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Abstract

The experimental magnetic susceptibility curves of several soft steel grades, like interstitial free (IF) or low carbon
(LC) steels, can be interpreted within the framework of universal scaling functions obtained for systems with quenched
disorder, such as the one described by the random field Ising model with supercritical disorder. Mean-field theory (both
scalar and site-dependent) is used to explore the behaviour at the proximity of the coercive field, and explicit expressions
are derived. As a result, the susceptibility values close to the coercive field can be approximated to a good extend by a
Lorentzian function. Theoretical results are compared against a number of experimental curves obtained from interstitial
free (IF) and extra low carbon (ELC) steels subjected to isothermal annealing.
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1. Introduction

Differential magnetic susceptibility measurements for
soft industrial steel grades, like interstitial free (IF) and
low or extra-low carbon (LC, ELC) steels, obtained dur-
ing recovery, reveal a number of common features, among
them, a notable resemblance of the susceptibility profile
for external magnetic field values close to the coercive field
[1–3].

The evolution of several magnetic indicators with the
annealing temperature and holding time indicated in the
above cited articles reveals the underlying link between the
steel microstructure and the magnetic properties, which
makes them a good tool for the monitoring of the recov-
ery process. It is thus tempting to try to establish the
aforementioned relation between structure and magnetic
properties on a more solid theoretical background.

The recovery process during the isothermal annealing
of steels is characterised by more-or-less constant grain
sizes, with the effect of the heating acting primarily in en-
hancing the mobility of the dislocations yielding an over-
all softening of the material. One has thus to deal with a
reasonably well-controlled microstructure whose main tun-
ing variable is the dislocation density. These are quite
favourable conditions, which satisfy to a good extend the
main assumptions of the random-field Ising model (RFIM)
making the latter a good candidate for the theoretical
study of the problem, despite its simplicity [4–6].

A considerable amount of work has been published on
that model, and a good understanding has been estab-

lished thanks to the pioneering work of Sethna, Dahmen,
Perkovic et al. [7–10]. In these articles it is shown that
the random field (characterised by a disorder parameter
R) plays the role of a tuning parameter in a second or-
der phase transition. As a consequence, a critical disorder
value Rc exists, around which the magnetization curve can
be described by a scaling law of the following form

M −M[Hc(Rc)] ∼ rβM±
(
h/rβδ

)
(1)

where Hc is the coercive field value at the critical disorder,
r and h the normalised distance of the disorder and the
magnetic field from their respective critical values, and
M± stands for a universal scaling function with β, δ giving
the corresponding critical exponents at the transition. The
± sign in the index denotes the side across the critical point
that is considered.

Following this line of reasoning, the susceptibility pro-
file around Hc can be interpreted in terms of the scal-
ing function M±, whose explicit form we try to derive
in this article from the mean-field RFIM theory and con-
firm via comparison with numerical data obtained by a
site-dependent mean-field model. The explicit relation be-
tween disorder and the maximum susceptibility value is
also established by resorting to both analytical and numer-
ical results using the site-dependent mean-field (SDMF)
approach.

Given this link between susceptibility and disorder, one
can address at a second level the experimentally estab-
lished relation between susceptibility and annealing condi-
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tions in order to indirectly relate the microstructural evo-
lution (characterised by the material disorder) with the
annealing conditions. This idea is explored in the sec-
ond part of the article, where the experimental results of
Martinez-de-Guerenu et al. are used to confirm on one
hand the Lorentzian susceptibility profile, and to examine
common trends between the annealing temperature and
holding time with the disorder.

2. Theory

2.1. Mean-field theory

We consider an Ising spin system submerged to a con-
stant random field. Such a system is described by the
following Hamiltonian [7–9]

H = −1

2
J
∑
{i,j}

σiσj − gµB
∑
i

(H +Hi)σi (2)

where σi is the spin at the ith site of the Ising lattice, J
stands for the exchange constant (which is considered in-
variant throughout the system lattice), µB is the Bohr’s
magneton, g is the gyromagnetic ratio, H is the applied
(external) field, and Hi stands for the random field at the
ith lattice site. Note that the {i, j} index implies summa-
tion over the first neighbours.

Following the literature, we shall assume that the ran-
dom field is described by a Gaussian distribution, acknowl-
edging, however, that other distributions can be applied as
well (yet with a minor impact to the results) [7]

ρ(Hi) =
1√
2πR

e−H
2
i /2R

2

. (3)

R in (3) stands for the distribution variance, which is also a
measure of the field randomness, or equivalently the degree
of the system disorder.

Applying the mean-field theory approximation, the ex-
act Hamiltonian (2) reduces to

H = −
∑
i

[Jzm+ gµB(H +Hi)]σi (4)

with z being the coordination number, which for the 3D
case is equal to 6, and m the mean spin (or normalised
magnetisation)

m =< σ >=
< M >

Ms
. (5)

Ms stands for the magnetisation at saturation. In order
to simplify the notation, we proceed to the following nor-
malisation for the magnetic field

hi := gµBHi/J (6)

and the same for H. Upon substitution in the Hamilto-
nian, we obtain the following simplified form

H/J = −
∑
i

(zm+ h+ hi)σi (7)

and the random field distribution becomes

ρ(hi) =
1√
2πr

e−h
2
i /2r

2

(8)

with the normalised disorder

r := gµBR/J (9)

In the rest of the article, lower-case letters, such as
h, hi and r will imply normalised variables. At zero-
temperature, the mean-field approximation for the mean
magnetisation m reads

m(h) = 1− 2

−zm(h)−h∫
−∞

ρ(hi) dhi. (10)

For disorder values lower than a critical value rc (10)
has a non-unique solution at h = 0, and the corresponding
m(h) presents a jump there. For r > rc the resulting
curve is smooth and single valued at h = 0. This effect is
illustrated in Fig. 1a , where the solution of (10) is drawn
for different values of the disorder r. The magnetisation
jump at h = 0 as a function of the normalised distance
from the critical disorder 1− r/rc is also shown in Fig. 1b.

(a)

(b)

Figure 1: (a) Mean-field solution for the magnetisation curve for
different disorder values. (b) Magnetisation jump at zero field as
a function of the distance from the critical disorder 1 − r/rc. The
critical disorder value can be estimated as rc ≈ 5.
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This transition from a discontinuous to continuous vari-
ation presents all the characteristics of a second-order phase
transition with the magnetisation jump δm at zero field
playing the role of the order parameter. This transition
has been exhaustively studied in the papers of Sethna,
Dahmen et al. [7–9, 11, 12].

In the following analysis, we shall be interested in sys-
tems with supercritical disorder, i.e. we will consider the
case where r > rc. As explained above, for these disorder
values the magnetisation curve is smooth around h = 0.
Deriving (10) with respect to the external magnetic field
h we obtain

dm

dh
= 2ρ(zm+ h)

(
z
dm

dh
+ 1

)
. (11)

Setting dm/dh = χ and isolating the latter, we arrive at
the following explicit expression for the susceptibility

χ(h) =
2ρ(zm+ h)

1− 2zρ(zm+ h)
(12)

or equivalently

χ(h) =
1

[2ρ(zm+ h)]
−1 − z

. (13)

Substituting the expression of the random field distribu-
tion from (3) yields

χ(H) =
1√

π
2 r e

(zm+h)2/2r2 − z
. (14)

Assuming that sum zm + h admits small values with
respect to the system disorder, we can develop the expo-
nential function in Taylor series and keep only the first
(linear) term, which will lead us to the approximation

χ(H) ≈ 1√
π
2 r − z +

√
π
2

1
2r (zm+ h)

2 . (15)

Since (m,h) = (0, 0) is point of the solution described
by the implicit expression (10), m + h ≈ 0, implies that
both h and m should be small. Let us thus write

m(h) ≈ χ0h (16)

with χ0 being the slope of the m(h) curve at h = 0. Sub-
stitution of (16) upon (15) yields for small field values

χ(h) ≈ 1√
π
2 r − z +

√
π
2

1
2r (zχ0 + 1)

2
h2
. (17)

With slightly term rearrangement, (17) can be brought in
the more compact form

χ(h) ≈ χ0

1 + (h/γ)2
(18)

which is the Lorentzian distribution with χ0 being the
magnetic susceptibility at h = 0

χ0 =

(√
π

2
r − z

)−1
(19)

and

γ =

(
2

π

)1/4√
2r

χ0

1

(zχ0 + 1)
. (20)

Having a closed form expression for the magnetic sus-
ceptibility, the corresponding expression for the magneti-
sation can be easily obtained by integration over h, which
yields

m = χ0γ arctan

(
h

γ

)
. (21)

In order to test the accuracy of this approximation, the
results obtained using the expression (18) are compared
against the numerical solution of the implicit form (10) in
Fig. 2. As one can see from the comparison, (18) yields a
very satisfactory description of the susceptibility variation
for small fields.

We observe that the derived approximation becomes
more accurate at higher field values for increasing r. This
conclusion is not surprising regarding the profile of the ex-
act solution in Fig. 1a. In fact, the magnetisation around
h = 0 becomes increasingly non-linear for smaller r values,
which results in a varying slope in the domain of moderate
fields. As a consequence, the approximation (16) does not
hold for small disorder values just above the critical value
except for the immediate neighbourhood of h = 0. The
numerical results of (10) (exact solution) are compared in
Fig. 2 with the Lorentzian function that is calculated us-
ing the asymptotic expression of (18) and the one obtained
via least-square fit to the exact curve. It turns out that
the two approaches yield more or less equivalent results
for weak disorders, like the one in Fig. 2a. Note that for
more significant r values, the best-fit curve provides a rea-
sonable approximation of the exact numerical solution for
the entire h-window, at the expense of a less accurate peak
value. This fact signifies that the exact solution is closer
to the Lorentzian form for a broader range of h values.

The mean-field approximation, used in the above anal-
ysis, does not support hysteresis since the implicit evalu-
ation of (10) is a single-valued curve. To introduced hys-
teresis, (18) can be generalised by shifting the zero of the
magnetisation curve to the coercive field (it is the point
where m becomes small and hence the main arguments of
the analysis hold), obtaining the expression

χ(h) ≈ χc
1 + [(h− hc)/a]2

. (22)

where hc stands for the coercive field and χc the corre-
sponding susceptibility. In principle, (19) cannot be ap-
plied anymore in order to relate the susceptibility at the
coercive field with the random field parameters. Their
correlation, can, however, be established numerically by
least-square fit, as done in (2).
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(a)

(b)

(c)

Figure 2: Comparison of the exact solution (10) (”Exact”) with the
expression (18) (”Lorentzian”) and a fitted Lorentzian (”Lorentzian
fit”) for three different disorder values. (a) r = 5.11, (b) r = 5.55
and (c) r = 6.0.

Such generalisation of the mean-field results to hys-
teretic curves, is a heuristic approach. Nonetheless, some
more rigorous justification can be sought by using the re-
sults of the site-dependent mean-field solution (SDMF),
which natively introduced multi-branch solutions, and thereby
hysteresis. This will be the aim of the next section.

2.2. Analysis based on the site-dependent mean-field (SDMF)
solutions

According to the SDMF approach, the mean-field is
(thermally) averaged at each site individually, thus intro-

ducing a spatial dependence in the solution. The resulting
Hamiltonian reads

H ≈ −J
∑
i

 ∑
j=n.n.

< σj > +hi + h

σi (23)

which yields for the magnetisation at the ith site

mi = 2θ

 ∑
j=n.n.

mj(h) + hi + h

− 1 (24)

where θ(·) stands for the Heaviside step function and

mi =< σi > (25)

similarly to (5). It is recalled that the summation is carried
out considering only the nearest neighbours (n.n.) of each
spin. Notice that (24) is the zero-temperature limit of the
SDMF solution. Averaging over the random field values,
we obtain the relation

mi(h) = 1− 2

−
∑

j mj(h)−h∫
−∞

ρ(hi) dhi. (26)

which is the generalisation of (10).
Due to the much more complicated mathematical struc-

ture of (26), where mi is coupled with all neighbouring
spins, we have to proceed to the analysis numerically. Hence,
in order to obtain the mi distribution, the system lattice
is first truncated along its z/2 spatial dimensions (3 in this
case). Let N be the total number of the considered (finite)
lattice sites. The random field hi is then evaluated at the
lattice sites using a random number generator following
the (8) distribution with the disorder r as tuning parame-
ter. Fixing the lower and upper limits of the external field,
i.e. setting h ∈ [−hmax, hmax], we proceed to a uniform
discretisation of the magnetic field, namely

h(k) = −hmax + k∆h, k = 0, . . . , Nh (27)

with ∆h = 2hmax/Nh. Varying the field h(k), the system
of N coupled equations (24) is solved iteratively using a
fixed-point scheme until the relative error drops under a
predefined precision threshold ε, that is

∑
i

([
m

(k)
i

]
n+1
−
[
m

(k)
i

]
n

)2

∑
i

([
m

(k)
i

]
n

)2 ≤ ε (28)

n being the iteration number of the fixed-point algorithm.
Special care needs to be taken in order to properly

account for the hysteresis. Once the system (24) has con-
verged for the kth step of the field discretisation, the ob-

tained solution m
(k)
i is set as initial value for the solution

of the (k + 1)th step. This is important since, if we pro-
vide the algorithm with the same initial value at each step

4



(say for example 0 everywhere), the convergence will be
biased to a subspace of the original configuration space,
thus avoiding the local minima lying at the vicinity of the
system state at the kth step. It is in fact these minima
which stand for the metastable states responsible for the
hysteresis. As far as the initial value for k = 0 is con-

cerned, we set m
(0)
i = −1, assuming that the system has

been prepared to the (negative) saturation.
In order to describe a complete cycle, the field is first

increased to its maximum value, according to (27), and
then reduced back to −hmax by flipping the h(k) sequence.
The magnetisation curves obtained by the above described
approach for a number of different disorder values are il-
lustrated in Fig. 3a. The magnetisation value depicted is
the mean value throughout the lattice, that is

m(k) =
1

N

N∑
i=1

m
(k)
i . (29)

All these solutions demonstrate hysteresis, which is
different from the situation we observed with the scalar
mean-field theory (cf. Fig. 1a). The explanation should be
sought to the nature of the configuration space landscape
that the SDMF algorithm explores during the minimisa-
tion of (28) and the passage from the possible metastable
states, as discussed above. A thorough discussion about
the behaviour of SDMF for RFIM solutions out of equi-
librium can be found in [13]. Interestingly, these results
could have hardly been obtained by Monte-Carlo simula-
tions, which by construction tend to reach the equilibrium
state [6].

The second order transition discussed in the previous
paragraph is also observed with the SDMF solution, yet
the value of the critical disorder is different. In fact, the
SDMF estimate of the critical value is rc ≈ 3.2 in com-
parison with the higher value of rc ≈ 5.0 obtained via
the mean-field theory. The evolution of the magnetisation
jump ∆m as a function of the normalised distance from
the critical disorder 1 − r/rc is shown in Fig. 3b. Since
the SDMF solution fluctuates between successive simula-
tions, a number of independent simulations is carried out
and the results are averaged to the curve of Fig. 3b. In
order to further test this result, we examine if it exhibits
a power-law behaviour in the vicinity of the critical point
for r < rc. A first order curve is fitted to the simulation
points in a log-log representation

log(∆M) = β log(1− r/rc) + c (30)

and the coefficient β is determined. The resulting curve
is compared in Fig. 3b with the average curve thus con-
firming the power-law behaviour with a critical exponent
β = 0.662, close to the 1/2 value obtained by the classical
mean-field theory [9].

The magnetic susceptibility along the ascending hys-
teresis branch obtained by the SDMF solution for three
distinct disorder values are depicted in Fig. 4. The sus-

(a)

(b)

Figure 3: (a) SDMF solution for the magnetisation curve for different
disorder values. (b) Magnetisation jump at hc as a function of the
distance from the critical disorder 1−r/rc. The critical disorder value
can be estimated as rc ≈ 3.2. The numerical curve is the average of
four successive simulations (pointed by the different coloured dots).
The supercritical behaviour can be described by a power law of the
type (1 − r/rc)β .

ceptibility plots have been obtained by numerical differen-
tiation of the corresponding magnetisation curve, namely

χ(k) ≈ m(k) −m(k−1)

∆h
. (31)

The variation of the susceptibility is not smooth as
it becomes clear from Fig. 4. This effect is a manifes-
tation of the discontinuous change of the magnetisation
value along the hysteresis, in a way that it strongly resem-
bles the Barkhausen jumps. Note that this ”noise” reaches
its maximum around the coercive field value, which is in
accordance with the experiment.

In Fig. 4, the numerical curves are fitted to a Lorentzian
and a Gaussian distribution. In a resemblance with the
previous results for the mean-field theory, the Lorentzian
distribution fits quite nicely with the numerical results for
almost the entire window of the field values. The Gaussian
distribution gives also satisfactory results for higher disor-
der values, it deviates slightly with h < hc for r = 3.6, i.e.
just after the phase transition. It should be also noticed
the better fit of the Gaussian distribution for h > hc.
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(a)

(b)

(c)

Figure 4: Fitted Lorentzian and Gaussian distributions to the suscep-
tibility SDMF solution across the coercive field (ascending branch)
for three different disorder values: (a) r = 3.6, (b) r = 5.0 and (c)
r = 6.33.

The reciprocal susceptibility values at the coercive field
χc obtained by the fitted Lorentzian (cf. (18)) versus the
disorder r are plotted in Fig. 5. The plot implies a linear
correlation between the two values, which is confirmed by
the least-square fit of a first order polynomial. This is in
straight analogy with (19), obtained analytically for the
mean-field theory. It is also interesting to compare the
numerical value of the linear term coefficient, determined
by the least-square fit as ∼ 0.97 with the

√
π/2 = 1.25 of

the analytical expression.

Figure 5: Susceptibility values obtained by the fitted Lorentzian dis-
tribution at the coercive field as function of the disorder.

3. Application to soft steels

The above results have been confronted with the exper-
imental curves obtained for two soft steel grades. The con-
sidered specimens stem from cold-rolled laminated sheets
subjected thereupon to isothermal annealing at different
temperatures and for different holding times [1–3].

Two set of samples were considered for this study. One
set from industrially produced Ti−Nb stabilized intersti-
tial free (IF) ultra low carbon (ULC) steel, with composi-
tion 0.003%C-0.11%Mn-0.02%Nb-0.012%Ti, cold rolled to
a final thickness of 0.8 mm through a reduction of 75%
[14] and a second set from extra low carbon steel (ELC),
with composition 0.03%C-0.19%Mn-0.13%Al-0.0035%N -
0.012%P-0.01% Si, that had been industrially produced
and cold rolled to a final thickness of 0.3 mm through a
reduction of 84% [1, 2, 15]. The samples had been ther-
mal treated in laboratory. First heated in an argon atmo-
sphere, at a rate of 20◦C/s to reach a temperature within
the range of 300-550◦C, followed by holding times at these
temperatures in the range of 1 s to 10,000 s (≈ 2.8 h).
The annealing treatments were then interrupted and the
samples quenched in helium to reach room temperature at
a rate close to -60◦C/s.

The annealing time and temperatures were selected so
that the thereupon induced microstuctural changes to be
dominated by the recovery procedure without triggering
recrystallisation. In this way, the major impact of the
annealing procedure is restricted to the decrease and re-
arrangement of the dislocation density with the grain size
remaining intact.

Near saturation major magnetic B-H hysteresis loop
measurements were made at 1 Hz using a single sheet
tester system available at author’s laboratory [16], with
an encircling coil wound around the samples with maxi-
mum magnetic field strengths applied of about 4100 A/m.
The effect of the annealing treatment on the experimental
BH hysteresis loops can be found for cold rolled IF steel
annealed at 350◦C and 550◦C and at 450◦C at [14] and at
[15] for the cold rolled ELC steel annealed at 300◦C and
450◦C.

6



(a)

(b)

(c)

Figure 6: Fitted Lorentzian to the experimental IF susceptibility
curves for three different annealing conditions: (a) Cold-rolled (no
treatment), (b) 1000 s at 350◦C (623 K) and (c) 1000 s at 550◦C
(823 K).

Assuming that the changes to the specimen microstruc-
ture can be captured by a random field with different val-
ues of disorder r, and applying the above discussed ap-
proach, the measured susceptibility curves are fitted to
the Lorentzian approximation described in (22). The re-
sults for the two grades and for three different annealing
conditions are shown in Fig. 6 and Fig. 7, respectively.
The susceptibility curves are plotted as functions of the
measured magnetic field H and not the normalised h.

(a)

(b)

(c)

Figure 7: Fitted Lorentzian to the experimental ELC susceptibility
curves for three different annealing conditions: (a) 51 s at 300◦C
(573 K), (b) 51 s at 400◦C (673 K) and (c) 36 min at 500◦C (773 K).

It is interesting to trace the evolution of the fitted max-
imum value of susceptibility χc as a function of the anneal-
ing time. According to the previous analysis, the inverse
maximum susceptibility is proportional to the system dis-
order r. Hence, one could expect that χ−1c may provide
some qualitative image of the recovery process. The corre-
sponding plots of the inverse susceptibility evolution with
time for the different annealing temperatures and the two
considered steel grades are given in Fig. 8. The nearly
monotonous decrease of the inverse susceptibility with the
annealing time (with the exception of the short times at
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(a)

(b)

Figure 8: Evolution of the inverse susceptibility with annealing time
at different annealing temperatures: (a) IF steel, (b) ELC steel.

high annealing temperature for the IF) seems to be in ac-
cordance with the fact that the dislocation density is de-
creasing during the recovery.

A similar statement can also be made concerning the
annealing temperature. In fact, the relative position of the
curves, except for some points at low annealing times of
the IF steel, follows the decrease in the dislocation density
with increasing temperature.

A question that might be arisen concerns the validity
of the zero-temperature approach for the studied case. It
should be recalled that the Curie point, indicating the tem-
perature region where thermal fluctuations become impor-
tant, lies around 770◦C (1043 K) for carbon steels. All the
magnetic measurements were made at room temperature
once the samples had been removed from the annealing
simulation device, which means that we are located at 29%
of the Curie temperature (ratio calculated after conversion
to Kelvin), and we recall by the corresponding phase dia-
grams that the magnetisation curve descends very steeply

just before the Curie point to reach zero [17]. Precise mea-
surements at high temperatures for similar steel grades
have been communicated in the recent literature which
supports this argument [18, 19]. We can hence conclude
that the random field effect is dominant against thermal
fluctuations for these temperatures. Moreover, outside the
critical range of the transition (usually a few degrees from
the critical temperature at most) the system is expected
to be described from the mean-field approach. In our case
this condition is fulfilled (Tmax ∼ 0.29Tc).

One might come to the same conclusion by considering
comparisons of the critical exponents relative to Barkhausen
avalanche characteristics with the corresponding experi-
mental values [11, 20]. The experimental results for these
studies have been obtained in room temperature condi-
tions as well.

Conclusions

A very simple random field spin model has been used
for the interpretation of the behaviour of the differential
susceptibility curves around the coercive field. It appears
that the implicit solution of the RFIM for small field val-
ues can be adequately approximated by a Lorentzian func-
tion, whose peak (corresponding susceptibility at the co-
ercive field) provides a measure for the system disorder.
This approximation explains the nearly Lorentzian profile
of the experimental susceptibility curves, and is theoreti-
cally supported by the scaling laws at the coercive field for
supercritical disorder values.

Although the highly simplified conceptual image of the
disorder used by the model should not be directly related
with the real material randomness translated to a disloca-
tion distribution (in the considered case of steels subjected
to recovery), this model ”randomness” could still serve as
a figure-of-merit for the real randomness, as Fig. 8 implies.

Caution should be also taken concerning the model do-
main of validity. One must not forget that the Ising model
considers spins oriented in one direction, hence it is re-
stricted (at least theoretically) to materials with strong
anisotropy, where the spins tend to align with the easy
magnetisation axis. A more thorough study should take
this limitation into account, and one must be aware that
the above analysis may not hold for different families of
materials. In such cases the use of more sophisticated
models, like the XY or the Heisenberg model may be in-
dispensable.
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