
SUPPLEMENTARY MATERIALS: Nonparametric posterior learning for
emission tomography with multimodal data∗
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SM1. Construction of the common probability space. Let (Ω′,F ′, P ′) be the probability
space on which the stationary spatio-temporal Poisson point process Zt is defined (Zt has
values in Z× [0,+∞); Z being the space of LORs). Sinogram Y t is obtained from binning Zt

to detector elements, therefore process Y t is a well-defined random variable on (Ω′,F ′, P ′).
Measure-theoretic construction of Zt and (Ω′,F ′, P ′) can be found, for example, in [SM5],
Section 9.2, Example 9.2(b).

Algorithms 3 and 4 rely only on perturbed intensities Λ̃tM and Λ̃tb for which we show that
they can be expressed as functions of random weighting of the list-mode data:

Gt = {δ(k,i) : (k, i) – kth photon was detected at detector i},

where δ(k,i) ∈ {0, 1}. Indeed, from Step 4 in Algorithm 3 we can see that Λ̃tM is a function of

Λ̃t for which the following representation holds

Λ̃ti = t−1
Nt∑
k=1

δ(k,i)w̃k, i ∈ {1, . . . , d},(SM1.1)

{w̃k}N
t

k=1
iid∼ Γ(1, 1),(SM1.2)

where N t is the total number of photons. For Λ̃tb in Step 5 of Algorithm 4 we have the following
representation:

Λ̃tb,i|Λ̃tM,i = (θt + t)−1

 Nt∑
k=1

δ(k,i)wk + wM,i

 ,(SM1.3)

{wk}N
t

k=1, wM,i ∼ Γ(θtΛ̃tM,i, 1).(SM1.4)

Note that wM,i can be constructed simply from vector ωi
iid∼ Γ(1, 1) which are also inde-

pendent of all other variables. Therefore, from formulas (SM1.1)–(SM1.4) one can see that
perturbations Λ̃tM and Λ̃tb depend on data Y t and on family of mutually independent weights
({(wk, w̃k)}∞k=1, {ωi}di=1) which are also independent of Y t. Therefore, the common probability
space can be defined as follows:

(SM1.5) (Ω,F , P ) = (Ω′ × Ωw × Ωw̃ × Ωω,F ′ ×Fw ×Fw̃ ×Fω, P ′ × Pw × Pw̃ × Pω),
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where (Ωw,Fw, Pw), (Ωw̃,Fw̃, Pw̃), (Ωω,Fω, Pω) are the probability spaces for infinite se-
quences of i.i.d r.v.s {wk}∞k=1, {w̃k}∞k=1, wk ∼ Γ(1, 1), w̃k ∼ Γ(1, 1) and for {ωi}di=1 ∼ Γ(1, 1),
respectively. This construction originates to [SM22] and similar ones have been also used
in [SM23].

SM2. Limit theorems for stationary Poisson processes. Let

(SM2.1) Y t ∼ Po(Λt), Λ > 0, t ∈ [0,+∞).

The following classical result is a composition of theorems 9.3, 4.1 and 7.5 (pp. 306, 350,
417, respectively) from [SM13].

Theorem SM2.1. Let {Y t}, t ∈ (0,+∞) be the Poisson process defined in (SM2.1). Then,
(i)

(SM2.2)
Y t

t

a.s.−−→ Λ when t→ +∞.

(ii)

(SM2.3)
Y t − Λt√

Λt

d−→ N (0, 1) when t→ +∞.

(iii)

(SM2.4) lim inf
t→+∞

(lim sup
t→+∞

)
Y t − Λt√
Λt log log t

= −
√
2 (
√
2) a.s.,

where
a.s.−−→,

d−→ denote the convergence almost surely and in distribution, respectively, a.s.
denotes that statement holds for almost any trajectory Y t, t ∈ (0,+∞).

SM3. A remark on one recent bootstrap algorithm for ET. A very recent and similar
to ours sampling algorithm was proposed in [SM9] provided with a very extensive experiment
both on synthetic and real PET-MRI data. The algorithm there is also of bootstrap-type, it
is based on optimization of a randomized KL-distance and in fact, it coincides up to minor
details with Algorithm 4 for θt ≡ 0. The difference is that dataM are used there to construct
very special penalty φ(λ) = φM(λ) of Bowsher type (see the discussion in subsection 2.4).
This penalty satisfies the assumptions in (2.11) and (2.12), so our Theorems 6.5 and 6.10
serve as a theoretical foundation for the algorithms in [SM9]. A nice practical feature of our
approach is that θt has clear physical interpretation of the effect of MRI data on samples (see
Remark 4.3), whereas large number of parameters in Bowsher-type penalties have no such
easy interpretations making the problem of (posterior) calibration cumbersome.

The aforementioned minor differences between algorithms consist in the way Y t (in [SM9])
are stochastically perturbed. From the first look this seems to be only a technical question,
however, we think that it is not. From the derivation of NPL in section 4 one can see
that uncertainty propagates via the KL-projection in (4.5). Moreover, we retrieve version
of WLB of [SM22] adapted for ET as a particular case of Algorithm 4 when choosing the
scale parameter θt = 0 in the nonparametric prior in (4.11). This is fully coherent with
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the derivation of NPL in [SM20] and nonparametric posterior bootstrap with MDP-prior in
[SM10], where the classical WLB algorithm from [SM22] is retrieved back as a particular case
when choosing the concentration parameter α = 0 (c = 0 in [SM10]). On the other hand,
the derivation in [SM9] strongly relies on model with finite data and it is claimed that the
resulting algorithm is also a version of WLB, however, in this case for us is not clear which
randomized functional stands behind this procedure as it was with KL-distance in our work.

SM4. Practical interpretation of slow mixing in MCMC. In practice produced samples
by the Markov chain are used to compute credible intervals for weighted means in certain
subregions of reconstructed images. Let h ∈ Rp be a weighting mask which corresponds to
subregion Ω ⊂ {1, . . . , p}. For example, if hj =

1
#Ω for pixel j ∈ Ω and hj = 0 otherwise, then

hTλ gives the average tracer concentration in subregion Ω. Let N be the number of generated
samples which we denote by {λtk}Nk=1. Then, the posterior mean of hTλ can be approximated
by the following expression:

f̂ th,N =
1

N

N∑
k=1

hTλtk,(SM4.1)

The variance of estimator f̂ th,N can be approximated as follows:

var(f̂ th,N | Y t, t) =
1

N2

N∑
k=1

N∑
s=1

cov(h(λtk), h(λ
t
s) | Y t, t)

≍ σ2

N
(1 + 2

∞∑
k=1

ρtk(h)),

(SM4.2)

where

ρtk(h) = corr(hTλt1, h
Tλtk+1 | Y t, t), σ2 = var(hTλ).(SM4.3)

In [SM18] it was shown, in particular, that ρtk(h) ≍ (γt(h))k, so from above formulas we

get the following expression for the variance of f̂ th,N (modulo a universal multiplicative factor):

var(f̂h,N | Y t, t) ≍ σ2

N

(
1 + γt(h)

1− γt(h)

)
≈ σ2

N

(
1 + γ(h)

1− γ(h)

)
,(SM4.4)

where γt(h), γ(h) are defined in (3.5) and (3.7), respectively. The rule of thumb in [SM2]
tells to choose N such that empirical variance of f̂h,N does not exceed 1% of σ2, which is then
translated to the following rule:

(SM4.5)
var(f̂h,N | Y t, t)

σ2
< 0.01⇒ N ≳ 100×

(
1 + γ(h)

1− γ(h)

)
≈ +∞ for h = hm, m≫ 1.

Therefore, to estimate reliably the average signal using mask h ∈ Rp, one needs almost infinite
number of samples if h contains a high-frequency component in terms of basis {hk}pk=1.
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λ∗ – image of size 64× 64 (see Figure SM1),
A – Radon transform matrix of size 4096×4096,
prior πj = Γ(1, 1),
time t = 102, 1010 (∼ photons per LOR),
initial point: λ∗,
burn-in samples: 1000,
number of samples for the output: 2000

Figure SM1: λ∗

SM5. Numerical experiment for the Gibbs sampler. 1 According to (3.8) we choose
λ∗ ≻ 0, where λ∗|ring = 2.0, λ∗|background = 1.0, where radius of the inner circle rin =
0.25 and of the outer rout = 0.5, and the whole image corresponds to domain [−1, 1]2; see
also Figure SM1. Design A is constructed using our implementation of Siddon’s algorithm
(original paper [SM28]) for parallel beam geometry with 64 projections and 64 parallel lines
per projection.

SM6. Assumptions on PP. Nonparametric constructions of πM and πM(·|Y t ∨ Zt, t).
Assumption in (4.10) is not very restrictive in view of the physical model of ET. According to
Theorem 2.4.V, [SM9], any point process PP (on a Polish space) which is a.s. boundedly-finite,
has independent increments (events in different LORs and time periods are independent) and
also orderly (no batches, i.e., no more than one point is possible a.s. in an infinitesimal set),
is a Poisson point process. Therefore, at worst our assumption in (4.10) restricts PP from
the family of non-stationary Poisson processes to temporally stationary ones. In reality, of
course it better to model PP as non-stationary. For this, first, it would require to change
our initial model and the log-likelihood in (4.4) to the non-stationary one (if model is set
temporal-stationary it is not coherent to consider prior on non-stationary processes and vice-
versa). Second, we would need to include complicated models of tracer kinetics inside the
body which are outside of the scope of this work. Nevertheless, with a few slight changes
in subsection 4.1 one may derive NPL for ET also for non-stationary scenario. Finally, being
completely outside of the scope of ET, any point process with independent increments (seen
as a generator of random discrete measures) can be constructed via a Poisson process due to
the celebrated theorem of Kingman (1967) (see [SM5], Section 10.1, Theorem 10.1.III.). Thus,
defining a prior on PP is equivalent putting a prior on the parameter measure of a certain
Poisson process.

Derivation for non-parametric Poisson and gamma processes in subsection 4.4 essentially
does not change – prior on Λ is defined via the same MGP construction as in (4.11) where
Λ|ΛM ∼ G(θtΛM, (θt)−1 · 1Z), 1Z is the identity function on Z. Posterior in (4.13) is also an

1Source code in Python of the experiment on the Gibbs-sampler can be found at
https://gitlab.com/eric.barat/npl-pet.

https://gitlab.com/eric.barat/npl-pet
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MGP due to the following result (our adaptation of Theorem 3.1 from [SM19]):

Theorem SM6.1. Let Y t ∼ PPtΛ and Gα,β be the prior on Λ. Then, the posterior distribu-
tion of Λ is a weighted gamma process G

α+Y t, β
1+tβ

.

Proof. Claim follows directly from the result of Theorem 3.1 from [SM19]. Indeed, having
iid samples N1, . . . , Nn from a Poisson point process with intensity ν is equivalent having
sample N1 + · · · +Nn for intensity nν. Therefore, parameter n is a direct analog of t in our
considerations. Moreover, it is trivial to check that all results from Section 3 of [SM19] hold
for n being replaced with t.

Theorem is proved.

SM7. GEM-type algorithm. Recall that the attractiveness of Algorithm 4 relies on having
an efficient procedure for minimizing Lp(λ | Λ̃tb, A, 1, βt/t) and L(λM | Λ̃t, AM, 1). For integer-
valued data Y t ∈ Nd0 the Lp(λ | Y t, t) coincides with the penalized negative log-likelihood for
Poisson-type sample and in this situation, provided penalty φ(λ) satisfies elementary con-
ditions (convex, C2 – smooth), fast monotonic GEM-type algorithms [SM8], [SM32] can be
used. In our setting intensities Λ̃t, Λ̃tb are not integer-valued anymore, hence the GEM deriva-
tion machinery must be re-verified. We claim that the same so-called “GEM-type” iterative
algorithms can be derived outside the context of a Poisson model and missing data. First,
notice that EM belongs to the class of optimization transfer algorithms [SM17] also denoted as
MM (Majoration Minimization) – the E-step is interpreted as the construction of a majoriz-
ing surrogate for the objective function, M -step corresponds to its consequent minimization.
Using the convexity argument from [SM6] we construct the same majorizing surrogate for
L(λ | Λ̃tb, A, 1) as in [SM8] in a completely algebraic way but now for arbitrary nonnegative

term Λ̃tb. Further extension to Lp(λ | Λ̃tb, A, 1, βt/t) is straightforward by considering a sepa-
rate surrogate for φ(λ). An immediate and substantial consequence for practitioners is that all
celebrated GEM algorithms for MLE and MAP reconstructions can be used in the bootstrap
context by simply replacing data term by Λ̃tb.

SM7.1. Majorizing surrogate of L(λ | Λ̃tb, A, 1). In [SM6] authors propose a purely alge-
braic derivation of the surrogate which we adapt below.

Let fi(x) ≜ x − Λ̃tb,i log(x), λ
(r)
j ⪰ 0, j = 1, . . . , p, be the rth iterate of the optimization

algorithm minimizing L(λ | Λ̃tb, A, 1), and denote also Λ
(r)
i = aTi λ

(r). Consider the formula

L(λ | Λ̃tb, A, 1) =
d∑
i=1

fi(Λi)

=

d∑
i=1

fi

 p∑
j=1

aijλj


=

d∑
i=1

fi

 p∑
j=1

[
aijλ

(r)
j

Λ
(r)
i

][
λj

λ
(r)
j

Λ
(r)
i

] .



SM6 FEDOR GONCHAROV, ÉRIC BARAT AND THOMAS DAUTREMER

Since fi is convex for Λ̃tb,i ≥ 0 and
∑p

j=1

aijλ
(r)
j

Λ
(r)
i

= 1, using the Jensen’s inequality we obtain

L(λ | Λ̃tb, A, 1) ≤ QL(λ, λ(r)),

where

QL(λ, λ
(r)) ≜

d∑
i=1

p∑
j=1

[
aijλ

(r)
j

Λ
(r)
i

]
fi

(
λj

λ
(r)
j

Λ
(r)
i

)
.

Note also that QL(λ
(r), λ(r)) = L(λ(r) | Λ̃tb, A, 1), hence, QL(λ, λ(r)) is indeed a surrogate for

L(λ| . . . ). Using the definition of fi we find that

QL(λ, λ
(r)) =

d∑
i=1

p∑
j=1

[
aijλj −

aijλ
(r)
j

Λ
(r)
i

Λ̃tb,i log

(
λj

λ
(r)
j

Λ
(r)
i

)]

=

p∑
j=1

Aj

[
λj −

(
λ
(r)
j

Aj

d∑
i=1

aijΛ̃
t
b,i

Λ
(r)
i

)
log λj

]
+R

(r)
L ,

where R
(r)
L is the remainder independent of λ. Function QL(λ, λ

(r)) can be rewritten as follows:

(SM7.1) QL(λ, λ
(r)) =

p∑
j=1

Aj (λj − λj log λj) +R
(r)
L .

Hence, the update of λ
(r+1)
L by minimizing QL(λ, λ

(r)) takes the following celebrated form:

(SM7.2) λ
(r+1)
j,L ≜

λ
(r)
j

Aj

d∑
i=1

aijΛ̃
t
b,i

Λ
(r)
i

.

SM7.2. Majorizing surrogate for φ(λ). Let

φ(λ) =

p∑
j=1

∑
k∈Nj

wjk ψ(λj − λk),

where wjk > 0, wkj = wjk are the weights and Nj denotes the neighborhood of pixel j.
From [SM7], if
i. ψ is symmetric.
ii. ψ is continuous and differentiable everywhere.
iii. ψ is convex.
iv. ωψ(u) ≜

1
u
dψ(u)
du is non-increasing for u ⩾ 0.

v. limu→0 ωψ(u) is finite and positive,
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then, φ can be majorized by a parabolic curve. In our work the above conditions are satisfied,
therefore φ(λ) is majorized by a separable quadratic penalty given below (see [SM32] and
references therein):

φ(λ) ≤ Qφ(λ;λ(r)),

where

Qφ(λ;λ
(r)) =

1

2

p∑
j=1

p
(r+1)
j,φ (λj − λ(r)j )2,(SM7.3)

p
(r+1)
j,φ = 4

∑
k∈Nj

wjk ωψ(λ
(r)
j − λ

(r)
k ),(SM7.4)

so the iterative update for minimization is given by the formula:

λ
(r+1)
j,φ =

2

p
(r+1)
j,φ

∑
k∈Nj

wjk ωψ(λ
(r)
j − λ

(r)
k )(λ

(r)
j + λ

(r)
k ).(SM7.5)

SM7.3. Global surrogate minimization. At iteration (r + 1), solving the Karush-Kuhn-
Tucker condition for minimizing the combined surrogate, we get

λ(r+1) = argmin
λ⪰0

QL(λ, λ
(r)) +

βt

t
Qφ(λ, λ

(r)),

which gives a unique analytical positive solution

(SM7.6) λ
(r+1)
j =

2λ
(r+1)
j,L√

(b
(r+1)
j )2 + 4β

(r+1)
j λ

(r+1)
j,L + b

(r+1)
j

,

where

β
(r+1)
j =

βt

t Aj
p
(r+1)
j,φ and b

(r+1)
j = 1− β(n+1)

j λ
(r+1)
j,φ .

The GEM-type algorithm is summarized in Algorithm SM1.

Remark SM7.1. By setting βt

t = 0 in (SM7.6), we find immediately that λ(r+1) = λ
(r+1)
L .

Remark SM7.2. Parameter λ̃tM in Algorithm 3 is easily obtained by iterating formula

(SM7.2) with projector AM and random intensities Λ̃t

(SM7.7) λ̃
t,(r+1)
M,s =

λ̃
t,(r)
M,s

AM,s

d∑
i=1

aM,isΛ̃
t
i

Λ̃
t,(r)
M,i

.

SM8. Details of the numerical experiment of Algorithm 4. 2

2Source code in Python of the experiment can be found at https://gitlab.com/eric.barat/npl-pet

https://gitlab.com/eric.barat/npl-pet
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Algorithm SM1 argmin
λ⪰0

Lp(λ | Λ̃tb, A, 1,
βt

t ) by optimization transfer

1: data : intensities Λ̃tb;
2: input : Initial image λ(0), number max. of iterations R, projector A, regularization

parameter βt, penalty φ(λ)
3: for r ← 0 to R− 1 do
4: for j ← 1 to p do

5: compute λ
(r+1)
j,L using (SM7.2)

6: compute λ
(r+1)
j,φ using (SM7.5)

7: compute λ
(r+1)
j using (SM7.6)

8: end for
9: end for

10: return λ(R)

SM8.1. Choice of penalty φ. We take the well-known in PET imaging log cosh penalty
[SM12] coupled with ℓ2-squared pairwise difference term:

(SM8.1) φ(λ) =

p∑
j=1

∑
j′∈Nj

wjj′

(
(1− ν)ζ log cosh

(
λj − λj′

ζ

)
+
ν

2

(
λj − λj′

)2)
,

where wjj′ > 0, wj′j = wjj′ and Nj the neighborhood of pixel j consisting of 8-adjacent ones

– wjj′ = 1 for horizontal/vertical neighbors and wjj′ =
√
2
2 for diagonal ones.

Penalty in (SM8.1) is attractive since it bridges together Gaussian prior for pairwise inter-
actions (when ζ → +∞), and for ν = 0, ζ → 0, it corresponds to pairwise ℓ1-penalty (Laplace
prior). It is easy to check that φ(λ) in (SM8.1) is strictly convex except the only direction
spanned on vector e = (1, . . . , 1). From (2.5) it follows that e ̸∈ kerA, therefore conditions
(2.11) and (2.12) are automatically satisfied. Recall that for our experiments we choose ζ, ν
be always fixed and equal ζ = 0.05, ν = 0.15.

SM8.2. Calibration assessment and metrics. Following [SM30], we say that a model is
perfectly calibrated if for all levels α ∈ [0, 1], the corresponding marginal pixel-wise distribu-
tions contain λ∗opt,j ’s in credible intervals with confidence level α for α · 100% of pixels. For
each pixel 1 ≤ j ≤ p, the credible interval Ij,α = (qLj,α, q

U
j,α] of confidence level α is defined as:

(SM8.2) P (λ̃tb,j ∈ Ij,α | Y t) = α

Thus, the perfect calibration means that (modulo numerical discretization effects):

(SM8.3)
1

p

p∑
j=1

1{λ∗opt,j ∈ Ij,α} = α, ∀α ∈ [0, 1].

As in [SM15], we choose Ij,α to be the smallest credible interval in terms of Lebesgue
measure on R which is also known as highest posterior density (HPD) region. Such choice
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(e.g., rather than equal-tailed interval) is especially well-motivated in the ET context since the
posterior for λ̃tb,j ∈ R+ could be asymmetric for intensities near the zero-boundary. For any j,

we compute empirical HPD-intervals from B samples of NPL, denoted by Îj,α = (q̂Lj,α, q̂
U
j,α].

Since both p and B are finite, confidence levels for HPD-intervals must be discretized, so
the computed (or empirical) achieved expected coverage (for λ∗opt) is given by the formula:

(SM8.4) CA

(m
M

;λ∗opt

)
≜

1

p

p∑
j=1

1{λ∗opt,j ∈ Îj,m
M
}, m ∈ {1, . . . ,M},

where M is the size of the uniform grid on [0, 1]. The targeted expected coverage coincides
with the confidence level for perfect calibration and equals m

M for each m ∈ {1, . . . ,M}.
Note that Îj,α is not random (being conditioned on Y t) and depends on ρ. Therefore, the

goal of calibration is to tune ρ in order to satisfy (SM8.3) (modulo discretizations) as close as
possible. To quantify the error we use the expected calibration error (ECE) metric which is
defined as follows (we omit the dependence on ρ for simplicity of notations):

ECE ≜
1

M

M∑
i=1

∣∣∣CA (m
M

;λ∗opt

)
− m

M

∣∣∣ .
Interestingly, CA(·;λ∗opt) can be interpreted as an empirical c.d.f since

(SM8.5) CA(x;λ∗opt) =
1

p

p∑
j=1

1{lj ≤ x}, lj(λ∗opt) = min
α∈[0,1]

{α|λ∗opt ∈ Îj,α}.

Then, in fact, ECE in (SM8.4) coincides with the 1-Wasserstein distance between uniform
distribution and the empirical distribution of {lj}pj=1. Values {lj}

p
j=1 can be seen as a result of

evaluation of NPL-HPD-forecasters at {λ∗opt,j}pj=1, respectively (since the returned probability
is not a value of the conditional c.d.f but a minimal level of the HPD-region containing λ∗opt,j);
see [?] and its Supplementary Materials, Proposition 3. The spatial representation of {lj}pj=1

constitutes what we call the coverage map computed by the formula:

l̂j = min
m∈{1,...,M}

{m
M
| λ∗opt,j ∈ Îj,m

M
}, j ∈ {1, . . . , p}.

Because for the perfect calibration CA(·;λ∗opt) should be close to c.d.f of the uniform dis-
tribution we consider its empirical p.d.f. and call it coverage histogram in Figure 6(e) (in
view of the above representation in (SM8.5) via {lj}pj=1). We quantify the overall discrepancy
between coverage histogram and uniform density by computing the KL-divergence:

KLC ≜ − 1

M

m∑
m=1

log(M · hm),

where hm is the mth-bin value of the normalized histogram of l̂j (
∑M

m=1 hm = 1).
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We finally consider two additional metrics for assessing the predictive accuracy – PSNR
and MSWD (peak-signal-to-noise-ratio and the mean-squared-weighted-deviation):

PSNR(λ∗opt, λ
t
) = 10 log10

 p ·max(λ∗opt)
2∑p

j=1

(
λ∗opt,j − λ

t
j

)2
 , λ

t
=

1

B

B∑
b=1

λ̃tb,

MSWD(λ∗opt, λ
t
b) =

1

p

p∑
j=1

(
λ∗opt,j − λ

t
j

)2
σ2j

, σ2j =
1

B

B∑
b=1

(λ̃tb,j − λ
t
j)

2.

Metric MSWD has form of the chi-squared statistic under the assumption that indices j
denoting different pixels correspond to independent observations with normal distributions.
As a rule of thumb one says that for MSWD ≈ 1.0 the analytical model estimates optimally
(in the sense of the above assumption) the uncertainties in each pixel, and for MSWD < 1.0
and MSWD > 1.0 posterior overestimates and underestimates the latter, respectively.

Remark SM8.1. Note that by performing our assessment on one single λ∗opt, we implicitly
assume that λ∗opt is sufficiently representative for a large family of isotope concentrations in the
patient. Certainly, for a more profound numerical investigation one should try to calibrate
against large family of realistic λ∗opt simultaneously. Another important observed feature
(specific for ET) is the effect of huge amount of nearly null-intensity pixels outside of the
cranium (nearly null for λ∗opt and exactly null for λ∗), which can significantly bias the coverage
analysis. Indeed, many LORs crossing such pixels we have Y t

i ≡ 0 a.s. and contraction of
the NPL posterior to a degenerate δ0-distribution is very fast making the overall model extra-
conservative for low levels of the expected coverage; see the calibration curve in Figure SM2.
As a consequence, these nearly zero values (at machine precision) of λ∗opt,j are captured by
any small confidence level HPD. To mitigate this bias, we restrict the contributing pixels to
ones inside the discrete convex-hull defined by λ∗,j > 0 which is very close to pixels inside the
cranium boundary; see the grey mask, for example, in Figure 6(d). Note also that applying
such mask (to remove exterior of the patient’s body from the model) is a common technique
in ET since the latter can be directly computed from MRI or CT scans and, in principle, does
not require λ∗.

SM8.3. Additional results for large t. To test the hypothesis on overcontraction in the
slab between the cranium and the soft brain tissue we increased t up to t = 100. Thus, the
LORs crossing this region which previously received Y t

i = 0 for t = 1 but having Λ∗
i > 0 will

have much greater chances to receive Y t
i > 0. To mitigate possible bias due to regularizer φ we

set βt/t = β = βmin = 1 ·10−3 (same as for computing λ∗opt). In Figure SM3 one can see that
the model is almost perfectly calibrated and the aforementioned slab is no longer contrasted
as it was in Figure 6(d) which is predicted by our initial explanation. Slight overconfidence
is visible on the calibration curve (c) and on the coverage histogram (e) for small confidence
levels for which we yet have no explanation apart of numerical errors of machine precision/low
number of samples/small value of t.
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Figure SM2: NPL calibration without mask for pixels outside the cranium
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Figure SM3: NPL with ρ = 0 and β = βmin for t = 100

We also additionally checked that NPL posterior mean for ρ = 0 (no MRI) is indistin-
guishable from the MAP reconstruction with the same penalty tuning; see Figure SM4. This
is specifically attractive for practitioners in ET who are acquainted with MAP estimates but
much less with posterior mean from some complicated posteriors as in NPL. The result also
supports the claim in Theorem 6.10 that asymptotically posterior concentrates primarily not
around λ∗opt but a strongly consistent estimator λ̂tsc for which we conjectured to coincide
asymptotically, for example, with the MAP estimate; see subsection 6.3.



SM12 FEDOR GONCHAROV, ÉRIC BARAT AND THOMAS DAUTREMER

t1

t2

NPL mean for ρ = 0 MAP Difference

Figure SM4: NPL mean for ρ = 0 compared to MAP reconstruction for t1 = 1 and t2 = 100;
βt = 2× 10−3; B = 8192

From the two simulations for t1 = 1 and t2 = 100 one may observe that the empirical
contraction rate of absolute differences seems to be of order t−1/2. This can be explained by
the fact that for regular models with n i.i.d observations (recall that model of ET is regular
for pixels where λ∗,j > 0), the next error term beyond the normal approximation in the first
order Edgeworth’s expansion of the posterior decays with rate n−1/2, which is t−1/2 in our
parametrization; see [SM25].

SM9. Discussion on bayesian approach and NPL in ET. By our knowledge the only yet
existing theoretically-oriented work on the bayesian model of ET is [SM4]. The non-regular
model considered there is exactly as in (2.1), being also well-specified and with injective design
A (though ill-conditioned). An essential common thing is that both posteriors (bayesian and
NPL) experience splitting into three modes due to positivity constraints. In [SM4] asymptotic
bayesian posterior has exponential distribution for pixels which are intersected by at least one
ray s.t. Λ∗

i = 0 (p(λj |Y t, t) ≈ Exp(−tA∗j), A∗j =
∑

i:Λ∗
i=0 aij ; union of indices for such pixels

being denoted by S1) and truncated gaussians distributions to Rp+ for the rest (denoted by
S0 = S1):

approximately for large t:
√
t(λS0 − λ∗,S0)|Y t, t ∼ T N (a0,Ω

−1
00 ),(SM9.1)

Ω00 = ATI1(Λ∗),S0
diag(1/Λ∗

i ; i ∈ I1(Λ∗))AI1(Λ∗),S0
,(SM9.2)

a0 = Ω−1
00 A

T
I1(Λ∗),S0

[
Yi − tΛ∗

i√
tΛ∗

i

]
I1(Λ∗)

,(SM9.3)

where T N denotes the truncated gaussian distribution such that λS0 |Y t, t ∈ Rp+ (it is pure
gaussian distribution where positive constraints are a.s. inactive (also regular part of the
model) and half-gaussian where the latter are asymptotically active with high probability);
see Section 6 for details.
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For NPL, yet we do not prove asymptotic normality result but only tightness in Theo-
rem 6.10, however, a very similar splitting is visible. Indeed, linear space V, defined in (6.16),
coincides with span of pixels in S1 in [SM4] and we prove that the contraction rate of the
NPL-posterior is faster in directions of V than in others (see formulas (6.24) and (6.25)) same
as the exponential part for the bayesian posterior above has faster contraction rate than the
truncated gaussian part in (SM9.1)-(SM9.3). For simplicity, if in our model we assume that
A is injective, than W = {0} (see formula (6.18)) and ΠUλ = λS0 , where U , ΠU are defined
in (6.17), (6.19), respectively. Thus, our result in (6.25) can be seen as a preliminary step
towards the demonstration of asympototic normality along U whose bayesian counterpart is
given in (SM9.1)-(SM9.3).

Now we discuss Conjecture 6.11 and the intuition why it should hold, especially, in view
of results from [SM4]. First, in (SM9.3) not that and

(SM9.4) Λ∗ = AI1(Λ∗),S0
λ∗,S0 .

Then, using the above formula and (SM9.1) we get:

approximately for large t:
√
tλS0 |Y t, t ∼ T N (ξ,Ω−1

00 ),(SM9.5)

ξ =
√
t · Ω−1

00 A
T
I1(Λ∗),S0

Yi/t

Λ∗
i

.(SM9.6)

Formulas (SM9.5), (SM9.6) and the fact that asymptotic posterior in direction V has exponen-
tial distribution imply that the bayesian MAP estimate from [SM4] is a perfect candidate for
λ̂tsc in Conjecture 6.11. Indeed, for such choice ΠV λ̂

t
sc ≈ 0, ΠU λ̂

t
sc ≈ ξ/

√
t (modulo truncation

for positivity), hence, conditions (6.22), (6.23) are automatically satisfied. To be rigorous,
one must carefully check that the above approximations are valid up to terms decaying with
faster rates.

SM10. Remark on centering term of the posterior.

Definition SM10.1. We say that U t converges in conditional distribution to V almost surely
Y t, t ∈ [0,+∞) if for every Borel set A ∈ B(Rn) the following holds:

(SM10.1) P (U t ∈ A | Y t)→ P (V ∈ A) when t→ +∞, a.s. Y t, t ∈ (0,+∞).

This type of convergence will be denoted as follows:

(SM10.2) U t
c.d.−−→ U.

Centering the distribution of λ̃tb at the true parameter λ∗ in (ii) does not allow to achieve
conditional tightness almost surely Y t, t ∈ (0,+∞) which we briefly explain below.

As a part of the proof of Theorem 6.10 (see Lemmas SM12.11 and SM12.12) we show that

ΠU (λ̃
t
b − λ̂tsc)− ut(ξ̃t)

c.p.−−→ 0,(SM10.3)
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where

ξ̃t = (. . . ,
√
t
Λ̃tb,i − Λ̂tsc,i√

Λ̂tsc,i

, . . . ), i ∈ I1(Λ∗),(SM10.4)

ut(ξ) = argmin
u:(1−ΠV )λ̂

t
sc+

u√
t
+w⪰0,

u∈U , w∈W

−uT (AI1(Λ∗))
T (D̂t

I1(Λ∗))
−1/2ξ +

1

2
uT F̂ tI1(Λ∗)u,(SM10.5)

D̂t
I1(Λ∗) = diag(. . . , Λ̂tsc,i, . . . ), i ∈ I1(Λ∗),(SM10.6)

F̂ tI1(Λ∗) =
∑

i∈I1(Λ∗)

aia
T
i

Λ̂tsc,i
= (AI1(Λ∗))

T (D̂t
I1(Λ∗))

−1AI1(Λ∗).(SM10.7)

That is the conditional tightness (and also the asymptotic distribution) of ΠU (λ̃
t
b−λ̂tsc) asymp-

totically coincides with ut(ξ̃t) being the minimizer of a quadratic function on a polyhedral
set depending on λ̂tsc. In the proof we show that conditional tightness of ut(ξ̃t) is implied by
tightness of ξ̃t (this is especially obvious if the constraints in (SM10.5) are not active for large
t, e.g., when λ∗ ≻ 0) and that under the assumptions of the theorem it holds that

(. . . ,
√
t
Λ̃tb,i −

Y t
i
t√

Λ̂tsc,i

, . . . )
c.d.−−→ N (0, I),

I – identity matrix of size #I1(Λ
∗)×#I1(Λ

∗).

(SM10.8)

From (SM10.5)–(SM10.8) and the Prohorov’s theorem on tightness of weakly convergent se-
quences or r.v.s, the asymptotic behavior (tightness, distribution) of ut(ξ̃t) is essentially de-

pends on the term (. . . ,
√
t
Λ̂tsc,i −

Y t
i
t√

Λ̂tsc,i

, . . . ), i ∈ I1(Λ∗). For tightness this term needs to be

asymptotically bounded for almost any trajectory Y t, t ∈ (0,+∞), which is exactly asked
in (6.22) (in a slightly weakened form).

Now, if we center λ̃tb on λ∗ one finds that λ̂tsc must be replaced everywhere with λ∗ in

(SM10.5)–(SM10.8) and, most importantly, the latter term becomes (. . . ,
Y t
i − tΛ∗

i√
tΛ∗

i

, . . . ) being

asymptotically standard normal w.r.t Y t ∼ PP tA,λ∗ (see section SM2). Therefore, the mean of

the asymptotic distribution of
√
tΠU (λ̃

t
b− λ∗) depends on the trajectory of (Y t

i − tΛ∗
i )/
√
tΛ∗

i ,
i ∈ I1(Λ∗), which is almost surely unbounded infinitely often on t ∈ [0,+∞) in view of the Law
of Iterated Logarithm for Y t (see formula (SM2.4)). Thus, the tightness for

√
tΠU (λ̃

t
b − λ∗)

almost surely for any trajectory Y t, t ∈ [0,+∞) is impossible. A very similar behavior for
centering of the posterior distribution for weighted bootstrap was also observed in Theorem 3.3
from [SM23].

SM11. MRI data, mask and the non-expansiveness condition. Below we consider a ge-
ometrical interpretation of the non-expansiveness condition based on representation of designs
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A, AM as weighted Radon transforms over the space of discrete images (which are commonly
used in practice). We show that failure of this condition implies presence of a segment in
M ∈M which is badly aligned with respect to the convex hull of the tracer support. To avoid
such situations in practice, we propose to preprocess MRI images before using them in the
context of ET which is explained in the end of this section.

For simplicity, let k = 1, i.e.,M = {M}, and let

Γ = {γi}di=1 be the set of rays available in the acquisition geometry.(SM11.1)

Assume that A = (aij) is a discretized version of some weighted Radon transform on set
of rays Γ with positive weight W , that is

aij =

∫
γi

W (x, γi)1j(x) dx, i ∈ {1, . . . , d}, j ∈ {1, . . . , p},(SM11.2)

W =W (x, γ), (x, γ) ∈ R2 × TS1, 0 < c ≤W ≤ C,(SM11.3)

where dx denotes the standard Lebesgue measure on ray γi, 1j(x) is the indicator function of
pixel j on the image. Weight W (x, γ) is some known sufficiently regular function of spatial
coordinates and oriented rays in R2 which are parameterized by TS1 (tangent bundle of the
unit sphere, see e.g., [SM21]). Projectors defined by the formulas of type (SM11.2), (SM11.3)
are common in CT and ET practice; see e.g., [SM28], [SM14] (for example, in PET and
SPECT weight W is used to model attenuation and nonuniform sensitivity of detectors; see
e.g., [SM26], [SM24], [SM11]).

From (2.15) and (SM11.2) it follows that

AM = (aM,is), aM,is =

∫
γi

W (x, γi)1M,s(x) dx, s ∈ S(M),(SM11.4)

where 1M,s(x) is the indicator function of segment s in image M .
Recall that λ∗ ∈ Rp+ is the discretized version of the real spatial distribution of the tracer

and assume that λ∗ ∈ Rp+ is pixel-wise connected (i.e., between two arbitrary pixels with
positive tracer uptake there is a path of pixels preserving the positivity of the signal; two pixels
are considered neighbors if they share a full edge (see Figure SM5(a))). The above assumption
is natural, for example, in the context of brain imaging when the tracer is distributed in the
whole volume inside the cranium and only relative spatial variations are of practical interest.

Definition SM11.1. Let Γ be the finite family of oriented rays in R2, A be the projector
defined by formulas (SM11.2) and (SM11.3), λ∗ ∈ Rp+, λ∗ ̸= 0 and λ∗ is pixel-wise connected.
Consider γi ∈ Γ and assume that i ∈ I0(Aλ∗). Then, support of λ∗ lies completely in one of
the closed half-spaces in R2 separated from each other with ray γi. Let H(λ∗, γi) be such a
closed half-space. Consider the discrete version of H(λ∗, γi) defined by the formula

DH(λ∗; γi) = {j ∈ {1, . . . , p} | intersection between pixel j and H(λ∗, γi)

is of non-zero Lebesgue measure on R2}.
(SM11.5)

Consider

DH̊(λ∗; γi) = {j ∈ DH(λ∗, γi) | intersection between pixel j and ray γi

is of length zero}.
(SM11.6)



SM16 FEDOR GONCHAROV, ÉRIC BARAT AND THOMAS DAUTREMER
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Figure SM5

Discrete convex hull of λ∗ for family Γ is defined by the formula

(SM11.7) DConv(λ∗; Γ, Aλ∗) =
⋂
γi∈Γ,

i∈I0(Λ∗)

DH̊(λ∗; γi).

For the geometrical intuition behind definitions DH(·), DH̊(·), DConv(·), see examples (b),
(c) in Figure SM5.

Now assume that the non-expansiveness condition fails in the following sense:

(SM11.8) ∃i ∈ I0(Λ∗) such that Λ∗
M,i > 0,

where Λ∗
M is defined in (6.10). From (SM11.1)–(SM11.4) and Definition SM11.1 it follows

that in the image for λM,∗ there is a segment s ∈ S(M) which intersected by γi ∈ Γ and such
that λM,∗,s > 0 (see Figure SM6(a)), that is

(SM11.9)
⋃

M∈M,
s∈S(M),
λM,∗,s>0

s ̸⊂ DConv(λ∗; Γ,Λ
∗).

λ∗

s ∈ S(M), λM,∗,s > 0

γi

(a) Λ∗
i = 0,Λ∗

M,i > 0

λ∗

⋃
M∈M,
s∈S(M)

s

γi

(b) Λ∗
i > 0, Λ∗

M,i = 0

Figure SM6
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If we assume that λM,∗ is also pixel-wise connected, then from (SM11.9) it follows that

(SM11.10) DConv(λM,∗; Γ, AMλM,∗) ̸⊂ DConv(λ∗; Γ, Aλ∗).

To conclude, we have just demonstrated the following statement.

Proposition SM11.2. Let λ∗ ∈ Rp+, λ∗ ̸= 0, λ∗ is pixel-wise connected and designs A,
AM be of type (SM11.1)–(SM11.4). Let λM,∗ be a solution of the minimization problem in
(6.9) and λM,∗ be also pixel-wise connected. Assume that the non-expansiveness condition
(Assumption 6.7) fails in the sense of (SM11.8). Then, formula (SM11.10) holds.

To avoid the situation in Proposition SM11.2 one may propose to use a significantly smaller
segmentation area, for example, such that

(SM11.11)
⋃

M∈M,
s∈S(M)

s ⊊ DConv(λ∗; Γ,Λ
∗),

where A ⊊ B denotes the strict inclusion of sets. In this case even a small misalignment may
lead to a situation when KL(PP tA,λ∗ , PP

t
AM,λM

) = +∞, so the KL-projection of PP tA,λ∗ onto

MRI-based model PP tAM,λM
is impossible; see Figure SM6(b). In view of the latter an ideal

choice for S(M) would be such that

(SM11.12) DConv(λM,∗; Γ, AMλM,∗) = DConv(λ∗; Γ, Aλ∗).

The above arguments are can be easily extended to the case of k > 1 by simply checking the
alignments for all images in M simultaneously. We conclude with a proposition to use the
following pipeline for preprocessing ofM:

1. Estimate DConv(λ∗; Γ, Aλ
∗) using any well-suited and fast algorithm (and/or medical

expertise). Let D be such an estimate.
2. In all MRI-images remove pixels lying outside of D and perform segmentations only

on those which are left inside of D.
In view of steps 1, 2 above we propose an alternative name for Assumption 6.7 – mask
condition. The term “mask” is also used in practice to denote restrictions of support of the
tracer (e.g., using the medical expertise), so the above procedure theoretically reflects existing
empirical practices.

SM12. Proofs.

Lemma SM12.1. Let φ(λ) be the function satisfying (2.11), (2.12), A satisfies conditions
in (2.3)–(2.5). Let λ ∈ Rp+ and U ⊂ Span(AT ) be a compact such that

(SM12.1) {w : λ+ u+ w ⪰ 0, w ∈ kerA} is non-empty for any u ∈ U.

Then, mapping defined by the formula

wA,λ(u) = argmin
w:λ+u+w⪰0,
w∈kerA

φ(λ+ u+ w), u ∈ U(SM12.2)

is one-to-one. Moreover, wA,λ(u) is continuous on U .
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SM12.1. Proof of Lemma SM12.1.

Proof. Proof is based on the two following lemmas.

Lemma SM12.2. Let λ ∈ Rp+ and A satisfies (2.3), (2.4). Then, for any compact U ⊂
Span(AT ) it holds that

(SM12.3) SA,λ(U) = (λ+ U + kerA) ∩ Rp+ is convex and compact,

where the summation sign denotes the Minkowski sum

A+B = {w = u+ v ⊂ Rp : u ∈ A, v ∈ B}, A ⊂ Rp, B ⊂ Rp.

Lemma SM12.3. Let assumptions of Lemma SM12.2 be satisfied and dH(A,B) denote the
Hausdorff distance between compact sets A,B ⊂ Rp being defined by the formula

dH(A,B) = max

(
sup
x∈A

inf
y∈B
∥x− y∥, sup

x∈B
inf
y∈A
∥x− y∥

)
.

Let U ⊂ Span(AT ) be a compact such that SA,λ(U) ̸= ∅. Then,

(SM12.4) dH(SA,λ({u0}), SA,λ({u}))→ 0 for u→ u0, u, u0 ∈ U,

where SA,λ(·) is defined in (SM12.3).

From the result of Lemma SM12.2 and the assumption in (2.12) it follows that for each
u ∈ U the following problem

minimize φ(λ+ u+ w) w.r.t w,

subject to: λ+ u+ w ⪰ 0, w ∈ kerA,
(SM12.5)

admits a unique solution w(u) ∈ kerA. Indeed, the minimized function in (SM12.5) is strictly
convex function in w and the domain is compact and convex. This proves the first assertion
of the lemma.

Now, we prove the continuity of w(u) on its domain. Let uk be a sequence in U such that
uk → u0 for some u0 ∈ U . Let wk = w(uk), where the latter are minimizers in (SM12.5) for
u = uk, and w0 = w(u0). We know that λk = λ+ uk +w(uk) ∈ SA,λ(U), where the latter is a
compact (by Lemma SM12.2). Since continuous mapping of a compact is again a compact, all
wk belong to some compact WA,λ(U) being the orthogonal projection of (SA,λ(U) − λ) onto
kerA. From compactness of WA,λ(U) it follows that wk contains a converging subsequence
wm → w0, w0 ∈WA,λ(U), where wm = w(um), m ∈ N.

Since wm are the minimizers in (SM12.5), we know that

φ(λ+ um + wm) ≤ φ(λ+ um + w),

for all w ∈ kerA, such that λ+ um + w ⪰ 0.
(SM12.6)
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Taking the limit m→ +∞, um → u0, wm → w0 we aim to show that

φ(λ+ u0 + w0) ≤ φ(λ+ u0 + w),

for all w ∈ kerA, such that λ+ u0 + w ⪰ 0.
(SM12.7)

Therefore, w0 = w(u0) which is unique (by the strict convexity of φ along kerA) and proves
the continuity of w(u). The fact that any sequence has a convergent subsequence having
the same limit w(u0) implies that wk = w(uk) also converges to w(u0). However, taking the
limit m → +∞ for each w in (SM12.6) may not preserve the positivity constraint. To show
(SM12.7), for each w satisfying the positivity constraint in (SM12.7) we find another sequence
{w′

m} such that

(SM12.8) λ+ um + w′
m ⪰ 0, w′

m → w for m→ +∞.

In this case we can replace w with w′
m in (SM12.6) and take the limit m → ∞ in order to

obtain (SM12.7).
Now, it is left how to choose w′

m so that (SM12.8) holds. We choose w′
m to be the solution

in the following minimization problem

minimize ∥(λ+ u0 + w)− (λ+ um + w′
m)∥ with respect to w′

m,

subject to: w′
m ∈ kerA, λ+ um + w′

m ⪰ 0.
(SM12.9)

Solution w′
m in (SM12.9) always exists and unique since it corresponds to the euclidean pro-

jection of λ+ u0 + w onto convex set SA,λ({um}), that is

w′
m = ΠkerA[Proj(λ+ u0 + w, SA,λ({um}))− λ],(SM12.10)

where ΠkerA is the orthogonal projector onto kerA, Proj(x,X) denotes the euclidean projec-
tion of point x onto X. From (SM12.10) and the fact that λ+ u0 +w ∈ SA,λ({u0}) it follows
that

(SM12.11) w′
m −w = ΠkerA[Proj(λ+ u0 +w, SA,λ({um}))− Proj(λ+ u0 +w, SA,λ({u0}))].

Using (SM12.11) and Proposition 5.3 from [SM1] one can write the following estimate:

∥w′
m − w∥ ≤ ρ1/2m dH,ρm(SA,λ({u0}), SA,λ({um}))1/2,(SM12.12)

where ρm = ∥λ+u0+w∥+ d(λ+u0+w, SA,λ({um})) (d(x, y) denotes the standard euclidean
distance between x, y, d(x,X) = infx′∈X d(x, x

′)), dH,ρ(·, ·) is the bounded Hausdorff distance
(see the definition in Section 3 of [SM1]). In particular, for dH,ρ the following bound holds:

dH,ρ(A,B) ≤ dH(A,B),(SM12.13)

for any sets A, B.
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First, note that supm ρm is finite. Indeed, this follows from the fact that um → u0 (hence
{um} is bounded) and following estimates:

d(λ+ u0 + w, SA,λ({um})) ≤ d(λ+ u0 + w, 0) + d(0, SA,λ({um}))
≤ ∥λ+ u0 + w∥+ d(0, SA,λ({um})),

(SM12.14)

d(0, SA,λ∗({um})) ≤ max
j∈{1,...,p}

(
d∑
i=1

aTi (λ+ um)

)
/Aj , Aj =

d∑
i=1

aij .(SM12.15)

Formula (SM12.14) is a simple triangle inequality and the estimate in (SM12.15) follows from
the fact that SA,λ({u}) is the affine subset of (p− 1) – simplex defined by the formula

∆p
A,λ(u) = {λ

′ ∈ Rp+ :

p∑
j=1

λ′jAj =

d∑
i=1

aTi (λ+ u) ≥ 0}, Aj =
d∑
i=1

aij > 0.(SM12.16)

So the inequality in (SM12.15) express the fact that the furthest point from the origin to ∆p
A,λ

is one of its vertices. From (SM12.12), (SM12.13) the fact that supm ρm < +∞ and the result
of Lemma SM12.3 it follows that w′

m → w, where λ+ um +wm ⪰ 0. Therefore, conditions in
(SM12.8) are satisfied which, in turn, proves (SM12.7) and the second claim of the lemma.

Lemma is proved.

SM12.2. Proof of Lemma SM12.2.

Proof. Closedness and convexity of SA,λ(U) follow directly from the fact that (λ + U +
kerA), Rp+ are both closed and convex whereas their intersection preserves these properties.

We prove boundedness of SA,λ(U) by the contradiction argument.
Assume that SA,λ(U) is not bounded, then there exists a sequence {(uk, wk)}∞k=1, uk ∈ U ,

wk ∈ kerA, such that

(SM12.17) λ+ uk + wk ∈ Rp+, ∥λ+ uk + wk∥ → ∞.

From (SM12.17) and compactness of U it follows, in particular, that

(SM12.18) wk in kerA, ∥wk∥ → +∞.

Also there exists a converging subsequence {ukn}∞n=1 such that

(SM12.19) ukn → u0 ∈ U for some u0, as n→ +∞.

Consider the corresponding subsequence {wkn}∞n=1 for which we know that

(SM12.20) wkn ∈ kerA, ∥wkn∥ → +∞ for n→ +∞.

Let

(SM12.21) θn =
wkn
∥wkn∥

, θn ∈ Sp−1 ∩ kerA.
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Since Sp−1 ∩ kerA is compact, {θn}∞n=1 has a converging subsequence {θm}∞m=1 such that

(SM12.22) θm → θ0, θ0 ∈ Sp−1 ∩ kerA.

Let {um}∞m=1 be the corresponding subsequence of {ukn}∞n=1 for indexm in formula (SM12.22).
From (SM12.17)-(SM12.22) it follows that we have constructed a sequence {(um, wm)}∞m=1

such that

λ+ um + wm ∈ Rp+, um ∈ U, wm ∈ kerA,(SM12.23)

um → u0, ∥wm∥ → +∞,(SM12.24)

θm =
wm
∥wm∥

→ θ0 ∈ Sp−1 ∩ kerA.(SM12.25)

Now we show that under our initial assumption we arrive to the fact that

(SM12.26) λ+ sθ0 ∈ Rp+ for any s > 0,

where θ0 is defined in (SM12.25).
Indeed, from the fact that λ ∈ Rp+ and that Rp+ is convex it follows that

(SM12.27) λ+ t(um + wm) = λ+ t(um + ∥wm∥θm) ∈ Rp+ for any t ∈ [0, 1].

Let s > 0. By choosing t = tm(s) = s/∥wm∥ in (SM12.27) (tm(s) ∈ [0, 1] for large m; see
(SM12.24)) and using formulas (SM12.23)–(SM12.25) we obtain

(λ+ sθ0)− (λ+ tm(s)um + tm(s)∥wm∥θm)

= s(θ0 − θm)− s
um
∥wm∥

→ 0 for m→ +∞.(SM12.28)

From (SM12.28) it follows that λ+ sθ0 is a limiting point in Rp+, and due to its closedness it
follows that λ+ sθ0 ∈ Rp+, s ≥ 0.

The statement in (SM12.26) cannot hold, because from (2.5) it follows that

(SM12.29) for any θ ∈ kerA, θ ̸= 0∃j ∈ {1, . . . , p} s.t. θj < 0.

Since θ0 ∈ kerA, by taking s > 0 large enough in formula (SM12.26), we will arrive to the
case when λ+ sθ0 ̸∈ Rp+, which gives the desired contradiction.

Lemma is proved.

SM12.3. Proof of Lemma SM12.3.

Proof. The claim of the lemma makes part of Theorem 1 from [SM31] which, informally
says that a closed convex set K ⊂ Rp is a polyhedra iff the Hausdorff distance on the space
sections by any family of parallel linear subspaces is Lipschitz continuous with respect to the
shift vector.

Using notations from [SM31] we define the following affine mapping

τA,λ(u) = Aλ+Au, u ∈ Rp,(SM12.30)
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where λ is a parameter, A ∈ Mat(d, p) is the design matrix satisfying (2.3) and (2.4).
Let K = Rp+ which is obviously a polyhedra in Rp. Next, we define family of sections of

K by the formula

(SM12.31) k(Λ) = τ−1
A,λ(Λ) ∩K, Λ ∈ Rd.

Essentially, k(Λ) is an section of K by kerA which is shifted by vector u (in some cases k(Λ)
can be an empty set). In particular, if Λ = Λ(u) = Aλ+ Au for some u ∈ Span(AT ), then it
is easy to see that

(SM12.32) k(Λ(u)) = (λ+ u+ kerA) ∩K = (λ+ u+ kerA) ∩ Rp+ = SA,λ({u}),

where SA,λ is defined in (SM12.3).
The result of Theorem 1 from [SM31] says, in particular, that

dH(k(Λ), k(Λ
′)) ≤ C∥Λ− Λ′∥,(SM12.33)

where C is some constant depending on K and A, dH(·, ·) is the standard Hausdorff distance
being also extended for empty sets. However, this extension is not needed for us since we
always consider parameters Λ(u) for u from some U ⊂ Span(AT ) with apriori non-empty sets
SA,λ({u}).

From formulas (SM12.32), (SM12.33) it follows that

dH(SA,λ({u}), SA,λ({u′})) ≤ C∥A(u− u′)∥,(SM12.34)

which directly implies (SM12.4).
Lemma is proved.

SM12.4. Proofs of theorems Theorems 6.4 and 6.5. First we prove Theorem 6.5, then
we show that if (6.6) holds conditions in (6.8) for Theorem 6.5 are satisfied which, in turn,
automatically proves Theorem 6.4.

Proof of Theorem 6.5. Using (2.9), (2.10), the minimization problem in Step 6 of Algo-
rithm 4 can be rewritten as as follows:

λ̃tb = argmin
λ⪰0

Lp(λ | Λ̃tb, A, 1, βt/t)

= argmin
λ⪰0

Lt(λ),
(SM12.35)

where

Lt(λ) =
∑

i∈I1(Λ∗)

(−Λ̃tb,i + Λ∗
i ) log

(
Λi
Λ∗
i

)

+
∑

i∈I1(Λ∗)

−Λ∗
i log

(
Λi
Λ∗
i

)
+ (Λi − Λ∗

i )

+
∑

i∈I0(Λ∗)

−Λ̃tb,i log(Λi) + Λi +
βt
t
(φ(λ)− φ(λ∗)),

(SM12.36)

where I0(·), I1(·) are defined in (2.2) and Λ∗ = Aλ∗.
Next, for the proof we use the following lemma.
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Lemma SM12.4. Let Lt(λ) be defined in (SM12.36) and conditions of Theorem 6.5 be
satisfied. Let CA,δ(λ

′), δ > 0, λ′ ⪰ 0, be the cylinder set defined by the formula

CA,δ(λ
′) = {λ ∈ Rp+, λ = λ′ + δu+ w | (u,w) ∈ Span(AT )× kerA, ∥u∥ = 1}.(SM12.37)

Then,
i) there exists δ0 = δ0(A, λ∗) > 0 such that for any δ < δ0 it holds that

inf
λ∈CA,δ(λ∗)

Lt(λ) ≥ Cδ2 + ocp(1) when t→ +∞, a.s. Y t, t ∈ [0,+∞).(SM12.38)

where C is a positive constant independent of δ.
ii) there exists a family of random variables λ̃t ∈ Rp+, t ∈ [0,+∞), such that

λ̃t
c.p.−−→ λ∗ and Lt(λ̃t) c.p.−−→ 0.(SM12.39)

From the result of Lemma SM12.4(i) it follows that for all λ ⪰ 0 at distance δ from λ∗
in the Span(AT ) values of Lt(λ) are greater or equal than Cδ2 with conditional probability
tending to one a.s. Y t, t ∈ [0,+∞). At the same time, result of Lemma SM12.4(ii) says that
there is λ̃t ∈ Rp+ which is arbitrarily close to λ∗ and Lt(λ̃t) is converges to zero for t → +∞
with conditional probability also tending to one. The fact that Lt(λ) is convex together with
the above arguments and λ̃tb being the unique minimizer of Lt(λ) imply that

P ( ∥ΠAT (λ̃tb − λ∗)∥ < δ | Y t, t)→ 1 when t→ +∞, a.s. Y t, t ∈ (0,+∞).(SM12.40)

where ΠAT is the orthogonal projector onto Span(AT ). Since δ can be chosen arbitrarily small
in Lemma SM12.4 formula (SM12.40) implies that

(SM12.41) ΠAT (λ̃tb − λ∗)
c.p.−−→ 0.

Vector λ̃tb admits in a unique way the following representation

(SM12.42) λ̃tb = λ∗ + ũtb + w̃tb, where (ũtb, w̃
t
b) ∈ Span(AT )× kerA.

Using (SM12.35), (SM12.36), and (SM12.42) one can see that

(SM12.43) w̃tb = argmin
w:λ∗+ũtb+w⪰0,

w∈kerA

φ(λ∗ + ũtb + w) = wA,λ∗(ũ
t
b),

where wA,λ(·) is defined in (SM12.2). From (SM12.43), the fact that ũtb
c.p.−−→ 0 (see formulas

(SM12.41), (SM12.42)), continuity of the map wA,λ∗(·) (by the result of Lemma SM12.1) and
the Continuous Mapping Theorem (see, e.g. [SM29], Theorem 2.3, p. 7) it follows that

(SM12.44) w̃tb
c.p.−−→ wA,λ∗(0).

Formula (6.7) follows directly from (SM12.41)–(SM12.44) and the definition of λ∗opt.
Theorem is proved.
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Proof of Theorem 6.4. To prove the theorem we use the following lemma.

Lemma SM12.5. Let λ̃tb be defined as in Algorithm 4 and let θt/t → 0 when t → +∞.
Then,

(SM12.45) Λ̃tb,i
c.p.−−→ Λ∗

i = aTi λ∗.

In view of (SM12.45) in Lemma SM12.5 all assumptions for Theorem 6.5 are satisfied,
which implies formula (6.7).

Theorem is proved.

SM12.5. Proof of Lemma SM12.4.

Proof. First we prove (i), then for (ii) we give an explicit formula for λ̃t for which (SM12.39)
holds.

First, in formula (SM12.36) one can see that

inf
λ∈CA,δ(λ∗)

∑
i∈I1(Λ∗)

(
−Λ̃tb,i + Λ∗

i

)
log

(
Λi
Λ∗
i

)
c.p.−−→ 0.(SM12.46)

The above formula follows from the assumption that Λ̃tb,i
c.p.−−→ Λ∗

i and that log(Λi/Λ
∗
i ) =

log(1 + δaTi u/Λ
∗
i ) is uniformly bounded for λ ∈ CA,δ(λ∗) from above and below for δ small

enough (u ∈ Span(AT ), ∥u∥ = 1). For example, to bound all of the logarithmic terms in
(SM12.46) we may choose any δ such that

(SM12.47) 0 < δ < min
i∈I1(Λ∗)

(
Λ∗
i ∥ai∥−1

)
.

Since φ(λ) satisfies (2.11), (2.12), there exists a constant M =M(λ∗, δ, A) such that

(SM12.48) inf
λ∈CA,δ(λ∗)

φ(λ) ≥M.

From (6.6) and (SM12.48) it follows that

(SM12.49) (βt/t) inf
CA,δ(λ∗)

(φ(λ)− φ(λ∗)) ≥ o(1), when t→ +∞.

Using (SM12.36), (SM12.46), and (SM12.49) we obtain the following estimate

inf
λ∈CA,δ(Λ∗)

Lt(λ) ≥ ocp(1) + inf
λ∈CA,δ(λ∗)

∑
i∈I1(Λ∗)

−Λ∗
i log

(
Λi
Λ∗
i

)
+ (Λi − Λ∗

i )

+
∑

i∈I0(Λ∗)

−Λ̃tb,i log(Λi) + Λi.
(SM12.50)

Note that

(SM12.51) − Λ̃tb,i log(Λi) ≥ 0 for Λi ≤ 1, i ∈ I0(Λ∗).
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From (2.2), (SM12.37) it follows that we can choose δ sufficiently small so that

(SM12.52) Λi ≤ 1 for all λ ∈ CA,δ(λ∗), i ∈ I0(Λ∗).

For example, it suffices to choose δ as follows

(SM12.53) 0 < δ ≤ min
i∈{1,...,d}

(∥ai∥−1).

Using (SM12.50), (SM12.51), for δ satisfying (SM12.47) and (SM12.53) we obtain

inf
λ∈CA,δ(Λ∗)

Lt(λ) ≥ inf
λ∈CA,δ(λ∗)

∑
i∈I1(Λ∗)

−Λ∗
i log

(
Λi
Λ∗
i

)
+ (Λi − Λ∗

i )

+
∑

i∈I0(Λ∗)

Λi + ocp(1).
(SM12.54)

Now consider

(SM12.55) Φs∗(s) = −s∗ log(s) + s, s > 0, s∗ > 0.

Function Φs∗(s) is convex, smooth, has positive non-vanishing second derivative Φ′′
s∗(s) and

at s = s∗ it has its global minimum. Therefore, for any ε > 0 small enough (for example, for
ε < s∗) there exists positive constant C(ε, s∗) such that

(SM12.56) Φs∗(s)− Φs∗(s
∗) ≥ C(ε, s∗)|s− s∗|2 for |s− s∗| < ε.

From (SM12.56) it follows that one can choose δ0 > 0 such that∑
i∈I1(Λ∗)

−Λ∗
i log

(
Λi
Λ∗
i

)
+ (Λi − Λ∗

i )

+
∑

i∈I0(Λ∗)

Λi ≥ C(δ0,Λ∗)
∑

i∈I1(Λ∗)

(Λi − Λ∗
i )

2 +
∑

i∈I0(Λ∗)

Λi

for | Λi − Λ∗
i |< δ0, i ∈ I1(Λ∗).

(SM12.57)

Value for δ0 is precised below. Let λ ∈ CA,δ(λ∗) and δ < δ0, that is λ = λ∗+δu+w, where
u ∈ Span(AT ), ∥u∥ = 1, w ∈ kerA. For δ satisfying (SM12.53) formula (SM12.52) holds and
we get the following estimate:

Λi = aTi λ = δaTi u ≥ δ2(aTi u)2 ≥ 0 for i ∈ I0(Λ∗).(SM12.58)

In (SM12.58) we used the fact that Λ∗
i = aTi λ∗ = 0, i ∈ I0(Λ∗).

From (SM12.57), (SM12.58) it follows that

inf
λ∈CA,δ(λ∗)

∑
i∈I1(Λ∗)

−Λ∗
i log

(
Λi
Λ∗
i

)
+ (Λi − Λ∗

i ) +
∑

i∈I0(Λ∗)

Λi

≥ min(C(δ0,Λ
∗), 1)δ2

d∑
i=1

(aTi u)
2

≥ min(C(δ0,Λ
∗), 1)δ2σ+min(A

TA),

(SM12.59)
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where σ+min(A
TA) is the smallest non-zero eigenvalue of ATA on the Span(AT ). In particular,

in (SM12.58), (SM12.59) we have used the property that u ∈ Span(AT ) which guarantees that

(SM12.60)
d∑
i=1

(aTi u)
2 = uTATAu ≥ σ+min(A

TA) > 0 for ∥u∥ = 1.

Formula (SM12.38) follows directly from (SM12.54) and (SM12.59).
Finally, we choose δ0 as follows

(SM12.61) δ0 =
1

2
min

[
min

i∈{1,...,d}
(∥ai∥−1), min

i∈I1(Λ∗)
(Λ∗

i ∥ai∥−1), min
i∈I1(Λ∗)

Λ∗
i

]
,

so that conditions (SM12.47), (SM12.53) are simultaneously satisfied together with (SM12.57).
Part (i) of Lemma SM12.4 is proved. Now we prove part (ii) of the lemma.
Let

(SM12.62) λ̃t = λ∗ +
∑

i∈I0(Λ∗)

Λ̃tb,i
ai
∥ai∥2

.

Note that λ̃t ∈ Rp+ because ai ∈ Rp+ and Λ̃tb,i ≥ 0. Since Λ̃tb,i
c.p.−−→ 0 for i ∈ I0(Λ∗) (by the

assumption) we immediately have that

(SM12.63) λ̃t
c.p.−−→ λ∗.

Note that in (SM12.36) for Lt(λ) all summands are continuous and equal to zero at λ = λ∗
except the logarithmic part

(SM12.64) g(λ) =
∑

i∈I0(Λ∗)

−Λ̃tb,i log(Λi), Λi = aTi λ.

From the fact that ai ∈ Rp+ (see formula (2.3)) it follows that aTi ai′ ≥ 0 for all i, i′. Using this
property and monotonicity of the logarithm (log(x+ y) ≥ log(x) for y ≥ 0) it follows that

g(λ̃t) =
∑

i∈I0(Λ∗)

−Λ̃tb,i log
(
aTi λ̃

t
)

≤
∑

i∈I0(Λ∗)

−Λ̃tb,i log
(
Λ̃tb,i

)
c.p.−−→ 0.

(SM12.65)

Formula (SM12.65) gives an asymptotic upper bound on g(λ̃t) which is equal to zero. For

the lower bound we use formulas (SM12.51), (SM12.63) and the fact that aTi λ̃
t c.p.−−→ 0 for

i ∈ I0(Λ∗) from which it follows that

g(λ̃t) ≥ 0 with conditional probability tending to one for t→ +∞,
a.s. Y t, t ∈ [0,+∞).

(SM12.66)
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From (SM12.65), (SM12.66) it follows that

(SM12.67) g(λ̃t)
c.p.−−→ 0.

From (SM12.36), (SM12.62), (SM12.64), and (SM12.67) it follows that

(SM12.68) Lt(λ̃t) c.p.−−→ 0.

This proves part (ii) of the lemma.
Lemma is proved.

SM12.6. Proof of Lemma SM12.5.

Proof. Recall that

Λ̃tb,i | Y t, Λ̃tM, t ∼ Γ(Y t
i + θtΛ̃tM,i, (θ

t + t)−1), i ∈ {1, . . . , d},(SM12.69)

where Λ̃tM | Y t, t is sampled in Algorithm 3. From the definition of Λ̃t in Step 3 of Algorithm 3
and necessary optimality conditions in Step 4 (see also analogous formula (SM12.78)) it follows
that

d∑
i=1

Λ̃tM,i =

d∑
i=1

Λ̃ti,(SM12.70)

Λ̃tM ⪰ 0, Λ̃t ⪰ 0, E[Λ̃ti | Y t, t] = Y t
i /t, i ∈ 1, . . . , d.(SM12.71)

Using (SM12.70), (SM12.71) we get the following estimate:

(SM12.72) E[Λ̃tM,i | Y t, t] ≤
d∑
i=1

Y t
i

t
, i ∈ {1, . . . , d}.

Let ε > 0. Using the Markov inequality we obtain

p(| Λ̃tb,i − Λ∗
i |> ε | Y t, t) ≤

E[| Λ̃tb,i − Λ∗
i || Y t, t]

ε

≤
E[| Λ̃tb,i −

Y t
i +θ

tΛ̃t
M,i

θt+t || Y t, t]

ε
+
E[| Y

t
i +θ

tΛ̃t
M,i

θt+t − Λ∗
i || Y t, t]

ε
.

(SM12.73)

Using the Jensen’s inequality E|X|2 ≥ (E|X|)2, formulas (SM12.69), (SM12.72), the Strong
Law of Large Numbers for Y t (see Theorem SM2.1(i) in section SM2) and the fact that



SM28 FEDOR GONCHAROV, ÉRIC BARAT AND THOMAS DAUTREMER

θt/t→ 0, we get the following:

E[| Λ̃tb,i −
Y t
i + θtΛ̃tM,i

θt + t
|| Y t, t] ≤

(
E[| Λ̃tb,i −

Y t
i + θtΛ̃tM,i

θt + t
|2| Y t, t]

)1/2

=
(
E[var[(Λ̃tb,i) | Y t, Λ̃tM, t] | Y t, t]

)1/2
=

(
Y t
i + θtE[Λ̃tM,i | Y t, t]

(t+ θt)2

)1/2

≤

(
Y t
i + (θt/t)

∑d
i=1 Y

t
i

(t+ θt)2

)1/2

→ 0 a.s. Y t, t ∈ [0,+∞).

(SM12.74)

For estimation of the second term in (SM12.73) we use formula (SM12.72), the triangle
inequality and again the property that θt/t→ 0 to get the following:

E

[∣∣∣∣∣Y t
i + θtΛ̃tM,i

θt + t
− Λ∗

i

∣∣∣∣∣Y t, t

]
≤
∣∣∣∣ Y t

i

θt + t
− Λ∗

i

∣∣∣∣+ E

[
θtΛ̃tM,i

θt + t
| Y t, t

]

≤
∣∣∣∣ Y t

i

θt + t
− Λ∗

i

∣∣∣∣+ θt

θt + t

d∑
i=1

Y t
i

t
→ 0 a.s. Y t, t ∈ [0,+∞).

(SM12.75)

Formula (SM12.45) follows from formulas (SM12.73)–(SM12.75).
Lemma is proved.

SM12.7. Proof of Proposition 6.8.

Proof. First prove that the set of minimizers in (6.9) is always nonempty and is a subset of
the simplex in (6.11). From the Karush-Kuhn-Tucker optimality conditions (see e.g., [SM3],
Section 3.3) it follows that

∃(λM,∗, µM,∗) ∈ Rp+ × Rp+ such that∑
i∈I1(Λ∗)

−Λ∗
i

aM,ij

Λ∗
M,i

+

d∑
i=1

aM,ij − µM,∗,j = 0,(SM12.76)

µM,∗,jλM,∗,j ≡ 0, for all j ∈ {1, . . . , pM}.(SM12.77)

By multiplying both sides of (SM12.76) on λM,∗,j , summing up all equations with respect to
j and using (SM12.77) we obtain the following necessary optimality condition:

⟨
d∑
i=1

aM,i, λM,∗⟩ =
pM∑
j=1

AM,jλM,∗,j =

d∑
i=1

Λ∗
i ,

AM,j =

d∑
i=1

aM,ij .

(SM12.78)
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Formula (SM12.78) proves (6.11). The constraint in (SM12.78) can be added to the set of
constraints in (6.9) without any effect since it is necessary. Because the minimized functional
in (6.9) is convex and the domain of constraints is now a convex compact there always exists
at least one minimizer.

Demonstration of (6.12) is straightforward. Indeed, if for some i we have Λ∗
i > 0, then

necessarily Λ∗
M,i > 0, otherwise the value of the target functional becomes +∞ due to ex-

plosion of the logarithmic term. At the same time any interior point λM ∈ ∆pM
AM

(Λ∗) (i.e.,
λM ≻ 0) would result in the finite value of the target functional. Hence, inclusions (6.12)
always hold.

Proposition is proved.

SM12.8. Proof of Theorem 6.9.

Proof. First we prove (6.13), then (6.15) which also implies uniqueness of the minimizer.
Let λM,∗ ∈ RpM+ be a minimizer in (6.9) (possibly not unique; see also Proposition 6.8).
Let

(SM12.79) λM = λM,∗ + uM, λM ∈ RpM+ .

Consider the second order Taylor expansion of L(λ | Λ∗, AM, 1) in (6.9) in a vicinity of λM,∗:

L(λM | Λ∗, AM, 1)− L(λM,∗ | Λ∗, AM, 1)

= uTM∇L(λM,∗ | Λ∗, AM, 1) +
1

2

∑
i∈I1(Λ∗)

Λ∗
i

(uTMaM,i)
2

(Λ∗
M,i)

2

+ o(∥ΠAT
M,I1(Λ

∗)
uM∥2),

(SM12.80)

where Λ∗
M = AMλM,∗ and

∇L(λM,∗ | Λ∗, AM, 1) =
∑

i∈I1(Λ∗)

−Λ∗
i

aM,i

Λ∗
M,i

+
d∑
i=1

aM,i.(SM12.81)

Karush-Kuhn-Tucker necessary optimality conditions for the problem in (6.9) imply that there
exists µM,∗ such that

µM,∗ ⪰ 0, ∇L(λM,∗ | Λ∗, AM, 1) = µM,∗, µM,∗,jλM,∗,j = 0, j = 1, . . . , p.(SM12.82)

From formulas (SM12.79) and (SM12.82) it follows that

uTM∇L(λM,∗ | Λ∗, AM) = uTMµM,∗ = (λM − λM,∗)
TµM,∗

= λTMµM,∗ ≥ 0.
(SM12.83)

Note also that µM,∗ is the optimal Lagrangian multiplier for the problem in (6.9) for which
the strong duality holds (e.g., via Slater condition).

Formulas (6.13) and (6.14) follow from (SM12.80)–(SM12.83). Next, we prove that (6.15)
holds.
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Using (SM12.83) we obtain the following estimate:

uTM∇L(λM,∗ | Λ∗, AM, 1) = uTMµM,∗ ≥ (uTMµM,∗)
2 if ∥uM∥ ≤ ∥µM,∗∥−1.(SM12.84)

From (SM12.80) and (SM12.84) it follows that

L(λM | Λ∗, AM, 1)− L(λM,∗ | Λ∗, AM, 1)

≥ uTMCM,∗uM + o(∥uM∥2),
for ∥uM∥ ≤ ∥µM,∗∥−1,

(SM12.85)

where

(SM12.86) CM,∗ = µM,∗µ
T
M,∗ +

1

2

∑
i∈I1(Λ∗)

Λ∗
i

aM,ia
T
M,i

(Λ∗
M,i)

2
.

To finish the proof we use two following lemmas.

Lemma SM12.6. Let assumptions of Theorem 6.9 be satisfied. Let

Cδ = inf
uM:λM,∗+uM⪰0,

∥uM∥=δ

uTMCM,∗uM.(SM12.87)

Then,

(SM12.88) Cδ > 0 for any δ > 0.

Lemma SM12.7. Let λM,∗ ∈ RpM+ . There exists δ∗ > 0 such that for any uM ∈ RpM,
0 < |uM| ≤ δ∗, λM,∗ + uM ⪰ 0 it also holds that

λM,∗ + δ∗
uM
∥uM∥

⪰ 0.(SM12.89)

Let δ∗ be the one of Lemma SM12.7 for chosen λM,∗. From (SM12.85) and (SM12.86) and
the results of Lemmas SM12.6 and SM12.7, it follows that

L(λM | Λ∗, AM, 1)− L(λM,∗ | Λ∗, AM, 1)

≥
δ∗u

T
M

∥uM∥
CM,∗

δ∗uM
∥uM∥

∥uM∥2

δ2∗
+ o(∥uM∥2)

≥ Cδ∗
∥uM∥2

δ2∗
+ o(∥uM∥2), Cδ∗ > 0,

for λM = λM,∗ + uM ⪰ 0, |uM| ≤ min(δ∗, |µM,∗|−1).

(SM12.90)

Formula (SM12.90) proves the claim in (6.15).
Theorem is proved.
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Proof of Lemma SM12.6. We use the contradiction argument. Assume that it exists δ > 0
such that Cδ = 0, where Cδ is defined in (SM12.87). Since the infimum in (SM12.87) is taken
over a compact set, there should exist uM such that

(SM12.91) ∥uM∥ = δ, λM,∗ + uM ⪰ 0, uTMCM,∗uM = 0.

Formulas (SM12.86) and (SM12.91) imply that

uTMaM,i = 0, i ∈ I1(Λ∗), uTMµM,∗ = 0.(SM12.92)

Using (6.10) in the non-expansiveness condition, (SM12.81), (SM12.83), and (SM12.92) we
obtain the following:

uTMµM,∗ =
∑

i∈I0(Λ∗)

uTMaM,∗,i =
∑

i∈I0(Λ∗)

(λM,i − λM,∗,i)
TaM,∗,i

=
∑

i∈I0(Λ∗)

(ΛM,i − ΛM,∗,i) =
∑

i∈I0(Λ∗)

ΛM,i = 0, ΛM,i = λTMaM,i.
(SM12.93)

From (SM12.93) and the fact that ΛM ⪰ 0 it follows that

ΛM,i = uTMaM,i = 0, i ∈ I0(Λ∗).(SM12.94)

Putting formulas (SM12.92) and (SM12.94) together, we arrive to the following:

(SM12.95) uTMaM,i = 0 for i ∈ {1, . . . , d}.

The injectivity of AM and (SM12.95) imply that uM = 0 which contradicts the initial as-
sumption that ∥uM∥ = δ > 0.

Lemma is proved.

Proof of Lemma SM12.7. We prove the claim by contradiction.
The claim is obvious for λM,∗ = 0.
Let λM,∗ ̸= 0 and

(SM12.96) δ∗ =
1

2
min{λM,∗,j | λM,∗,j > 0}, δ∗ > 0.

Let uM be such that

(SM12.97) 0 < ∥uM∥ ≤ δ∗, λM,∗ + uM ⪰ 0

and assume that

λM,∗ + δ∗
uM
∥uM∥

̸⪰ 0⇔ ∃j ∈ {1, . . . , pM} such that λM,∗,j + δ∗
uM,j

∥uM∥
< 0.(SM12.98)

From the fact that λM,∗ ⪰ 0 and (SM12.97) and (SM12.98) it follows that

for j from (SM12.98) it holds that λM,∗,j > 0, uM,j < 0.(SM12.99)

Using (SM12.96), (SM12.98), and (SM12.99) we get the following implication:

δ∗
∥uM∥

(−uM,j) > λM,∗,j ≥ 2δ∗ ⇒ (−uM,j) > 2∥uM∥.(SM12.100)

The inequality in the right hand-side of (SM12.100) gives the desired contradiction.
Lemma is proved.
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SM12.9. Proof of Theorem 6.10.

Proof. In what follows we use the following auxiliary result.

Theorem SM12.8 (concentration rate for the mixing parameter). Let Assumptions 6.3
and 6.7 be satisfied. Let λ̃tM be sampled as in Algorithm 3 and r(t) = o(

√
t/ log log t). Then,

r(t)(λ̃tM − λM,∗)
c.p.−−→ 0,(SM12.101)

where λM,∗ is from Theorem 6.9. In particular, formula (SM12.101) also implies

r(t)(Λ̃tM − Λ∗
M)

c.p.−−→ 0,(SM12.102)

where Λ̃tM = Aλ̃tM, Λ∗
M = AMλM,∗.

Remark SM12.9. The log-factor for r(t) in Theorem SM12.8 is necessary for the “almost
sure” character of formula (SM12.102) and, in particular, it is due to the Law of the Iterated
Logarithm for trajectory Y t (see section SM2). For our purposes it is sufficient to have the
result for rate r(t) = o(

√
t/ log log t) because Λ̃tM is used in the prior whose effect asymp-

totically disappears in view of the well-known Bernstein von-Mises phenomenon for Bayesian
posteriors; see, e.g. Section 10.2 in [SM29].

The formula for λ̃tb in Step 6 of Algorithm 4 can be rewritten as follows:

λ̃tb = argmin
λ⪰0

At(λ),(SM12.103)

At(λ) = Lp(λ | tΛ̃tb, A, t, βt)− Lp(λ̂tsc | tΛ̂tsc, A, t, βt)

=
∑

i∈I1(Λ∗)

−t(Λ̃tb,i − Λ̂tsc,i) log

(
Λi

Λ̂tsc,i

)

+
∑

i∈I1(Λ∗)

−tΛ̂tsc,i log

(
Λi

Λ̂tsc,i

)
+ t(Λi − Λ̂tsc,i)

+
∑

i∈I0(Λ∗)

−tΛ̃tb,i log(tΛi) + tΛi

−

 ∑
i∈I0(Λ∗)

−tΛ̂tsc,i log(tΛ̂tsc,i) + tΛ̂tsc,i


+ βt(φ(λ)− φ(λ̂tsc)), Λ̂tsc = Aλ̂tsc

(SM12.104)

where λ̂tsc is the strongly consistent estimator from (6.21)–(6.23).
To prove the claim, first, we approximate At(λ) with quadratic process Bt(λ) for which its

minimizers have the same asymptotic distribution in the Span(AT )∩Rp+ as for At(λ). Second,
using this approximation we establish the statements in (i), (ii), but for minimizers of Bt(λ)
which together with the previous approximation argument completes the proof.
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Approximations Bt(λ), λ̃tb,app of At(λ), λ̃tb are defined by the formulas:

Bt(λ) =
∑

i∈I1(Λ∗)

−t(Λ̃tb,i − Λ̂tsc,i)
Λi − Λ̂sc,i

Λ̂sc,i
+ t

(Λi − Λ̂sc,i)
2

2Λ̂sc,i

+
∑

i∈I0(Λ∗)

tΛi, Λi = aTi λ.

(SM12.105)

λ̃tb,app = argmin
λ⪰0

Bt(λ).(SM12.106)

Process Bt(λ) is flat in directions from kerA, therefore, though λ̃tb,app in (SM12.106)

always exists, it may not be unique, and, in general, λ̃tb,app is set-valued. In what follows, if

not said otherwise, for λ̃tb,app one chooses any point from the set of minimizers (claims will

automatically hold for all points in λ̃tb,app).

It may happen that aTi λ̃
t
b,app = 0 for some i ∈ I0(Λ

∗), so At(λ̃tb,app), in general, may
not be defined due to the presence of logarithmic terms in (SM12.104). For this reason we
approximate λ̃tb,app with another auxiliary point λ̃tapp defined by the formula:

(SM12.107) λ̃tapp = λ̃tb,app +
∑

i∈I0(Λ∗)

Λ̃tb,i
ai
∥ai∥2

,

where Λ̃tb is from Step 5 of Algorithm 4. It is easy to check that value At(λ̃tapp) is always
well-defined (for x = 0 we take convention that x log x = 0).

Let V, U be the subspaces defined in (6.16) and (6.17), respectively. From (SM12.107)
and the definition of V, U it follows that

(SM12.108) ΠU (λ̃
t
app − λ̃tb,app) ≡ 0,

where ΠU is defined in (6.17). For the approximation on V the following result holds.

Lemma SM12.10. Let V be the subspace defined in (6.16), ΠV be defined in (6.19). Then,

tΠV(λ̃
t
b,app − λ̃tapp)

c.p.−−→ 0.(SM12.109)

Let δ > 0. Consider the two following sets:

Dt
A,δ(λ) = {λ′ ∈ Rp+ : λ′ = λ+

u√
t
+
v

t
+ w, u ∈ U , v ∈ V, w ∈ W, ∥u∥2 + ∥v∥1 ≤ δ},

(SM12.110)

CtA,δ(λ) = {λ′ ∈ Rp+ : λ′ = λ+
u√
t
+
v

t
+ w, u ∈ U , v ∈ V, w ∈ W, ∥u∥2 + ∥v∥1 = δ},

(SM12.111)

where subspaces V,U ,W are defined in (6.16)–(6.18), respectively and ∥ · ∥2, ∥ · ∥1 denote the
standard ℓ2 and ℓ1-norms in Rp.
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The approximation argument for convex process At(λ) is due to [SM16] and is based on
the following implication:

λ̃tapp ∈ intDt
A,δ(λ̃

t
b,app), inf

λ∈Ct
A,δ(λ̃

t
b,app)
(At(λ)−At(λ̃tapp)) > 0⇒ λ̃tb ∈ Dt

A,δ(λ̃
t
b,app).(SM12.112)

From (SM12.108) and (SM12.109) (in Lemma SM12.10) and (SM12.110) one can see that for
any δ > 0 it holds that

(SM12.113) P (λ̃tapp ∈ intDt
A,δ(λ̃

t
b,app) | Y t, t)→ 1 for t→ +∞, a.s. Y t, t ∈ [0,+∞).

In view of this and (SM12.112), for the approximation it suffices to establish the following
result.

Lemma SM12.11. Let At(λ), Bt(λ), λ̃tb, λ̃
t
b,app, λ̃

t
app be defined in (SM12.103), (SM12.104),

(SM12.105), (SM12.106), and (SM12.107), respectively. Then, for any δ > 0 it holds that
(SM12.114)

P

(
inf

λ∈Ct
A,δ(λ̃

t
b,app)
[At(λ)−At(λ̃tapp)] > 0 | Y t, t

)
→ 1 for t→ +∞, a.s. Y t, t ∈ [0,+∞).

From (SM12.112) and (SM12.114) it follows that

√
tΠU (λ̃

t
b − λ̃tb,app)

c.p.−−→ 0,(SM12.115)

tΠV(λ̃
t
b − λ̃tb,app)

c.p.−−→ 0.(SM12.116)

Let

(SM12.117) λ = λ̂tsc +
u√
t
+
v

t
+ w, u ∈ U , v ∈ V, w ∈ W.

Process Bt(·) defined in (SM12.105) has the following form in terms of variables u, v (note
that Bt(·) is independent of w ∈ W):

Bt(u, v) = B̃t(u, v) + R̃t(u, v),(SM12.118)

B̃t(u, v) =
∑

i∈I1(Λ∗)

−
√
t(Λ̃tb,i − Λ̂tsc,i)

aTi u

Λ̂tsc,i
+

(aTi u)
2

2Λ̂tsc,i
+

∑
i∈I0(Λ∗)

aTi v,(SM12.119)

R̃t(u, v) =
∑

i∈I1(Λ∗)

−(Λ̃tb,i − Λ̂tsc,i)a
T
i v +

(aTi v)
2

2Λ̂tsc,it
+

(aTi u)(a
T
i v)√

tΛ̂tsc,i

+
∑

i∈I0(Λ∗)

tΛ̂tsc,i.
(SM12.120)

Let

(ũt, ṽt) = argmin
(u,v):λ̂tsc+

u√
t
+ v

t
+w⪰0

u∈U , v∈V, w∈W

B̃t(u, v)(SM12.121)
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In particular, from the definition of V in (6.16) and from (SM12.117), (SM12.119), and
(SM12.121) it follows that

(SM12.122)
ṽtj
t

= −λ̂tsc,j for j s.t. ∃aij > 0, i ∈ I0(Λ∗)⇔ ΠV(λ̂
t
sc +

ṽt

t
) = 0.

Indeed, formulas (6.16), (6.19), and (SM12.119) imply that the choice in (SM12.122) satis-
fies the positivity constraint in (SM12.121) and at the same time minimizes the linear term∑

i∈I0(Λ∗) a
T
i v since all aij are non-negative.

Lemma SM12.12. Let ũtb,app, ṽ
t
b,app be defined by (SM12.106) for parametrization in for-

mula (SM12.117) and ũt, ṽt be defined by (SM12.121), respectively. Then,

ũt − ũtb,app
c.p.−−→ 0 for t→ +∞, a.s. Y t, t ∈ (0,+∞),(SM12.123)

ṽt − ṽtb,app
c.p.−−→ 0 for t→ +∞, a.s. Y t, t ∈ (0,+∞).(SM12.124)

Hence, in view of (SM12.115), (SM12.116) and Lemma SM12.12 it suffices to demonstrate
conditional tightness of (ũt, ṽt).

Statement in (i), that is formula (6.24)), follows from (SM12.116), (SM12.122), and
(SM12.124) and the assumption in (6.23).
Now we demonstrate (ii). From (SM12.121), (SM12.122) it follows that

ũt = argmin
u:(1−ΠV )λ̂

t
sc+

u√
t
+w⪰0

u∈U , w∈W

∑
i∈I1(Λ∗)

−
√
t(Λ̃tb,i − Λ̂tsc,i)

aTi u

Λ̂tsc,i
+

(aTi u)
2

2Λ̂tsc,i
.(SM12.125)

Since the minmized functional in (SM12.125) is strongly convex in u ∈ U and the set of
constraints is also convex, the following mapping is well-defined:

ũt(ξ) = ũ(ξ, t) ∈ U , ξ ∈ R#I1(Λ∗), t ∈ (0,+∞),(SM12.126)

ũ(ξ, t) = argmin
u:(1−ΠV )λ̂

t
sc+

u√
t
+w⪰0

u∈U , w∈W

−ξT (D̂t
I1(Λ∗))

−1/2AI1(Λ∗)u+
1

2
uT F̂ tI1(Λ∗)u,(SM12.127)

where

D̂t
I1(Λ∗) = diag(. . . , Λ̂tsc,i, . . . ), i ∈ I1(Λ∗),(SM12.128)

F̂ tI1(Λ∗) =
∑

i∈I1(Λ∗)

aia
T
i

Λ̂tsc,i
= ATI1(Λ∗)(D̂

t
I1(Λ∗))

−1AI1(Λ∗).(SM12.129)

Note that for ξ = (. . . ,
√
t(Λ̃tb,i − Λ̂tsc,i)/

√
Λ̂tsc,i, . . . ), i ∈ I1(Λ

∗), ũt(ξ) coincides with ũt

from (SM12.125). In addition, the minimized functional in (SM12.127) does not depend
on w ∈ W which in turn affects only the set of constraints.
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Lemma SM12.13. Let ũt(ξ) be the mapping defined in (SM12.126)–(SM12.129). Then,

∥ũt(ξ)∥ ≤ ĉt∥ATI1(Λ∗)D̂
t
I1(Λ∗)ξ∥, ξ ∈ R#I1(Λ∗),(SM12.130)

ĉt = ∥(F̂ tI1(Λ∗))
−1∥U · ∥(F̂ tI1(Λ∗))

−1/2∥

∥(F̂ tI1(Λ∗))
−1∥U + 2 max

σ∈σU (F̂ t
I1(Λ

∗))
σ−1/2

 ,(SM12.131)

where ∥ · ∥U denotes the norm of the operator being reduced to subspace U , σU (·) denotes the
spectrum of the self-adjoint operator acting on U . Moreover,

ĉt → c∗ for t→ +∞, a.s. Y t, t ∈ [0,+∞), c∗ < +∞,(SM12.132)

c∗ = ∥(F ∗
I1(Λ∗))

−1∥U · ∥(F ∗
I1(Λ∗))

−1/2∥

(
∥(F ∗

I1(Λ∗))
−1∥U + 2 max

σ∈σU (F ∗
I1(Λ

∗))
σ−1/2

)
,(SM12.133)

where

DI1(Λ∗) = diag(. . . ,Λ∗
i , . . . ), i ∈ I1(Λ∗),(SM12.134)

F ∗
I1(Λ∗) =

∑
i∈I1(Λ∗)

aia
T
i

Λ∗
i

= AI1(Λ∗))
TD−1

I1(Λ∗)AI1(Λ∗).(SM12.135)

Lemma SM12.14. Let

ξ̃t = (. . . ,
√
t(Λ̃tb,i − Λ̂tsc,i)/

√
Λ̂tsc,i, . . . ), i ∈ I1(Λ

∗), ξ̃t ∈ R#I1(Λ∗).(SM12.136)

Then, under the assumptions of Theorem 6.10, family ATI1(Λ∗)(D̂
t
I1(Λ∗))

−1/2ξ̃t is conditionally
tight.

The result of Lemma SM12.14 together with formulas (SM12.130)–(SM12.135) imply that
ũt = ũt(ξ̃t) is conditionally tight almost surely Y t, t ∈ (0,+∞). Statement (ii) of the
lemma follows directly from this and formulas (SM12.115), (SM12.123) from Lemmas SM12.11
and SM12.12, respectively.

Theorem is proved.

SM12.10. Proof of Theorem SM12.8.

Proof. Claim in (SM12.102) directly follows from (SM12.101) and the Continuous Map-
ping Theorem, so we prove only (SM12.101).

Step 4 in Algorithm 3 can be rewritten as follows:

λ̃tM = argmin
λM⪰0

LM(λM | Λ̃t),(SM12.137)

LM(λM | Λ̃t) =
∑

i∈I1(Λ∗)

− log

(
ΛM,i

Λ∗
M,i

)
(Λ̃ti − Λ∗

i )

+ L(λM | Λ∗, AM, 1)− L(λM,∗ | Λ∗, AM, 1),

(SM12.138)
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where λM,∗ is the point from Theorem 6.9, Λ∗
M = AMλM,∗, and

Λ̃ti ∼ Γ(Y t
i , t

−1), i = 1, . . . , d, are mutually independent,

E[Λ̃ti | Y t, t] = Y t
i /t, var[Λ̃

t
i | Y t, t] = Y t

i /t
2, i ∈ {1, . . . , d}.

(SM12.139)

Note that

(SM12.140) LM(λM | Λ̃t) is convex on RpM+ , LM(λM,∗ | Λ̃t) = 0.

For fixed t > 0 consider the following parametrization

λM = λM,∗ +
uM
r(t)

, λM ∈ RpM+ , r(t) = o(
√
t/ log log t).(SM12.141)

Let δ > 0. In view of (SM12.137), (SM12.140), and (SM12.141) the following implication
holds

(SM12.142) inf
λM:∥uM∥=δ,

λM⪰0

LM(λM | Λ̃t) > 0⇒ r(t)∥λ̃tM − λM,∗∥ < δ.

Therefore, to prove (SM12.101) it is sufficient to show that for any small δ > 0 the conditional
probability of the event in the left hand-side of (SM12.142) tends to one for t → +∞, a.s.
Y t, t ∈ [0,+∞).

Let C∗, δ∗ be the values of (6.15) from Theorem 6.9 and let ∥uM∥ = δ, δ < δ∗.
Using (6.15) and (SM12.138), (SM12.141) we get the following estimate:

L(λM | Λ̃t) ≥
∑

i∈I1(Λ∗)

− log

(
1 +

uTMaM,i

r(t)Λ∗
M,i

)
(Λ̃ti − Λ∗

i ) + C∗δ
2/r2(t)

≥ C∗δ
2/r2(t)−

∑
i∈I1(Λ∗)

| uTMaM,i |
r(t)Λ∗

M,i

| Λ̃ti − Λ∗
i |

= r−2(t)

C∗δ
2 −

∑
i∈I1(Λ∗)

| uTMaM,i |
Λ∗
M,i

r(t) | Λ̃ti − Λ∗
i |


≥ r−2(t)

C∗δ
2 −

∑
i∈I1(Λ∗)

δ∥aM,i∥
Λ∗
M,i

r(t) | Λ̃ti − Λ∗
i |

 .

(SM12.143)

Note that in (SM12.143) we have used the property that log(1 + x) ≤ x, x ∈ (−1,+∞).
Estimate in (SM12.143) implies the left hand-side of (SM12.142), for example, if

(SM12.144) r(t) | Λ̃ti − Λ∗
i |

c.p.−−→ 0, i ∈ I1(Λ∗).
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To demonstrate (SM12.144) we use Markov inequality together with (SM12.139) and arrive
to the following estimate

P (r(t) | Λ̃ti − Λ∗
i |> ε | Y t, t) ≤ r2(t)E(| Λ̃ti − Λ∗

i |2| Y t, t)

ε2

≤ 2r2(t)E(| Λ̃ti − Y t
i /t |2| Y t, t) + 2r2(t) | Y t

i − Λ∗
i |2

ε2

=
2r2(t)/t2 + 2 | r(t)(Y t

i /t− Λ∗
i ) |2

ε2
,

(SM12.145)

where ε > 0 is arbitrary. For r(t) = o(
√
t/ log log t) it holds that (see section SM2):

r2(t)/t2 → 0 and r(t)(Y t
i /t− Λ∗

i )→ 0 a.s. Y t, t ∈ (0,+∞).(SM12.146)

Therefore, from (SM12.145), (SM12.146) it follows that formula (SM12.144) holds which to-
gether with (SM12.143) imply (SM12.142).

Theorem is proved.

SM12.11. Proof of Lemma SM12.10.

Proof. To prove the claim is suffices to show that

(SM12.147) tΛ̃tb,i
c.p.−−→ 0 for i ∈ I0(Λ∗).

Let δ > 0. Using Step 5 of Algorithm 4 and Assumption 6.3 we obtain

P (tΛ̃tb,i > δ | Y t, t) =

+∞∫
0

P (tΛ̃tb,i > δ | Λ̃tM,i = Λ, Y t, t)P (Λ̃tM,i = Λ | Y t, t)dΛ

≤
+∞∫
0

min

(
tθtΛ

(θt + t)δ
, 1

)
P (Λ̃tM,i = Λ | Y t, t)dΛ(SM12.148)

≤

(θt+t)δ

tθt∫
0

tθtΛ

(θt + t)δ
P (Λ̃tM,i = Λ | Y t, t)dΛ + P

(
tθtΛ̃tM,i

θt + t
> δ | Y t, t

)
.

In (SM12.148) we have used the Markov inequality for Λtb | Y t, t, Λ̃tM, i ∈ I0(Λ∗) for which it

is known that Λ̃tb,i | Y t, t, Λ̃tM,i ∼ Γ(θtΛ̃tM,i, (t+ θt)−1).

The last term in (SM12.148) tends to zero a.s. Y t, t ∈ (0,+∞) due to (SM12.102) from
Theorem SM12.8.

Next, we show that the first integral in (SM12.148) it is arbitrarily small a.s. Y t, t ∈
[0,+∞) and, hence, tends to zero a.s. Y t, t ∈ (0,+∞). The integral in (SM12.148) is
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rewritten as follows:

(θt+t)δ

tθt∫
0

tθtΛ

(θt + t)δ
P (Λ̃tM,i = Λ | Y t, t)dΛ =

=
δ(θt + t)

tθt

1∫
0

sP (θtΛ̃tM,i = sδ(t+ θt)/t |Y t, t) ds.

(SM12.149)

Let 0 < ε < 1. Then, by splitting the integral in (SM12.149) we obtain the following
estimate:

δ(θt + t)

tθt

1∫
0

sP (θtΛtM,i = sδ(t+ θt)/t | Y t, t) ds =

ε∫
0

. . . ds+

1∫
ε

. . . ds

≤ ε+ P (θtΛtM,i > εδ(t+ θt)/t | Y t, t).

(SM12.150)

For fixed ε > 0, δ > 0, the second term in (SM12.150) tends to zero for t → +∞, a.s.
Y t, t ∈ (20,+∞), again due to (SM12.102) from Theorem SM12.8. Since ε can be arbitrarily
small, it follows that the integral in (SM12.150) is also arbitrarily small for t → +∞, a.s.
Y t, t ∈ (0,+∞). Hence, the integral in (SM12.149), and most importantly the right hand-
side in (SM12.148) converge to zero when t → +∞, a.s. Y t, t ∈ (0,+∞). Since initial δ was
chosen arbitrarily, this proves the convergence in (SM12.147).

Lemma is proved.

SM12.12. Proof of Lemma SM12.11.

Proof. Let δ > 0. The left hand-side of (SM12.112) can be estimated as follows:

inf
λ∈Ct

A,δ(λ̃
t
b,app)
[At(λ)−At(λ̃tapp)] ≥ inf

λ∈Ct
A,δ(λ̃

t
b,app)
[At(λ)−Bt(λ)]

+ inf
λ∈Ct

A,δ(λ̃
t
b,app)
[Bt(λ)−Bt(λ̃tb,app)]

+ [Bt(λ̃tb,app)−Bt(λ̃tapp)]

+ [Bt(λ̃tapp)−At(λ̃tapp)].

(SM12.151)

We will show that under the assumptions of Theorem 6.10 the following holds:

inf
λ∈Ct

A,δ(λ̃
t
b,app)
[At(λ)−At(λ̃tapp)] ≥ inf

λ∈Ct
A,δ(λ̃

t
b,app)
[Bt(λ)−Bt(λ̃tb,app)] + ocp(1).(SM12.152)

The first term in right hand-side of (SM12.152) is expected to be positively separated from zero
in view of (SM12.106), (SM12.111), and in fact, it gives the main contribution for (SM12.112)
to hold. This is described precisely by the following lemma.
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Lemma SM12.15. Let Bt(λ), λ̃tb,app be defined in (SM12.105) and (SM12.106), respectively.
Then, the following formulas hold:

Bt(λ)−Bt(λ̃tb,app) =
∑

i∈I1(Λ∗)

t(Λi − Λ̃tb,app,i)
2

2Λ̂tsc,i
+ t⟨µ̃tb,app, λ⟩,

λ ∈ Rp+, Λ̃tb,app = Aλ̃tb,app,

(SM12.153)

where

µ̃tb,app =
∑

i∈I1(Λ∗)

Λ̃tb,app,i − Λ̃tb,i

Λ̂tsc,i
ai +

∑
i∈I0(Λ∗)

ai,(SM12.154)

µ̃tb,app ∈ Rp+, µ̃tb,app,j λ̃tb,app,j = 0 for all j ∈ {1, . . . , p}.(SM12.155)

We show that (SM12.152) and the result of Lemma SM12.15 imply the statement in formula
(SM12.114).
Let

(SM12.156) λ(u, v, w) = λ̃tb,app +
u√
t
+
v

t
+ w, u ∈ U , v ∈ V, w ∈ W, λ(u, v, w) ∈ Rp+.

Using the parametrization from (SM12.156), the definition of CtA,δ(·) in (SM12.111) and
(SM12.153)–(SM12.155) from (SM12.152) we obtain

Bt(λ)−Bt(λ̃tb,app) = Kt(u, v, w) +Rt(u, v, w), λ = λ(u, v, w),(SM12.157)

Kt(u, v, w) =
∑

i∈I1(Λ∗)

(aTi u)
2

2Λ̂tsc,i
+ t⟨µ̃tb,app, λ(u, v, w)⟩

=
∑

i∈I1(Λ∗)

(aTi u)
2

2Λ̂tsc,i
+ t⟨µ̃tb,app, λ(u, v, w)− λ̃tb,app⟩

=
∑

i∈I1(Λ∗)

(aTi u)
2

2Λ̂tsc,i
+ t⟨µ̃tb,app,

u√
t
+
v

t
⟩

=
∑

i∈I1(Λ∗)

(aTi u)
2

2Λ̂tsc,i
+

∑
i∈I1(Λ∗)

√
t
Λ̃tb,app,i − Λ̃tb,i

Λ̂tsc,i
aTi u

+
∑

i∈I1(Λ∗)

Λ̃tb,app,i − Λ̃tb,i

Λ̂tsc,i
aTi v +

∑
i∈I0(Λ∗)

aTi v,

(SM12.158)

Rt(u, v, w) =
∑

i∈I1(Λ∗)

(aTi u)(a
T
i v)√

tΛ̂tsc,i
+

(aTi v)
2

2tΛ̂tsc,i
.(SM12.159)

From the fact that Λ̂tsc,i → Λ∗
i a.s. Y t, t ∈ [0,+∞) (λ̂tsc is strongly consistent at λ∗ on U ⊕ V

by the assumption), the definition of CtA,δ(·) in (SM12.111) and (SM12.159) it follows that

sup
λ(u,v,w)∈Ct

A,δ(λ̃
t
b,app)

| Rt(u, v, w) | = ocp(1).(SM12.160)
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In view of formulas (SM12.117) and (SM12.122), the results of Lemmas SM12.12 to SM12.14
and again the fact that Λ̂tsc,i → Λ∗

i , we find that

Λ̃tb,app,i − Λ̃tb,i

Λ̂tsc,i
=

Λ̃tb,app,i − Λ̂tsc,i

Λ̂tsc,i
+

Λ̂tsc,i − Λ̃tb,i

Λ̂tsc,i
= ocp(1), i ∈ I1(Λ∗).(SM12.161)

Formulas (SM12.157)–(SM12.161) imply that

inf
λ∈Ct

A,δ(λ̃
t
b,app)
[Bt(λ)−Bt(λ̃tb,app)] ≥ inf

λ(u,v,w)∈Ct
A,δ(λ̃

t
b,app)
Kt(u, v, w) + ocp(1).(SM12.162)

Now, note that if λ(u, v, w) ⪰ 0 (see formula (SM12.156)), then

(SM12.163) λ(u, 0, w) ⪰ 0.

Indeed, from the definition of V, U ,W in (6.16)–(6.18) it follows that u and v have disjoint set
of non-zero components, therefore, setting v to zero for λ(u, v, w) cannot break the positivity
constraint.

From (SM12.154), (SM12.155), and (SM12.163) it follows that

⟨µ̃tb,app, λ(u, 0, w)⟩ =
∑

i∈I1(Λ∗)

Λ̃tb,app,i − Λ̃tb,i

Λ̂tsc,i
aTi u ≥ 0.(SM12.164)

Note also that Kt(u, v, w) in (SM12.158) does not change when varying w ∈ W, so, in what
follows we write Kt(u, v) instead. Using formulas (SM12.158), (SM12.161), (SM12.164) and
the definition of CtA,δ(·) in (SM12.111) we find that

Kt(u, v) ≥
∑

i∈I1(Λ∗)

(aTi u)
2

2Λ̂tsc,i
+

∑
i∈I0(Λ∗)

aTi v + ocp(1), λ = λ(u, v, w) ∈ CtA,δ(λ̃tb,app).(SM12.165)

where the term ocp(1) tends to zero uniformly on CtA,δ(λ̃
t
b,app) for t → +∞, a.s. Y t, t ∈

(0,+∞). From (SM12.165) and strong consistency of λ̂tsc on U ⊕ V it follows that

Kt(u, v) ≥ c1∥u∥22 + c2∥v∥1 + ocp(1), if ΠV λ̃
t
b,app = 0, λ = λ(u, v, w) ∈ CtA,δ(λ̃tb,app),

(SM12.166)

where c1, c2 are some fixed positive constants which depend only on Λ∗ and A. The bound
above holds for t large enough a.s. Y t, t ∈ (0,+∞).

Recall that

∥u∥2 + ∥v∥1 = δ for λ(u, v, w) ∈ CtA,δ(λ̃tb,app).(SM12.167)

Using (SM12.166), (SM12.167) it is easy to see that

Kt(u, v) ≥ cδ2 + ocp(1), if ΠV λ̃
t
b,app = 0, λ = λ(u, v, w) ∈ CtA,δ(λ̃tb,app),(SM12.168)
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for δ small enough (smaller than some universal constant depending on c1, c2), where c is some
fixed constant also depending on c1, c2 from (SM12.166). Note that the Karush-Kuhn-Tucker
optimality conditions in (SM12.154), (SM12.155), formula (SM12.161) and the definition of
space V in (6.16) imply that

P (ΠV λ̃
t
b,app = 0 | Y t, t)→ 1 when t→ +∞, a.s. Y t, t ∈ [0,+∞).(SM12.169)

Hence, the event in (SM12.168) is conditioned on {ΠV λ̃
t
b,app = 0} which has asymptotic

conditional probability tending to one a.s. Y t, t ∈ [0,+∞), and it also holds

Kt(u, v) ≥ cδ2 + ocp(1), λ = λ(u, v, w) ∈ CtA,δ(λ̃tb,app).(SM12.170)

From (SM12.152), (SM12.162), and (SM12.170) it follows that

P

(
inf

λ∈Ct
A,δ(λ̃

t
b,app)
[At(λ)−At(λ̃tapp)] > 0 | Y t, t

)
→ 1 for t→ +∞, a.s. Y t, t ∈ [0,+∞).

(SM12.171)

It is left to demonstrate the initial statement in (SM12.152). Consider the first term in the
left hand-side of (SM12.151). Using (SM12.104), (SM12.105), the definitions in (SM12.106),

(SM12.111) and the facts that ΠV⊕U (λ̂
t
sc−λ∗)

a.s.−−→ 0, ΠV⊕U (λ̃
t
b,app−λ∗)

c.p.−−→ 0, and the Taylor

expansion of A(λ) at λ̂tsc up to the second order one gets the following estimate

At(λ)−Bt(λ) ≥
∑

i∈I1(Λ∗)

−tC1 | Λ̃tb,i − Λ̂tsc,i |
| Λi − Λ̂tsc,i |2

| Λ̂tsc,i |2
+

∑
i∈I1(Λ∗)

−tC2 | Λi − Λ̂tsc,i |3

+
∑

i∈I0(Λ∗)

−tΛ̃tb,i log(tΛi) +
∑

i∈I0(Λ∗)

tΛ̂tsc,i log(tΛ̂
t
sc,i)− tΛ̂tsc,i(SM12.172)

+ βt(φ(λ)− φ(λ̂tsc)), λ ∈ CtA,δ(λ̃tb,app)).

where C1, C2 are some positive constants which depend only design A and Λ∗. The above
estimate holds with conditional probability tending to one for t → +∞ a.s. Y t, t ∈ [0,+∞).
In particular, in (SM12.172) to bound uniformly the error-terms in the Taylor’s expansion we
have used the following estimates:

sup
λ∈Ct

A,δ(λ̃
t
b,app)

| Λi − Λ̂tsc,i | / | Λ̂tsc,i |= ocp(1), i ∈ I1(Λ∗),

(SM12.173)

| log(1 + x)− x |≤ C1 | x |2, for some C1 > 0 for | x |≤ 1/2,

(SM12.174)

| −ŝ log(s/ŝ) + (s− ŝ)− s2

2ŝ
|≤ C2 | s− ŝ |3,

(SM12.175)

for some C2 = C2(s∗, ε) > 0 and | s− ŝ |< ŝ/2, | ŝ− s∗ |< ε for some fixed ε, s∗ > 0.



SUPPLEMENTARY MATERIALS: NONPARAMETRIC POSTERIOR LEARNING FOR ET SM43

Formulas (SM12.174), (SM12.175) describe the standard second order Taylor expansions of
the logarithm in vicinity of x = 0 and ŝ = s∗, respectively. Formula (SM12.173) can be proved
via the following triangle-type inequality:

| Λi − Λ̂tsc,i |≤| Λi − Λ̃tb,app,i | + | Λ̃tb,app,i − Λ̃tb,i | + | Λ̃tb,i − Λ∗
i | + | Λ∗

i + Λ̂tsc,i |,

λ ∈ CtA,δ(λ̃tb,app).
(SM12.176)

The first term in the right hand-side of (SM12.176) is of order ocp(1) in view of the definition

in (SM12.111) and the fact that λ ∈ CtA,δ(λ̃tb,app) for some fixed δ > 0. The last two terms are

also ocp(1) in view of Lemma SM12.5 and the fact that Λ̂tsc,i → Λ∗
i a.s. Y

t, t ∈ [0,+∞). Finally,

from (SM12.161) and again the fact that Λ̂tsc,i → Λ∗
i a.s. Y t, t ∈ (0,+∞), it follows that the

second term in (SM12.176) is also of order ocp(1). This completes the proof of (SM12.173).

Using the restriction that λ ∈ CtA,δ(λ̃tb,app,t) two first sums in (SM12.172) can be estimated
as follows:

∑
i∈I1(Λ∗)

−tC1 | Λ̃tb,i − Λ̂tsc,i |
| Λi − Λ̂tsc,i |2

|Λ̂tsc,i|2
≥

∑
i∈I1(Λ∗)

−tC1 | Λ̃tb,i − Λ̂tsc,i |

×

(
2 | Λi − Λ̃tb,app,i |2

| Λ̂tsc,i |2
+

2 | Λ̃tb,app,i − Λ̂tsc,i |2

| Λ̂tsc,i |2

)

≥
∑

i∈I1(Λ∗)

−tC1 | Λ̃tb,i − Λ̂tsc,i |

(
cδ2

t | Λ̂tsc,i |2
+

2 | Λ̃tb,app,i − Λ̂tsc,i |2

| Λ̂tsc,i |2

)
,

(SM12.177)

where c depends only A. Using same argument for the second sum in (SM12.172) we obtain
the following:

∑
i∈I1(Λ∗)

−tC2 | Λi − Λ̂tsc,i |3 ≥
∑

i∈I1(Λ∗)

−8tC2

(
| Λi − Λ̃tb,app,i |3 + | Λ̃tb,app,i − Λ̂tsc,i |3

)(SM12.178)

≥
∑

i∈I1(Λ∗)

−8tC2

(
cδ3

t3/2
+ | Λ̃tb,app,i − Λ̂tsc,i |3

)
,

for λ ∈ CtA,δ(Λ̃tb,app,t), where c depends only on A.
From (6.23), (SM12.117), and (SM12.122), the results of Lemmas SM12.12 and SM12.14

it follows that

t | Λ̃tb,i − Λ̂tsc,i | · | Λ̃tb,app,i − Λ̂tsc,i |2 = ocp(1),(SM12.179)

t | Λ̃tb,app,i − Λ̂tsc,i |3 = ocp(1).(SM12.180)

The above formulas imply that sums in (SM12.177), (SM12.178) are bounded from below and
of order ocp(1).
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The logarithmic term in (SM12.172) can be estimated as follows:∑
i∈I0(Λ∗)

−tΛ̃tb,i log(tΛi) =
∑

i∈I0(Λ∗)

−tΛ̃tb,i log(t(Λi − Λ̃tb,app,i) + tΛ̃tb,app,i)

≥
∑

i∈I0(Λ∗)

−tΛ̃tb,i log(t | Λi − Λ̃tb,app,i | +tΛ̃tb,app,i)

≥
∑

i∈I0(Λ∗)

−tΛ̃tb,i log(cδ + tΛ̃tb,app,i), λ ∈ CtA,δ(λ̃tb,app).

(SM12.181)

where c is some positive constant depending on A. Using (SM12.117), (SM12.122), and
(SM12.124) from Lemma SM12.12 we obtain

tΛ̃tb,app,i =t(Λ̃
t
b,app,i − Λ̂tsc,i) + tΛ̂tsc,i

= aTi ṽ
t
b,app + taTi λ̂

t
sc

= aTi (ṽ
t
b,app − ṽt) = ocp(1), I0(Λ

∗)

(SM12.182)

Formulas (SM12.181), (SM12.182) imply that∑
i∈I0(Λ∗)

−tΛ̃tb,i log(tΛi) ≥
∑

i∈I0(Λ∗)

−tΛ̃tb,i log(cδ + ocp(1)).(SM12.183)

By choosing δ smaller than some fixed constant (e.g., δ < c/2) in (SM12.183) we find that the
right hand-side in (SM12.183) becomes positive with conditional probability tending to one
a.s. Y t, t ∈ [0,+∞). Therefore,

(SM12.184)
∑

i∈I0(Λ∗)

−tΛ̃tb,i log(tΛi) ≥ ocp(1), λ ∈ CtA,δ(λ̃tb,app) for δ < c/2.

In addition, from the initial assumption in (6.23) it directly follows that

(SM12.185)
∑

i∈I0(Λ∗)

tΛ̂tsc,i log(tΛ̂
t
sc,i)− tΛ̂tsc,i = ocp(1).

Using (SM12.172), (SM12.177)–(SM12.180), (SM12.184), (SM12.185) we finally obtain:

inf
λ∈Ct

A,δ(λ̃
t
b,app)
[At(λ)−Bt(λ)] ≥ ocp(1) + βt inf

λ∈Ct
A,δ(λ̃

t
b,app)
(φ(λ)− φ(λ̂tsc)).(SM12.186)

Now, let us consider the third term in the left-hand side of (SM12.151). Using (SM12.118)–
(SM12.120) we rewrite it as follows:

Bt(λ̃tb,app)−Bt(λ̃tapp) = B̃t(λ̃tb,app)− B̃t(λ̃tapp)

+ R̃t(λ̃tb,app)− R̃t(λ̃tapp).
(SM12.187)
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From (SM12.108), the result of Lemma SM12.10, (SM12.118)–(SM12.120), (SM12.122), the
result of Lemmas SM12.12 and SM12.14 and formula (SM12.187) it follows directly that

(SM12.188) Bt(λ̃tb,app)−Bt(λ̃tapp) = ocp(1).

Now we estimate the last term in the right-hand side of (SM12.151). Using the same
argument as in (SM12.172)–(SM12.185) one gets the following estimate:

Bt(λ̃tapp)−At(λ̃tapp) ≥
∑

i∈I1(Λ∗)

−tC1 | Λ̃tb,i − Λ̂tsc,i |
| Λ̃tapp,i − Λ̂tsc,i |2

| Λ̂tsc,i |2

+
∑

i∈I1(Λ∗)

−tC2 | Λ̃tapp,i − Λ̂tsc,i |3

+
∑

i∈I0(Λ∗)

tΛ̃tb,i log(Λ̃
t
app,i)

+
∑

i∈I0(Λ∗)

−tΛ̂tsc,i log(tΛ̂tsc,i) + tΛ̂tsc,i

− βt(φ(λ̃tapp)− φ(λ̂tsc)).

(SM12.189)

≥
∑

i∈I1(Λ∗)

−tC1 | Λ̃tb,i − Λ̂tsc,i |
| Λ̃tapp,i − Λ̂tsc,i |2

| Λ̂tsc,i |2

+
∑

i∈I1(Λ∗)

−tC2 | Λ̃tapp,i − Λ̂tsc,i |3

+
∑

i∈I0(Λ∗)

tΛ̃tb,i log(tΛ̃
t
b,i)

+
∑

i∈I0(Λ∗)

−tΛ̂tsc,i log(tΛ̂tsc,i) + tΛ̂tsc,i

− βt(φ(λ̃tapp)− φ(λ̂tsc,i)),

(SM12.190)

where constants C1, C2 depend only on A. To pass from (SM12.189) to (SM12.190) we have
used the monotonicity of the logarithm (i.e., log(x + y) ≥ log(x), for any y > 0). The above
estimate holds with conditional probability tending to one a.s. Y t, t ∈ [0,+∞).

From formulas (SM12.107), (SM12.109), (SM12.117), and (SM12.122), the results of Lem-
mas SM12.12 and SM12.14 it follows that

t | Λ̃tb,i − Λ̂tsc,i | · | Λ̃tapp,i − Λ̂tsc,i |2= ocp(1),(SM12.191)

t | Λ̃tapp,i − Λ̂tsc,i |3= ocp(1).(SM12.192)

In addition, using (SM12.147) in the proof of Lemma SM12.10 we find that∑
i∈I0(Λ∗)

tΛ̃tb,i log(tΛ̃
t
b,i) = ocp(1).(SM12.193)
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Putting together (SM12.190)–(SM12.193) and using again (SM12.185) we obtain

Bt(λ̃tapp)−At(λ̃tapp) ≥ ocp(1)− βt(φ(λ̃tapp)− φ(λ̂tsc)).(SM12.194)

Formulas (SM12.151), (SM12.186), (SM12.188), and (SM12.194) imply that

inf
λ∈Ct

A,δ(λ̃
t
b,app)
[At(λ)−At(λ̃tapp)] = inf

λ∈Ct
A,δ(λ̃

t
b,app)
[Bt(λ)−Bt(λ̃tb,app)]

+ inf
λ∈Ct

A,δ(λ̃
t
b,app)
βt(φ(λ)− φ(λ̃tapp))

+ ocp(1).

(SM12.195)

Lemma SM12.16. Let βt, φ(·) satisfy the assumptions of Theorem 6.10 and λ̃tb,app, λ̃
t
app be

defined in (SM12.106), (SM12.107), respectively. Then,

inf
λ∈Ct

A,δ(λ̃
t
b,app)
βt(φ(λ)− φ(λ̃tapp)) = ocp(1), a.s. Y t, t ∈ (0,+∞).(SM12.196)

Formula (SM12.152) directly follows from (SM12.195) and the result of Lemma SM12.16.
Lemma is proved.

SM12.13. Proof of Lemma SM12.12.

Proof. To prove the claim we use essentially the same convexity argument as before, for
example in Lemma SM12.11.

Let δ > 0 and

λ̃t = λ̂tsc +
ũt√
t
+
ṽt

t
+ w̃t, λ̃t ⪰ 0,(SM12.197)

λ(u, v, w) = λ̂tsc +
u√
t
+
v

t
+ w, (u, v, w) ∈ U × V ×W, λ(u, v, w) ⪰ 0.(SM12.198)

Recall that

∥u− ũt∥2 + ∥v − ṽt∥1 = δ for λ(u, v, w) ∈ CtA,δ(λ̃t).(SM12.199)

where CtA,δ(·) is defined in (SM12.111).
Next we show that

P ( inf
(u,v,w):λ(u,v,w)∈Ct

A,δ(λ̃
t)

[Bt(u, v)−Bt(ũt, ṽt)] > 0 | Y t, t)→ 1 when t→ +∞, a.s. Y t, t ∈ [0,+∞)
(SM12.200)

which together with the fact that δ can be arbitrarily small and convexity of Bt(u, v), implies
the claim of the lemma. Using formulas (SM12.118)–(SM12.120) we obtain

Bt(u, v)−Bt(ũt, ṽt) = [B̃t(u, v)− B̃t(ũt, ṽt)]

+ [R̃t(u, v)− R̃t(ũt, ṽt)],

(u, v) s.t. ∃w ∈ W, λ(u, v, w) ∈ CtA,δ(λ̃t).

(SM12.201)
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From the facts that Λ̃tb,i
c.p.−−→ Λ∗

i (by Lemma SM12.5), Λ̂tsc,i
a.s.−−→ Λ∗

i for i ∈ {1, . . . , d} (see

(SM2.2), (6.22), and (6.23) in section SM2), the conditional tightness of ũt (Lemma SM12.14)
and formulas (6.23), (SM12.122), (SM12.199) it follows that

sup
(u,v,w):λ(u,v,w)∈Ct

A,δ(λ̃
t)

| R̃t(u, v)− R̃t(ũt, ṽt) |= ocp(1),(SM12.202)

where R̃t(·) is defined in (SM12.120).
Formulas (SM12.201), (SM12.202) imply that

inf
(u,v,w):λ(u,v,w)∈Ct

A,δ(λ̃
t)

[Bt(u, v)−Bt(ũt, ṽt)] ≥ inf
(u,v,w):λ(u,v,w)∈Ct

A,δ(λ̃
t)

[B̃t(u, v)− B̃t(ũt, ṽt)] + ocp(1).(SM12.203)

Since the positivity constraints in (SM12.125) include restrictions on u ∈ U and also
depend on w ∈ W, for simplicity, we include w in the minimization problem as an independent
variable

(ũt, w̃t) = argmin
(u,w):(1−ΠV )λ̂

t
sc+

u√
t
+w⪰0

u∈U , w∈W

∑
i∈I1(Λ∗)

−
√
t(Λ̃tb,i − Λ̂tsc,i)

aTi u

Λ̂tsc,i
+

(aTi u)
2

2Λ̂tsc,i
.(SM12.204)

Note that minimizer ũt in (SM12.204) coincides with the original solution from (SM12.125).
The problem in (SM12.204) is convex and the strong duality is satisfied (e.g., by Slater’s
condition). From the Karush-Kuhn-Tucker necessary optimality conditions (see e.g., [SM3],
Section 3.3) for the optimization problem in (SM12.204) and the strong duality it follows that

∃ µ̃t ⪰ 0, µ̃t ∈ W⊥,(SM12.205) ∑
i∈I1(Λ∗)

−
√
t(Λ̃tb,i − Λ̂tsc,i)

ΠUai

Λ̂tsc,i
+

ΠUaia
T
i ũ

t

Λ̂tsc,i
=
µ̃tU√
t
, µ̃tU = ΠU µ̃

t,(SM12.206)

µ̃tj

(
[(I −ΠV)λ̂

t
sc]j +

ũtj√
t
+ w̃tj

)
= 0, j ∈ {1, . . . , p},(SM12.207)

where (ũt, w̃t) are defined in (SM12.204). Strong duality implies, in particular, that µ̃t is a
solution for the dual problem and µ̃t ∈ W⊥ (dual functional equals −∞ for µ̃t ̸∈ W⊥). Note
also that the optimized functional in (SM12.204) is strongly convex in u, so ũt is always unique,
whereas at least one w̃t always exists, however, may not be unique. The latter fact does not
pose any problem since the target functional is flat for w ∈ W, so if not said otherwise, we
choose any solution w̃t in (SM12.204) so that positivity constraints are satisfied.
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From (SM12.118), (SM12.205)-(SM12.207) it follows that

B̃t(u, v)− B̃t(ũt, ṽt) =
∑

i∈I1(Λ∗)

−
√
t
Λ̃b,i − Λ̂tsc,i

Λ̂tsc,i
aTi (u− ũt) +

1

2

(aTi u)
2 − (aTi ũ

t)2

Λ̂tsc,i

+
∑

i∈I0(Λ∗)

aTi (v − ṽt)

=
∑

i∈I1(Λ∗)

−
√
t
Λ̃b,i − Λ̂tsc,i

Λ̂tsc,i
aTi (u− ũt) +

1

2

(aTi (u− ũt))2

Λ̂tsc,i

+
(ũt)Taia

T
i (u− ũt)

Λ̂tsc,i
+

∑
i∈I0(Λ∗)

aTi (v − ṽt)

= ⟨
µ̃tU√
t
, u− ũt⟩+ 1

2

∑
i∈I1(Λ∗)

| aTi (u− ũt) |2

Λ̂tsc,i
+

∑
i∈I0(Λ∗)

aTi (v − ṽt).(SM12.208)

Note that

⟨
µ̃tU√
t
, u− ũt⟩ ≥ 0,(SM12.209)

v − ṽt ⪰ 0,(SM12.210)

for (u, v) ∈ U × V s.t. λ(u, v, w) = λ̂tsc +
u√
t
+
v

t
+ w ⪰ 0 for some w ∈ W.

Indeed, in view of (SM12.205), (SM12.207) the left hand-side in (SM12.209) can be rewritten
as follows:

⟨
µ̃tU√
t
, u− ũt⟩ = ⟨µ̃tU ,

u√
t
− ũt√

t
⟩

= ⟨(I −ΠV)µ̃
t, (I −ΠV)λ̂

t
sc +

u√
t
⟩

= ⟨(I −ΠV)µ̃
t, λ̂tsc +

u√
t
+
v

t
+ w⟩

= ⟨(I −ΠV)µ̃
t, λ(u, v, w)⟩

(SM12.211)

Note also that from (SM12.205) and the definition of V in (6.16) it follows that

(SM12.212) µtU = (I −ΠV)µ
t ⪰ 0.

Formula (SM12.209) follows directly from (SM12.211) and (SM12.212), and the fact that
λ(u, v, w) ⪰ 0.

In turn, formula (SM12.210) follows from (SM12.122).
Formulas (SM12.199), (SM12.208)–(SM12.210) and the fact that Λ̂sc,i → Λ∗

i for i ∈
{1, . . . , d} a.s. Y t, t ∈ [0,+∞) (as a strongly consistent estimator), imply that with con-
ditional probability tending to one a.s. Y t, t ∈ (0,+∞) the following estimate holds:

inf
(u,v,w):λ(u,v,w)∈Ct

A,δ(λ̃
t)

[B̃t(u, v)− B̃t(ũt, ṽt)] ≥ cδ2,(SM12.213)
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where c is some fixed positive constant depending only on Λ∗ and A.
Formula (SM12.200) follows directly from (SM12.203), (SM12.213).
Lemma is proved.

SM12.14. Proof of Lemma SM12.13. Let ξ ∈ R#I1(Λ∗) be a parameter and consider
ũt(ξ) defined in (SM12.127).

Since the positivity constraints in (SM12.127) include restrictions on u ∈ U and w ∈ W,
for simplicity, we include w in the minimization problem as an independent variable

(ũt, w̃t) = argmin
(u,w):(1−ΠV )λ̂

t
sc+

u√
t
+w⪰0

u∈U ,w∈W

−ξTCtu+
1

2
uTF tu,(SM12.214)

where

Ct = (D̂t
I1(Λ∗))

−1/2AI1(Λ∗), F
t = F̂ tI1(Λ∗),

D̂t
I1(Λ∗), F̂

t
I1(Λ∗) are defined in (SM12.128), (SM12.129).

(SM12.215)

The Lagrangian function for the primal problem in (SM12.214) is defined by the formula:

Lt(u,w;µ) = −ξTCtu+
1

2
uTF tu− µT ((1−ΠV)λ̂

t
sc +

u√
t
+ w),(SM12.216)

u ∈ U , w ∈ W, µ ⪰ 0.(SM12.217)

The dual function for Gt(µ) and solution µt for the dual problem are defined by the formulas:

Gt(µ) = inf
u∈U , w∈W

Lt(u,w;µ), µt = argmax
µ⪰0

Gt(µ).(SM12.218)

From the Karush-Kuhn-Tucker necessary optimality conditions, the fact that the primal
problem is strongly convex in u ∈ U and the strong duality it follows that

∃(ut, wt) ∈ U ×W, µt ⪰ 0, µt ∈ W⊥ s.t.(SM12.219)

(ut, wt) is a solution for the primal problem in (SM12.214),(SM12.220)

µt = µt(ξ) is a solution for the dual problem in (SM12.218),(SM12.221)

∇u,wLt(ut, wt;µt) = 0,(SM12.222)

((1−ΠV)λ̂
t
sc,j +

utj√
t
+ wtj)µ

t
j = 0, j ∈ {1, . . . , p}.(SM12.223)

Using (SM12.216), (SM12.222) we obtain the following:

−ΠU (C
t)T ξ + (ΠUF

tΠU )u
t − ΠUµ

t(ξ)√
t

= 0,(SM12.224)

ΠWµ
t = 0,(SM12.225)

where ΠU , ΠW are defined in (6.19). In what follows we use the following notations

CtU = CtΠU , F
t
U = (ΠUF

tΠU ), µ
t
U = ΠUµ

t.(SM12.226)
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Strong consistency of λ̂tsc on U ⊕ V and the Continuous Mapping Theorem imply that

CtU → C∗
U , F

t
U → F ∗

U when t→ +∞, a.s. Y t, t ∈ (0,+∞),(SM12.227)

where

C∗
U = ΠUC

∗, F ∗
U = ΠUF

∗ΠU ,(SM12.228)

C∗ = (D∗
I1(Λ∗))

−1/2AI1(Λ∗), D
∗
I1(Λ∗) = diag(. . . ,Λ∗

i , . . . ), i ∈ I1(Λ∗),(SM12.229)

F ∗ =
∑

i∈I1(Λ∗)

aia
T
i

Λ∗
i

= AI1(Λ∗))
T (D∗

I1(Λ∗))
−1AI1(Λ∗).(SM12.230)

Using the notations from (SM12.226) formula (SM12.224) can be rewritten as follows:

ut(ξ) = (F tU )
−1(CtU )

T ξ + (F tU )
−1µ

t
U (ξ)√
t
.(SM12.231)

Note that F tU is continuously invertible on U , therefore (F tU )
−1 is well-defined. Moreover,

(F tU )
−1 → (F ∗

U )
−1 for t → +∞ a.s. Y t, t ∈ [0,+∞). Next, we show that the following

estimate always holds: ∣∣∣∣µtU (ξ)√
t

∣∣∣∣ ≤ 2 max
σ∈σU (F t

U )
σ−1/2∥(F tU )−1/2∥∥(CtU )T ξ∥,(SM12.232)

where σU (F
t
U ) denotes the spectrum of F tU on U (which in view of (SM12.227), (SM12.230)

contains only non-zero positive elements starting from some t ≥ t0).
We begin with characterization of mapping µtU (ξ) via the dual problem in (SM12.218).
First, from (SM12.216) and (SM12.218) it follows that

Gt(µ) = −∞ if µ ̸∈ W⊥.(SM12.233)

That is for µ ̸∈ W⊥ the dual problem is unfeasible. In view of this and the strong duality,
formulas in (SM12.218) can be rewritten as follows:

Gt(µ) = inf
u∈U
Lt(u, 0;µ), µ ⪰ 0, µ ∈ W⊥,(SM12.234)

µt = argmax
µ⪰0, µ∈W⊥

Gt(µ).(SM12.235)

Using (SM12.216), (SM12.226), the first order optimality condition in (SM12.234) has the
following form:

utmin(µ) = (F tU )
−1(CtU )

T ξ + (F tU )
−1µU√

t
,

µU = ΠUµ, µ ⪰ 0, µ ∈ W⊥.
(SM12.236)
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From (SM12.216), (SM12.218), (SM12.234), and (SM12.236) it follows that

Gt(µ) = Lt(utmin(µ), 0;µ) = −ξTCtUutmin(µ) +
1

2
[utmin(µ)]

TF tUu
t
min(µ)

− µT ((1−ΠV)λ̂
t
sc +

utmin(µ)√
t

),

µU = ΠUµ, µ ⪰ 0, µ ∈ W⊥.

(SM12.237)

Formulas (SM12.236), (SM12.237) imply that

Gt(µ) = −1

2

µTU√
t
(F tU )

−1µU√
t
− ξTCtU (F tU )−1µU√

t
− µT (I −ΠV)λ̂

t
sc,

µ ⪰ 0, µ ∈ W⊥.

(SM12.238)

From the facts that µ ∈ W⊥, µ ⪰ 0 and the definition of V in (6.16) it follows that

(SM12.239) µU = (I −ΠV)µ =

µj , if
∑

i∈I0(Λ∗)

aij = 0,

0, otherwise,
⇒ µU = (I −ΠV)µ ⪰ 0.

From (SM12.239) and the fact that λ̂tsc ⪰ 0 it follows that

µT (I −ΠV)λ̂
t
sc = [(I −ΠV)µ]

T λ̂tsc = µTU λ̂
t
sc ≥ 0.(SM12.240)

From (SM12.238) one can see that minimizer µt in (SM12.235) may not be unique, however,
its projection µtU is unique since functional Gt(µ) is strongly convex in µU . At the same
time, from (SM12.231) it follows that only µtU is essential for ũt(ξ). In view of (SM12.231),
(SM12.238), the optimization problem in (SM12.235) can be rewritten as follows:

µtU√
t
= µ̃tU = argmin

µU∈ΠU (Rp
+∩W⊥)

1

2
∥(F tU )−1/2µU + (F tU )

−1/2(CtU )
T ξ∥2 +

√
tµTU λ̂

t
sc.(SM12.241)

From (SM12.241) and the fact that 0 ∈ ΠU (Rp+ ∩W⊥) it follows that

1

2
∥(F tU )−1/2µ̃tU + (F tU )

−1/2(CtU )
T ξ∥2 +

√
tµtU λ̂

t
sc ≤ ∥(F tU )−1/2(CtU )

T ξ∥2,(SM12.242)

where µ̃tU is the solution in (SM12.241). Formulas (SM12.240), (SM12.242) imply that

|(F tU )−1/2µ̃tU + (F tU )
−1/2(CtU )

T ξ| ≤ ∥(F tU )−1/2(CtU )
T ξ∥.(SM12.243)

which together with inequality |a+ b| ≥ |a| − |b| imply the following estimate

∥(F tU )−1/2µ̃tU∥ ≤ 2∥(F tU )−1/2(CtU )
T ξ∥.(SM12.244)

From (6.17), (SM12.226), (SM12.227), and (SM12.230) it follows that F tU is of full rank on
U (starting from some t ≥ t0 a.s. Y t, t ∈ [0,+∞)), therefore, for large t matrix (F tU )

−1/2

is positive definite, injective on U and, hence, |(F tU )−1/2µ̃tU | ≥ minσ∈σU (F t
U ) σ

1/2∥µ̃tU∥, where
σU (·) denotes the spectrum of an operator acting on U .

The above argument with formula (SM12.244) directly imply (SM12.232).
Formulas (SM12.130)–(SM12.135) follow from (SM12.226)–(SM12.230), (SM12.231) and

(SM12.232).
Lemma is proved.
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SM12.15. Proof of Lemma SM12.14.

Proof. In view of Algorithm 4 intensities Λ̃tb,i can be represented as follows:

Λ̃tb,i =
1

θt + t

Y t
i∑

k=1

wik + r̃tb,M,i, i ∈ I1(Λ∗),(SM12.245)

{wik}∞, d
k=1, i=1 are mutually independent, wik ∼ Γ(1, 1),(SM12.246)

where

r̃tb,M,i | Λ̃tM,i, Y
t, t ∼ Γ(θtΛtM,i, (θ

t + t)−1),

Λ̃tM,i are sampled in Algorithm 3.
(SM12.247)

In particular,
√
trtb,M,i = ocp(1).(SM12.248)

Indeed, from (SM12.72), (SM12.247) and the Markov inequality it holds that

P (
√
trtb,M,i > δ | Y t, t) ≤

√
tθt

δ(θt + t)
E[Λ̃tM,i | Y t, t]

(SM12.249)

≤
√
tθt

δ(θt + t)

∑
i∈I1(Λ∗)

Y t
i

t
→ 0 for t→ +∞, a.s. Y t, t ∈ (0,+∞),

where δ is arbitrary positive value.
Using the Central Limit Theorem for sums of wik in (SM12.245), (SM12.246) and the

Strong Law of Large Numbers for Y t (see Theorem SM2.1, formula (SM2.2)) and the fact
that θt = o(

√
t), we obtain:

√
t

(θt + t)
√
Y t
i /t

Y t
i∑

k=1

(wik − 1)
c.d.−−→ N (0, 1).(SM12.250)

Due to mutual independence between wik, the above convergence holds for all components
i ∈ I1(Λ∗), hence, as for the vector in R#I1(Λ∗).

Using formula (SM12.136) we obtain:

ATI1(Λ∗)(D̂
t
I1(Λ∗))

−1/2ξ̃t =
∑

i∈I1(Λ∗)

√
t
Λ̃tb,i − Λ̂tsc,i

Λ̂tsc,i
ai

=
∑

i∈I1(Λ∗)

√
t
Λ̃tb,i − Y t

i /t

Λ̂tsc,i
ai +

∑
i∈I1(Λ∗)

√
t
Y t
i /t− Λ̂tsc,i

Λ̂tsc,i
ai.

(SM12.251)

The first sum is conditionally tight in view of the Prokhorov theorem on tightness of weakly
convergence sequences and the result in (SM12.250). Due to (6.22) the second sum is simply
bounded for large t for almost any trajectory Y t, t ∈ (0,+∞). These arguments directly imply
conditional tightness of ATI1(Λ∗)(D̂

t
I1(Λ∗))

−1/2ξ̃t for almost any trajectory Y t, t ∈ [0,+∞).
Lemma is proved.
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SM12.16. Proof of Lemma SM12.15.

Proof. Since Bt(λ) is proportional to t in (SM12.105), it suffices to prove (SM12.153) for
normalized process Bt(λ)/t which we denote here by Gt(λ), that is

Gt(λ) =
∑

i∈I1(Λ∗)

−(Λ̃tb,i − Λ̂tsc,i)
Λi − Λ̂tsc,i

Λ̂tsc,i
+

1

2

∑
i∈I1(Λ∗)

(Λi − Λ̂tsc,i)
2

Λ̂tsc,i

+
∑

i∈I0(Λ∗)

Λi, Λi = aTi λ, i ∈ {1, . . . , d}.
(SM12.252)

Note also that minimizers of Bt and of Gt coincide.
From the necessary Karush-Kuhn-Tucker optimality conditions in (SM12.106) (see e.g.,

[SM3], Section 3.3) it follows that

∃λ̃tb,app, µ̃tb,app ∈ Rp+ such that

−
∑

i∈I1(Λ∗)

Λ̃tb,i − Λ̂tsc,i

Λ̂tsc,i
ai +

∑
i∈I1(Λ∗)

Λ̃tb,app,i − Λ̂tsc,i

Λ̂tsc,i
ai +

∑
i∈I0(Λ∗)

ai − µ̃tb,app = 0,(SM12.253)

Λ̃tb,app = Aλ̃tb,app,

µ̃tb,app,j λ̃
t
b,app,j = 0 for all j ∈ {1, . . . , p}.(SM12.254)

Multiplying both sides of (SM12.253) on (λ̃tb,app−λ̂tsc) and using formula (SM12.254) we obtain
following formulas:

− ⟨µ̃tb,app, λ̂tsc⟩ = −
∑

i∈I1(Λ∗)

(Λ̃tb,i − Λ̂tsc,i)(Λ̃
t
b,app,i − Λ̂tsc,i)

Λ̂tsc,i
+

∑
i∈I1(Λ∗)

(Λ̃tb,app,i − Λ̂tsc,i)
2

Λ̂tsc,i

+
∑

i∈I0(Λ∗)

Λ̃tb,app,i − Λ̂tsc,i,

(SM12.255)

− ⟨µ̃tb,app, λ̂tsc⟩ =
∑

i∈I1(Λ∗)

Λ̃tb,i − Λ̃tb,app,i −
∑

i∈I0(Λ∗)

Λ̂tsc,i.

(SM12.256)

From formulas (SM12.252), (SM12.253), and (SM12.255) it follows that

Gt(λ̃tb,app) = −⟨µ̃tb,app, λ̂tsc⟩ −
1

2

∑
i∈I1(Λ∗)

(Λ̃tb,app,i − Λ̂tsc,i)
2

Λ̂tsc,i
+

∑
i∈I0(Λ∗)

Λ̂tsc,i.(SM12.257)
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Using (SM12.252)–(SM12.257) we get the following identity:

Gt(λ)−Gt(λ̃tb,app) =
∑

i∈I1(Λ∗)

−(Λ̃tb,i − Λ̂tsc,i)
Λi − Λ̂tsc,i

Λ̂tsc,i
+

∑
i∈I0(Λ∗)

Λi − Λ̂tsc,i

+
1

2

∑
i∈I1(Λ∗)

(Λi − Λ̂tsc,i)
2 + (Λ̃tb,app,i − Λ̂tsc,i)

2

Λ̂tsc,i
+ ⟨µ̃tb,app, λ̂tsc⟩

=
∑

i∈I1(Λ∗)

(Λi − Λ̃tb,app,i)
2

2Λ̂tsc,i
+

∑
i∈I1(Λ∗)

(Λ̃tb,app,i − Λ̂tsc,i)(Λi − Λ̂tsc,i)

Λ̂tsc,i

+
∑

i∈I0(Λ∗)

Λi − Λ̂tsc,i +
∑

i∈I1(Λ∗)

Λ̃tb,app,i − Λ̃tb,i +
∑

i∈I0(Λ∗)

Λ̂tsc,i

−
∑

i∈I1(Λ∗)

(Λ̃tb,i − Λ̂tsc,i)
Λi − Λ̂tsc,i

Λ̂tsc,i

=
∑

i∈I1(Λ∗)

(Λi − Λ̃tb,app,i)
2

2Λ∗
i

+
∑

i∈I0(Λ∗)

Λi +
∑

i∈I1(Λ∗)

Λ̃tb,app,i − Λ̃tb,i

Λ̂tsc,i
Λi.

(SM12.258)

Formulas (SM12.153)–(SM12.155) follow from (SM12.252)–(SM12.254) and (SM12.258).
Lemma is proved.

SM12.17. Proof of Lemma SM12.16.

Proof. Consider the following formula

inf
λ∈Ct

A,δ(λ̃
t
b,app)
[φ(λ)− φ(λ̃tapp)] = inf

λ∈Ct
A,δ(λ̃

t
b,app)
[φ(λ− φ(λ̃tb,app)] + [φ(λ̃tb,app)− φ(λ̃tapp)].(SM12.259)

Recall that λ̃tb,app may not be chosen uniquely since the functional Bt(λ) is strongly convex
only in directions from Span{ai : i ∈ I1(Λ

∗)} (see formula (SM12.105)) and it is flat in
directions from kerA. From the strong convexity of Bt(λ) on Span{ai : i ∈ I1(Λ

∗)} and
formulas (SM12.105), (SM12.106), (SM12.117) it follows that ũtb,app =

√
tΠU (λ̃

t
b,app − λ̂tsc)

is unique. At the same time, from (6.23), (SM12.122) and the result of Lemma SM12.12 it
follows that

ṽtb,app = tΠV(λ̃
t
b,app − λ̂tsc) = ocp(1),(SM12.260)

where the above formula is understood as a uniform bound on the set of all possible minimizers
λ̃tb,app. We may assume that for each t there is some unique ṽtb,app.

Then, to choose uniquely λ̃tb,app one has to fix its projection ontoW regarding the positivity
constraints. Consider the following mapping

w(u, v) = argmin
w:λ∗+u+v+w⪰0

w∈W

φ(λ∗ + u+ v + w),

u ∈ U , v ∈ V : (λ∗ + u+ v +W) ∩ Rp+ ̸= ∅,
(SM12.261)
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where λ∗ is the true parameter. From the strict convexity of φ(·) along kerA (by the assump-
tion in (2.12)), the definition of W in (6.18) and the result of Lemma SM12.1 it follows that
w(u, v) is one-to-one and continuous in (u, v) on its domain of definition.

Note that

w∗ = w(0, 0) = wA,λ∗(0, 0),(SM12.262)

where wA,λ(·, ·) is defined in (SM12.261) (wA,λ∗(0, 0) appears in Theorems 6.4 and 6.5). The
property that w∗ ∈ W can be proved by the contradiction argument. Assume that w∗ ∈ kerA
but w∗ ̸∈ W and w∗ ̸= 0. Then, from the definition of V, U , W it follows that

∃i ∈ I0(Λ∗), j ∈ {1, . . . , p} : aij > 0, w∗j > 0.(SM12.263)

At the same time from the fact that w∗ ∈ kerA it follows that

0 =
∑

i∈I0(Λ∗)

aTi w∗ =

p∑
j=1

 ∑
i∈I0(Λ∗)

aij

w∗j(SM12.264)

Formulas (SM12.263), (SM12.264) imply that

∃i′ ∈ I0(Λ∗), j′ ∈ {1, . . . , p} : ai′j′ > 0, w∗j′ < 0.(SM12.265)

At the same time, from the definition of I0(Λ
∗) in (2.2) it follows that λ∗j′ = 0 which together

with the results from (SM12.265) contradicts the positivity constraint in (SM12.262). Thus,
w∗ ∈ W.

Let

w̃tb,app = w

(
ΠU (λ̂

t
sc − λ∗) +

ũtb,app√
t
,ΠV(λ̂

t
sc − λ∗) +

ṽtb,app
t

)
,(SM12.266)

where ũtb,app, ṽ
t
b,app are defined in (SM12.106), (SM12.117), w is the mapping from (SM12.261).

Recall that λ̃tb,app from (SM12.106) can be rewritten via the parametrization in (SM12.117)
as follows

λ̃tb,app = λ̂tsc +
ũtb,app√

t
+
ṽtb,app
t

+ w̃tb,app,(SM12.267)

where w̃tb,app is chosen in (SM12.266). For λ̃tb,app from (SM12.267) it holds that

λ̃tb,app
c.p.−−→ λ∗ + w∗ for t→ +∞, a.s. Y t, t ∈ (0,+∞),(SM12.268)

where w∗ is defined in (SM12.262).

Indeed, formula (SM12.268) follows from the fact that ΠU⊕V λ̂
t
sc

c.p.−−→ ΠU⊕Vλ∗, the fact that
ũtb,app/

√
t = ocp(1), ṽ

t
b,app/t = ocp(1) (see formula (SM12.122) and results of Lemma SM12.14)

and the continuity of mapping w.
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From the local Lipschitz continuity of φ and (SM12.108), (SM12.109), (SM12.268) it
follows that there exits some universal constant L > 0 such that with conditional probability
tending to one a.s. Y t, t ∈ (0,+∞) it holds that:

φ(λ̃tb,app)− φ(λ̃tapp) ≤ L∥λ̃tb,app − λ̃tapp∥.(SM12.269)

In particular, from (SM12.108), (SM12.109), (SM12.269) it follows that

(SM12.270) βt(φ(λ̃tb,app)− φ(λ̃tapp)) = ocp(1).

It is left to show that the first term in (SM12.259) is also of order ocp(1). For this we use
extensively the results from [SM33] on the lipshitz-continuity of inf-projections.

The first term in (SM12.259) can be rewritten as taking the infimum two times:

inf
λ∈Ct

A,δ(λ̃
t
b,app)
(φ(λ)− φ(λ̃tb,app)) = inf

(u,v)∈Ct
A,δ(λ̃

t
b,app)

(u,v)∈U×V

[φ∗(ΠU (λ̃
t
b,app − λ∗) +

u√
t
,ΠV(λ̃

t
b,app − λ∗) +

v

t
)

− φ∗(ΠU (λ̃
t
b,app − λ∗),ΠV(λ̃

t
b,app − λ∗))],

(SM12.271)

where

φ∗(u, v) = inf
w:λ∗+u+v+w⪰0,

w∈W

φ(λ∗ + u+ v + w),

u ∈ U , v ∈ V : (λ∗ + u+ v +W) ∩ Rp+ ̸= ∅.
(SM12.272)

The expression in the square brackets in (SM12.271) is essentially the variation of the inf-
projection for φ∗(u, v) for parameter (u, v) ∈ U × V in the vicinity of zero along U ⊕ V.
Indeed, this follows from the facts that ΠU (λ̃

t
b,app − λ∗) and ΠV(λ̃

t
b,app − λ∗) are both of order

ocp(1) and u/
√
t, v/t are also ocp(1) in view of the fact that (u, v) ∈ CtA,δ(λ̃tb,app).

Using Theorem 3.4 and examples in Section 4 (pp. 278-282) of [SM33] we find that φ∗(u, v)
is locally Lipschitz continuous.

Indeed, consider the optimization problem in (SM12.272), where (u, v) ∈ U × V is a
parameter. Then, the problem can be rewritten as follows:

inf
w
φ0((u, v);w), φ0 : (U × V)×W → R,(SM12.273)

φ0((u, v);w) =

{
φ(λ∗ + u+ v + w), if λ∗ + u+ v + w ⪰ 0,

+∞, otherwise,
(SM12.274)

where R denotes the extended real line. From the fact that φ(·) is locally Lipschitz continuous
it is easy to see that φ0 is locally Lipschitz continuous on D = {(u, v, w) ∈ U × V × W :
λ∗ + u+ v + w ⪰ 0}, where the latter is a polyhedral subset of U × V ×W.

Consider the feasibility mapping

S : U × V ⇒W with S(u, v) = {w ∈ W : λ∗ + u+ v + w ⪰ 0},(SM12.275)
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where ⇒ denotes the property to be a set-valued mapping. From (SM12.275) one can see that
gphS = D (gph denotes the graph of a mapping). Therefore, gphS is polyhedral and, hence,
the Proposition 4.1 from [SM33] applies to our case (see also Example 9.35 in [SM27]), so
mapping S in (SM12.275) is Lipschitz continuous on domS (as set-valued mapping). At the
same time, the result of Lemma SM12.2 implies that feasibility mapping S is locally bounded
which yields level boundedness in w locally uniformly in (u, v) of φ0(·, ·). The above properties
are exactly the same is in Section 4 of [SM33], so Theorem 3.4 therein applies to the case of
φ0 from (SM12.273) and φ∗(u, v) = infw φ((u, v);w) is locally Lipschitz continuous.

Hence, there exists a constant L > 0 such that with conditional probability tending to one
a.s. Y t, t ∈ (0,+∞) the following holds

| φ∗(ΠU (λ̃
t
b,app − λ∗) +

u√
t
,ΠV(λ̃

t
b,app − λ∗) +

v

t
)− φ∗(ΠU (λ̃

t
b,app − λ∗),ΠV(λ̃

t
b,app − λ∗)) |

≤ L
(
∥u∥√
t
+
∥v∥
t

)
≤ L

(
δ√
t
+ c

δ

t

)
for any (u, v) ∈ CtA,δ(λ̃tb,app),

(SM12.276)

where c is a positive constant depending only on dimension p. Using formulas (SM12.271),
(SM12.276) and the assumption that βt = o(

√
t) we obtain

βt · inf
λ∈Ct

A,δ(λ̃
t
b,app)
(φ(λ)− φ(λ̃tb,app)) = ocp(1).(SM12.277)

Formula (SM12.196) directly follows from (SM12.270) and (SM12.277).
Lemma is proved.

REFERENCES

[1] H. Attouch and R. J.-B. Wets, Quantitative stability of variational systems. ii. a framework for
nonlinear conditioning, SIAM Journal on Optimization, 3 (1993), pp. 359–381, https://doi.org/10.
1137/0803016.

[2] R. G. Aykroyd and P. J. Green, Global and local priors, and the location of lesions using gamma-
camera imagery, Philosophical Transactions of the Royal Society of London. Series A: Physical and
Engineering Sciences, 337 (1991), pp. 323–342.

[3] D. P. Bertsekas, Nonlinear programming, Journal of Operational Research Society, 48 (1997), p. 334.
[4] N. A. Bochkina and P. J. Green, The bernstein–von mises theorem and nonregular models, The Annals

of Statistics, 42 (2014), pp. 1850–1878.
[5] D. J. Daley and D. Vere-Jones, An introduction to the theory of point processes: volume II: general

theory and structure, Springer Science & Business Media, 2007.
[6] A. De Pierro, On the relation between the ISRA and the EM algorithm for positron emission tomography,

IEEE Transactions on Medical Imaging, 12 (1993), pp. 328–333.
[7] H. Erdogan and J. Fessler, Monotonic algorithms for transmission tomography, IEEE Transactions

on Medical Imaging, 18 (1999), pp. 801–814, https://doi.org/10.1109/42.802758.
[8] J. Fessler and A. Hero, Penalized maximum-likelihood image reconstruction using space-alternating

generalized EM algorithms, IEEE Transactions on Image Processing, 4 (1995), pp. 1417–1429.
[9] M. Filipović, T. Dautremer, C. Comtat, S. Stute, and E. Barat, Reconstruction, analysis and

interpretation of posterior probability distributions of pet images, using the posterior bootstrap, Physics
in Medicine & Biology, 66 (2021), p. 125018.

https://doi.org/10.1137/0803016
https://doi.org/10.1137/0803016
https://doi.org/10.1109/42.802758


SM58 FEDOR GONCHAROV, ÉRIC BARAT AND THOMAS DAUTREMER

[10] E. Fong, S. Lyddon, and C. Holmes, Scalable nonparametric sampling from multimodal posteriors with
the posterior bootstrap, in Proceedings of the 36th International Conference on Machine Learning,
vol. 97, PMLR, 09–15 Jun 2019, pp. 1952–1962.

[11] F. Goncharov, Weighted Radon transforms and their applications, PhD thesis, Université Paris Saclay
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