3842	0.0	9/2-	1447.9	(11/2)+	4.6	5	7.52	$\tilde{5}$	
201 Bi	$\beta + /\varepsilon$	3842	0.0	9/2-	1651.0	(12/2)	3.3	5	7 58	ő	
201 Bi	$\beta + /\varepsilon$	3842	0.0	9/2	1843.8	11/2+	2.00	30	7.00	7	
201 Bi	$\beta + \epsilon$	3842	0.0	9/2	2151.9	$\frac{11}{2}$	3.0	6	7.37	8	
201 Bi	e prije	3842	0.0	9/2	3050.7	(7/2)+	3.8	5	6.56	6	
^{202}Ph	e	30.8	2169.83	0/2 0_	1340-13	8+	6.4	8	6.70	5	
^{202}Ph	e E	39.8	2169.83	9_	1540.10 1552.09	8+	2.1	4	6.91	8	
203 A 11	<u>в</u> -	2125.8	2100.00	$\frac{3}{2+}$	1002:00	5/2-	72	15	5.28	10	
203Hg	β- β-	492.1	0.0	5/2	279 1955	$\frac{3}{2}$	100	10	6.552	8	
203ph	ρ- ε	452.1 075	0.0	$5/2^{-}$ 5/2-	279.1955	$\frac{3}{2}$	05.3	3	6.352	11	
$203 \mathbf{p}_0$	B±/c	4914	0.0	$5/2_{-}$	1312.07	$\frac{3}{2}$	8.8	10	7.00	0	р
$203 \Delta t$	$\beta \perp / \epsilon$	51/8	0.0	$\frac{0}{2}$	1280 34	$(11/2) \perp$	2.00	10	7.00	9	P
203 A+	$\beta + c$	5148	0.0	$0/2^{-}$	1200.94 1671.98	(11/2) + $(11/2)$ +	1.70	40 19	7 225	30	Г Р
204 Bi	$\beta \pm lc$	1464	0.0	9/2- 6⊥	2606 57	(11/2) + 7	1.79	12 30	8 50	10	1
$204_{P};$	ρ_{\pm}/ϵ	4404	0.0	0+	2090.57	7- 5	1.30 2.7	30 Q	0.09 8.15	10	
204 p;	ρ_{\pm}/ε	4404	0.0	0+	2919.00	5- 5	2.7 11.2	0 14	759	6	
204 Bi	$\beta \pm lc$	4404	0.0	6+	2928.10	5	11.5	14	$7.52 \\ 7.52$	5	
204 p;	$\beta + /c$	4404	0.0	0+ 6+	3029.14 3002.11	5- 5	6.3	12	7.52	5	
204 p;	ρ_{\pm}/ϵ	4404	0.0	0+	3092.11 3170.23	5- 5	0.3	1 91	7.07	5	
204 p;	$\rho + \epsilon$	4404	0.0	0+ 6+	0170.20 2020-12	0- 5	2 20	21 40	7.20	6	
204 DI	ρ_{\pm}/ϵ	4404	0.0	0+ 6+	0202.10 2201.60	0- E	3.20	40	7.06	0	
204 D :	$\rho + \varepsilon$	4404	0.0	0+ 6+	2799.14	0- E	2.30	30 10	7.90	0 E	
204 D:	ε	4404	0.0	0+ C +	3/82.14	9- F	1.70	19	1.51	0	
²⁰⁴ D	ε	4464	0.0	0+	4165.88	- 1	1.8	び 10	0.70	8	
204 p	ε	2305 2205	0.0	0+	1309.34	1- 1	51.3	18	5.931	23	
-~ PO 204 D	ε	2305 2205	0.0	0+	1404.23	1- 1	4.5	ა ი	0.952 F.046	34 20	
205 D.	ε	2305	0.0	0+	1034.17	1- 11/0	23.8	9 19	5.946	29	
205 D	ε	2704.0	0.0	9/2-	2203.87	$\frac{11}{2+}$	2.78	12	8.569	25 97	
205 B1 205 D	ε	2704.6	0.0	9/2- 5/2	2252.29	(7/2)+	1.26	0 19	8.809	27	
205 A	$p + \varepsilon$	3544	0.0	5/2- 0/2	1709.18	3/2+	16.0	13	0.755	41	D
205 At	$\beta + \varepsilon$	4537	0.0	9/2-	1553.17	(11/2)+	4.40	40	7.230	42	Р
²⁰³ At	$\beta + \varepsilon$	4537	0.0	9/2-	1856.20	11/2 +	2.43	11	7.378	25	Р

Table 12	
(continued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
^{205}At	$\beta + \varepsilon$	4537	0.0	9/2-	2149.35	(7/2)+	1.73	17	7.413	46	Р
^{205}At	$\beta + \varepsilon$	4537	0.0	9/2-	2187.88	(11/2)+	2.23	15	7.287	33	Р
^{205}At	$\beta + \varepsilon$	4537	0.0	9/2-	3046.72	7/2 +	1.09	8	7.176	37	Р
205 At	$\beta + \varepsilon$	4537	0.0	9/2-	3052.2	(7/2)+	1.21	15	7.13	6	Р
^{205}At	$\beta + \varepsilon$	4537	0.0	9/2-	3170.9	(7/2)+	1.44	8	6.975	31	Р
206 Hg	β -	1308	0.0	0 +	304.896	1-	35	7	5.33	9	
206 Hg	β -	1308	0.0	0 +	649.42	1-	3.0	4	5.76	7	
²⁰⁷ Po	ε	2909	0.0	5/2-	2060.39	3/2 +	21.2	5	6.439	15	
208 Tl	β-	4998.4	0.0	5+	3475.088	4-	22.2	5	5.776	10	
$^{208}\mathrm{At}$	$\beta + \varepsilon$	4999	0.0	6+	3553.6	5-	5.3	6	7.02	5	
$^{208}\mathrm{At}$	$\beta + \varepsilon$	4999	0.0	6+	3609.8	5-	3.28	43	7.19	6	
$^{208}\mathrm{At}$	ε	4999	0.0	6+	4166.3	7-	5.43	81	6.50	7	
^{209}At	ε	3482	0.0	9/2-	2864.50	11/2 +	8.4	3	6.537	19	
^{209}At	ε	3482	0.0	9'/2-	2902.35	11/2 +	1.30	5	7.284	21	
^{209}At	ε	3482	0.0	9'/2-	2908.46	11/2 +	4.59	13	6.726	17	
^{209}At	ε	3482	0.0	9'/2-	2978.26	11/2 +	5.08	13	6.551	18	
²¹⁰ Pb	β-	63.5	0.0	0+	0.0	1-	16	3	8.02	8	
²¹⁰ Bi	β-	1161.2	0.0	1-	0.0	0+	100		8.1153	12	
²¹⁰ At	E	3981	0.0	(5)+	3727.2	(6)-	5.4	1	5.943	48	
211 Pb	<u>в</u> -	1366	0.0	9/2+	404.866	$\frac{(0)}{7/2}$	1.63	9	7.284	25	
^{213}Bi	β-	1422	0.0	9/2-	440 445	$\frac{7}{2+}$	30 79	24	6 166	-0	
214 Ph	р В-	1018	0.0	0+	0.0	1_	12.7	9	6 354	35	
214 Ph	р В -	1018	0.0	0+	295 2236	1_	39.0	5	5 350	$\frac{33}{24}$	
214 Bi	р В -	3269	0.0	1_	0.0	1 0+	19.2	4	7974	11	
^{214}Bi	р В-	3260	0.0	1	1377 681	$2\perp$	7.22	8	7.374	11	
^{214}Bi	β- β-	3269	0.0	1-	15/13 370	$\frac{2}{2}$	3.00	1	7 602	12	
^{214}Bi	β- β-	3269	0.0	1-	1720 613	$\frac{2}{2}$	17.55	10	6 753	12 12	
214_{B} ;	β- β	3269	0.0	1- 1	1847 446	$2 \pm 2 \pm$	8 16	5	6.058	12	
214B;	β- β	3269	0.0	1- 1	1897.440	$(2) \perp$	1 580	17	$0.300 \\ 7.620$	10	
214B;	β- β	3269	0.0	1- 1	2017 315	(2) + 0 +	2 460	15	7.020 7.977	14	
221Bn	β- β	1104	0.0	$\frac{1}{7}/2 \pm$	100.03	(5/2)	2.400	15	6.70	8	
223 Tr	β- β	1134	0.0	$\frac{1}{2}$	100.93 234.770	$(5/2)^{-}$	10.1	10	6 3 3 0	0	
224 Fr	ρ- β	2022	0.0	3/2- 1	234.119	(0/2)+	10.1	2 3	6.00	9 7	
224 Fr	ρ- β	2923	0.0	1- 1	1652 42	$\frac{2+}{2+}$	1.9	.ე ვ	0.99 6 76	7	
225 D n	ρ- β	2923	0.0	1- 7/9	1052.42	2+ 5/2+	1.0	5	7.00	0	
лп 225 р.	ρ-	2714	0.0	7/2-	101.00	$\frac{3}{2+}$	2.4	5	7.90	9	
лп 226 г.,	ρ- β	2714	0.0	1/2-	540.05 1156 91	(9/2)+	3.0 2.2	1	7.07	10	D
гі 226 г.,	ρ-	0000 2052	0.0	1- 1	1200.21	2+	2.2	47	6.80	0	Г D
226 En	ρ- β	0000 2052	0.0	1- 1	1390.04	2+	5.9 1.01	10	0.09	0	Г D
227 En	ρ- β	3693 2505	0.0	1- 1/9+	1723.4	2+ 2/9	1.01	10	1.24 6.67	0	Г
227 En	ρ-	2505	0.0	1/2+	90.0343 502.054	3/2- (2/2)	10	1	0.07 6.705	12	
228 A -	ρ-	2000	0.0	1/2+	020.001	$(3/2)^{-}$	0.4	4	0.795	20 11	
* AC 228 D-	p-	2123.8	0.0	3+ 2+	1122.949	Z- 4	5.90 9.7	14	7.979	11	
Pa 231 A	ε	2102.7	0.0	3+ 1 /0 /	1450.408	4-	8.7	8	(.455	45	
²⁰¹ AC 231ml	β- 0	1947	0.0	1/2+	593.618	(3/2)-	0.5	(0.71	5	
233 D	β-	391.5	0.0	5/2+	320.211	3/2-	0.067	2	6.895	31	
²⁰⁰ Pa 233D	β-	570.3	0.0	3/2-	0.0	5/2+	8.8	14	9.05	10	
²⁰⁰ Pa 233D	β- 0	570.3	0.0	3/2-	340.478	$\frac{5}{2+}$	27	6	7.29	10	
234 Pa	β- 0	570.3	0.0	3/2-	398.496	1/2+	12.9	23	7.22	8	
234₽	β- 0	2193.9	0.0	4+	1693.4	5- 0	7.3	8	6.959	49	
²³⁴ Pa	β-	2193.9	0.0	4+	1722.9	3-	12.9	12	6.625	42	
237 U 237 D	β-	518.5	0.0	1/2+	267.561	3/2-	42	3	6.664	31	
238 - F	ε	220.1	0.0	7/2-	0.0	5/2+	79	2	6.955	15	
^{∠30} Np	β -	1291.45	0.0	2+	605.16	1-	0.102	3	10.210	13	

Table 12	
(continued)	1

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
²³⁸ Np	β-	1291.45	0.0	2+	661.43	3-	0.0384	21	10.510	24	
$^{238}\mathrm{Np}$	β -	1291.45	0.0	2 +	962.765	1-	1.254	13	8.0787	49	
$^{238}\mathrm{Np}$	β -	1291.45	0.0	2 +	1202.62	(3)-	0.54	5	6.690	41	
$^{238}\mathrm{Am}$	$\beta + \varepsilon$	2.26 E3	0.0	1+	985.53	2-	2.30	30	7.61	8	
$^{239}\mathrm{U}$	β -	1261.7	0.0	5/2 +	117.715	7/2-	1.96	24	7.55	5	
^{239}Np	β -	722.8	0.0	5/2+	391.586	7/2-	44	2	6.594	20	
^{239}Np	β -	722.8	0.0	5/2+	492.2	3/2-	0.020	1	9.442	22	
$^{239}\mathrm{Am}$	ε	802.1	0.0	(5/2)-	511.84	7/2 +	18.1	21	6.02	5	
$^{241}\mathrm{Cm}$	ε	767.4	0.0	1/2 +	471.810	3/2-	26	6	7.74	10	
$^{241}\mathrm{Cm}$	ε	767.4	0.0	1/2 +	636.861	3/2-	42.2	21	6.372	26	
$^{242}\mathrm{Am}$	ε	751.1	0.0	1-	0.0	0+	6.7	9	7.63	6	
$^{242}\mathrm{Am}$	ε	751.1	0.0	1-	44.54	2 +	10.6	8	7.368	33	
$^{242}\mathrm{Am}$	β -	664.31	0.0	1-	0.0	0+	37	5	7.16	6	
$^{242}\mathrm{Am}$	β -	664.31	0.0	1-	42.13	2 +	46	5	6.974	47	
$^{245}\mathrm{Bk}$	ε	809.3	0.0	3/2-	252.838	5/2 +	90	10	7.129	49	
$^{245}\mathrm{Bk}$	ε	809.3	0.0	3/2-	355.95	1/2+	6.1	5	8.076	36	
$^{245}\mathrm{Bk}$	ε	809.3	0.0	3/2-	740.97	(1/2)+	1.0	1	6.51	5	
^{249}Bk	β -	123.60	0.0	7/2+	0.0	9/2-	100		7.1735	43	
^{249}Es	$\beta + \varepsilon$	1452	0.0	7/2+	0.0	9/2-	25	8	6.86	14	
^{249}Es	ε	1452	0.0	7/2+	813.20	(5/2)-	10.0	11	6.45	7	
$^{250}\mathrm{Bk}$	β -	1781.7	0.0	2-	1071.37	3+	6.23	18	7.394	14	

16.3. First forbidden unique

Table 13

List of first forbidden unique transitions with $\Delta J=2$ and $\Delta \pi=yes$.

Nuclide	Decay	$Q \; [\text{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
^{16}N	β -	1.04209E4	0.0	2-	0.0	0+	28.0	4	9.076	6	
^{17}N	β -	8679	0.0	1/2-	0.0	5/2 +	1.61	50	9.56	14	
^{20}N	β -	1.797 E4	0.0	2-	5384.2	0+	2.9	7	8.89	11	Р
^{37}S	β -	4865.13	0.0	7/2-	0.0	3/2 +	5.6	6	9.332	47	
^{38}S	β -	2937	0	0 +	0.0	2-	9.3	20	9.26	9	
$^{38}\mathrm{Cl}$	β -	4916.71	0.0	2-	0.0	0 +	56.0	6	9.2410	47	
$^{39}\mathrm{Cl}$	β -	3442	0.0	3/2 +	0.0	7/2-	7	2	9.34	12	
$^{39}\mathrm{Ar}$	β -	565	0.0	7/2-	0.0	3/2+	100		10.104	24	
$^{40}\mathrm{K}$	ε	1504.40	0.0	4-	1460.851	2 +	10.31	4	11.537	8	
$^{41}\mathrm{Ca}$	ε	421.64	0.0	7/2-	0.0	3/2 +	100		10.500	44	
$^{42}\mathrm{Ar}$	β-	599	0.0	0+	0.0	2-	100		9.325	27	
$^{42}\mathrm{K}$	β-	3525.26	0.0	2-	0.0	0 +	81.90	9	9.4836	6	
$^{43}\mathrm{K}$	β-	1833.48	0.0	3/2 +	0.0	7/2-	1.54	18	9.74	5	
$^{44}\mathrm{K}$	β-	5687.2	0.0	2-	0.0	$0^{'}+$	34	10	9.66	13	
$^{44}\mathrm{K}$	β-	5687.2	0.0	2-	1883.515	0+	1.5	3	9.90	9	
^{46}K	β-	7725.7	0.0	2-	2574.53	4+	1.15	14	9.72	5	
^{47}Ca	β-	1992.2	0.0	$\frac{-}{7/2}$ -	766.83	(3/2)+	0.087	3	10.680	15	
71 Zn	β-	2810.3	155 62	9/2+	487 395	5/2-	4.6	8	9.47	8	
^{72}As	$\beta + l \epsilon$	4343 60	0.0	2-	0.0	0+	17.2	18	9.845	45	
72 A s	$\beta + \epsilon$	4343 60	0.0	2 2_	1728 29	4	0.095	24	10.34	10	
73 So	$\beta \perp / \epsilon$	4040.00 9795	0.0	$\frac{2}{9/2}$	67.10	$\frac{1}{5}/2_{-}$	1 10	10	8 782	/1	
74 A s	$\beta \perp l \epsilon$	2120	0.0	$\frac{3}{2}$	1/82.81	0/2- 0⊥	0.0180	30	10.35	7	
74 A a	$\rho_{\pm/c}$	1252.4	0.0	2-	1402.01	0 +	18.6	00 92	10.30	5	
75Co	ρ-	266 04	0.0	2- 5/9	469.6	0+1/9	0.00027	23 6	9.39	5	
76 A g	E B	000.04 2060 6	0.0	$\frac{3}{2+}$	408.0	1/2-	55.0	4	0.6005	। २०	
76 A a	ρ-	2900.0	0.0	2- 0	1100.057	0+	0.60	4	9.0995	32 10	
76 A a	ρ-	2900.0	0.0	2- 2	1122.207	0+	0.09	ა ეე	10.371	19	
77DL	ρ- 0 - /-	2900.0	0.0	2- 2/0	1350.855	$\frac{4+}{7}$	0.0595	20	11.132	10	р
77 C	$\rho + \varepsilon$	5559.0 9709 r	0.0	3/2-	149.94	1/2+	1.0	0 19	8.80	14	Р
77 A	β-	2703.5	0.0	1/2+	215.54	3/2-	4.1	13	9.99	14	
TAS	β-	683.2	0.0	3/2-	161.942	7/2+	0.092	16	8.44	8	D
⁷⁸ Ga	β-	8158.0	0.0	2-	1570.19	4+	6.0	9	8.57	7	Р
⁷⁰ AS	β-	4209	0.0	2-	0.0	0+	32	8	9.65	11	
⁷⁰ As	β-	4209	0.0	2-	2682.09	4+	15.9	19	7.30	5	
^{ro} As	β-	4209	0.0	2-	3294.73	4+	3.5	5	6.72	7	
⁷⁹ Se	β -	150.6	0.0	7/2+	0.0	3/2-	100		10.783	40	
°1Kr	ε	280.85	0.0	7/2+	0.0	3/2-	99.70	2	11.030	22	
° ² Br	β-	3093.1	45.9492	2-	0.0	0+	2.1	3	8.90	6	
° ³ Sr	$\beta + \varepsilon$	2273	0.0	7/2+	821.62	(3/2)-	0.022	7	9.86	15	
⁸⁴ Rb	$\beta + \varepsilon$	2680.4	0.0	2-	0.0	0+	26.5	11	9.517	18	
84 Br	β -	4656	0.0	2-	0.0	0+	33	5	9.49	7	
85 Kr	β -	687.0	0.0	9/2 +	0.0	5/2-	99.563	10	9.460	7	
⁸⁶ Rb	ε	518.67	0.0	2-	0.0	0+	5.2E-3	5	9.791	42	
86 Rb	β -	1776.10	0.0	2-	0.0	0+	91.36	4	9.4568	6	
$^{87}\mathrm{Kr}$	β -	3888.27	0.0	5/2 +	845.44	(1/2)-	7.3	4	9.385	24	
88 Kr	β -	2917.7	0.0	0 +	0.0	2-	14	4	9.34	12	
$^{88}\mathrm{Kr}$	β -	2917.7	0.0	0 +	862.349	2-	1.3	3	9.46	10	
$^{88}\mathrm{Rb}$	β -	5312.62	0.0	2-	0.0	0+	76.51	11	9.2622	8	
^{88}Y	$\beta + \varepsilon$	3622.6	0.0	4-	1836.083	2 +	5.50	40	9.812	33	
^{88}Y	ε	3622.6	0.0	4-	3218.6	2 +	0.028	6	9.46	9	
89 Sr	β-	1502.18	0.0	5/2 +	0.0	1/2-	99.99036	5	9.4498	6	
89 Zr	$\beta + \varepsilon$	2833.2	0.0	9/2+	1744.5	5/2-	0.1230	40	9.106	16	

Table 13	
(continued))

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
90 Rb	β -	6585	0.0	0-	831.68	2+	26	2	9.123	36	
90 Rb	β -	6585	0.0	0-	1892.36	2+	2.7	4	9.54	7	
90 Sr	β -	546.0	0.0	0+	0.0	2-	100		9.416	6	
⁹⁰ Y	β -	2275.64	0.0	2-	0.0	0+	99.9885	14	9.2367	5	
⁹⁰ Y	β -	2275.64	0.0	2-	1760.74	0+	0.0115	14	9.65	5	
^{91}Y	β -	1544.3	0.0	1/2-	0.0	5/2 +	99.74	4	9.5990	29	
91 Nb	$\beta + \varepsilon$	1257.6	104.60	1/2-	0.0	5/2 +	1.40	30	9.76	9	
^{92}Y	β -	3643	0.0	2-	0.0	0+	85.7	16	9.287	11	
^{92}Y	β -	3643	0.0	2-	1382.99	0+	2.3	3	9.60	6	
^{92}Y	β -	3643	0.0	2-	1495.60	4 +	1.15	20	9.77	8	
^{93}Y	β -	2895	0.0	1/2-	0.0	5/2 +	89.5	16	9.114	13	
93 Zr	β -	90.8	0.0	5/2 +	30.77	1/2-	73	6	10.19	6	
^{93}Mo	ε	405.8	0.0	5/2 +	30.77	1/2-	88	12	10.09	10	
^{94}Y	β -	4918	0.0	2-	0.0	0+	41	4	9.370	43	
^{94}Y	β -	4918	0.0	2-	1300.12	0+	1.83	20	9.884	48	
^{94}Y	β -	4918	0.0	2-	1469.64	4+	4.1	4	9.404	43	
$^{95}\mathrm{Rb}$	β -	9227	0.0	5/2-	1864.17	1/2 +	1.02	24	8.60	10	Р
^{95}Y	β-	4452	0.0	1/2-	0.0	5/2+	64.0	17	8.644	13	
$^{95}\mathrm{Zr}$	β-	1126.3	0.0	5/2+	235.690	1/2-	1.08	7	10.303	28	
$^{95}\mathrm{Nb}$	β-	925.60	234.70	1/2-	0.0	5/2+	3.2	10	9.22	14	
$^{95}\mathrm{Tc}$	$\beta + \varepsilon$	1691	38.91	1/2-	0.0	5/2+	13.56	9	9.274	18	
$^{95}\mathrm{Tc}$	ε	1691	38.91	1/2-	1056.753	5/2+	0.0185	16	10.463	45	
$^{95}\mathrm{Tc}$	ε	1691	38.91	1/2-	1426.13	(5/2)+	0.00837	22	9.374	41	
$^{96}\mathrm{Rb}$	β-	1.1564E4	0.0	2-	1464.6	$\dot{0}+$	1.11	16	9.19	6	Р
$^{96}\mathrm{Rb}$	β-	1.1564E4	0.0	2-	1792.78	4+	3.7	4	8.572	47	Р
^{96}Y	β-	7109	0.0	0-	1750.60	2 +	1.91	20	8.616	46	
$^{97}\mathrm{Tc}$	ε	320.3	96.5	1/2-	0.0	5/2 +	3.94	18	7.451	31	
^{98}Y	β-	8993	0.0	Ú-	1744.61	2+	3.0	4	8.28	6	Р
$^{99}\mathrm{Rh}$	$\beta + \varepsilon$	2041	0.0	1/2-	576.27	5/2+	0.37	6	10.05	7	
$^{99}\mathrm{Rh}$	$\beta + \varepsilon$	2041	0.0	1/2-	734.10	5/2+	0.30	8	9.94	12	
$^{103}\mathrm{Cd}$	$\beta + \varepsilon$	4151.1	0.0	(5/2)+	134.45	1/2-	3.4	9	7.99	12	Р
$^{105}\mathrm{Ag}$	ε	1347.1	0.0	1/2-	727.3	5/2+	0.036	4	10.01	5	
106 In	$\beta + \varepsilon$	6524	0.0	$7^{'}+$	2629.02	5-	2.50	23	7.964	42	Р
$^{107}\mathrm{Pd}$	β-	34.0	0.0	5/2 +	0.0	1/2-	100		9.96	11	
108 In	$\beta + \varepsilon$	5133	0.0	7+	2601.41	5-	3.0	7	7.73	10	
108 In	$\beta + \varepsilon$	5133	0.0	7+	2706.96	5-	2.4	7	7.73	13	
110 In	$\beta + \varepsilon$	3878	0.0	7+	2659.792	5-	1.74	15	7.307	49	
^{111}Ag	β-	1036.8	0.0	1/2-	245.42	5/2 +	1.0	2	9.26	9	
$^{115}\mathrm{Cd}$	β-	1451.9	0.0	1/2+	1041.4	5/2-	0.00008	2	11.42	11	
118 I	$\beta + \varepsilon$	6720	0.0	2-	957.33	$0^{'}+$	1.20	30	9.87	11	Р
118 I	$\beta + \varepsilon$	6720	0.0	2-	1206.25	4+	4.2	8	9.19	9	Р
118 I	$\beta + \varepsilon$	6720	0.0	2-	1702.9	(4)+	2.59	18	9.101	37	Р
$^{119}\mathrm{Te}$	$\beta + \varepsilon$	2293.0	260.96	11/2-	270.54	7/2+	5.4	5	9.427	41	
^{120}I	$\beta + \varepsilon$	5615	0.0	2-	0.0	0+	22.3	8	9.294	17	Р
^{120}I	$\beta + \varepsilon$	5615	0.0	2-	1161.6	4+	1.35	11	9.793	36	Р
^{121}Sn	β-	402.5	6.30	11/2-	37.15	7/2+	22.4	20	9.667	42	
$^{121}\mathrm{Te}$	$\beta + \varepsilon$	1056	293.991	11/2-	37.138	7/2+	8.7	10	9.76	6	
$^{122}\mathrm{Sb}$	$\beta + \varepsilon$	1605.7	0.0	2-	0.0	0+	1.66	11	9.020	30	
$^{122}\mathrm{Sb}$	β -	1979.1	0.0	2-	0.0	0+	26.1	2	9.6728	43	
$^{122}\mathrm{Sb}$	β-	1979.1	0.0	2-	1179.3	4 +	0.012	3	10.84	11	
$^{122}\mathrm{Sb}$	β-	1979.1	0.0	2-	1357.6	0+	0.0108	10	10.325	41	
^{123}Sn	β-	1408.2	0.0	11/2-	0.0	7/2+	99.37	13	9.9083	45	
124 I	$\beta + \varepsilon$	3159.6	0.0	2-	0.0	0+	34.6	8	9.307	11	

Table 13
(continued $)$

Nuclide	Decay	$Q \; [\text{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
^{124}I	$\beta + \varepsilon$	3159.6	0.0	2-	1248.60	4 +	0.040	10	11.21	11	
^{124}I	$\beta + \varepsilon$	3159.6	0.0	2-	1657.28	0+	0.1100	40	10.335	17	
^{124}I	ε	3159.6	0.0	2-	2308.39	0+	0.0084	10	10.44	5	
125 Sn	β -	2361.4	0.0	11/2-	0.0	7/2 +	81.4	50	10.160	27	
125 Sn	β -	2361.4	0.0	11/2-	1349.65	7/2 +	0.38	11	10.41	13	
$^{125}\mathrm{Sb}$	β-	766.7	0.0	7/2+	144.776	11/2-	13.6	9	9.794	30	
^{126}I	$\beta + \varepsilon$	2153.7	0.0	2-	0.0	0+	19.4	7	9.233	17	
^{126}I	ε	2153.7	0.0	2-	1873.1	0 +	0.00046	14	10.16	14	
^{126}I	β-	1235.9	0.0	2-	0.0	0 +	10.3	7	9.635	30	
$^{127}\mathrm{Sb}$	β-	1582.2	0.0	7/2 +	87.7	11/2-	2.0	5	10.24	11	
$^{127}\mathrm{Te}$	β-	702.7	88.26	11/2-	57.64	7/2+	2.14	30	10.01	6	
$^{127}\mathrm{Te}$	β-	702.7	88.26	11/2-	628.6	7/2+	7.7E-5	19	11.41	11	
$^{129}\mathrm{Te}$	β-	1502.3	105.51	11/2-	0.0	7/2+	32	8	10.18	11	
$^{129}\mathrm{Te}$	β-	1502.3	105.51	11/2-	768.76	(7/2)+	0.028	6	11.69	9	
$^{129}\mathrm{Te}$	β-	1502.3	105.51	11/2-	1050.21	(7/2)+	0.037	8	10.67	9	
^{129}Sb	β -	2376	0.0	7/2+	105.49	11/2-	3	1	9.78	15	
131 Te	β-	2231.7	182.25	$\frac{11}{2}$	0.0	7/2+	3.8	4	10.728	46	
¹³¹ I	β-	970.8	0.0	7/2+	163.930	$\frac{11}{2}$	0.39	9	9.86	10	
¹³² La	$\beta + \epsilon$	4711	0.0	2-	0.0	0+	14.0	20	9.53	7	
^{133}Ce	$\beta + \epsilon$	3076	37.2	$\frac{-}{9/2}$	87 940	5/2+	2.70	40	9.16	7	
133 _I	β-7,0 β-	1786	0.0	$\frac{7}{2+}$	233 221	$\frac{3}{2}$	1.08	11	9 992	45	
1351	р В-	2634.2	0.0	7/2 + 7/2 +	526 551	11/2	1.00	2	10.002	46	
$^{137}C_{s}$	р В-	1175.63	0.0	7/2 + 7/2 +	661 659	$\frac{11}{2}$	94.8	2	9 6553	40 12	
138Cs	р В-	5375	0.0	3_	2583.14	11/2	1.67	8	9.0000	12 93	
140 R ₉	β- β-	1044	0.0	0⊥	162 6585	1 2_	3.8	2	9.100	20 31	
140L o	р- В	3769.9	0.0	3	2340.81	2- 5⊥	0.207	25^{2}	10.84	5	
140La	р- В	3762.2	0.0	0- 2	2545.01 2547.24	0 1⊥	0.201	20	10.04	6	
$142C_{c}$	р- В	7328	0.0	0-	1424.06	$1 \pm 2 \pm$	1.0	2	8 624	46	
142L o	р- В	1520	0.0	0-	1424.00	$2 \pm 0 \pm$	13.0	10	10.57	40 2	
$142 \mathbf{p_r}$	р- В	2163.7	0.0	2-	0.0	0+	15.9	5	8 0/11	-0 -20	
143 D r	р- в	2105.7	0.0	$\frac{2}{7}$	742.10	0⊤ 2/9	30.3 1 9F 6	4	10.78	29 15	
144 D r	ρ- β	934.1 2007 4	0.0	1/2+ 0	606 51	3/2- 2	1.212-0	4 9	0.241	10	
$145C_{a}$	ρ- β	2991.4	0.0	0- 2/9+	112.64	$\frac{2+}{(7/2)}$	1.04	2	9.241	9	D
145 cm	ρ-	616 1	0.0	$\frac{3}{2+}$	112.04 402.55	$(1/2)^{-}$	4.5	0	0.41	46	1
3111 145 F .,	e B L /c	2650.0	0.0	5/21	492.00 1492.04	$\frac{3}{2+}$	0.0055	20	9.422	40 7	
Ец 145 г.,	$\rho + \epsilon$	2039.9	0.0	5/2+	1423.24	9/2- 1/9	0.120	20 15	10.40	1	
145 E.u	$\rho + \varepsilon$	2039.9	0.0	$\frac{3}{2+}$	1007.20	1/2-	0.047	10	10.37	14	
146 C J	ε	2059.9	0.0	$\frac{3}{2+}$	1780.32	9/2-	0.011	2 16	10.88	8 22	
146 C J	2	1032	0.0	0+	230.23	2- (2)	20.0	10	0.200	აა ი	
146E.	e	1052	0.0	0+	1911 604	(<i>Z</i>)-	0.007	10	9.27	0 20	
°£и 147р	$\rho + \varepsilon$	3019 994.0C	0.0	4-	107.0094	0+ 2/9	2.09 4.9E 7	14	10.020	30 7	
147 F	p-	224.00	0.0	(/2+ 5/2+	197.298	3/2- 0/2	4.8E-7	8 10	12.00	(20	
148 E	ε	1721.4	0.0	5/2+ F	809.300	9/2-	0.0270	19	11.104	32	
149D	ε	3039	0.0	0- 7/0 -	2391.77	(+ 0./0	0.016	3	11.12	9	
149D	β-	1071.5	0.0	7/2+	350.08	3/2-	0.0013	3	11.68	10	
¹⁴⁰ Pm	β-	1071.5	0.0	(/2+	664.40	11/2-	0.00077	11	10.69	6	
¹⁴⁹ Eu	ε	694.6	0.0	5/2+	590.880	9/2-	0.000142	14	9.96	8	
¹⁵⁰ Tb	$\beta + \varepsilon$	4658	0.0	(2)-	1207.139	0+	1.02	23	9.90	10	
152D	$\beta + \varepsilon$	4658	0.0	(2)-	1288.42	4+	1.70	30	9.62	8	
¹⁰² Eu 152m	β-	1818.8	45.5998	0-	344.29	2+	1.7	3	9.58	8	
¹⁰² Tb	$\beta + \varepsilon$	3990	0.0	2-	0.0	0+	25.0	40	9.54	7	
¹⁰² Tb	$\beta + \varepsilon$	3990	0.0	2-	615.38	0+	6.85	24	9.722	26	
¹⁰² Tb	$\beta + \varepsilon$	3990	0.0	2-	1047.78	0+	1.35	7	10.145	34	
¹⁰² Pm	β -	3509	$1.5E{+}2$	4-	1085.77	2+	1.7	3	8.98	12	Р

Table 13	
(continued))

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
154 Ho	$\beta + \varepsilon$	5755	0.0	2-	747.02	4+	7.2	10	8.73	6	Р
¹⁵⁶ Eu	β -	2452.5	0.0	0+	1319.63	2-	0.28	5	11.26	8	
156 Eu	β -	2452.5	0.0	0+	1780	2-	0.022	5	11.18	10	
¹⁵⁶ Eu	β -	2452.5	0.0	0+	2121.42	2-	0.13	1	8.924	39	
¹⁵⁶ Eu	β -	2452.5	0.0	0+	2199.50	2-	0.079	8	8.62	5	
159 Dy	ε	364.73	0.0	3/2-	137.507	7/2 +	0.0028	6	10.39	9	
$^{161}\mathrm{Tb}$	β -	593.7	0.0	3/2 +	212.923	7/2-	0.0117	16	9.95	6	
166 Ho	β -	1853.8	0.0	0-	80.5775	2+	49.9	12	9.031	11	
166 Ho	β -	1853.8	0.0	0-	785.865	2+	0.0070	12	11.67	7	
166 Ho	β -	1853.8	0.0	0-	1528.12	2+	0.00268	12	9.534	20	
166 Lu	$\beta + \varepsilon$	5573	0.	6-	330.48	4+	4.2	14	8.51	15	Р
$^{167}\mathrm{Tm}$	ε	746.1	0.0	1/2 +	346.5	5/2-	0.025	5	9.43	9	
$^{168}\mathrm{Tm}$	ε	1676.9	0.0	3+	1358.910	1-	0.0466	23	9.717	24	
$^{169}\mathrm{Er}$	β -	353.5	0.0	1/2-	118.18945	5/2 +	0.0048	10	9.61	9	
$^{169}\mathrm{Yb}$	ε	899.1	0.0	7/2+	474.970	(3/2)-	3.55E-4	8	11.961	11	
169 Lu	$\beta + \varepsilon$	2293.0	0.0	7/2+	929.17	11/2-	0.33	7	9.84	9	
170 Lu	$\beta + \varepsilon$	3458	0.0	0+	1717.95	(2)-	0.26	7	10.53	12	
$^{171}\mathrm{Er}$	β-	1492.4	0.0	5/2-	0.0	1/2+	2.3	2	9.415	38	
171 Lu	έ	1478.4	0.0	7'/2+	487.28	11/2-	0.013	4	11.43	13	
171 Lu	ε	1478.4	0.0	7/2+	902.251	3/2-	0.151	5	9.353	18	
$^{172}\mathrm{Tm}$	β-	1882	0.0	2-	0.0	0+	29	4	9.83	6	
$^{172}\mathrm{Tm}$	β-	1882	0.0	2-	260.269	4+	1.16	23	10.86	9	
172 Tm	β-	1882	0.0	2-	1042.84	0+	0.29	3	9.921	47	
172 Tm	β-	1882	0.0	2-	1286.4	4+	0.0089	25	10.68	12	
^{172}Lu	$\beta + \varepsilon$	2519.4	0.0	4-	1465.964	2+	0.23	7	10.20	13	
^{172}Lu	ε	2519.4	0.0	4-	1608.62	2+	0.063	15	10.49	10	
¹⁷⁵ Ta	$\beta + \epsilon$	2073	0.0	$\frac{1}{7/2+}$	196 43	$\frac{-}{3/2}$	3 70	30	8 919	45	
182 Hf	β-	381	0.0	0+	$270\ 408$	2-	100	00	12.62	9	
182 Be	р F	2 80E3	0.0	7+	1809.66	5-	71	23	8.33	26	
^{185}W	β-	431.2	0.0	3/2-	125,358	$\frac{0}{7/2+}$	0.072	-3	9 970	19	
186 Be	р В-	1072 7	0.0	1_	910.6	3+	2.2E-5	7	11 04	14	
186 Ir	$\beta + \epsilon$	3828	0.0	5+	1480.4	(3)-	1 40	30	10.08	9	
187 Be	β-	2 4709	0.0	5/2+	0.0	$\frac{1}{2}$	100	00	11.026	7	
187 Pt	$\beta + \epsilon$	2864	0.0	3/2-	285.08	$\frac{1}{2}$	5 4	6	8 85	6	
^{187}Pt	$\beta + \epsilon$	2864	0.0	3/2-	471.22	7/2+	2.00	30	9.14	7	
193Os	β-72 β-	1141.9	0.0	3/2-	357764	7/2+	0.013	4	10.94	13	
¹⁹⁶ Au	р Е	1505.8	0.0	2-	877.0	4+	0.380	15	9 238	20	
¹⁹⁶ Tl	$\beta + \epsilon$	4329	0.0	2-	1060.9	4+	3.8	11	9 43	13	Р
¹⁹⁷ Ph	$\beta + \epsilon$	3609	319 31	$\frac{2}{13/2+}$	2019 31	17/2-	1.20	30	8.57	11	P
198 A 11	β-72 β-	$1373\ 52$	0.0	2-	2010.01	0+	0.025	5	12.35	9	1
198T]	$\beta + l \epsilon$	3426	543 5	$\frac{2}{7+}$	1910.6	0_ 0_	1.80	40	8.92	10	Р
200 TI	$\beta + \epsilon$	2456	0.0	2-	1010.0	0+	6.26	40	9.840	31	1
201_{Bi}	$\beta \perp / \epsilon$	2400	0.0	$\frac{2}{9}/2_{-}$	629.1	$13/9 \perp$	10.20	30	8 74	7	
202Tl	$\beta \perp /\epsilon$	1364.0	0.0	3/2- 2-	025.1	10/2 0⊥	5.0	11	0.03	10	
202 ph	$\rho_{1/c}$	30.8	0.0	 0_⊥	0.0	0	100	11	9.95 8.05	10	
203p;	$\mathcal{B} \downarrow \mathcal{I}_{\mathcal{C}}$	39.0 3969	0.0	0+ 0/2	0.0 825.2	2- 13/9+	6.0	19	0.51	14 Q	
203 A +	$\rho_{\pm/\epsilon}$	5148	0.0	$\frac{9}{2}$	641 54	$\frac{13}{2+}$	0.9	12	9.31 8.317	0 21	D
At 204 T1	$\rho + \epsilon$	0140 944 1	0.0	9/2- 2	041.04	13/2+	2.02	12	0.517	31 19	Г
204 T1	e B	044.1 762 75	0.0	∠- 2	0.0	0+	2.92 07.09	1	9.009 10 1792	10 15	
205 DL	ρ-	705.75 50.6	0.0	2- 5/9	0.0	0+ 1/9+	97.00	1	10.1730	10 97	
205 D ;	د د	90.0 9704 6	0.0	0/2- 0/2	U.U 1949 OF	1/2+ (19/9) -	100 0.157	<u> </u>	11.739 10 79	∠1 6	
207 D:	8	2104.0	0.0	9/2- 0/2	1842.05	(13/2)+	0.107	22 E	10.73	0 19	
207 A L	E Q I /	2397.4 2019	0.0	9/ <i>2</i> - 0/2	1055.558	$\frac{13}{2+}$	84.0	0 10	10.03	12	
At	$p+/\varepsilon$	3918	0.0	9/2-	1115.071	13/2+	0.7	19	9.03	12	
Tal	ole	13									
-------	------	-----------									
(con)	ntin	ued)									

Nuclide	Decay	$Q \; [\text{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
²⁰⁸ Bi	ε	2878.4	0.0	5 +	2614.5	3-	100		12.538	22	
225 Rn	β -	2714	0.0	7/2-	142.59	(3/2)+	2.4	3	9.13	6	
228 Fr	β -	4444	0.0	2-	204.68	4+	7.8	18	9.05	10	Р

17. Second Forbidden Transitions

17.1. Second forbidden non-unique

Table 14

List of second forbidden non-unique transitions with $\Delta J=2$ and $\Delta \pi=no$.

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
^{36}Cl	$\beta + \varepsilon$	1142.13	0.0	2+	0.0	0+	1.90	10	14.230	24	
^{36}Cl	β -	709.534	0.0	2 +	0.0	0 +	98.1	1	13.6665	22	
$^{46}\mathrm{Sc}$	β -	2366.6	0.0	4 +	889.286	2 +	3.6E-3	7	13.81	8	
^{53}Mn	ε	597.27	0.0	7/2-	0.0	3/2-	100		12.994	48	
55 Fe	ε	231.12	0.0	3/2-	126.0	7/2-	1.3E-7	1	12.762	34	
59 Fe	β -	1564.88	0.0	3/2-	0.0	7/2-	0.18	4	12.05	10	
59 Ni	$\beta + \varepsilon$	1073.01	0.0	3/2-	0.0	7/2-	99.9970	30	12.532	29	
60 Fe	β -	237.3	0.0	0 +	58.603	2 +	100		11.834	39	
89 Sr	β -	1502.18	0.0	5/2 +	908.960	9/2 +	0.00964	5	11.2944	26	
$^{91}\mathrm{Nb}$	$\beta + \varepsilon$	1257.6	0.0	9/2 +	0.0	5/2 +	100.		11.37	8	
93 Zr	β -	90.8	0.0	5/2 +	0.0	9/2 +	27	6	11.30	10	
$^{94}\mathrm{Nb}$	β -	2045.0	0.0	6+	1573.72	4 +	100		12.003	11	
$^{95}\mathrm{Zr}$	β -	1126.3	0.0	5/2 +	0.0	9/2 +	0.103	11	11.875	46	
$^{95}\mathrm{Nb}$	β -	925.60	0.0	9/2 +	0.0	5/2 +	0.030	5	11.70	7	
$^{97}\mathrm{Tc}$	ε	320.3	0.0	9/2 +	0.0	5/2 +	100		12.798	34	
$^{98}\mathrm{Tc}$	β -	1793	0.0	6+	1397.77	4+	100		13.984	48	
$^{99}\mathrm{Tc}$	β -	297.5	0.0	9/2 +	0.0	5/2 +	99.9984	4	12.104	7	
^{129}I	β -	188.9	0.0	7/2 +	39.578	3/2 +	100	1	12.893	41	
^{134}Cs	ε	1234.669	0.0	4 +	847.0	2 +	0.00030	12	12.77	17	
^{135}Cs	β -	268.70	0.0	7/2 +	0.0	3/2 +	100		12.96	6	
^{137}Cs	β -	1175.63	0.0	7/2 +	0.0	3/2 +	5.2	2	12.778	17	
137 La	ε	580.5	0.0	7/2 +	0.0	3/2 +	100		12.53	14	
148 Eu	ε	3039	0.0	5-	2128.62	7-	0.106	25	10.92	10	
148 Eu	ε	3039	0.0	5-	2339.19	3-	0.0056	6	11.72	5	
$^{158}\mathrm{Tb}$	ε	1219.1	0.0	3-	977.136	1-	0.319	18	11.086	38	
$^{207}\mathrm{Bi}$	$\beta + \varepsilon$	2397.4	0.0	9/2-	569.6988	5/2-	8.9	5	13.246	26	
²⁰⁸ Po	ε	1400.9	0.0	0 +	925.06	2 +	0.0040	4	13.050	45	

17.2. Second forbidden unique

Table 15

List of second forbidde	n unique	transitions	with $\Delta J=3$	and $\Delta \pi = \text{no.}$
-------------------------	----------	-------------	-------------------	-------------------------------

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
$^{10}\mathrm{Be}$	β-	556.88	0.0	0+	0.0	3+	100.0		13.8383	38	
22 Na	$\beta + \varepsilon$	2843.32	0.0	3+	0.0	0 +	0.056	14	14.93	11	
^{26}Al	$\beta + \varepsilon$	4004.40	0.0	5+	1808.72	2 +	97.24	20	15.726	16	
^{26}Al	$\beta + \varepsilon$	4004.40	0.0	5+	2938.41	2 +	2.74	20	14.577	46	
60 Co	β -	2822.81	0.0	5+	1332.508	2 +	0.12	3	14.71	11	
$^{92}\mathrm{Nb}$	ε	2005.7	0.0	7+	1495.6	4 +	100		14.460	35	
$^{99}\mathrm{Tc}$	β -	297.5	0.0	9/2 +	89.50	3/2 +	0.0016	4	15.84	11	

Table 15
(continued)

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P} \; [\rm keV]$	$J\pi$	$E_D \; [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
115 In	β-	497.489	0.0	9/2+	497.342	3/2+	0.000102	13	14.59	12	4
^{137}Cs	β -	1175.63	0.0	7/2 +	283.50	1/2 +	0.00058	8	16.64	6	
138 La	ε	1748.40	0.0	5 +	1435.803	2 +	65.5	4	17.326	11	
138 La	β -	1052.46	0.0	5 +	788.744	2 +	34.5	4	18.081	8	
209 Po	ε	1892.6	0.0	1/2-	896.28	7/2-	0.454	7	14.571	14	

18. Third Forbidden Transitions

18.1. Third Forbidden non-unique

Table 16

List of third forbidden non-unique transitions with $\Delta J=3$ and $\Delta \pi=yes$.

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
$^{87}\mathrm{Rb}$	β -	282.275	0.0	3/2-	0.0	9/2+	100		17.0724	25	

18.2. Third forbidden unique

Table 17

List of third forbidden unique transitions with $\Delta J=4$ and $\Delta \pi=$ yes.

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_{\rm P}~[{\rm keV}]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
40 K	$\beta + \varepsilon$	1504.40	0.0	4-	0.0	0 +	0.099	25	21.64	11	
^{40}K	β -	1310.91	0.0	4-	0.0	0 +	89.59	5	20.5932	10	

19. Fourth Forbidden Transitions

19.1. Fourth forbidden non-unique

Table 18

List of fourth forbidden non-unique transitions with $\Delta J=4$ and $\Delta \pi=$	no:
---	-----

Nuclide	Decay	$Q \; [\mathrm{keV}]$	$E_P \; [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch [%]	Unc.	$\log ft$	Unc.	Pand.
^{50}V	ε	2208.63	0.0	6+	1553.77	2+	99.3	7	24.338	27	
^{113}Cd	β -	323.84	0.0	1/2 +	0.0	9/2 +	100		22.8060	38	
115 In	β -	497.489	0.0	9/2 +	0.0	1/2 +	100		22.991	25	

⁴Lowest beta transition energy in our tables. Determination of $\log ft$ without atomic overlap (cf. section 2).

20. Additional tables of interest

20.1. Lowest and highest log ft values

Table 19

Compilation of the five transitions with the lowest, and highest $\log ft$ values of this work, respectively.

Nuclide	Decay	$Q \; [\text{keV}]$	$E_P \ [keV]$	$J\pi$	$E_D \ [keV]$	$J\pi$	Branch $[\%]$	Unc.	$\log ft$	Unc.	Pand.
⁹ Li	β-	1.360645 E4	0.0	3/2-	11810	5/2-	2.65	27	2.574	49	
100 Sn	$\beta + \varepsilon$	7.03E3	0.0	0 +	2745	1+	100.		2.66	14	
$^{6}\mathrm{He}$	β -	3505.21	0.0	0 +	0.0	1+	100		2.90924	8	
$^{31}\mathrm{Ar}$	$\beta + \varepsilon$	1.836E4	0.0	5/2 +	12282	5/2 +	5.30	30	2.98	9	Р
^{1}n	β-	782.34700	0.0	1/2 +	0.0	1/2 +	100		3.01944	25	
$^{40}\mathrm{K}$	β-	1310.91	0.0	4-	0.0	0+	89.59	5	20.5932	10	
$^{40}\mathrm{K}$	$\beta + \varepsilon$	1504.40	0.0	4-	0.0	0 +	0.099	25	21.64	11	
$^{113}\mathrm{Cd}$	β-	323.84	0.0	1/2 +	0.0	9/2 +	100		22.8060	38	
115 In	β-	497.489	0.0	9/2+	0.0	1/2 +	100		22.991	25	
^{50}V	ε	2208.63	0.0	6+	1553.77	2^{+}	99.3	7	24.338	27	