
HAL Id: cea-04123345
https://cea.hal.science/cea-04123345v5

Submitted on 9 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nonparametric posterior learning for emission
tomography

Fedor Goncharov, Eric Barat, Thomas Dautremer

To cite this version:
Fedor Goncharov, Eric Barat, Thomas Dautremer. Nonparametric posterior learning for emis-
sion tomography. SIAM/ASA Journal on Uncertainty Quantification, 2023, 11 (2), pp.452-479.
�10.1137/21M1463367�. �cea-04123345v5�

https://cea.hal.science/cea-04123345v5
https://hal.archives-ouvertes.fr


Nonparametric posterior learning for emission tomography with multimodal data∗1

Fedor Goncharov† , Éric Barat† , and Thomas Dautremer††2

3

Abstract. We continue studies of the uncertainty quantification problem in emission tomographies such as PET4
or SPECT when additional multimodal data (anatomical MRI images) are available. To solve the5
aforementioned problem we adapt the recently proposed nonparametric posterior learning technique6
to the context of Poisson-type data in emission tomography. Using this approach we derive sampling7
algorithms which are trivially parallelizable, scalable and very easy to implement. In addition, we8
prove conditional consistency and tightness for the distribution of produced samples in the small9
noise limit (i.e., when the acquisition time tends to infinity) and derive new geometrical and nec-10
essary condition on how MRI images must be used. This condition arises naturally in the context11
of identifiability problem for misspecified generalized Poisson models with wrong design. We also12
contrast our approach with Bayesian Markov Chain Monte Carlo sampling based on one data aug-13
mentation scheme which is very popular in the context of Expectation-Maximization algorithms for14
PET or SPECT. We show theoretically and also numerically that such data augmentation signifi-15
cantly increases mixing times for the Markov chain. In view of this, our algorithms seem to give a16
reasonable trade-off between design complexity, scalability, numerical load and assessment for the17
uncertainty.18

Key words. tomography, inverse problems, MCMC, Bayesian inference, bootstrap19
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1. Introduction. Emission tomographies (further referred as ET) such as Positron Emis-21

sion Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) are22

functional imaging modalities of nuclear medicine which are used to image activity processes23

and, in particular, metabolism in soft tissues. The level of metabolism and uptake of specific24

biomarkers provide crucial information for diagnostics and treatment of cancers; see e.g., [53],25

[36] and references therein. Therefore, quality of images in ET and their respective resolution26

are critical for the diagnostics-treatment pipeline. In this work we continue studies on the two27

following problems:28

Problem 1. Quantify the uncertainty of reconstructions in ET.29

Problem 2. Regularize the inverse problem using the multimodal data (e.g., images from30

CT or MRI).31

Problem 1 is not new and several approaches have been established already which in turn32

can be grouped according to the statistical view of the problem – frequentist ([12], [1], [30]),33

Bayesian ([23], [54], [10], [46], [3], [14]) and bootstrap ([20], [8], [28], [15]). Note that given34

list is far from being complete and it should include references therein.35

Problem 2 can be splitted further depending on which type of exterior data are used -36

CT or MRI. More generally, main reasons to use multimodal data in ET are the ill-posedness37

of corresponding inverse problems (in PET/SPECT forward operators are ill-conditioned; see38
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2 FEDOR GONCHAROV, ÉRIC BARAT AND THOMAS DAUTREMER

e.g., [24]) and very low signal-to-noise ratio in the raw measured data. All this together39

results in loss of resolution in reconstructed images and consequently in oversmoothing, e.g.,40

when applying standard methods such as spatially invariant filters for post-smoothing. The41

common way of using CT and MRI images consists in extracting boundaries of anatomical42

features and embedding them into regularization schemes via special penalties and/or non-43

invariant filters; see e.g., [13], [6], [22], [7], [52]. The foundation of the above approaches is that44

there are correlations between PET and MRI signals starting from simple anatomical up to45

biological ones (e.g., PET-MRI investigation on tumor imaging in [5]). Therefore, potentially46

MRI data can be used to regularize accurately the inverse problem, however, it still requires47

construction of fine models to describe such correlations. Finally, from very practical point48

of view Problem 2 with additional MRI data is of interest due to availability of commercially49

available models of PET-MRI scanners [34], [26] which allow simultaneous registrations of50

both signals. In this work for multimodal data we use series of presegmented anatomical MRI51

images which are used differently than it was explained before. In section 2 we explain in52

detail how we use the MRI data and compare it with existing approaches.53

Already the definition of uncertainty in Problem 1 is not obvious: for exposure period54

[0, t) raw data Y t (sinogram) is generated by unknown (binned) point process PP t (typically55

it is assumed to be Poisson with unknown intensity parameter λ∗ ∈ Rp
+ and known design A ∈56

Mat(d, p), i.e., PP t = PP t
Aλ∗

= Po(t · Aλ∗)). Therfore, for any estimator λ̂t the uncertainty57

propagates directly from Y t. This is known as aleatoric uncertainty which corresponds to58

frequentist approach, and for ET it often leads to estimation of confidence bounds for the59

maximum likelihood estimator (MLE) or the penalized maximum log-likelihood estimator60

(pMLE or MAP; both are M -estimators [49]); see e.g., [12]. Frequentist approach has an61

advantage of being relatively robust to model misspecification (i.e., when PP t ̸= PP t
Aλ). In62

this case, for large t consistent estimator λ̂t will tend a.s. to a projection of PP t onto PP t
Aλ63

with respect to some chosen distance between probability distributions (e.g., for Kullback-64

Liebler divergence). Under additional assumptions on PP t even in misspecified case it is still65

possible to establish asymptotic distribution of λ̂t such as asymptotic normality, from which66

the confidence intervals can be retrieved. However, practical use of asymptotic estimates for67

ET seems doubtful since very little data are available in a single scan.68

Epistemic uncertainty is another type of uncertainty which corresponds to Bayesian or69

bootstrap approaches in statistics. For the Bayesian case the initial uncertainty on the pa-70

rameter of interest is encoded in some prior measure (using anatomical information from side71

images, assumptions on support and smoothness) which is updated using model PP t
Aλ and72

conditioning on Y t to define the posterior distribution via the well-known Bayes’ formula.73

Sampling from such complicated posteriors is usually done via Markov Chain Monte Carlo74

(MCMC) techniques [54], [23], [10], [14]. However, there are common bottlenecks: compli-75

cated design of samplers and their implementations, high numerical load per iteration, lack of76

scalability and most importantly – poor mixing in constructed chains; see e.g., [14], [50], [41].77

Additional methodological issue is the misspecification of the model (e.g., incorrect design)78

which cannot be included in the classical Bayesian framework and for robust inference it leads79

to the recently proposed general Bayesian updating and bootstrap-type sampling; see [42],80

Section 1.81
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As noted before bootstrap is another attractive technique to assess the uncertainty which82

can be also seen as some probabilistic sensitivity analysis or as approximate/exact sampling83

from nonparametric Bayesian posteriors; see e.g., [38], [35], [16]. Nontrivial questions for84

bootstrapping ET are the following ones: (1) how to define the procedure for Poisson-type85

raw data in ET and also include side information (2) provide guarantees (theoretical and86

numerical) on the coverage of the true signal by new credible intervals. A common approach to87

answer question (1) is to use resampling; see e.g., [20], [8]. For ET this one targets to resample88

photon counts and then propagate the uncertainty by using any reconstruction algorithm89

(e.g., FBP (Filtered backprojection), MLE or MAP (maximum a posteriori)). Question (2)90

is resolved theoretically often by demonstrating asymptotic equivalence between bootstrap,91

Bayesian and frequentist approaches via Bernstein von-Mises type theorems (see e.g., [49], [35],92

[39] or equivalence of Edgeworth’s expansions for higher orders (see [42]) and numerically via93

calibration (e.g., using Q-Q plots).94

In view of the above discussion, we note that for practice it seems that it is not of great95

importance which kind of uncertainty model is used – frequentist, Bayesian or bootstrap.96

The most important is to make usable the resulting framework and algorithms by practi-97

tioners, hence, they should be simple to implement, desirably with tractable parameters and98

numerically efficient (scalability is crucial for high-dimensional models in ET).99

Being inspired with nonparametric posterior learning (further referred as NPL) originating100

from [35], [16], we propose sampling algorithms for ET of bootstrap type with and without101

MRI data at hand. Therefore, our main contribution is that we extend the NPL originally102

proposed for regular statistical models and i.i.d data to the non-regular generalized Poisson103

model of ET (see [3]), where the raw data are not i.i.d but a sample from a point process.104

The initial motivation for this work was the problem of poor mixing for the Gibbs-type105

sampler in [14] which was designed for posterior sampling in the PET-MRI context. Below106

we give a detailed analysis of this phenomenon and conclude with a few generic advices on107

design of MCMC-samplers for ill-posed inverse problems such as PET or SPECT. Our new108

algorithms solve the above problem since sampled images are automatically i.i.d, moreover,109

the scheme is trivially parallelizable, scalable and very easy to implement because it relies110

on the well-known EM-type reconstruction methods from [44], [11]. Our samplers are tested111

numerically on a synthetic dataset by demonstrating the regularization effect of MRI as well112

on calibration of the posterior. We also conduct a theoretical study for when large dataset113

is available (for ET this is equivalent to t → +∞) and establish consistency and tightness114

of the posterior for almost any trajectory Y t, t ∈ [0,+∞). As a byproduct of our study, for115

the misspecified scenario with incorrect design matrix (which is always true in practice) we116

discover an intuitive sufficient condition for identifiability to persist. The latter can be of117

interest for further theoretical studies of ET model under misspecification.118

This paper is organized as follows. In section 2 we give notations and all necessary119

preliminaries on the statistical model of ET and on use of multimodal data. In section 3120

we give a very informative example for the problem of poor mixing for MCMC. In section 4121

we adapt the NPL for ET context and derive our sampling algorithms. In section 5 we122

present results of the numerical experiment on a synthetic dataset. In section 6 we study123

theoretically the asymptotic properties of our algorithms. In section 7 we discuss our results124

and possibilities for future work.125
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2. Preliminaries.126

2.1. Notations. By N0 we denote the set of non-negative integers, Rn
+ denotes the positive127

cone of Rn, by x ⪰ y, x ∈ Rn, y ∈ Rn, we denote the property that xj ≥ yj for all j = 1, . . . , n,128

x ≻ y denotes the same but with strict inequalities, both ⟨x, y⟩ or xT y stand for the scalar129

product, R+(A) denotes the image of Rp
+ under action of operator A ∈ Mat(d, p), by X ∼ F130

we denote the property that r.v. X has distribution F , Po(λ) denotes the Poisson distribution131

with intensity λ, λ ≥ 0, Γ(α, β) denotes the gamma distribution with shape α, and scale β132

(ξ ∼ Γ(α, β), Eξ = αβ, var(ξ) = αβ2). Let A ∈ Mat(d, p), then cond(A) denotes the condition133

number of A, AI , I ⊂ {1, . . . , d} denotes the submatrix of A with rows indexed by elements134

in I, Span(AT ) denotes the span of the rows of A being considered as vectors in Rp. Let Z135

be a complete separable metric space equipped with metric ρZ(·, ·) and boundedly finite non-136

negative measure dz, B(Z) denotes the sigma algebra of borel sets in Z. By PP we denote137

a (spatio-temporal) point process on Z × R+ and PPΛ denotes the Poisson point process on138

Z × R+ with intensity Λ(z) dz dt, where Λ is the nonnegative function Λ = Λ(z), z ∈ Z, Λ139

is integrable w.r.t dz. Weighted gamma process on Z is denoted by GP (α, β) = Gα,β, where140

α is the shape measure on Z and β is the scale which is a non-negative function Z and also141

α-integrable; see, e.g., [33] for construction. Finally, by KL(P,Q) we denote the standard142

Kullback-Leibler divergence between probability distributions P , Q.143

2.2. Mathematical model for ET. Raw data in ET are described by the so-called sino-144

gram Y t = (Y t
1 , . . . , Y

t
d ) ∈ (N0)

d which stands for the photon counts recorded during exposure145

period [0, t) along d lines of response (LORs). It is assumed that146

Y t
i ∼ Po(tΛi), Λi = aTi λ,

Y t
i are mutually independent for i ∈ {1, . . . , d},

(2.1)147

148

where λ ∈ Rp
+ is the parameter of interest on which we aim to perform inference. In practice,149

vector λ denotes the spatial emission concentration of the isotope measured in [Bq/mm3],150

that is λj is the concentration at pixel j ∈ {1, . . . , p}. Vector Λ = (Λ1, . . . , Λd) denotes the151

observed photon intensities along LORs {1, . . . , d}, respectively. To separate the LORs with152

strictly positive intensities from those ones with zeros we introduce following notations:153

I0(Λ) = {i : Λi = 0}, I1(Λ) = {i : Λi > 0}, I0 ⊔ I1 = {1, . . . , d}.(2.2)154155

Collection of ai ∈ Rp in (2.1) constitute matrix A = [aT1 , . . . , a
T
d ]

T , A ∈ Mat(d, p) which156

is called by projector or system matrix in applied literature on ET and by design (or design157

matrix in statistical literature). Each element aij in A denotes the probability to observe a158

pair of photons along LOR i ∈ {1, . . . , d} if both they were emitted from pixel j ∈ {1, . . . , p}.159

In view of such interpretation, for design A we assume the following:160

aij ≥ 0 for all pairs (i, j),(2.3)161

Aj =

d∑
i=1

aij , 0 < Aj ≤ 1 for all j ∈ {1, . . . , p},(2.4)162

p∑
j=1

aij > 0 for all i ∈ {1, . . . , d}.(2.5)163

164
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If any of formulas (2.4), (2.5) would not be satisfied, then, in practice it would mean that165

either some pixel is not detectable at all (hence it can be completely removed from the model)166

or some detector pair is broken and cannot detect any of incoming photons. These scenarios167

are outside of our scope.168

It is well-known that the inverse problems for PET and SPECT are mildly ill-posed (see169

e.g., [24], [37]), which in practice means that170

(2.6) kerA ̸= {0}.171

Remark 2.1. Matrix A represents a discretization of weighted Radon transform operator172

Ra for ET with complete angle data on the plane (see [37], Chapter 2). Since A approximates173

Ra in strong operator norm we know that174

(2.7) σk ≍ k−1/2, k = 1, . . . , p,175

where σk are the singular values of A. In particular, even if A is injective for p large enough,176

due to (2.7), it may happen that cond(A) > ε−1
F , where εF is the floating-point precision. In177

the latter case, due to the cancelling effect singular values of A numerically will be equivalent178

to machine zeros which means then exactly the existence of a nontrivial kernel for A.179

Likelihood and negative log-likelihood functions for model in (2.1) are given by the for-180

mulas:181

PP t
A,λ(Y

t) = p(Y t | A, λ, t) =
d∏

i=1

(taTi λ)
Y t
i

Y t
i !

e−taTi λ, λ ∈ Rp
+, t ≥ 0,(2.8)182

L(λ | Y t, A, t) =
d∑

i=1

−Y t
i log(tΛi) + tΛi, Λi = aTi λ.(2.9)183

184

Note that for A satisfying (2.6) and for any Y t function L(λ | Y t, A, t) is not strictly185

convex even at the point of the global minima since L(λ + u | Y t, A, t) = L(λ | Y t, A, t)186

for any λ ∈ Rp
+ and u ∈ kerA. To avoid numerical instabilities due to this phenomenon a187

convex penalty φ(λ) is added to L(λ | Y t, A, t), so we also consider the penalized negative188

log-likelihood:189

(2.10) Lp(λ | Y t, A, t, βt) = L(λ | Y t, A, t) + βtφ(λ), λ ∈ Rp
+,190

where βt ≥ 0 is the regularization coefficient. Parameter βt may increase with t at a certain191

rate which is important for practice in order to increase the signal-to-noise ratio in recon-192

structed images.193

2.3. Regularization penalty. The role of penalty φ(λ) in (2.10) is to decrease the numer-194

ical instability in the underlying inverse problem and to make function Lp(λ | Y t, A, t, βt)195

more convex, especially in directions close to kerA.196

In view of this we assume that197

φ is continuous and convex on Rp,(2.11)198

gu(w) = φ(u+ w) is strictly convex in w ∈ kerA for any u ∈ Span(AT ).(2.12)199200
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For numerical tests in section 5 we choose φ to be the sum of two pairwise-difference201

functions for neighboring pixels: first is of log-cosh type which is standard for ET (see [3],202

[54]), and second is the pure ℓ2-squared norm to add more smoothness to sparse images203

reconstructed with log-cosh type regularization.204

Since A is not injective, even for infinite amount of data (Y t ∼ PP t
A,λ∗

, t→ +∞), one is205

able to find λ∗ at most up to its projection kerA (modulo extra information due to constraint206

λ∗ ∈ Rp
+). With regularization the projection of λ∗ onto kerA will be defined uniquely by φ207

and positivity constraints. To describe this effect we define the following function:208

wA,λ(u) = argmin
λ+u+w⪰0
w∈ker(A)

φ(λ+ u+ w), u ∈ Span(AT ), λ ⪰ 0.(2.13)209

210

Then, intuitively (this is made rigorous in section 6), the best one can hope to reconstruct211

using MAP-estimator in (2.10) (or, equivalently, the penalized KL-projection) when t→ +∞212

and βt/t→ 0, will be213

λ∗opt = λ∗ + wA,λ∗(0) = lim
β→+0

argmin
λ⪰0

Lp(λ|Aλ∗, A, 1, β)(2.14)214

215

Thus, in what follows, the numerical quality of reconstructions, calibration etc., is tested216

against λ∗opt rather than λ∗ which is inaccessible no matter the amount of data.217

2.4. Multimodal data for ET. In order to increase the SNR in reconstructed images and218

not to loose a lot in resolution one can regularize the inverse problem using multimodal data219

– scans from CT or MRI. We choose MRI since it provides anatomical information with high220

contrast in soft tissues in comparison to CT (see Figure 1 (a), (b)).221

(a) CT (b) MRI (c) M ∈M

Figure 1: (a), (b) Multimodal data for ET of the brain; (c) segmented MRI-image in (b)

MRI-guided reconstructions in PET is an active topic of research (see the discussion222

in [15] and references therein), however, still a lot of work is needed to describe precisely223

correlations between ET and MRI signals (especially from biological point of view). Because224

of the latter current use of MRI data is essentially image-based: spatially regularizing penalties225

are constructed using MRI data in [4], [5], [52] (PET signals are penalized stronger when being226

constant across edges in MRI images), models built upon MRI-segmented data for locally-227

constant tracer distribution are used in [14] and also in our work.228
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In this work we assume that our side data consists of r presegmented MRI imagesM =229

{M1, . . . ,Mr} (see Figure 1 (c); segmentations of MRI images are precomputed using the dd-230

CRP algorithm from [17]), where segments are being disjoint and connected subsets of pixels.231

First, using M we construct a lower-dimensional model Y t ∼ Po(tΛM), ΛM = AMλM,232

A ∈ Mat(d, pM), λM ∈ RpM
+ (pM ≪ p); see also (2.1). Second, randomized pseudo-233

observations(-sinograms) from this model are mixed with observed Y t into new sinograms.234

Subsequent reconstructions from the latter constitute our samples being regularized byM.235

Now we explain the construction of AM and λM and the actual sampling will be given236

further in subsection 4.4. Let pk be the number of segments in Mk ∈ M, S(Mk) be their237

collection. For each Mk we define new projector by the formulas:238

Ak = (akij) ∈ Mat(d, pk),(2.15)239

akis =

p∑
j=1

aij1{pixel j belongs to segment s ∈ S(Mk)}, k ∈ {1, . . . , r},(2.16)240

241

where A = (aij) is the projector for the full model from subection 2.2. Finally, we stack all242

segments and projectors into one model:243

AM = (A1, . . . , Ar), pM =
r∑

k=1

pk,(2.17)244

λM = (λ1
1, . . . , λ

1
p1 , . . . , λ

r
1, . . . , λ

r
pr), ΛM = AMλM, ΛM = (ΛM,1, . . . ,ΛM,d).(2.18)245246

Therefore, λM is a positive linear combination of all segments from all images in M with247

constant signal in each segment, and AM being respective projector derived from A. For AM248

we assume that it is injective and well-conditioned, that is249

kerAM = {0}, cond(AM) < cM,(2.19)250251

where cM is some moderate constant. The latter assumption reflects the idea that images in252

M consist of low number of large segments.253

3. A motivating example for NPL in ET. Recently a Gibbs-type sampler was proposed254

in [14] for Bayesian inference for PET-MRI. Despite a number of positive practical features255

(spatial regularization, use of multimodal data) the problem of slow mixing for the corre-256

sponding Markov chain was observed. Below we consider a simplified version which shares257

the same mixing problem and explain the phenomenon numerically and theoretically.258

In algorithms for ETs it is common to augment data Y t by nt = {nt
ij}, where nt

ij is the259

number of photons being emitted from pixel j and detected in LOR i, nt
ij ∼ Po(taijλj), n

t
ij260

are mutually independent for all (i, j); see e.g., [44]. In view of this physical interpretation,261

for pair (nt, Y t) the following coherence condition must be satisfied:262

(3.1)

p∑
j=1

nt
ij = Y t

i for all i ∈ {1, . . . , d}.263

By (3.1) one sees Y t is a function of nt, so (Y t, nt) is indeed a data augmentation of Y t. Note264

that nt are not observed in a real experiment but they greatly simplify design of samplers (see265
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8 FEDOR GONCHAROV, ÉRIC BARAT AND THOMAS DAUTREMER

e.g., [25], [14]), because conditional distributions p(nt | Y t, A, λ, t), p(λ | nt, A, t) admit simple266

analytical forms even for nontrivial priors involving multimodal data. For our example below267

we use only a simple pixel-wise positivity gamma-prior:268

(3.2) π(λ) =

p∏
j=1

πj(λj), πj = Γ(α, β−1), α > 0, β > 0,269

where α, β are some fixed constants. For the prior in (3.2) and model (2.1) distributions270

p(nt | Y t, A, λ, t), p(λ | nt, A, t) are as follows:271

p(nt
ij | Y t, A, λ, t) = Multinomial(Y t

i , pi1(λ), . . . , pip(λ)),

pij(λ) =
aijλj∑
k aikλk

, i ∈ {1, . . . , d},
(3.3)272

p(λt
j | nt, Y t, A, t) = Γ

(
d∑

i=1

nt
ij + α, (tAj + β)−1

)
, j ∈ {1, . . . , p},(3.4)273

274

where Aj is defined in (2.4).275

Using (3.3), (3.4) the construction a Gibbs sampler for Bayesian posterior sampling from276

p(λ | Y t, A, t) is straightforward.277

278

Algorithm 1 Gibbs sampler for p(λ | Y t, A, t)

1: data : Y t

2: input : λ0 ∈ Rp
+, π(λj) = Γ(α, β−1),

B – number of samples
3: for k ← 1 to B do
4: nt

k ∼ p(nt | Y t, A, λk−1, t)
5: λt

k ∼ p(λ | nt
k, Y

t, A, t)
6: end for
7: return {λt

k}Bk=1,
Folklore: empirical distribution of {λt

k}Bk=1 approximates posterior p(λ | Y t, A, t)

Remark 3.1. One may argue that prior in (3.2) is a very bad choice from practical point279

of view, especially in view of ill-posedness of the inverse problem since it does not bring280

any spatial regularization. However, the mixing rate for the Markov chain in Algorithm 1281

asymptotically (i.e., when t→ +∞) will not depend on the choice of π(λ) in the small noise282

limit due to Bernstein von-Mises phenomenon (see e.g., [3] and formulas (3.6), (3.5)). At the283

same time, below we show that mixing is affected primarily by the choice of augmentation284

scheme and the decision to sample nt.285

We consider the correlations between values of h(λ) = hTλ, h ∈ Rp, for subsequent samples286

from the Markov chain in Algorithm 1:287

(3.5) γt(h) = corr(h(λt
k+1), h(λ

t
k) | Y t, t).288
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In formula (3.5) we assumed that the chain is in stationary state, i.e. k can be any.289

Markov chain for the sampler in Algorithm 1 coincides with data augmentation schemes290

from [31], [32], where the latter are exactly Gibbs samplers with only one layer of latent291

variables. In Bayesian framework γt(h) is also known as fraction of missing information; see292

[31]. In particular, in [31] authors gave an exact formula for γt(h) which can be written for293

our example as follows:294

γt(h) = 1− E[var(h(λ) | nt, Y t, t) | Y t, t]

var(h(λ) | Y t, t)
.(3.6)295

296

Exact formula for (3.6) for arbitrary t seem difficult (if possible) to obtain, however, in the297

asymptotic regime t→ +∞ one can apply the Bernstein von-Mises type theorem from [3] and298

arrive to the following simple expression:299

γ(h) = lim
t→+∞

γt(h) = 1−
hTF−1

aug(λ∗)h

hTF−1
obs(λ∗)h

, h ∈ Rp, a.s. Y t, t ∈ (0,+∞).(3.7)300

301

where302

.λ∗ is the true parameter, λ∗ ≻ 0,(3.8)303

Fobs(λ∗) =

d∑
i=1

aia
T
i

Λ∗
i

= ATD−1
Λ∗A, DΛ∗ = diag(. . . ,Λ∗

i , . . . ), Λ
∗
i = aTi λ∗,(3.9)304

Faug(λ∗) = diag(. . . , cj , . . . ), cj = Aj/λ∗j .(3.10)305306

Note that from (2.5) and (3.8) it follows that Λ∗
i > 0 for all i, therefore division by Λ∗

i in307

(3.9) is well-defined. Matrices Fobs(λ∗), Faug(λ∗) are the Fisher information matrices at λ∗ for308

Poisson models with observables Y t and nt, respectively. Note also that Fobs is not invertible309

in the usual sense, so in (3.7) its pseudo-inversion in the sense of Moore-Penrose is considered.310

Remark 3.2. Strict positivity assumption in (3.8) is not practical and a precise analytic311

formula which extends (3.7) for λ∗ ⪰ 0 can be established using the results from [3]. The312

point is that model (2.1) is non-regular since the parameter of interest belongs to a domain313

with a boundary, so a separate result for Bernstein von-Mises phenomenon is needed in this314

case. For our toy example it is sufficient to consider the case in (3.8) as if we were interested315

in mixing times of the chain in areas with positive tracer concentration.316

Let h1, . . . , hp be the orthonormal basis of eigenvectors of Fobs(λ∗) with corresponding317

eigenvalues s1 ≥ s2 · · · ≥ sp ≥ 0. Intuitively, in {hm}pm=1 higher indices m correspond to318

higher frequencies on images (see Figure 2 (a)-(d)).319
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(a) λ∗ (b) h1 (c) h2 (d) h50

Figure 2: eigenvectors hm for Fobs(λ∗)

From (3.7) it follows that320

γ(hm) = 1− smhTmF−1
aughm.(3.11)321322

Matrix Faug is well-conditioned, continuously invertible and the quadratic term in (3.11)323

admits the following bound:324

(3.12) F−1
aug(λ∗) = diag(. . . ,

λ∗j
Aj

, . . . )⇒ hTmF−1
aug(λ∗)hm ≤

maxj(λ∗j)

minj(Aj)
.325

Regular behavior of F−1
aug is not surprising because this is the Fisher information matrix for326

latent variables nt for which the inverse problem is not ill-posed at all. From (3.9) and the327

ill-conditioning nature of A it follows that Fobs(λ∗) is also ill-conditioned (see [18]), moreover,328

sm ≍ m−1 for large m (see Remark 2.1). From this and (3.11), (3.12) we conclude that329

(3.13) γ(hm) ≈ 1 for large m.330

Formulas (3.5) and (3.13) constitute a clear evidence of poor mixing in the Markov chain331

in Algorithm 1. Though (3.7)–(3.13) were derived for t → +∞, they reflect well the be-332

havior of the chain for moderate t which is seen from the numerical experiment below (see333

Supplementary Materials, section SM5 for details).334

Figure 3: corr(hTλt
k, h

Tλt
k+1 | Y t) for t = 102, 1010 for h = hm; blue curve – empirical

correlations computed from 2000 samples, orange curve – values for γ(hm) for m = 1, . . . , 200
by formula (3.7).

Here one concludes that mixing is much slower for high-frequency parts of images. There-335

fore, to estimate reliably, say mean hTλ for some mask h ∈ Rp, one needs almost infinite336
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number of samples if h contains a high-frequency component in terms of {hm}pm=1 (see Sup-337

plementary Material, section SM4 for details). This also can be seen as a recommendation338

for choosing h in practice: h should belong to Span(AT ) and |hThm| should be as small as339

possible for large m.340

Note that such behavior of the sampler is not due to the choice of pixel-wise prior but341

due to sampling of nt
ij which correspond to observations for the well-posed inverse problem.342

A practical advice would be to avoid sampling of missing data in the Markov chain or to use343

a strong smoothing prior/regularizer (for example by greatly increasing regularization coeffi-344

cients so that asymptotic arguments in (3.7) will no longer hold but the posterior consistency345

is still preserved). The latter approach will accelerate mixing at cost of oversmoothing in346

sampled images.347

By this negative but informative example we support the message in [50] saying that design348

of a data augmentation scheme while preserving good mixing in the Markov chain is an “Art”,349

especially in the case of ill-posed inverse problems. In view of poor mixing, complexity of the350

design and implementation, lack of scalability and high numerical load while using MCMC351

([54], [23], [10], [41], [14]) we turn to NPL as a practical relaxation of Bayesian sampling for352

the problem of ETs.353

4. Nonparametric posterior learning for emission tomography. To derive the NPL for354

ET we prefer to start from the completely nonparametric setting as it was originally done355

in [35]. This allows us to concentrate on essential ideas behind and, moreover, all practical356

algorithms can be directly obtained by binning nonparametric objects to finite dimensions. A357

reader interested mainly in practical outcomes may skip this and go directly to subsection 4.5.358

4.1. Nonparametric model for ET. Nonparametric framework for ET can be seen as a359

classical scanning scenario with a machine having infinite number of infinitely small detectors.360

Let Z be the space of all detector positions in the acquisition geometry of a scanner (e.g.,361

for one slice Z consists of all non-oriented straight lines in R2). We also assume that Z362

is equipped with a boundedly-finite measure dz and with a metric ρZ (describing distances363

between the lines). Then, for exposure period [0, t) the raw data are given by random measure364

Zt generated by a point process:365

Zt =
Nt∑
j=1

δ(zj ,tj), (zj , tj) ∈ Z × R+, tj < tj+1, tj ≤ t,(4.1)366

367

where368

N t is total number of registered photons,(4.2)369

{zj}N
t

j=1, {tj}N
t

j=1 are the LORs and arrival times of events, respectively.(4.3)370371

In practical literature on ET sample Zt is known as list-mode data, whereas Y t (sinogram) is372

the version of Zt integrated withing [0, t). Under the assumption of temporal stationarity of373

the generating process, Y t contains the same amount of information as Zt since the first one374

is then a sufficient statistic.375

For statistical model of Zt, one takes the family of temporally stationary Poisson point376

processes PPAλ on Z × R+, where A, λ stand for nonparametric versions of the projector377
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and the tracer concentration from section section 2. For intuition, in such model the intensity378

parameter of the process in LOR z ∈ Z at time t is Λ(z) dz dt = [Aλ](z)dz dt, therefore379

Λ(z) dt dz is the density function for the intensity measure of the Poisson process.380

The negative log-likelihood for PPAλ with observation Zt is defined via the following381

formula (see, e.g., [24], Section 2; [9], Section 2.1):382

L(λ | Zt, A, t) = −
Nt∑
j=1

log(Λ(zj)) +

∫
Z×[0,t)
Λ(z) dz dt

= −
∫
Z×[0,t)
log(Λ(z))Zt(dz dt) + t

∫
Z
Λ(z) dz, Λ(z) = Aλ(z).

(4.4)383

384

4.2. Misspecification and the KL-projection. In reality our model assumption is always385

incorrect and Zt ∼ PPt = PP|Z×[0,t) (marginal for interval [0, t)) for some point process386

PP on Z × R+, where PP, PP ̸= PPAλ for any λ ⪰ 0. Since the (penalized) maximum387

log-likelihood estimates are the most popular in ET, we say that the best one can hope to388

reconstruct using measurements from PPAλ on [0, t) is the projection of PPt onto PPt
Aλ =389

PPAλ|Z×[0,t) in the sense of Kullback-Leibler divergence:390

(4.5) λ∗(PP, [0, t)) = argmin
λ⪰0

KL(PPt,PPt
Aλ).391

Since A is ill-conditioned, in general, λ∗ in (4.5) may not be defined uniquely. For this we392

consider the penalized KL-projection defined by the formula:393

λ∗(PP, [0, t), βt) = argmin
λ⪰0

[KL(PPt,PPt
Aλ) + βtφ(λ)],(4.6)394

395

where βt is the regularization coefficient and φ(λ) is a nonparametric version of penalty from396

section 2. From (4.4) and the definition of Kullback-Leibler divergence it follows that (up to397

terms independent of λ):398

KL(PPt,PPt
Aλ) = −

∫
Z×[0,t)
log(Λ(z))EPPt [Zt(dz dt)] + t

∫
Z
Λ(z)dz,(4.7)399

400

where EPPt is the expectation on Zt with respect to PPt. Putting together (4.6), (4.7), for401

the penalized KL-projection we get the following formulas:402

λ∗(PP, [0, t), βt) = argmin
λ⪰0

Lp(λ | PP, A, t, βt),(4.8)403

Lp(λ | PPt, A, t, βt) = −
∫
Z×[0,t)
log(Λ(z))EPPt [Zt(dz dt)] + t

∫
Z
Λ(z)dz + βtφ(λ),

Λ(z) = Aλ(z).

(4.9)404

405

4.3. Propagation of uncertainty and the generic algorithm. Following the idea from406

[35], we say that uncertainty on λ propagates from the one on PP via (4.8), (4.9). Let πM be407

a prior in which we encode our beliefs over a set of possible PP’s, that is πM is a nonparametric408
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prior on spatio-temporal point processes on Z ×R+ and it is constructed usingM. Let data409

be list-mode Zt or sinogram Y t, then our prior beliefs can be updated in form of posterior410

distribution πM(· | Zt ∨ Y t, t).411

Algorithm 2 Generic NPL for ET

1: data : Zt or Y t,M
2: input : B – number of samples
3: for b← 1 to B do
4: P̃P ∼ πM(· | Zt ∨ Y t, t)

5: λ̃t
b ← argmin

λ⪰0
Lp(λ | P̃P, A, t, βt) for Lp(·) defined in (4.9)

6: end for
7: return {λ̃t

b}Bb=1.

As it has already been outlined before and in [35], [16], the above scheme produces i.i.d412

samples and is trivially parallelizable which is a strong numerical advantage in front of MCMC413

sampling from pure Bayesian posteriors. In what follows ‘tilde’ will denote samples produced414

by NPL in ET (either nonparametric or binned).415

4.4. Constructions of πM(·) and πM(· | Zt ∨ Y t, t). Binning. In view of the physical416

model of ET we assume that PP belongs to the family of temporally stationary Poisson417

processes, that is418

PP = PPΛ with some density Λ(z) dz dt on Z × R+,(4.10)419

Λ(z) ≥ 0 a.s. and integrable on Z w.r.t. dz.420421

Hence, to build πM we construct a prior on Λ using M, and consequently, the posterior422

will also defined on Λ while propagating the uncertainty via (4.10) on PP. For the sake423

of accessibility, discussion of the above assumption (restrictivity and generalizations) with424

detailed theoretical constructions of nonparametric πM(·) and πM(·|Zt ∨ Y t, t) are put in425

Supplementary Materials, section SM6. Below we present finite-dimensional versions which426

are also used in our numerical experiments.427

In finite dimensions (after binning) process PPΛ boils down to d independent stationary428

Poisson processes on R+ with intensities Λ1, . . . ,Λd. For the prior on Λ = (Λ1, . . . ,Λd) we429

choose the mixture of independent gamma distributions (further denoted by MGP – mixture430

of gamma processes (due to its nonparametric origin)):431

ΛM = (ΛM,1, . . . ,ΛM,d) ∼ PM(·), Λi | ΛM,i ∼ Γ(θtΛM,i, (θ
t)−1), i = 1, . . . , d,(4.11)432433

where ΛM is the mixing parameter which also corresponds to the mean intensity in the MRI-434

based model from subsection 2.4, PM(·) is the mixing distribution (hyperprior), θt is a positive435

scalar. The choice of such specific parametrization by θt in (4.11) allows to center the gamma436

distribution on ΛM (E[Λ|ΛM] = ΛM,i), so θt controls only the spread – θt = 0 corresponds to437

improper uniform distribution on Rd
+, θ

t = +∞ is equal to Λ = ΛM ∼ PM. In short, for the438

prior in (4.11) we will use the following notation439

πM(·) = MGP(t, PM(ΛM), θtΛM, (θt)−1).(4.12)440441
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14 FEDOR GONCHAROV, ÉRIC BARAT AND THOMAS DAUTREMER

Conjugacy between Poisson distribution of Y t and Gamma distributions of Λ|ΛM implies that442

(4.13) πM(· | Zt ∨ Y t, t) = MGP(t, PM(Λ̃t
M | Zt ∨ Y t, t), Y t + θtΛ̃t

M, (θt + t)−1),443

where PM(Λ̃t
M | Zt ∨ Y t, t) is the posterior for PM which we specify now. Distribution of444

PM(ΛM) is defined directly by sampling:445

λM = (λ1
1, . . . , λ

1
p1 , . . . , λ

r
1, . . . , λ

r
pr) : λ

k
s ∼ Γ(1,∞), ΛM = AMλM.(4.14)446447

where λM, AM are constructed in subsection 2.4, Γ(1,∞) is the uniform (improper) distri-448

bution on R+. Then, posterior PM(Λ̃t
M | Zt ∨ Y t, t) is defined by the classical Bayes formula449

for model Y t ∼ Po(tΛM) and the prior in (4.14). In principle, due to moderate size of AM450

and good conditioning it is possible to use MCMC-approach (e.g., a Gibbs sampler) to sample451

from PM(Λ̃t
M | Zt ∨ Y t, t), however, in order to keep the overall implementation as simple as452

possible we turn to WLB from [38] for approximate posterior sampling.453

Algorithm 3 Approximate sampling from PM(Λ̃t
M | Zt ∨ Y t, t) via WLB

1: data : Y t

2: input : AM ∈ Mat(d, pM) from (2.15) and (2.17)
3: Λ̃t ← (Λ̃t

1, . . . , Λ̃
t
d), where independently Λ̃t

i∼Γ(Y t
i , t

−1)

4: λ̃t
M ← argmin

λM⪰0
L(λM | Λ̃t, AM, 1)

5: Λ̃t
M ← AMλ̃t

M
6: return Λ̃t

M

Remark 4.1. Since we assume that AM is well-conditioned, minimizer λ̃t
M in Step 4 of454

Algorithm 3 can be efficiently computed via the classical EM-algorithm from [44].455

From (4.13) and construction of PM(Λ̃t
M | Zt ∨ Y t, t) one can see that overall MGP456

posterior acts as (doubly randomized) linear combination of the raw sinogram Y t and pseudo-457

sinogram tΛ̃t
M proposed by the MRI-based model; see also Figure 4.458

4.5. Final algorithm.459

Algorithm 4 NPL for ET

1: data : Y t

2: input : B – number of samples, θt, A, βt, φ(λ)
3: for b← 1 to B do
4: Λ̃t

M ← (Λ̃t
M,1, . . . , Λ̃

t
M,d) ∼ PM(Λ̃t

M | Zt ∨ Y t, t) via Algorithm 3

5: Λ̃t
b ← (Λ̃t

b,1, . . . Λ̃
t
b,d), where independently Λ̃t

b,i ∼ Γ(Y t
i + θtΛ̃t

M,i, (θ
t + t)−1)

6: λ̃t
b ← argmin

λ⪰0
Lp(λ | Λ̃t

b, A, t, β
t/t) for Lp(·) defined in (2.10)

7: end for
8: return {λ̃t

b}Bb=1
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Y t

AM λ̃t
M Λ̃t

M Λ̃t
b λ̃t

b

+

Γ(Y t, t−1)

Γ(Y t+θtΛ̃t
M, (θt + t)−1)

Figure 4: NPL-ET pipeline for one sample in Algorithm 4: wave-like arrows denote random-
ization of inputs, transparent blue region denotes steps within Algorithm 3.

Remark 4.2. In Step 6 of Algorithm 4 we have used the fact that binned version of Lp(·)460

from (4.9) coincides with Lp(·) from (2.10). Moreover,461

(4.15) Lp(λ | tΛ̃t
b, A, t, β

t) = tLp(λ | Λ̃t
b, A, 1, β

t/t) +R,462

whereR is independent of λ, hence, the minimization is directly applied to Lp(λ | Λ̃t
b, A, 1, β

t/t)463

instead of Lp(λ | tΛ̃t
b, A, t, β

t). If the numerical complexity of Step 4 is controlled by our choice464

of PM(·), Step 6 is inevitable in the paradigm of NPL, hence, it must be numerically feasible465

via some scalable optimization algorithm. This is the case for us in view of the well-known466

the Generalized Expectation-Maximization(GEM)-type algorithm from [11] which is specially467

designed for ET with Poisson-type log-likelihood Lp(·), where φ(·) must be a C2-smooth468

convex pairwise difference penalty; see Supplementary Materials, section SM7 for details on469

design of the algorithm.470

Remark 4.3. Parameter θt in Algorithm 4 admits the following interpretation: it is the471

rate of creation of “pseudo-photons” in the model constructed from MRI data and being472

conditioned with Y t. By choosing θt = ρt, ρ ≥ 0 in Step 5 we sum up sinograms Y t and tΛ̃t
M473

in proportions 1/(1 + ρ) and ρ/(1 + ρ), respectively. For θt = 0 side information M is not474

used at all and we see Algorithm 4 as a version of WLB from [38] being adapted for the ET475

context; see also [35], [16], [42] for connections between the WLB and NPL in the iid setting.476

5. Numerical experiment. 1477

5.1. Design. We illustrate Algorithm 4 on synthetic PET data based on a realistic phan-478

tom from the BrainWeb database [52]. Typical activity concentrations have been assigned to479

annotated tissues (gray matter, white matter, skin, etc.) and we delineated a tumor lesion480

area, not present in the initial phantom with an uptake of 50% compared to the gray mat-481

ter activity; see Figure 5(a). We consider the worst case scenario for the prior, where the482

anatomical MRI (T1) phantom (see Figure 5(b)) does not contain any information relative483

to the lesion. Therefore, model Y t ∼ Po(tAMλM) in subsection 2.4 is strongly misspecified484

1Source code in Python can be found at https://gitlab.com/eric.barat/npl-pet
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(with increased bias) in the lesion area. For segmentation of MRI-images we used ddCRP [2]485

with a concentration parameter equals 10−5 leading to a few hundreds of random segments486

for a 2D brain slice.487

100 50 0 50 100

(a) λ∗ (b) λ∗opt (c) λ∗ vs. λ∗opt (d) M1 ∈M

Figure 5: emission map with lesion hot spot at (a), optimal achievable reconstruction λ∗opt at
(b), profile through lesion λ∗ – orange dotted, λ∗opt – in blue at (c) segmented MRI at (b)

The reconstruction grid for images is of size 256 × 256 (p = 216) being identical to the488

phantom’s one. Acquisition geometry consists of LORs derived from a ring of 512 detectors489

spaced uniformly on a circle. Design A was computed via classical Siddon’s algorithm [45]490

and AM was computed from A using formulas (2.15), (2.17). Intensity λ∗ was set so that491 ∑p
j=1 λ∗j = 5 · 105 and for the experiment two sinograms were generated via formula (2.1) for492

t ∈ {t1, t2}, t1 = 1, t2 = 100. Case with t1 corresponds to realistic setting, whereas t2 = 100493

is used to describe nearly asymptotic regime of the sampler. Below we present results for494

t = t1 (for t2 and additional experiments see Supplementary Materials, subsection SM7.1).495

To compute λ∗opt, we have used (2.14) with β = βmin = 10−3, where βmin was chosen496

subjectively such that λ∗opt does not contain strong visible numerical artifacts related to the497

implementation of projector A (see also Remark 4.2). For φ(λ) convex pairwise-difference498

penalty from (SM8.1) with hyperparameters (ζ, ν), where the latter were chosen to be always499

fixed (ζ = 0.05, ν = 0.15) including βt/t = 2× 10−3.500

For t1 = 1 we present results for ρ = θt/t ∈ {0, 0.5, 1.0, 2.0, 4.0}; see Remark 4.3. Using501

Algorithm 4, for each combination of (t, ρ) we generated B = 1000 bootstrap draws from502

which further statistics (empirical mean, variance) as well calibration curves and plots were503

computed. Main results are presented in Figure 6 and Table Table 1. First, we check visually504

the effect of ρ on bias and variance (columns (a), (b); no need for λ∗opt to compute), and second,505

calibration of the overall posterior (columns (c), (d), (e); requires λ∗opt). For calibration506

we employ the approach in [51], [21], which says that a model is well-calibrated if for any507

level α ∈ [0, 1] (target coverage), the corresponding posterior α-level HPD-intervals (highest508

probability density) computed pixel-wise will contain λ∗opt for α · 100% of all pixels (achieved509

coverage – fraction of j’s for which λ∗opt,j ∈ [q̂Lj,α, q̂
U
j,α], where [q̂Lj,α, q̂

U
j,α] being the shortest510

interval such that P (λ̃t
b,j ∈ [q̂Lj,α, q̂

U
j,α]|Y t) = α) (column (c) – reliability curve). Thus, if511

the achieved coverage is smaller than the target one, then the model is considered to be512

overconfident and for vice versa – under-confident (or conservative). Note that for practice513

it is preferable to have slightly conservative model than overconfident one, especially in such514

domain as medical imaging; see the discussion in [21].515
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NPL Mean NPL Variance Calibration curve Coverage map Coverage hist.
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Figure 6: Columns : (a) NPL-mean, (b) NPL-variance (same color scale as mean), (c) cali-
bration curve, (d) coverage probability map (mask in gray), (e) coverage histogram.

ρ 0.00 0.50 1.00 2.00 4.00

PSNR 21.42 24.15 25.29 25.84 25.66
MSWD 8.74 105 1.16 0.83 1.04 1.78
ECE 9.41 10−2 3.29 10−2 1.35 10−2 1.0310−2 5.29 10−2

KLC 5.52 10−2 1.20 10−2 9.7610−3 1.14 10−2 3.85 10−2

Table 1: Performance metrics
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Since the definition of calibration does not take into account correlations between pixels,516

columns (d), (e) are used for diagnostic of the latter. Coverage map (d) shows for each pixel517

the smallest probability so that the HPD-interval contains λ∗opt while the normalized coverage518

histogram in (e) corresponds to the (empirical) probability density function for the coverage519

curve in (c) being viewed as c.d.f. (note that for perfect calibration the c.d.f. in (c) and520

p.d.f. in (e) correspond to the uniform distribution on [0, 1]). In Table 1 we compute PSNR521

for the NPL-mean, ECE – expected calibration error (ℓ1-norm between the calibration curve522

in (c) and diagonal x = y on [0, 1]), MSWD – mean-squared weighted deviation between523

λ∗opt and the NPL-mean, KLC – Kullback-Leibler divergence between uniform distiribution524

and coverage histogram in (e); see Supplementary Materials, subsection SM8.2 for precise525

definitions and connections to other metrics.526

5.2. Interpretation. The increase of ρ reduces the noise, but on the other hand, it in-527

creases bias in the lesion area; see Figure 6(a) and PSNR in Table 1. The latter is due to528

the aforementioned misspecification, therefore the high signal is being spread over the larger529

segment in M containing the lesion. Being subjective, for us the most visually appealing530

results for the trade-off between noise and preservation of contours of the lesion were ob-531

tained for ρ ∈ {0.50, 1.00}. Note also that pixel-wise variance in (b) decreases. However, for532

ρ → +∞ the limit is not zero but the posterior variance in the MRI-based model2 which is533

much smaller, for example, than for ρ = 0 (because Y t contains much more information for534

low-dimensional λM ∈ RpM than for λ ∈ Rp). Spikes for variance in (b) (e.g., for ρ = 4.0)535

correspond to smallest segments inM where the signal is more sensitive to perturbations in536

Λ̃t
b due to ill-conditioning nature of A. With calibration results in (c), (d), (e), and in Table 1537

we can choose objectively one optimal ρ by arguing on guarantees of covering λ∗opt by the pos-538

terior. First, note that for ρ = 0 the posterior is essentially overconfident (columns (c), (e)) –539

this is due to large amount of pixels in the slab between the cranium and soft tissues (exterior540

yellow ring on images in (d)) where in fact the isotope concentration is zero. Coverage map541

(d) and histogram (e) reveal that these pixels require very large credible levels to cover λ∗opt542

meaning that the posterior in this region is overcontracted. We explain the overcontraction543

by the fact that for many LORs crossing such pixels and nearly tangential to the brain the544

intensities Λ∗
i are so small (though positive) that for t = 1 (mild regime) it happens that545

Y t
i = 0. Then, in Step 5 one can see that Λ̃t

b,i ∼ Γ(0, t−1) = δ0 for ρ = 0, so Λ̃t
b,i ≡ 0 c.a.s.546

and no uncertainty can propagate from such LOR in Step 6 which results in overcontrac-547

tion. Moreover, in subsection 6.3 we show that for Poisson model the event Y t
i = 0 make the548

posterior contract much stronger to zeros in pixels intersected by LOR i (effect of positivity549

constraints in Step 6) which is another argument for overcontraction. Finally, overcontraction550

was already reported for (non-Poisson) WLB in [40] with a proposal to fix it different from551

NPL; see also Remark 4.3. An additional numerical experiment supporting our explanation is552

given in the Supplementary Materials, subsection SM8.3. For ρ ∈ {0.5, 1.00}, since the afore-553

mentioned empty slab is splitted into larger segments for which Λ̃t
M,i > 0, the overcontraction554

is corrected while improving the overall calibration and reaching the optimum for KLC and555

MSWD at ρ = 1.0 (see (c), (e) and ECE, KLC in Table 1). Further increase ρ ∈ {2.00, 4.00}556

2var[Λ̃t
b|Y t] = (Y t/t+ρE[Λ̃t

M|Y t])/t2(1+ρ)2+ρ2var[Λ̃t
M|Y t]/t2(1+ρ)2, lim

ρ→+∞
var[Λ̃t

b|Y t] = var[Λ̃t
M|Y t]/t2
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results in increased bias in the lesion area and since the posterior intervals are being more557

contracted, the posterior again turns to be overconfident (see column (c) supported by sharp558

increase for high confidence levels in (e) and also large yellow structures in (d) in the lesion559

and central segments). In conclusion, calibration with ρ is simple and tractable, seemingly560

with one optimum w.r.t bias (in the lesion) and (global-)variance trade-off.561

6. Asymptotic analysis of the algorithm. Statistical model (2.1) is non-regular since562

domain Rp
+ contains a boundary and, often it is the case that λ∗ ∈ ∂Rp

+. The results of [3] for563

the classical Bayesian framework show that for the well-specified case and large class of priors564

the posterior is consistent at λ∗ and the asymptotic distribution is complex because it splits565

in three modes due to the effect of positivity constraints (exponential, Gaussian and half-566

Gaussian; two latter have the same standard contraction rates but the first one). Consistency567

at λ∗ and a very similar splitting are also present in NPL with the asymptotic distribution568

being tight around strongly consistent estimator λ̂t
sc satisfying some contraction properties569

in observation (sinogram) space. Interestingly, the aforementioned splitting depends not on570

λ∗ (as it was in [3]) but again on λ̂t
sc because of which yet we fail to demonstrate fully the571

asymptotic normality since it requires additional results on behavior of strongly consistent572

estimators with constraints on the domain (detailed discussion is given in Supplementary573

Materials, section SM9).574

The problem of misspecification for the generalized Poisson model with wrong design575

arises twice our setting: first, in Algorithm 3 when sampling Λ̃t
M (because we assume that576

Y t ∼ P t
AM,λM

whereas Y t ∼ P t
A,λ∗

) and, second, when we assume that model (2.1) is wrong, in577

general. Suprisingly, in this simple case the identifiability of λ∗ can be lost even for injective578

designs which we show by an explicit example below. We propose an intuitive sufficient579

condition on observed intensities along LORs and design A to retrieve it back.580

6.1. Convergence for conditional probabilities. Let (Ω,F , P ) be the common proba-581

bility space on which process Y t, t ∈ [0,+∞) and MGP prior in (4.12) are defined (see582

Supplementary Materials, section SM1 for details). By U |Y t we denote the distribution of U583

conditionally on the sigma algebra generated by Y τ , τ ∈ [0, t).584

Definition 6.1. We say that U t converges in conditional probability to U almost surely Y t585

if for every ε > 0 the following holds:586

(6.1) P (∥U t − U∥ > ε | Y t)→ 0 when t→ +∞, a.s. Y t, t ∈ [0,+∞).587

This type of convergence will be denoted as follows:588

(6.2) U t c.p.−−→ U.589

In our proofs for U t c.p.−−→ 0 we also write590

(6.3) U t = ocp(1).591

Definition 6.2. We say that U t is conditionally tight almost surely Y t if for any ε > 0 and592

almost any trajectory Y t, t ∈ [0,+∞) there exists M = M(ε, {Y t}t∈(0,+∞)) such that593

(6.4) sup
t∈[0,+∞)

P (∥U t∥ > M | Y t) < ε.594
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20 FEDOR GONCHAROV, ÉRIC BARAT AND THOMAS DAUTREMER

In short, in the definitions above almost surely Y t means that statements in (6.1), (6.4)595

hold for almost every trajectory Y t, t ∈ [0,+∞).596

6.2. Consistency.597

Assumption 6.3. Model (2.1) is well-specified, that is598

(6.5) Y t ∼ PP t
A,λ∗ , for some λ∗ ∈ Rp

+ and all t ∈ [0,+∞),599

where A satisfies (2.3)–(2.6), PP t
A,λ is defined in (2.8).600

Theorem 6.4. Let Assumption 6.3 and conditions (2.11), (2.12) for φ be satisfied. Let also601

βt, θt be such that602

βt/t→ 0, θt/t→ 0 when t→ +∞.(6.6)603604

Then,605

(6.7) λ̃t
b

c.p.−−→ λ∗opt,606

where λ̃t
b is sampled in Algorithm 4, λ∗opt is defined in (2.14).607

The above result is merely a consequence a more general statement for any bootstrap-type608

procedure which is given below.609

Theorem 6.5. Let conditions of Theorem 6.4 be satisfied but Assumption 6.3. Assume also610

that611

Λ̃t
b

c.p.−−→ Λ∗ = Aλ∗ for some λ∗ ∈ Rp
+.(6.8)612

613

Then, formula (6.7) remains valid.614

Thus the conditional distribution of λ̃t
b asymptotically concentrates at λ∗ in the subspace615

where parameter λ is identifiable through design A and also regarding the positivity con-616

straints. Projection of λ∗ onto ker(A) which not “visible” by positivity constraints is not617

identifiable in model (2.1) and it is defined solely by wA,λ∗(0); see formula (2.13).618

6.3. Tightness.619

Assumption 6.6. AM ∈ Mat(d, pM) is injective.620

Assumption 6.7 (non-expansiveness condition). Let Λ∗ ∈ Rd
+, AM ∈ Mat(d, pM), AM has621

only positive entries and analog of (2.4) for AM holds (i.e., AM,j =
d∑

i=1
aM,ij > 0). Define set622

λM,∗ = argmin
λM⪰0

L(λM | Λ∗, AM, 1),(6.9)623
624

where L(λM | Λ∗, AM, 1) is given in (2.8). There exists at least one point in λM,∗ for which625

the following holds:626

(6.10) I0(Λ
∗
M) = I0(Λ

∗), Λ∗
M = AMλM,∗,627

where I0(·) is defined in (2.2).628
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The proposition below states that the non-expansiveness condition is always meaningful629

and not very restrictive (for more details see Supplementary Materials, section SM11).630

Proposition 6.8. Let Λ∗ ∈ Rd
+, AM ∈ Mat(d, pM), AM has only positive entries and the631

analog of (2.4) for AM holds (i.e., AM,j =
d∑

i=1
aM,ij > 0). Then, the set of minimizers in632

(6.9) is non-empty and constitutes an affine subset of (pM−1)-dimensional simplex ∆p
AM

(Λ∗)633

defined by the formula:634

(6.11) ∆pM
AM

(Λ∗) = {λM ∈ Rp
+ |

pM∑
j=1

AM,jλM,j =

d∑
i=1

Λ∗
i ≥ 0}.635

Moreover, it always holds that636

(6.12) I1(Λ
∗) ⊂ I1(Λ

∗
M) or equivalently I0(Λ

∗
M) ⊂ I0(Λ

∗), where Λ∗
M = AMλM,∗.637

The aim of the non-expansiveness condition is to have a unique and stable KL-minimizer638

λM,∗ so that the the prior effect of M on λ̃t
b via Λ̃t

M (which concentrates near ΛM,∗ =639

AMλM,∗) is not spread ambiguously among different (but equivalent in terms of observations)640

combinations of signals in segments ofM. This is provided by the theorem below.641

Theorem 6.9 (identifiability in the prior model). Let Assumptions 6.6 and 6.7 be satisfied.642

Then, λM,∗ defined in (6.9) has only one point and the following approximation holds:643

L(λM | Λ∗, AM, 1)− L(λM,∗ | Λ∗, AM, 1) = µT
M,∗λM +

1

2

∑
i∈I1(Λ∗)

Λ∗
i

(ΛM,i − Λ∗
M,i)

2

(Λ∗
M,i)

2
644

+ o(∥ΠAT
M,I1(Λ

∗)
(λM − λM,∗)∥2),(6.13)645

646

where ΠAT
M,I1(Λ

∗)
denotes the orthogonal projector onto Span(AT

M,I1(Λ∗)),647

µM,∗ =
∑

i∈I1(Λ∗)

−Λ∗
i

aM,i

Λ∗
M,i

+
d∑

i=1

aM,i,

µM,∗ ⪰ 0, µM,∗,jλM,∗,j = 0 for all j ∈ {1, . . . , pM}.

(6.14)648

649

In particular, L(λM | Λ∗, A, 1) is strongly convex at λM,∗, so, there exists an open ball B∗ =650

B(λM,∗, δ∗), δ∗ = δ∗(AM,Λ∗) > 0 and constant C∗ = C∗(AM,Λ∗) > 0 such that651

L(λM | Λ∗, AM, 1)− L(λM,∗ | Λ∗, AM, 1) ≥ C∗∥λM − λM,∗∥2, λ ∈ B∗ ∩ RpM
+ .(6.15)652653

Result of Theorem 6.9 is also a positive answer to the general identification problem when654

model (2.1) is misspecified in the sense of wrong design. In subsection 6.4 we show that the655

non-expansiveness condition is essential and counterexamples are possible if it is removed.656

Now we can turn to our main result on the tightness of the NPL-posterior.657
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Let {ej}pj=1 be the standard basis in Rp and define the following spaces:658

V = Span{ej | ∃ i ∈ I0(Λ
∗) s.t. aij > 0},(6.16)659

U = V⊥ ∩ Span{AT
I1(Λ∗)},(6.17)660

W = (V ⊕ U)⊥ ∩ kerA.(6.18)661662

Let also663

ΠV ,ΠV ,ΠW be the orthogonal projectors on V,V,W, respectively.(6.19)664665

Theorem 6.10. Let Assumptions 6.3 and 6.7 be satisfied and assume also that666

φ satisfies (2.11), (2.12) and it is locally Lipschitz continous.(6.20)667668

Let λ̃t
b be defined as in Algorithm 4, θt = o(

√
t/ log log t), βt = o(

√
t) and assume that there669

exists a strongly consistent estimator λ̂t
sc of λ∗ on V ⊕ U (i.e., ΠU⊕V λ̂

t
sc

a.s.−−→ ΠU⊕Vλ∗) such670

that671

λ̂t
sc ⪰ 0,(6.21)672

lim sup
t→+∞

∣∣∣∣∣∣
∑

i∈I1(Λ∗)

√
t
Y t
i /t− Λ̂t

sc,i

Λ̂t
sc,i

ai

∣∣∣∣∣∣ < +∞ a.s. Y t,(6.22)673

tΛ̂t
sc,i

a.s.−−→ 0 for i ∈ I0(Λ
∗),(6.23)674675

where Λ̂t
sc = Aλ̂t

sc. Then,676

(i)

tΠV(λ̃
t
b − λ̂t

sc)
c.p.−−→ 0.(6.24)

(ii)

√
tΠU (λ̃

t
b − λ̂t

sc) is conditionally tight a.s. Y t.(6.25)

677

Statement in (i) claims that for pixels which are interested by LORs with Λ∗
i = 0, the678

posterior distribution contracts to zero with faster rate than for the ones intersected by LORs679

with positive intensities. Indeed, pixels in subspace V are strongly forced to be zeros by the680

positivity constraints (i.e., if Λ∗
i = 0 and λ∗, ai ∈ Rp

+, then necessarily λ∗,j = 0 where aij > 0).681

Statement in (ii) claims that, in general, the posterior concentrates around λ̂t
sc in subspace682

U with standard scaling rate
√
t. This is not surprising since U is orthogonal to V, so the683

positivity constraints do not give extra information to achieve the faster contraction rate.684

Finally, requiring the non-expansiveness condition for the prior (Assumption 6.7) may seem685

surprising at first sight. The intuition behind is that it forbids our sampler to create “too686

many” pseudo-photons in LORs where intensity is zero a.s. (Λ∗
i = 0 implies Y t

i ≡ 0) and687

significantly simplifies the theoretical analysis.688

For λ̂t
sc we propose to take the MAP-estimate which is defined by the formula:689
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λ̂t
pMLE = argmin

λ⪰0
Lp(λ | Y t, A, t, βt),(6.26)690

691

where Lp(·) is defined in (2.10).692

Conjecture 6.11. Let assumptions of Theorem 6.10 be satisfied and λ̂t
sc = λ̂t

pMLE , where693

the latter is defined by (6.26). Then, λ̂t
sc is a strongly consistent estimator of λ∗ on V ⊕V and694

formulas (6.21)–(6.23) hold.695

The requirement for existence of a strongly consistent estimator is not new and already696

appears for WLB in [39]. However, in that case the sampling is performed via unconstrained697

optimization of quadratic functionals with ℓ1-penalties for which existence of such estimators698

is trivial by taking the standard OLS estimator or LASSO estimator; see the discussion after699

Theorem 3.3 in [39]. In our case, according to Kolmogorov’s 0-1 Law the statements in (6.22)700

and (6.23) either hold with probability one (i.e., almost surely Y t, t ∈ [0,+∞)) or zero,701

and the case of zero probability would mean a very exotic and unexpected behavior of the702

constrained MLE estimate for such model because they are trivially satisfied, for example, if703

A is diagonal. Another plausible argument in favour of existence of required λ̂t
sc comes from704

[3] where the asymptotic posterior mean is strongly consistent and satisfies (6.21)-(6.23) (for705

details see Supplementary Materials, section SM9).706

Finally, establishing tightness of the posterior is the first step towards the proof of asymp-707

totic normality (see Bernstein von-Mises type theorems in [49], [39], [42]) which, in particular,708

implies that for large dataset the posterior distribution, in general (but not always if misspeci-709

fied; see e.g., [27]; an interesting case of posterior inconsistency was found in [19]), is correctly710

calibrated against frequentist distribution of some strongly consistent estimator.711

6.4. Misspecification in design and identifiability. Assumption 6.3 in subsection 6.2 re-712

flects our belief that model (2.1) is correct. At the same time, for any practitioner in ET it713

is known that such model is by far approximate: the tracer inside the human body surely714

does not respect locally constant behavior, design A is known only approximately (with non-715

negligible errors, since it contains patient’s attenuation map which is reconstructed via a716

separate MRI or CT scan; see e.g., [48]), non-stationarity of the process due to kinetics of the717

tracer, scattered photons, errors from multiple events etc.; see e.g., [29], [43].718

Assume that exposure period is [0, t) and PP t is the unknown (binned) process that719

generates Y t:720

Y t ∼ PP t, Y t ∈ (N0)
d,

EPP t [Y t] = varPP t [Y t] = Λ∗(t) for some Λ∗(t) = (Λ∗
1(t), . . . ,Λ

∗
d(t)) ∈ Rd

+.
(6.27)721

722

Formulas in (6.27) reflect our belief that Y t has Poisson-type behavior (e.g., non-stationary723

Poisson process) at least for its two first moments which is not far from truth in practice [47].724

Most importantly, we do not assume that Λ∗(t) ∈ R+(A). The main question now is the725

identifiability of λ which translated via (2.9) and (6.27) to the question of uniqueness in the726

following minimization problem:727

λ∗(PP, [0, t)) = argmin
λ⪰0
KL(PP t, PP t

Aλ) = argmin
λ⪰0

L(λ | Λ∗(t)/t, A, 1),(6.28)728
729
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where PP t
Aλ is defined in (2.8). It appears that, in general, the answer is negative even for730

very meaningful choices of A and Λ∗(t).731

Theorem 6.12. Let t = 1. There exist Λ∗ = (Λ∗
1, . . . ,Λ

∗
d) ∈ Rd

+, Λ
∗ ̸= 0, A ∈ Mat(d, p)732

which has only nonnegative entries, it is stochastic column-wise and injective such that solu-733

tions of the optimization problem (6.28) constitute a non-empty polytope of positive dimension734

of the (p− 1)-simplex ∆p(Λ
∗) =

{
λ ∈ Rp

+ :
∑p

j=1 λj =
∑d

i=1 Λ
∗
i

}
.735

Proof. We construct Λ∗ and A for p = 4, d = 6. Let I be the square of four pixels each736

with side length 1 as shown below, i.e., λ = (λ1, . . . , λ4) ∈ R4
+, and Γ = {γ1, . . . , γ6} be the737

set of rays. Let A′ be the classical Radon transform on I for geometry Γ (i.e., a′ij being the738

length of intersection of ray γi with pixel j):739

A′ =



1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

0
√
2
√
2 0√

2 0 0
√
2

 λ3

λ1

λ4

λ2

γ2

γ1

γ3 γ4 γ5γ6

det(A′TA′) = 128 ̸= 0. I

740

Let A be a column-wise normalization of A′, i.e., aij = a′ij/(
∑

i a
′
ij) (this obviously does741

not break the injectivity of A′). Let Λ∗ = (1, 0, 0, 0, 0, 0). Then, for (6.28) we get742

(6.29) λ∗ = argmin
λ⪰0
− log

(
λ1 + λ2

2 +
√
2

)
+ λ1 + λ2 + λ3 + λ4.743

Note that in (6.29) we have used the fact that
∑

i aij = 1 for all j ∈ {1, . . . , 4}. It is obvious744

that the set of minimizers in (6.29) is an affine set of the following form:745

(6.30) λ∗3 = λ∗4 = 0, λ∗1 + λ∗2 = 1746

which gives the desired non-uniqueness. Theorem is proved.747

Finally, note that Theorem 6.9 provides identifiability under the non-expansiveness con-748

dition and injectivity of A.749

7. Discussion. Algorithm 4 solves Problems 1 and 2 simultaneously and efficiently: gen-750

erated samples are automatically iid, algorithm is scalable because the crucial Step 6 is per-751

formed via the classical GEM-type algorithm and, finally, our main calibration parameter ρ752

(θt = tρ, ρ ≥ 0; see Remark 4.3) can be interpreted as amount of pseudo-data (pseudo-753

photons) generated from the MRI-based posterior. Due to the latter the numerical calibration754

of the posterior is tractable. Moreover, in our experiment on the synthetic dataset for the755

worst case scenario (when MRI has no information on the lesion) we have observed that mod-756

erate values of ρ, indeed, improve calibration error as well PSNR and MSWD. Our principal757

theoretical results (posterior consistency and tightness) are complicated by the non-standard758

form of ET but show a great number of connections to existing works ([35], [16], [3]). The759

new non-expansiveness condition (Assumption 6.7) is of independent geometric interest and760

is a key to extend all previous results to the fully misspecified case. Among possible exten-761

sions, one most interesting for us is to relax the independence of increments of the Gamma762
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process in the prior and consider ones with correlations (for example, scaled Polyà-tree priors763

for ΛM). These correlations can be used to smooth out sinogram Y t by projecting it (non-764

linearly) on the stable part of Span(AT ) using an MRI-based model and, in addition, remove765

completely the need for regularizer φ (high frequencies are still regularized by φ whereasM is766

used for low-frequencies). Our preliminary numerical results show that it improves resolution767

while retaining the interpretability of calibration parameters as before. Another improvement768

could be to replace the (random) segmentations of MRI-images via ddCRP with other ma-769

chine learning techniques (such as DNNs) that on input will take MRI-scans with sinograms770

and output possible low-dimensional models AM, λM (possibly corrected by medical experts).771

This has a chance to reduce bias in the lesion while non-increasing the calibration error and772

variance. Finally, an experiment on real PET-MRI data is of great importance and will be773

given elsewhere.774

Supplementary materials. Supplementary materials include discussion of the assumption775

in (4.10) and remarks on nonparametric constructions in subsection 4.4, all details of numeri-776

cal experiments in sections 3 and 5 (with additional numerical experiments for large t), proofs777

of all theoretical results in section 6, a separate discussion of results on ET from [3] with con-778

nections to Conjecture 6.11, a remark on the geometric intuition behind the non-expansiveness779

condition (Assumption 6.7) and a remark on the choice of centering term in Theorem 6.10.780
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Frédéric Joliot (SHFJ) – Marina Filipović, Claude Comtat and Simon Stute for many practical783

insights on the topic of PET-MRI reconstructions and also to anonymous referees for remarks784

that have helped to improve greatly the presentation of this work, especially in the numerical785

part.786

REFERENCES787

[1] H. H. Barrett, D. W. Wilson, and B. M. Tsui, Noise properties of the em-algorithm. i. theory, Phys.788
Med. Biol., 39 (1994), p. 833.789

[2] D. Blei and P. Frazier, Distance dependent chinese restaurant processes, Journal of Machine Learning790
Research, 12 (2011).791

[3] N. A. Bochkina and P. J. Green, The bernstein–von mises theorem and nonregular models, The Annals792
of Statistics, 42 (2014), pp. 1850–1878.793

[4] J. Bowsher, V. Johnson, T. Turkington, R. Jaszczak, C. Floyd, and R. Coleman, Bayesian re-794
construction and use of anatomical a priori information for emission tomography, IEEE Transactions795
on Medical Imaging, 15 (1996), pp. 673–686.796

[5] J. Bowsher, H. Yuan, L. Hedlund, T. Turkington, G. Akabani, A. Badea, W. Kurylo,797
C. Wheeler, G. Cofer, M. Dewhirst, and G. Johnson, Utilizing mri information to estimate798
f18-fdg distributions in rat flank tumors, in IEEE Symposium Conference Record Nuclear Science,799
vol. 4, IEEE, 2004.800

[6] S. Y. Chun, J. A. Fessler, and Y. K. Dewaraja, Post-reconstruction non-local means filtering methods801
using ct side information for quantitative spect, Physics in Medicine & Biology, 58 (2013), p. 6225.802

[7] C. Comtat, P. E. Kinahan, J. A. Fessler, T. Beyer, D. W. Townsend, M. Defrise, and803
C. Michel, Clinically feasible reconstruction of 3d whole-body pet/ct data using blurred anatomical804
labels, Physics in Medicine & Biology, 47 (2001), p. 1.805

This manuscript is for review purposes only.
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