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Abstract. Objective. Motor brain-computer interfaces (BCIs) are a promising
technology that may enable motor-impaired people to interact with their
environment. BCIs would potentially compensate for arm and hand function loss,
which is the top priority for individuals with tetraplegia. Designing real-time
and accurate BCI is crucial to make such devices useful, safe, and easy to use
by patients in a real-life environment. Electrocorticography (ECoG)-based BCIs
emerge as a good compromise between invasiveness of the recording device and
good spatial and temporal resolution of the recorded signal. However, most ECoG
signal decoders used to predict continuous hand movements are linear models.
These models have a limited representational capacity and may fail to capture
the relationship between ECoG signal features and continuous hand movements.
Deep learning (DL) models, which are state-of-the-art in many problems, could
be a solution to better capture this relationship.

Approach. In this study, we tested several DL-based architectures to predict
imagined 3D continuous hand translation using time-frequency features extracted
from ECoG signals. The dataset used in the analysis is a part of a long-term
clinical trial (ClinicalTrials.gov identifier: NCT02550522) and was acquired during
a closed-loop experiment with a tetraplegic subject. The proposed architectures
include multilayer perceptron (MLP), convolutional neural networks (CNN), and
long short-term memory networks (LSTM). The accuracy of the DL-based and
multilinear models was compared offline using cosine similarity.

Main results. Our results show that CNN-based architectures outperform the
current state-of-the-art multilinear model. The best architecture exploited the
spatial correlation between neighboring electrodes with CNN and benefited from
the sequential character of the desired hand trajectory by using LSTMs. Overall,
DL increased the average cosine similarity, compared to the multilinear model,
by up to 60%, from 0.189 to 0.302 and from 0.157 to 0.249 for the left and right
hand, respectively.

Significance. This study shows that DL-based models could increase the
accuracy of BCI systems in the case of 3D hand translation prediction in a
tetraplegic subject.

Keywords: brain-computer interface, ECoG, motor imagery, hand movements, deep
learning, convolutional neural networks, LSTM
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1. Introduction

Brain-computer interfaces (BCIs) enable people to
interact with their environment using a direct
connection between their brain and external effectors.
BCI provides humans with an alternative way to
interact with their surroundings and could substitute
lost motor function, for example, in tetraplegic persons.
Several communication paradigms have been designed
that are suitable for a broad range of tasks, like
keyboard typing or binary decision making. In this
study, we focus on motor imagery (MI) based BCI,
which can be used for continuous and asynchronous [1]
control of, for example, exoskeleton [2]. Such devices
could improve a paralyzed person’s quality of life
by offering them a certain autonomy, especially for
the tasks of everyday life. In the MI BCI paradigm,
subjects imagine movements that cause changes in
brain activity. Traces of this activity can be recorded,
usually in the form of electrical potential or magnetic
field, and decoded into external device commands. We
focused on upper-limb movements imagination because
regaining arm and hand motor functions are at the top
of the priority list in individuals with tetraplegia [3,4].

A typical BCI system consists of a brain signal
recording device, a feature extraction step, a decoder
that translates features into actions understandable by
a computer, and finally, a device that executes the
commands from the decoder [5].

The first part of the BCI system is a brain sig-
nal recording device. Acquired signal characteristics
strongly depend on the recording device. Recording
methods can be separated into invasive and noninva-
sive. The most invasive devices are intracortical mi-
croelectrode arrays (MEA) that are placed inside the
brain tissue [6–8]. Electrocorticography (ECoG) is a
less invasive method that records signal from the brain
surface [2,9,10]. The most common noninvasive record-
ing method used for BCI is electroencephalography
(EEG), monitoring the electrical activity of the brain
using a set of electrodes placed over the scalp [11–14].
This study focuses on ECoG-based BCI because it has
better signal characteristics than noninvasive meth-
ods while decreasing the risk connected to implanta-
tion and biocompatibility issues compared to MEA.
ECoG signal is also more stable in time [15]. There-
fore, ECoG-driven BCI emerges as a promising tool
for neuroprosthesis development.

The next step after signal recording is to extract
features from the signal. Those features represent
brain activity in a form that a decoder can exploit.
This transformation depends on the experimental
paradigm and the type of recorded signals. The most
common and effective representation of ECoG and
EEG signals for MI BCI are time-frequency features.
They contain information about power time course in

several frequency bands [2,16–20], or focus only on low-
frequency component (LFC)/Local Motor Potential
(LMP) [16,21,22].

The next step in a typical BCI system is a decoder,
translating brain signal features into BCI commands.
Decoding performance is crucial for the quality of
interaction between humans and computers. Higher
accuracy of decoding improves correctness and speed
of interaction. Most current decoders use machine
learning (ML) algorithms to predict BCI commands.
ML models are data-driven solutions that utilize data
to estimate the decoder’s parameters to predict the
target variable accurately. In most cases, supervised
learning approaches are used—models are trained
using data collected during a calibration phase with
pre-defined targets to reach.

Predicting BCI commands based on brain signals
is a challenging task due to several limitations
originating from the nature of the application.
Recorded brain signals have a strong component
of noise which is generated by spontaneous brain
activity not related to the task. The recorded signal is
nonstationary in time (intra-subject variability) which
often makes models valid only for a limited time
and requires decoder retraining. BCI experiments are
monotonous and time-consuming, so ML models have
to be trained with small datasets to reduce the time
needed for calibration. Another important constraint
is the need for real-time decoding—the whole system
should produce several movement predictions per
second. In the case of tetraplegic subjects, the
real intention of the patient is not known to the
experimenters. Even if a subject is provided with
explicit instruction, actual imagination patterns can be
affected by several factors, e.g., attention and fatigue
levels or trajectory corrections.

Several types of algorithms were used to decode
brain signals. Majority of studies use ’conventional’
ML techniques [23] for decoding of hand movement. In
the case of intracortical recordings, linear models, e.g.
Ridge linear regression [7,8] and Kalman filtering [6,24]
were applied to decode continuous imagined hand
trajectories. For ECoG signal decoding, many studies
focus on discrete decoding of hand gestures/movements
or fingers flexion, typically using standard classifiers.
This includes linear discriminant analysis (LDA)
classifier [25–28] or support vector machine (SVM)
[29–34], as well as other methods like naive Bayes
classifier [35] or spatiotemporal template matching
[36, 37]. Some of them were combined with additional
data dimensionality reduction methods like principal
component analysis (PCA) [31, 32] or common
spatial pattern (CSP) [28]. Another group of studies
demonstrated prediction of continuous targets—2D
and 3D hand movements and fingers flexion—mostly
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using linear models including linear regression and
its variants [16, 19, 38–42] partial least squares (PLS)
[43], recursive exponentially weighted n-way partial
least squares (REW-NPLS) [2], and Kalman filtering
[21,44,45].

Another group of machine learning algorithms
are deep learning (DL) based methods. The core
idea behind DL is stacking series of nonlinear
transformations—layers—that create a deep structure
extracting complex representations. Each layer con-
sists of multiple trainable units (traditionally called
neurons) performing basic operations. Although DL-
based methods got more attention and demonstrated
their usefulness in a variety of problems, e.g., in com-
puter vision [46] or natural language processing [47],
the vast majority of ECoG based studies use ’con-
ventional’ machine learning algorithms, mainly linear
models. However, some attempts were made to use DL
for intracortical, ECoG, and EEG signals analysis in
humans. Almost all reported solutions use deep learn-
ing only for classification tasks. Studies analyzing in-
tracortical recordings used recurrent neural networks
(RNN) based autoencoders [48] as well as CNN [49],
and a combination of RNN and CNN [50] to recognize
several MI classes using neuronal firing rates or time-
frequency representation of single units activation.

In the EEG domain, many works evaluated DL-
based solutions for signal classification including both
extracted features and raw signals approaches. Most
common architectures employed CNN using hand-
crafted features [51–54] or raw signals [11, 55–58] as
inputs, long short-term memory networks (LSTM)
[59, 60] and mix of CNN and LSTM analyzing time-
frequency features [61–63]. There are only a few
studies that used DL approaches to decode ECoG
signals. In particular, LSTM were used to classify
fingers activation [20,64] and 3 different hand gestures
[65] from time-frequency features. Rashid et al [66]
discriminated tongue and hand movements from raw
signal using LSTM.

To our best knowledge, only two studies consid-
ered DL-based approaches to predict continuous vari-
ables from brain signals. Park and Kim [67] used a
1-layer LSTM to predict 2D hand movements (di-
rection and speed) in the case of monkeys perform-
ing center-out-task. Input features consisted of neu-
ronal firing rates extracted from intracortical record-
ings. For ECoG signals, Xie et al [68] predicted con-
tinuous flexion and extension of 5 fingers using end-
to-end DL with four spatial/temporal convolutional
layers as feature extractors and one LSTM layer to
predict fingers activation. Each 1D finger activation
was predicted using a separated neural network. Both
works [67,68] predicted actual hand/fingers movements
trajectories. These allow creating an explicit mapping

between brain activity and trajectory, removing the un-
certainty introduced in the case of only imagined move-
ments. In both cases, recordings were performed with
non-disabled patients executing overt movements, so
the signals were not affected by feedback control and
the patient’s movement corrections.

Continuous decoding is the only way to provide
paralyzed patients with normal-like control of complex
neuroprosthetics. The maximum level of continuous
control achieved using DL-based approaches, until now,
is 2D hand trajectory using intracortical recordings.
ECoG continuous decoding with DL was only done
to predict 1D finger flexion. Otherwise, multilinear
models have been used to predict up to 3D continuous
movements [2, 38,39,43].

As DL achieved state-of-the-art performance
in solving several complex problems from different
domains, in this work, we propose and evaluate
several DL architectures to predict 3D continuous hand
movements. For the first time, we show that DL can
efficiently predict complex, high-dimensional, upper-
limb translation trajectories from ECoG signals. The
dataset used for the comparison was recorded in a
closed-loop experiment in which adaptive multilinear
REW-NPLS [69] models were used. Recordings were
performed with a tetraplegic patient within more
than 200 days. DL-based models obtained better
performance in an offline comparison than multilinear
models optimized by REW-NPLS.

2. Methods

2.1. Clinical trial and patient

This study was a part of a clinical trial ”BCI and
Tetraplegia” (ClinicalTrials.gov identifier: NCT02550522)
approved by French authorities: Agency for the Safety
of Medicines and Health Products (Agence nationale
de sécurité du médicament et des produits de santé—
ANSM) with the registration number: 2015-A00650-49
and the ethical Committee for the Protection of Indi-
viduals (Comité de Protection des Personnes—CPP)
with the registration number: 15-CHUG-19. Clinical
trial details are described by Benabid et al [2].

The subject involved in this study was a 28-year-
old right-handed man with tetraplegia caused by spinal
cord injury [2].

2.2. Experiment and dataset

During the experiment, the patient had control over
an avatar with a first-person view in a virtual
environment. He could control one state out of 5: idle,
left or right hand 3D translation, and left or right wrist
rotation. This article focuses only on the left and right
hand translation. In that case, spherical targets (10 cm
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Figure 1. Screenshot from the virtual environment displaying
the hand of the avatar and the target.

Table 1. Datasets size in the number of trials and length of the
recordings.

Left hand Right hand

Trials Duration [min] Trials Duration [min]

Calibration 174 42 164 39
Test 691 314 649 327

diameter) were displayed in space and the patient task
was to reach them successively (Figure 1). To control
the virtual avatar, the patient used an MI strategy
developed in the previous experiments of the clinical
trial. This strategy consisted of imagined arm, wrist,
and finger movements. The patient was instructed to
maintain a constant imagination strategy through the
experiments.

During the recordings, the hand movement
predictions were performed by multilinear models
obtained by REW-NPLS [69]. Separate models for
each hand were incrementally calibrated during the six
first sessions and used without re-calibration for the
following 37 sessions. The data acquired during these
sessions was used to perform simulations of models
offline training to evaluate their potential benefits for
this application. To ensure equal conditions for further
comparisons, we decided to retrain all models on the
same datasets.

Targets were placed in 28 (LH) and 23 (RH)
positions during the experiments (see Appendix A for
targets positions visualization). The number of trials
and minutes of the recorded signal are given for both
hands and the calibration and test datasets in Table 1.

2.3. Signal recording

Brain signals were recorded by two WIMAGINE®
ECoG implants [70] more than a year after the surgery.

Figure 2. Position of the implants (green) and electrodes (red)
on an MRI reconstruction of the patient’s brain.

Implants were placed over the left and right primary
motor and sensory cortex (Figure 2) controlling upper
limbs. This position aims to provide the best signal
for motor imagery decoding [2]. Each implant was
composed of an 8 × 8 grid of electrodes, but only
half of the electrodes, arranged in a chessboard-like
manner, were used during the experiment due to the
data transfer limit. The signal sampling frequency was
586 Hz and cursor and target positions in the virtual
environment were recorded at 10 Hz.

2.4. Preprocessing and feature extraction

We extracted time-frequency features from each ECoG
channel using continuous complex wavelet transform
with 15 Morlet wavelets whose frequencies were
regularly chosen between 10 Hz and 150 Hz. The
procedure was performed for each one-second-long
window i with 90% overlap. Absolute values of the
wavelet coefficients were finally averaged over 0.1s
long windows. As a result, we obtained a feature
tensor Xi ∈ R64×15×10 whose dimensions correspond
to ECoG channels, frequency bands, and time steps.

2.5. Loss function

The main problem considered in this study was
to predict 3D hand translation from ECoG time-
frequency features. At each time step i, the desired
hand movement yi was defined as ti− ci where ti and
ci respectively correspond to the target and the cursor
(point of the avatar hand) position (Figure 3). The
coordinate system origin was placed in the pelvis of the
virtual avatar. Our problem was then to predict yi from
the feature tensor Xi. Hand movement predictions ŷi

were performed every τ = 100 ms and the cursor
moved according to this direction by the vector mi

until the next prediction. Since predicted movements
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Figure 3. Visualization of movement scheme in 2D. Green circle
indicates target position, vectors ci and ci+1 are the cursor
position vectors for respectively samples i and i + 1, ti is the
target position vector, yi is the desired trajectory vector for
sample i, mi is the actual move performed by hand based on
the prediction ŷi. αi is the angle between yi and ŷi.

were rarely fully executed due to hand speed limitation,
we compared the predicted and desired vectors with
respect to their direction using cosine similarity defined
as:

CS(yi, ŷi) =
yi · ŷi

‖yi‖ · ‖ŷi‖
= cosαi, (1)

calculating the cosine of the αi angle between yi and ŷi

vectors. CS ∈ [−1, 1] is equal to 1 when vectors have
exactly the same direction, 0 for orthogonal vectors,
and −1 for opposite vectors. We used cosine loss
defined as:

CL(yi, ŷi) = 1− CS(yi, ŷi) (2)

as an objective function to train DL models.

2.6. REW-NPLS

As a baseline model, we used multilinear models
obtained by recursive exponentially weighted N-
way partial least squares regression (REW-NPLS)
algorithm [69]. PLS regression projects both input and
response variables to a low-dimensional latent space
whose components are designed to provide the highest
correlation between input and output variables. This
regression method is particularly well-suited in the
case of high-dimensional and nonindependent input
data. During the experiments, these multilinear models
were trained and used to provide real-time control of
the avatar to the patient. The latent space dimension
was limited to 100 and its optimal dimension was
determined every 15 s using recursive validation [69].
To obtain the results reported in this study, we
retrained the REW-NPLS model in a pseudo-online

manner with an update after each 15 s, which simulates
the online training. Next, we used this pseudo-online
model to compute predictions on the test set.

2.7. Multilayer perceptron

Multilayer perceptron (MLP) is a classic method
used in machine learning to model complex functions.
MLP treats each feature with a set of independent
weights to create a representation consisting of neurons
excitations that are next processed with nonlinear
activation function and finally passed to the next layer.
In our experiments, the number of fully connected (FC)
layers varied between 1 and 5. Each FC was composed
of 50 neurons with ReLu activation. In addition, batch
normalization [71] and dropout [72] with probability
of neuron being zeroed equal 0.5 were applied between
hidden layers (except last). Both methods have a
strong regularization effect and are commonly used to
increase the generalization of models. This is especially
important in the case of small and noisy datasets. The
input to MLP was a flattened tensor Xi, consisting of
9600 features standardized using Z-score.

2.8. 2D CNN

One reason convolutional neural networks are widely
used in image processing is that they effectively
recognize similar patterns in different parts of images.
In each layer, several convolutional filters with
trainable parameters are shifted over an image to
detect patterns and obtain feature maps. This enables
CNNs to limit the number of parameters needed
to solve complex problems, generalize better, and
effectively use information encoded in the local
structure of the data and spatial relationships between
pixels (for a detailed description of CNN, see
explanation by Goodfellow et al [73]). This kind
of architecture can be well-suited for brain signals
analysis if its inputs are shaped in a way that
enables spatial or temporal pattern detection. Methods
proposed further in this section are inspired by
architectures used in computer vision [74] and EEG
signal processing (mainly by Bashivan et al [61] but
also by other methods [11,55]).

2.8.1. Input representation and processing
We propose to preserve the spatial relationship
between signals from different electrodes by using
an analogous transformation to the one proposed for
EEG [61]. Contrary to EEG, ECoG electrodes are
distributed on two dense square grids. Hence, to obtain
a representation of the actual electrode array, we
projected recorded signals onto a grid according to the
approximate physical electrodes position presented in
Figure 2. We created two arrays of 64 electrodes placed
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Figure 4. Features from one randomly chosen sample in a
frequency band centered at 10 Hz. Values are arranged on a
grid approximating actual electrodes’ positions for left and right
implants, respectively. Top row grids also include electrodes that
were not recording signals (white squares). Bottom row plots
show electrodes’ arrangement after removing missing values. The
distance between implants is not preserved.

on a grid of shape 8×8 with only half of the electrodes
recording signal. We removed unused electrodes and
represented each implant with a rectangle of shape
8 × 4 merging neighboring columns of electrodes (see
Figure 4). The introduced distortion of the image
does not affect convolution as we preserved the spatial
neighborhood of each electrode.

Then, the input to all CNN models was a tensor of
shape 2×8×4×15×10, where dimensions correspond to
the number of implants, height and width of implants,
frequency bands, and time steps, respectively. Features
were Z-score standardized using mean and standard
deviation per frequency band. Each observation may
be interpreted as a time series of consecutive spatio-
frequential representations that form two ‘images’
with 15 frequency channels, an analog of the three
RGB channels used in computer vision. Proposed two-
dimensional CNN (2D CNN) analyzes each time step
independently by performing convolution only in space
(two dimensions). The same convolutional kernels were
applied separately for each implant (see Figure 5).

After the final convolutional layer, the features
extracted from one second of the signal were flattened
and aggregated. We present details of temporal
information analysis in sections 2.9-2.12.

2.8.2. Convolutional block design
CNNs consist of multiple layers organized in convolu-
tional blocks, usually composed of a convolutional layer

Figure 5. 2D CNN processing visualization. Two implants
record signals, then time-frequency features are extracted
using wavelet transform. Features from each implant (green
cuboids) are analyzed using filters (gray cuboid) by consecutive
convolutional layers to obtain representation in the form of
a vector. We also marked the receptive field (gray dashed
rectangle) of the one particular feature from the last layer. Note
that this is only a diagram. For simplicity, we visualized a model
with two convolutional blocks and we skipped activation, batch
normalization, dropout. See detailed specification in Table 2 and
Table 3.

and a nonlinear activation function followed by max
pooling layer [73]. Optionally, one can add batch nor-
malization [71] and dropout [72]. The optimal structure
of convolutional block depends on the characteristic of
the problem, e.g., size and type of data, signal, and
problem characteristic. Further in this section, we de-
scribe the convolutional block design choices that we
made in the study.

Batch normalization and dropout
We decided to use both dropout and batch normaliza-
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tion to achieve a strong regularization effect, as our
dataset suffers from a small number of samples, low
signal to noise ratio, and uncertain labels. We decided
to include batch normalization between the activation
and the dropout layer, which might be more effec-
tive in the case of ReLU activation [75]. Merged batch
normalization and dropout can be interpreted as an
Independent-Component (IC) layer, reducing mutual
information between neurons in the input [75]. The
batch normalization layer was included in all convo-
lutional blocks except last.

No-padding
Another design choice that we propose to use is to
remove the max pooling layer. Instead, we used no-
padding option (removing padding around grid edges)
to reduce the size of the ‘images’ (see padding sizes
in Table 3). We considered this variant as a reasonable
choice because our ‘images’ (size 8×4) are much smaller
than typical computer vision images (e.g. 224×224×3
for ResNet [76]) and spatio-frequential EEG ‘images’
(32×32×3 analyzed by Bashivan et al [61]). Reducing
the size of our images too much could have resulted in
the loss of useful information. A convolution operation
(kernel size 3×3 and stride equal to 1) without padding
reduces an image size of 2 pixels along each dimension,
whereas a max pooling operation (kernel size 2 × 2,
stride 2) halves its dimension.

Activation function
Following the results presented by Schirrmeister et al
[55] and Lawhern et al [11] regarding activation func-
tion choice, we considered two potential candidates—
ReLU, used by Bashivan et al [61], and exponential
linear unit (ELU) [77] that was proven to be more ef-
fective in the case of EEG processing [11,55].

Finally, we used convolutional blocks consisting of:
convolutional layer -> ReLU -> batch normalization
-> dropout. All convolutional layers use typical
parameters: kernel size equal to 3 × 3, stride equal to
1, and variable size of zero padding (denoted in Table
3). For dropout we used probability of zeroing whole
channel equal 0.5.

2.8.3. Number of blocks
Another important architecture choice is the number
of convolutional blocks. In computer vision, typical
models consist of dozens of convolutional layers (e.g.
ResNet [76] with more than 1000 convolutional layers,
VGG [74] with up to 19 layers, Inception-v3 [78]
with 48 layers). However, methods proposed for brain
signals analysis used a significantly lower number of
layers (e.g., ShallowConvNet and DeepConvNet [55]
with two and five convolutional layers respectively,

Table 2. Architecture specification of 2D CNN model with two
convolutional blocks.

Block Layer Filters Padding Output shape

Input 2× 8× 4× 15

1

Convolution 32 (0, 1) 2× 6× 4× 32
ReLU 2× 6× 4× 32
Batch normalization 2× 6× 4× 32
Dropout 2× 6× 4× 32

2

Convolution 64 (0, 1) 2× 4× 2× 64
ReLU 2× 4× 2× 64
Dropout 2× 4× 2× 64

EEGNet [11] with three layers, Bashivan et al [61]
proposed architectures with up to seven convolutional
layers). To investigate this problem, the number of
convolutional blocks in the 2D CNN was set between 1
and 5 (Table 3). The optimal model depth was selected
based on the session-wise cross-validated CS obtained
with the simplest proposed architecture: CNN2D+FC
(see Section 2.9). This depth value was then used for
more complex approaches.

2.9. CNN2D+FC

We proposed several architectures to aggregate tempo-
ral information from representation extracted by the
2D CNN model. In the most straightforward approach,
the features extracted by 2D CNN at each time step
were concatenated and given as an input to an FC layer
composed of three neurons (Figure 6.A). It provided
three outputs that correspond to ŷi components. Fur-
ther, we will refer to this approach as CNN2D+FC.

2.10. CNN2D+LSTM

Long short-term memory network (LSTM) [79] is a
type of recurrent neural network that can efficiently
analyze long temporal relationships in the data. As
in typical RNNs, a module called cell is applied to
each time step. LSTM cell carries relevant information
through time and decides what to forget and what
to store based on the current input [80]. In order to
analyze temporal information, we stacked two LSTM
layers at the top of 2D CNN (see Figure 6.B). At
each time step, the first LSTM cell with a hidden
state of size 50 was provided with the flattened output
features of the 2D CNN. The second LSTM layer had
three neurons that were used to provide three output
coordinates for ŷi components. Stacking two LSTM
layers enabled the network to model complex temporal
relationships and efficiently incorporate information
from the last second of the signal. It was already proven
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Table 3. Description of the 2D CNN architectures with different number of layers. The parameters of convolutional blocks are
indicated in the form ’conv(padding height, padding width)-<number of channels>’. The last row presents the number of extracted
features.

2D CNN
1 layer 2 layers 3 layers 4 layers 5 layers

Input size: 2× 8× 4× 15
conv(0, 0)-32 conv(0, 1)-32 conv(0, 1)-32 conv(0, 1)-32 conv(0, 1)-32

conv(1, 1)-32 conv(1, 1)-32
conv(0, 0)-64 conv(0, 1)-64 conv(0, 1)-64 conv(0, 1)-64

conv(1, 1)-64
conv(0, 0)-128 conv(0, 0)-128 conv(0, 0)-128

Flatten
768 1024 1024 1024 1024

Figure 6. Four ways of temporal aggregation are presented for architectures based on the 2D CNN model. Numbers after the name
of the layer denote hidden state size in the case of LSTM, filter number in the case of tConv, and the number of neurons in the case
of FC. Visualization inspired by figures presented by Bashivan et al [61].

effective in a variety of tasks including ECoG decoding
[20,64,68].

2.10.1. CNN2D+LSTM+MT
As an extension of CNN2D+LSTM, we also tested a
modification, referred to readers as multiple trajectory
prediction (MT), in which each LSTM output from
the last layer is used for network training (see Figure
6.C). It means that ŷi and yi were compared for ten
consecutive time steps to compute the model error.
This was possible because desired trajectory vector yi

was registered every 100 ms. Thus, LSTM may utilize
the relation between close desired trajectory to create
a more general representation of the system state. As a

consequence, the loss function was modified as follows:

CLMT(yi, ŷi) =

i∑
j=i−N−1

CL(yj , ŷj), (3)

where N is the number of yi recorded during a one-
second-long window. In our case, N was equal to 10
because the desired trajectory was recorded at 10 Hz.

2.11. CNN2D+tConv/LSTM+FC

To compare our architectures with the state-of-the-
art, the best temporal aggregation variant proposed
by [61] (variant D) was included in our analysis.
For consistency, we will refer to this approach
as CNN2D+tConv/LSTM+FC. Bashivan et al [61]
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Table 4. Architecture specification of 3D CNN model with two
convolutional blocks.

Block Layer Filters Padding Output shape

Input 2× 8× 4× 15× 10

1

Convolution 32 (0, 1, 0) 2× 6× 4× 32× 8
ReLU 2× 6× 4× 32× 8
Batch normalization 2× 6× 4× 32× 8
Dropout 2× 6× 4× 32× 8

2

Convolution 64 (0, 0, 0) 2× 4× 2× 64× 6
ReLU 2× 4× 2× 64× 6
Dropout 2× 4× 2× 64× 6

used one LSTM layer with a hidden state of size
128 to analyze temporal information in parallel
with temporal convolution. The temporal convolution
(tConv) consisted of 32 filters of size 3 that were
shifted over features extracted by 2D CNN in the time
domain. It enables recognizing time-invariant patterns
in the data (similar patterns that occur at different
moments). Finally, the output of tConv and the LSTM
cell from the last time step were concatenated and
fed into an FC layer with 512 neurons followed by an
FC with 3 neurons predicting ŷi (see Figure 6.D). A
dropout layer was added before each FC layer.

2.12. CNN3D+FC

We tested one more approach that can analyze spatial
and temporal patterns at the same time at all levels
of the data processing. Inspired by three-dimensional
CNNs (3D CNNs) [81] used to recognize human actions
on videos, we propose to extend the 2D CNN model
and to perform convolution not only in space but
also in time (see Table 4). These architectures have
the advantage of propagating temporal information
from the first to the last layer. Similar to 2D CNN,
an FC was used as the output layer and the same
convolutional parameters were chosen (except for
convolution performed in time).

2.13. Sensitivity analysis

To analyze model behavior and identify important
features, we computed the gradient of the model’s
outputs with respect to the inputs on the test
datasets—network jacobian J ∈ RN×2×8×4×15×10×3

representing the sensitivity of each network output
to the inputs. For each input feature, the higher the
absolute gradient value, the stronger the influence
on the prediction. For visualization, the sensitivity of
the three outputs was averaged. We analyzed feature
importance in three domains: spatial with projection
on two implants, frequential within 15 frequency bands
from 10 Hz to 150 Hz, and temporal within 10 time

steps containing 1 second of the signal.

2.14. Optimization, hyperparameters, and evaluation

We selected optimal hyperparameters values (initial
learning rate, weight decay, and batch size) with the
Tree of Parzen Estimators (TPE) [82] algorithm from
hyperopt package. The selection was performed on the
left hand calibration dataset using session-wise 6-fold
cross-validation. Hyperparameters values selected after
200 iterations can be found in the Appendix in Table
C1.

Models were trained for 60 epochs with early
stopping (to limit overfitting) with the patience of 20
epochs without any loss function improvement on the
validation dataset. The learning rate was changed using
cosine annealing [83]. The last 10 % of the calibration
dataset was used for validation and the rest was used
for training. We discarded the random cross-validation
scheme as the high correlation between neighboring
samples in time would have biased performance on the
validation datasets. The model which achieved the best
score on the validation dataset was retained. It was
used to compute average CS on the test dataset (Table
5).

To limit the influence of network weights initializa-
tion and the optimization process on the results, each
model was trained five times. The mean and standard
deviation of the performance indicator was computed.
We used a T-test for independent samples to assess the
statistical significance of the difference in performance
between architectures.

We used PyTorch [84] and skorch [85] for DL
models training and evaluation, MATLAB [86] for
multilinear models training and evaluation, Seaborn
[87] and Matplotlib [88] for data visualization, and
Pandas [89] for results analysis.

3. Results

Our analysis started with determining the optimal
number of layers in the 2D CNN model and the MLPs.
Next, we compared all proposed methods in terms of
CS on the left and right hand datasets. Then, a detailed
comparison of the best DL-based architecture and the
state-of-the-art multilinear model is presented. Finally,
we analyzed the influence of particular design choices
on DL models’ performance.

3.1. Number of layers

The influence of the number of layers on the calibration
cross-validated accuracy of MLP and CNN2D+FC is
presented in Figure 7. In the LH case, the best CS
was obtained with two layers for both architectures.
For the RH, the best CS was obtained with one layer
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for MLP and again with two layers for CNN. We can
observe a decrease in performance when adding more
layers starting from 2 (LH) or even 1 (MLP and RH).
CNN architecture performed more stable on the RH
dataset and decreased accuracy was observed for more
than four layers. Based on these results, the number
of blocks in 2D CNN and the number of hidden FC
layers in MLP were chosen to be two as this choice
maximized the average CS over LH and RH results.
It simplified further analysis and limited computation
times without decreasing the performance.

Figure 7. Influence of the number of layers on model
performance. Error bars denote the standard deviation of five
runs.

3.2. Overall model performance

The CS of all evaluated approaches on both test
datasets is given in Table 5. The CNN2D+LSTM+MT
model achieved the best average performance across
left and right hand datasets with a CS of 0.302 for
the left hand and 0.249 for the right hand, correspond-
ing to 60% and 59% of CS improvement relative to
the multilinear model. Comparisons using the T-test
showed significant differences (p<0.05) for both hands
between CNN2D+LSTM+MT and CNN2D+LSTM,
MLP, and multilinear model. Additionally, in the
case of the RH dataset, CNN2D+LSTM+MT was
also significantly better than CNN3D+FC and
CNN2D+tConv/LSTM+FC. All proposed DL meth-
ods performed better than the multilinear model. Gen-
erally, all models decoded LH movements more accu-
rately than RH movements.

3.3. Detailed performance comparison

To understand why CNN2D+LSTM+MT outper-
formed the multilinear models, we performed a de-
tailed analysis of the accuracy of both methods. The
CNN2D+LSTM+MT model used for comparison was
randomly selected from the five models trained for that
study. Then, the models’ performance was compared

Table 5. Cosine similarity for each proposed method for
left and right hand datasets. Asterisks denote models which
had significantly different cosine similarity in comparison to
CNN2D+LSTM+MT.

Cosine similarity
Left hand Right hand

CNN2D+LSTM+MT 0.302± 0.017 0.249± 0.008
CNN2D+FC 0.296± 0.015 0.237± 0.011
CNN2D+tConv/LSTM+FC 0.306± 0.017 0.223± 0.012*
CNN3D+FC 0.294± 0.016 0.226± 0.011*
CNN2D+LSTM 0.264± 0.015* 0.222± 0.011*
MLP 0.229± 0.01* 0.205± 0.011*
Multilinear model 0.189* 0.157*

over time, depending on the distance to the targets
and depending on the desired trajectory direction.

Firstly, we compared the stability of the perfor-
mance over time. The average CS on each day of the ex-
periment is given in Figure 8. The DL model obtained
a higher CS for a majority of points (15/17) in the case
of the LH dataset and all in the RH dataset. For the
LH and in comparison to the multilinear model, the CS
obtained by the DL models was better (except the 26th
day) until the 83rd day, similar on days 83rd and 138th,
and even much better until the end of the test set. The
improvement is more uniform for the right hand, with
an increase starting from the 83rd day after the last
calibration session. The CS of CNN2D+LSTM+MT
varies similarly to the multilinear REW-NPLS model
in the case of the RH dataset. CS was better than zero
for all recording days for both models.

The accuracy depending on the distance between
the hand cursor and the target is shown for both
models in Figure 9. The DL model achieved a higher
CS than the multilinear model for both hands in
almost the whole range of distance (>90%). For both
hands and models, a drop in performance occurred
when the distance to the target was inferior to 10 cm.
The CS variance increased strongly when this distance
was superior to 60 cm. There are significantly fewer
observations for the edge values of distance to the
target, so the performance estimate is noisier.

To determine if the predictions were more accurate
in a given direction, we plotted CS on 2D planes
(Figure 10). CS has a non-uniform distribution—
observations for which the patient was asked to move
hand backward have a lower CS. CNN2D+LSTM+MT
and multilinear model performed better in different
directions. There is no wide angle in which performance
is below 0.

3.4. Sensitivity analysis

To determine the inputs that had the strongest
influence on the prediction, we visualized the average
sensitivity of the DL model on the test set (Figure 11).
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Figure 8. The course of cosine similarity of CNN2D+LSTM+MT and multilinear model in time. Error bars denote 95% mean
confidence interval.

Figure 9. Cosine similarity as a function of the distance between
cursor and target. The gray histograms represent the number
of samples in the test dataset. Error bands denote 95% mean
confidence interval.

We put together spatial feature importance maps and
the approximate shape of the central sulcus (CnS). CnS
separates the primary motor cortex and the primary
somatosensory cortex. For each hand, we can see that
the DL model outputs were more sensitive to changes
in ECoG features from the contralateral implant. The
highest sensitivity can be observed for the electrodes
that are close to the CnS. For the LH movements
decoding, the most important electrodes are located
in the center of the implant surrounding the CnS of
the right cortex, while in the case of the RH, they
are posterior to the CnS of the left cortex. The lowest
absolute gradient values can be found at the top and
bottom edges of the implants.

The most important features in the frequency
domain correspond to 20 Hz and 30 Hz (Beta rhythm).
An increase in importance can also be observed in
frequencies higher than 130 Hz.

In the time domain, the importance of input
features increases when getting closer to the current

Figure 10. Cosine similarity directional performance of
multilinear and CNN2D+LSTM+MT models projected on 2D
planes.

time step, with a decrease observed for the features
computed with the last 100 ms of the ECoG signal for
the RH movements prediction.
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Figure 11. Average sensitivity of the CNN2D+LSTM+MT
outputs on the test dataset. Absolute gradient values are plotted
as a function of electrode positions (top plots), frequency (left
bottom plot), and time (right bottom plot). CnS corresponds to
the red line on the heatmaps.

3.5. Multiple trajectory influence

To understand better the influence of the MT
variant on the performance, we modified CLMT loss
function. At time step j ∈ [i − N − 1, i] instead
of comparing LSTM output ŷj to the corresponding
desired trajectory yj , it was compared to the desired
trajectory at the last time step yi (the one that is
used when only one time step is predicted). Finally,
the modified loss function was defined as:

CLMT (yi, ŷi) =

i∑
j=i−N−1

CL(yi, ŷj), (4)

This enabled us to isolate the influence of the
information about desired trajectory variation on the
performance from other factors as changes in the
optimization process due to providing explicit gradient
to the LSTM cell at each time step. Models trained
with CLMT loss function obtained cosine similarity of
0.285± 0.012 and 0.224± 0.0077 for the left and right
hand respectively. This result is not as good as in the
case of standard MT modification (LH: 0.302± 0.009,
RH: 0.246± 0.011).

3.6. Influence of convolutional block design

The convolution blocks had the following chosen
structure: dropout (p=0.5), batch normalization,
ReLU activation function, and no-padding. To assess
the influence of each particular design choice in the
convolutional block, we individually removed dropout,
batch normalization, replaced no-padding with max
pooling, and replaced ReLU with ELU. We compared
CS obtained over the test set by each DL model with
and without the particular design choices. Results are
presented in Figure 12. It enabled us to separately
estimate the deterioration/improvement related to
each design choice. When CS values are negative, it
means that not applying the design choice decreased

the accuracy. The dropout layer brought the biggest
improvement overall for both hands and all CNN-
based models except CNN2D+LSTM where batch
normalization had a stronger impact. We observed
much smaller improvements in the case of no-padding,
batch normalization, and activation function.

As the biggest improvement in CS was due to
the dropout, we investigated its optimal value. The
CNN2D+LSTM+MT model was trained with different
probabilities of zeroing a channel. CS for each hand for
different dropout values is given in Figure 13. Results
look similar for both hands: optimal dropout values
were 0.5 and 0.65. High (0.8) or low (≤ 0.15) dropout
value strongly decreased the network accuracy.

4. Discussion

We proposed several DL-based methods to predict 3D
hand translation. Our offline results show that both
MLP and CNN-based models outperform the multilin-
ear model proposed in [69]. A significant improvement
was obtained with CNN-based methods in compari-
son to both MLP and multilinear models. At the same
time, CNN2D+LSTM+MT uniformly improved cosine
similarity, independently to the distance to the tar-
get, and provided better performance than multilinear
models in the majority of directions.

We demonstrated that CNNs are a reasonable
choice to analyze time-frequency ECoG features and
may be used to predict complex 3D hand translation.
All the presented results were computed offline,
without any interaction between model and patient.
This allowed us to separate decoder performance
and patient adaptation influence and finally compare
models in an isolated environment. Our dataset was
recorded in a closed-loop experiment, which includes
patient’s corrections after erroneous movements and
control feedback that influence the user’s brain activity.
Thus, our estimate of models’ performance should
be closer to the one obtained during online control
compared to open-loop experiments. However, training
on previously recorded trajectories may lead to
overfitting and accommodation to the model used
during the experiment and the model’s errors. This
can impact the online results, but it is impossible
to measure those factors’ influence on the results
computed in an offline study.

In our dataset, we did not have access to real hand
movements. We analyzed only movements imagined
by a tetraplegic patient. Compared to the open-
loop experiment with actual movement recorded, our
target variable can be distorted and influenced by the
patient’s attention level, tiredness, or inexactness of
imagination. Moreover, in a closed-loop, a patient has
to correct the erroneous movements, which complicates
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Figure 12. Influence of the architecture choices on the model performance. Models were trained with and without modification for
each architecture choice (dropout, no-padding, batch normalization). The difference between the two obtained models was computed
to evaluate the influence of particular modifications on the model performance. The lower the cosine similarity difference is, the
bigger deterioration is caused by removing the proposed modification from the model.

Figure 13. Cosine similarity obtained with
CNN2D+LSTM+MT model with two convolutional blocks as a
function of dropout levels.

the trajectory. As a result, we train models on a
distorted and noisy dataset. It also complicates model
evaluation and makes the problem more challenging
than in overt movements.

Generalization of the results

This study included only one participant. It is
then impossible to generalize these results to other
patients. However, the proposed models were tested
on two different datasets. CNN2D+LSTM+MT model
achieved a similar improvement in comparison to
the state-of-the-art multilinear model and MLP for
both hands. The sensitivity analysis demonstrated
that the imagination patterns produced for each hand
were different. Thus, it showed the DL-based models’
capacity to determine the most relevant features on two
datasets. Nevertheless, our hypotheses must be verified
with additional tests (including online evaluation) of
proposed models on a bigger group of patients. This

is planned in the clinical trial as the next steps after
enrollment of new patients.

Online training

REW-NPLS enables incremental training of multilin-
ear models from newly recorded data chunks. This
is particularly important in a closed-loop experiment
since it enables co-adaptation between the patient and
the models. Such kind of training may be hard to use
in the case of DL. Backpropagation may fail to find
a reasonable solution [90], especially when provided
with small chunks (e.g., 150 samples corresponding to
15 seconds of signal in the case of REW-NPLS) that
are likely to be biased towards an overrepresented di-
rection. Such circumstances may lead to a drastic de-
crease in DL model performance. To train DL models
incrementally over the ECoG data stream, one may in-
crease the data chunk size or keep the whole or part
of the dataset in the memory and mix it with new
data. Schwemmer et al [50] updated a pretrained model
using a part of their training dataset combined with
newly recorded data. One can also utilize more sophis-
ticated methods like hedge backpropagation [90]. An
alternative solution could be keeping all the data in
memory and retraining from scratch each time a new
data chunk is available. This solution is memory ineffi-
cient and may not be possible to perform in real-time
as training from scratch may take more than 2 minutes
(for CNN2D+LSTM+MT and around 40 minutes of
signal). More experiments must be conducted to study
the possibility of training DL models incrementally.
Nevertheless, our study shows that a standard opti-
mization of the DL-based models from data recorded
during multilinear model incremental training enables
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obtaining significantly better models.

2D CNN

Methods processing data with 2D CNN obtained
higher cosine similarity compared to solutions based
on flattened feature vector. Input representation for 2D
CNN enabled exploitation of local correlation between
electrodes in contrast to MLP and multilinear model.
2D CNN model with several convolutional blocks
also has significantly fewer trainable parameters than
MLP. In 2D CNN architecture, the data processing
is separated for each implant. We also considered a
scenario in which the features from both implants
would be concatenated along the width dimension as
if there was no space between the inner edges of the
implants. However, we decided to keep a separate
data processing for each implant to avoid introducing
an additional spatial distortion that would have
broken the spatial consistency between neighboring
electrodes. Then, the same set of weights was used for
both implants. This enabled us to halve the number
of trainable parameters and to learn features that
generalize across implants. Nevertheless, MI imagery
patterns recorded by each ECoG implant are different
since they are not positioned in the same cerebral
hemisphere. From neuroscience, we also know that
most of the brain activity correlated to unilateral
hand MI/movements occurs in the contralateral brain
hemisphere. However, brain activity correlated to this
kind of movement can also be found in the ipsilateral
motor cortex [91]. Due to the weight sharing property
of CNNs, the network is oriented towards extracting
low-level features that are implant invariant. On
the other hand, extracting implant-specific features
remains possible because each convolutional layer has
multiple independent filters with parameters adjusted
to the data.

Temporal information processing

We tested five methods to aggregate temporal informa-
tion. CNN2D+LSTM+MT obtained the highest aver-
age cosine similarity. This confirmed that LSTMs could
decode ECoG signals into complex hand trajectories.
As the hidden state of the LSTM cell was the output
of the network, the final predicted trajectory could be
influenced by the input data from each time step. 3D
CNNs that also analyze temporal information do not
have this memory, so convolutional filters in the first
layers are not aware of a longer temporal context than
the length of the kernel. LSTM’s memory can increase
the network’s ability to predict the desired trajectory
as the target position is constant through the analyzed
one second of the signal. Therefore, using several even
similar target vectors to train the network may create

a more robust and precise final estimation. However,
the improvement compared to the CNN2D+FC model
was not statistically significant, so one can also use this
model, which has fewer parameters and performs sim-
ilarly.

Multiple trajectories

CNN2D+LSTM+MT model achieved significantly
higher cosine similarity than the CNN2D+LSTM.
In CNN2D+LSTM models, the LSTM state encodes
previous trajectories. It can memorize past hand and
target positions and then modify the memory based on
the next steps’ data. Finally, the state of the LSTM is a
summary of past desired trajectories. Providing LSTM
with additional information about earlier desired
trajectories enables a more accurate representation of
the system state with a broader context. LSTMs at
each time step decide what to memorize and what
to forget. This can be especially useful in the case
of repeated imagined MI patterns and varying patient
concentration levels, resulting in temporal changes in
the level of information contained in the data. Hence,
we anticipate that the attention mechanism may be
a reasonable way to extend the CNN2D+LSTM+MT
model. Attention modules can highlight parts of the
input containing the most relevant information for
the prediction. Therefore, we expect that models
incorporating more advanced attention can further
improve hand movement decoding. Another way to
extend the LSTM context may be increasing input
signal length and taking into account long temporal
relationships that occur inside one trial (average
trial length ≈ 25 seconds). Our results show that
including even only a one-second-long time series
of desired trajectory variation improves decoding
accuracy. Having access to previous target variables
gives more awareness, to the ML models, about
the processes taking place in the experiment. Thus,
extending the length of the input signal combined with
the attention mechanism could improve overall BCI
performance.

Design choices

We searched for the particular design choices that
had the strongest influence on the DL-based models’
accuracy. Our results show that the most impactful
component of the CNN architecture is the dropout
layer. It enabled us to create a significant difference
between the accuracy obtained by the MLP and the
CNN2D+LSTM+MT. Our dataset has a few samples
compared to the number of trainable parameters,
so it is especially prone to overfitting. Dropout can
be a remedy for overfitting as it is a regularization
method [72]. Surprisingly, the CNN2D+LSTM+MT
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model achieved a high performance even when the
dropout value was 0.65. It corresponds to a strong
regularization with more than half of the network
switched off. This value is different from the one
suggested for computer vision. Cai et al [92] reported
a decrease in accuracy for channel-wise dropout
rates higher than 0.1. Higher dropout levels limit
model capacity and distort information stronger. We
hypothesize that the difference in optimal dropout rate
between computer vision and ECoG signals originates
from the difference in signal to noise ratio but may also
be influenced by the network’s size. A large network
regarding the complexity of the problem can favor
stronger overfitting. Therefore, we suggest that it may
be possible to reduce the number of convolutional
filters and the dropout rate conjointly. This would
decrease the number of parameters of the model and
reduce training and inference time.

The other design choices had a much smaller
influence on the performance. We can notice a slight
but general downward trend in performance with
these design choices for almost all tested architectures.
Our results concluded that ReLU is a better choice
than ELU for our problem. This is in contradiction
to the conclusions of Schirrmeister et al [55], who
reported a higher decoding accuracy using ELU.
However, Schirrmeister et al [55] analyzed raw EEG
signals, while our networks were trained from ECoG
time-frequency features. Therefore, both analyses
consider signals represented in different domains, which
certainly influences the choice of architecture.

Regarding pooling method selection, no particular
trend was observed when the no-padding option was
replaced by max pooling. One of our arguments for
the use of no-padding is the specific arrangement of
ECoG electrodes. The 64 ECoG electrodes are placed
on two 4 × 4 cm grids that record neural signals from
a small and specific area of the brain. The spatial
resolution of the recording is higher than in the case of
EEG by orders of magnitude. We see an opportunity
for machine learning models to take advantage of this
fact. However, max pooling may prevent the detection
of small signal variations and make models invariant
to small translations. Those may be important due to
the nature of the observed phenomenon and the fact
that we try to decode precise 3D movements that can
be coded in tiny signal variations. Moreover, ECoG
implants are centered on the sensorimotor cortex
responsible for hand movements. Then, the central
features are expected to be the most informative. No-
padding naturally directs the attention towards the
center of the implants, as fewer convolution operations
are performed on the edges of the implants.

In our study, we also analyzed the influence of
model depth on cosine similarity. Using more than two

convolutional layers can decrease the models’ accuracy
or give only a slight improvement, depending on
the dataset. This result might seem counter-intuitive,
as stacking more layers in the DL architectures
increases the number of trainable parameters and their
capacity for representation. Nevertheless, our input
data corresponded to handcrafted features, which
might not enable the extraction of high-level features.
Worse, increasing the depth of the networks might have
resulted in difficulties in estimating the optimal value
of the model parameters. This might explain why we do
not need to use dozens of layers, like computer vision
[76], for this application. Finally, our best proposed
model CNN2D+LSTM+MT consists of four layers—
two convolutional blocks and two LSTM layers. Our
results are consistent with the vast majority of BCI
studies that used DL for EEG [93], ECoG [20,64–66,68]
and applied less than 10 layers inside the models.
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Appendix A. Targets positions

In Figure A1, we presented positions of targets that
were used during calibration and testing sessions.
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Figure A1. Positions of targets that patient was asked to reach
during experiment.

Table B1. Number of trainable parameters for DL methods.

Parameters

CNN2D+FC 53 635
CNN3D+FC 86 851
CNN2D+LSTM+MT 237 912
CNN2D+LSTM 237 912
MLP 482 953
CNN2D+tConv/LSTM+FC 943 011

Appendix B. Number of parameters

Appendix C. Hyperparameters values

Table C1. Values of hyperparameters selected using TPE.

Model Learning rate Weight decay Batch size

MLP 0.00031 0.018 592
CNN3D+FC 0.00064 0.3 928

CNN2D+LSTM+MT 0.00023 0.24 96
CNN2D+LSTM 0.0089 0.12 352

CNN2D+FC 0.003 0.22 560
CNN2D+LSTM/tConv+FC 0.00029 0.42 96

Table C2. Hyperparameters values used to estimate optimal
number of layers.

Learning rate Weight decay Batch size

0.001 0.01 200
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