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Abstract

Photovoltaic cells are produced as thin flat layers. They behave as a brittle and elastic

material that fails at a given level of stress. Conforming cells into curved geometries

will a priori induce both flexure and membrane stresses. In the present work, an ana-

lytical model is derived to predict both stress distributions and intensities in a mono-

crystalline pseudo-square cell. Furthermore, a second model is derived to find the

main stresses within fractions of cells. For conventional cell dimensions, solutions

predict a transition from flexure to membrane dominated stresses for most confor-

mations as curvature increases. As a consequence, near failure stresses are mainly

determined by cells size and aspect ratio. In contrast, flexion is the main contribution

in a small subset of the curvature space or for small curvatures. In the corresponding

cases, stresses scale in proportion to cells thickness. As a consequence, cell size

and/or shape is the main parameter to reduce internal stresses in most cases. In par-

ticular, the use of fractions of cells can substantially decrease membrane stresses and

thus increase the maximum curvature. For instance, in a case study with M0 cells and

curvature radii of a few meters, the highest predicted tensile stress is 45 MPa. In such

a case, the larger M12 format gives a prediction of 65MPa. In contrast, thirds of cells

give predictions of 25 and 30MPa, respectively.

K E YWORD S

BIPV, mechanics, module design, VIPV

1 | INTRODUCTION

In recent years, the growth of photovoltaics (PV) led to its introduc-

tion in new industrial fields. In some of the corresponding applica-

tions, surfaces exposed to sunlight are shaped by unyielding

constraints. In contrast, standard mono-crystalline silicon PV cells are

produced as thin flat pseudo-squares. In conventional modules, these

cells are embedded into a thin and soft layer of polymer, that is, the

encapsulant. This assembly lies between two protective layers, at least

one of which being stiff and thick such that it defines the module

shape. As a consequence, the central layer is strongly constrained.

Without any specific solutions, the integration of cells in a curved

structure will cause their conformation to the local shape of the stiff

layer.

From a mechanical point of view, cells behave as mono- or poly-

crystalline silicon,1 which both are elastic and brittle. Owing to their

elastic behavior, there is a simple relation between strains and stres-

ses. Due to their brittle nature, the level of stress at which they fail is

mostly defined by their toughness and the size and orientation of pre-

existing defaults. These defaults are mainly located near cells surfaces

and take the form of micro-grooves of a few tens of microns, which

come as a consequence of the sawing process.2–5 The characteristics

and impacts of these defaults are therefore strongly influenced by the

surface treatments performed afterwards.6,7 Regarding crack
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propagation, the local orientation of the crystalline structure has a

noticeable influence on its fracture toughness.6,8 In addition, the type

and direction of the mechanical loading impact it as well.4,9 These

effects explain the wide scattering of characteristic fracture stress

values (80–300 MPa) assessed and reported in the literature.4,6,7,9–12

Furthermore, these experiments are expected to be scattered them-

selves since failure depends on a statistical event (the interaction

between a stress field and the pre-existing cracks). Therefore, the

characteristic fracture stress of a type of PV cell is not specific to

every single cell of this type. However, the key failure metric will be

the stress distribution within the cells and the characteristic fracture

stress is a relevant quantity to predict mechanical failure statistically.

Considering a given cell in a curved module, both flexure and

membrane strains are expected. These two contributions are indepen-

dant of each other. On the one hand, curving a thin layer induces a

gradient of lengths throughout the cell thickness at a given in-plane

position. As a consequence, a strain gradient exists throughout the

layer. The corresponding strains scale linearly with the system thick-

ness and the local curvature regardless of the system in-plane size

and shape. This first contribution is the flexure one. On the other

hand, complex curvatures induce inconsistent in-plane changes of

lengths. These changes generate strain fields constant throughout the

system thickness but variable in the system plane. The corresponding

strain field depends on the system in-plane size and shape and it

grows with the Gaussian curvature.13,14 This second contribution is

the membrane one. Thus, the co-existence of both effects leads to

non-trivial relations between the problem input parameters and the

output stress distributions within cells.

From a mechanical designer point of view, stresses must be pre-

dicted for a given design and a certain criterion, function of the stress

field, should be fulfilled to ensure cells integrity. The conventional

approach is to use a numerical method to predict the stress field in

classical PV applications15–17 and other problems which require to

curve silicon wafers.18,19 Depending on the outcome, a wider parame-

ter space exploration may be required to find a satisfactory design

through an automated or a manual process. The main advantage of

this method is its ability to find a solution for nonlinear and/or com-

plex mechanical problems (including a large number of parameters).

However, its main drawback is to provide little to no insight on the

physics behind it. An alternative approach is to seek for the solution

of a simple but representative analytical problem. The analytical solu-

tion of this problem provides the algebraic functions behind each

value. As a consequence, the relative influence of each parameter is

intelligible. This second approach, when achievable, provides clear

answers and paths for design optimization.

In the present work, a model is derived to predict membrane

stresses in a flat pseudo-square mono-crystalline cell conformed to a

constant but anisotropic curvature. From this point, the problem is

segmented into three simpler problems through a first-order approxi-

mation. The main problem derivation and segmentation are presented

in Section 2. Model predictions are reported in Section 3 and con-

fronted to finite element models (FEM) simulations. Finally, the practi-

cal implications of these results are discussed in Section 4.

2 | THEORY AND DERIVATION

2.1 | Kinematics

In order to find the membrane contribution, a flat and infinitely thin

elastic layer ðΩÞ is considered. At every point X within this layer, the

Green–Lagrange strain tensor ϵ writes

ϵ¼1
2

truþruþ tru:ru
� �

ð1Þ

with r the gradient operator, u the displacement vector, and ta the

transpose of a. In the following, vectors and tensors are separated in

their in-plane and out-of-plane components. The layer conformation

to a given shape is modeled through an imposed out-of-plane dis-

placement uzez with ez perpendicular to the initial layer plane. Such a

displacement produces an in-plane strain tensor ϵκ according to the

non-linear term of Equation (1):

ϵκ ¼1
2

∂uz
∂r

� �2 1
r
∂uz
∂θ

∂uz
∂r

1
r
∂uz
∂θ

∂uz
∂r

1
r2

∂uz
∂θ

� �2

2
664

3
775 ð2Þ

in a polar coordinate system. In the following, the imposed curvature

κ is assumed to be small at the system scale R, 1� κR. Silicon fails at

minute levels of strain (�10�3). Thus, regarding the in-plane strains

generated by in-plane displacements, second order strain terms are

negligible and neglected. Therefore, according to Equation (1) this

strain component ϵp writes

ϵp ¼
∂ur
∂r

1
2

∂uθ
∂r

�uθ
r
þ1

r
∂ur
∂θ

� �
1
2

∂uθ
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�uθ
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þ1
r
∂ur
∂θ

� �
1
r

∂uθ
∂θ

þur

� �
2
6664

3
7775 ð3Þ

with ur and uθ the in-plane displacement components. In small strains,

the total strain tensor ϵ is the sum of each contribution.

ϵ¼ ϵpþϵκ ð4Þ

Since silicon is elastic, the total strain tensor is equal to the elastic

strain one. The normal displacement uz can be expressed as a power

series in a cartesian basis. It describes the system conformation to a

regular shape. In this power series, the lowest order terms are

expected to be the leading ones thanks to the small curvature hypoth-

esis. In the present mechanical problem terms of orders 0 and 1 corre-

spond to pure translations and rotations, respectively. Therefore, the

first terms that cause strains are of second order. Higher order terms

of the expansion are neglected. For a regular displacement uz, the sec-

ond order terms are related to the Hessian matrix of uz. Due to the

symmetry of this matrix, there will always be two eigen curvatures κ1

and κ2 and a phase shift ϕk such that uz writes

2 CHARPENTIER ET AL.

 1099159x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pip.3666 by French A

tom
ic A

nd A
lternative E

nergy C
om

m
ission, W

iley O
nline L

ibrary on [01/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



uzðr,θÞ¼ r2

4
κΣþ κΔð Þcos2 θ�ϕkð Þþ κΣ�κΔð Þsin2 θ�ϕkð Þ

� �
ð5Þ

where κΣ ¼ κ1þκ2 and κΔ ¼ κ1�κ2. For matter of illustration, the case

κΣ ≠0, κΔ ¼0 corresponds to the mapping of the system on a sphere

and the case κΣ ¼0, κΔ ≠0 to the mapping of the system on a saddle.

Please note that according to Equation (5), both curvatures are

assumed constant at the system scale. Using Equations (2) and (5), ϵκ

writes

ϵκðr,θþϕkÞ¼

r2

8

κ2Σþ
κ2Δ
2
þ2κΣκΔ cosð2θÞþ κ2Δ

2
cosð4θÞ �κΔκΣ sinð2θÞ�κ2Δ

2
sinð4θÞ

�κΔκΣ sinð2θÞ�κ2Δ
2

sinð4θÞ κ2Δ
2

1� cosð4θÞð Þ

2
6664

3
7775

ð6Þ

However, according to Equation (4), ϵκ will cause strains only if its

three independent terms cannot be canceled by a remarkable dis-

placement. As shown in Appendix A.1, ϵκ terms of spatial frequencies

2 and 4 can be canceled and the remaining one can be expressed in

another fashion. With these modifications, the effective component

of ϵκ writes

ϵκðr,θÞ¼ r2

8
κ2Σ�κ2Δ 0

0 0

" #
ð7Þ

This result implies that the spatial orientation of the curvature,

that is, ϕk , has no impact on membrane strains. Its unique curvature

term κ2Σ�κ2Δ ¼4κ1κ2 hides the Gaussian curvature. Furthermore, the

remaining terms can be canceled if and only if κ2Σ ¼ κ2Δ, that is, in pure

flexion cases. Therefore, and thanks to the linearity of Equations (3)

and (4) and with no other loading on the system, the solution with

κΣ ¼ κ, κΔ ¼0 is exactly the opposite of the solution for a problem of

curvatures κΣ ¼0, κΔ ¼ κ for every value of κ (see Appendix A.1).

Please note that these results remain valid regardless of the system

behavior isotropy/anisotropy or shape. Thus far, the system thickness

was nil. As a consequence, the strain tensor ϵ only describes the mem-

brane strain. Now, considering a system with a finite thickness W, a

new contribution arises: flexure. The corresponding strains are maxi-

mum in the vicinity of both faces of the system. In the present frame-

work, the flexure strain tensor writes

ϵfðr,θÞ¼�W
4

κΣþκΔ cosð2ðθ�ϕkÞÞ �κΔ sinð2ðθ�ϕkÞÞ
�κΔ sinð2ðθ�ϕkÞÞ κΣ� κΔ cosð2ðθ�ϕkÞÞ

� 	
ð8Þ

and the sign in Equation (8) depends on the considered face. The total

strain at a given position is the sum of ϵf and ϵ. Please note that

Equation (8) gives an explicit prediction for the flexure term ϵf . How-

ever, there is no explicit prediction for the membrane term ϵ yet since

the in-plane strain tensor ϵp remains to be found. An explicit expres-

sion is looked for in the upcoming sections.

2.2 | Problem closure

Depending on its microstructure, silicon behaves as an isotropic or a

cubic elastic material.1 In both cases, there is a simple linear relation

between strains and stresses and its plane-stress behavior writes

σðθÞ¼ E
1�ν2

1 ν 0

ν 1 0

0 0
1�ν

2

2
664

3
775þb

fðθÞ �fðθÞ gðθÞ
�fðθÞ fðθÞ �gðθÞ
gðθÞ �gðθÞ 1� fðθÞ

2
64

3
75

0
BB@

1
CCA:ϵ ð9Þ

with E and ν silicon Young's modulus and Poisson's coefficient. b is an

anisotropy factor, the behavior is isotropic if b¼0 and anisotropic

(cubic) otherwise. The purely isotropic tensor will be referred to as Ci

in the following. The anisotropic tensor Cμ relies on fðθÞ¼
ð1� cos 4θð ÞÞ=2 and gðθÞ¼ sinð4θÞ. It is obtained through the rotation

of the cubic tensor. Please note that the polar basis is assumed to be

oriented in the <100> direction (θ¼0). Mono-crystalline silicon corre-

sponds to b¼0:21 (using values from Hall20). Finally, σ and ϵ are

defined using Voigt's notation. Regarding the mechanical equilibrium,

without any external loading or additional constraint, it writes

r: σ
� �

¼0 ð10Þ

with r the divergence operator. Furthermore, the boundary con-

ditions writes

σ:n¼0 ð∂ΩÞ ð11Þ

where n is the vector normal to the outer boundary. The relevance of

this assumption, that is, no external loading or additional constraint, is

discussed in Section 4. Thus far, the system shape remains undefined.

In the following, the outer boundary will be described as

RðθÞ¼R0þR0

XN
n¼1

cn cos nθð Þ ð12Þ

where the coefficients cn can be chosen to match a broad set of

shapes, which includes the pseudo-square. The derivation of cn values

is presented in Appendix A.1.1 for a pseudo-square shape. Their

values and the corresponding shape are presented in Figure 1.

To summarize, the present problem (E) seeks for the in-plane dis-

placement field u such that

ðΩÞ

ϵκðrÞ¼ κ2Σ� κ2Δ
� �r2

8

1 0

0 0

" #

σ¼C :
1
2

truþru
� �

þϵκ
� �

r: σ
� �

¼0
















ð∂ΩÞ σ:n¼0






ðEÞ
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In the above set of equations, is the double dot product. The solution

to this problem gives the strains (through Equations 3 and 4) and

stresses (with Equation 9).

2.3 | Problem segmentations

The problem (E) is not trivial. The two main sources of complexity

arise from the anisotropic material behavior and the pseudo-square

shape. However, one can notice that the dimensionless anisotropic

parameter b�0:21 remains moderate with respect to 1, that is, the

isotropic component. Regarding the boundary condition, the radius

RðθÞ corresponds to a perturbated disk of radius R0. The second great-

est term jc4j �0:13 is reasonably small compared to the first and

others decrease quickly (see Figure 1A). Thus, in order to find an

approximate solution to this problem, one can write the first order

variation of the solution with respect to these parameters.

u¼ u00þbu10þcu01 ð13Þ

with c¼ c4 the leading disk perturbation term. Inserting this expres-

sion in the (E) problem, three independent problems arise to find u00,

u10 and u01:

ðΩÞ

ϵκðrÞ¼ κ2Σ�κ2Δ
� � r2

8

1 0

0 0

" #

σ
00

¼Ci :
1
2

tru00þru00
� �

þϵκ
� �

r: σ
00

� �
¼0
















ð∂ΩÞ σ

00
:er ¼0






ðE00Þ

This first problem corresponds to a curved isotropic disk.

ðΩÞ

ϵκðrÞ¼ κ2Σ�κ2Δ
� �r2

8

1 0

0 0

" #

σ
10

¼1
2
Ci : tru10þru10
� �

þCμ :
1
2

tru00þru00
� �

þϵκ
� �

r: σ
10

� �
¼0
















ð∂ΩÞ σ

10
:er ¼0





ðE10Þ

This second problem corresponds to a curved anisotropic (cubic)

disk.

ðΩÞ
σ
01

¼1
2
Ci : tru01þru01
� �

r: σ
01

� �
¼0










ð∂ΩÞ σ

01
:er þσ

00
:eθ
XN
n¼1

n
cn
c4

sinðnθÞ





 þR0

∂

∂r
σ
00

� �
:er
XN
n¼1

cn
c4

cosðnθÞ¼0

ðE01Þ

This third problem corresponds to an isotropic pseudo-square.

3 | STRESS DISTRIBUTIONS

Regarding the present application, the radius R0 does not correspond

to the cell half-side L (see Figure 1B). It is the radius of the 0th order

term of the pseudo-square Fourier series coefficients (see Appendix

A.1.1). In the following the radius used is R0 ¼ L=0:9. The upcoming

results are presented with a set of parameters that aims to represent

a M0 cell. Therefore, R0 ¼87mmðL¼78mmÞ and W¼0:2mm.

Regarding material properties, the parameters are E¼130GPa,ν¼

F IGURE 1 (A) Values of the 20 first coefficients cn for a pseudo-square shape. (B) Shape of the pseudo-square computed with the Fourier
series coefficients
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0:278 and b¼0:21.20 The solution to problem (E00) predicts a mem-

brane stress:

σðrÞ¼ E
64

κ2Σ� κ2Δ
� � R2

0� r2 0

0 R2
0�3r2

" #
ð14Þ

Stress tensors are always symmetric and thus diagonalizable. As a

consequence, they can be summarized using their eigenvalues ranked

from the highest to the smallest. The first one, that is, the first princi-

pal stress σI , is the relevant metric to predict the failure of brittle

materials such as silicon. Since the present stress tensor is already

diagonal, the principal stresses are in the radial and ortho-radial direc-

tions, respectively. σI distribution is presented in Figure 2A with κ¼ κΣ

and κΔ ¼0. In this case, σI is oriented along the radial direction. In the

figure, the area of high stress is located near the disk center. With the

present set of parameters, the highest stress is 61.5 MPa. σI map is

presented on Figure 2B with κΣ ¼0. In this second case, σI is oriented

along the orthoradial direction and the highest stress value is twice

the previous one (123 MPa). It is located in the vicinity of the outer

boundary.

Using the flexure strain tensor (8), the highest stress σmax can be

computed for a given curvature. Using Equation (14), the ratio of

membrane to flexure stress can be computed at the same position.

The corresponding result is called the von Kármán number, and it

writes R2
0κ=ð16WÞ.14 Please note that this ratio is uniquely defined by

the system size, thickness, and the applied curvature. σmax is pre-

sented on Figure 2C as a function of 1=κ. As the curvature radius

decreases, the maximum stress switches from flexure to membrane

dominated with isotropic and saddle shape conformations. The transi-

tion presented in Figure 2C corresponds to a von Kármán number

equal to 1. For a cell characteristic fracture stress of σc ¼120 MPa,

the transition is expected prior to failure. Furthermore, the curvature

radius at failure is about one order of magnitude smaller because of

this contribution.

Using the analytical expressions, both the membrane and the flex-

ure stress distributions can be computed for every couple of values

κΣ ,κΔ. This couple of values describes the entire space of constant

curvatures. Therefore, for each configuration the maximum curvature

prior to failure can be computed for a given value of σc. This predic-

tion is presented on Figure 2D. In the figure, the solid line represents

F IGURE 2 ðE00Þ membrane stresses (A) σIðκ¼ κΣ ,κΔ ¼0Þ and (B) σIðκ¼ κΔ,κΣ ¼0Þ. (C) Maximal total stress as a function of κ. (D) Failure
boundary in curvature space. Parameters used are: L¼78mmðR0 ¼87mmÞ and κ¼2�10�3mm�1,E¼130GPa,ν¼0:278 and σc ¼120MPa
[Colour figure can be viewed at wileyonlinelibrary.com]
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the failure limit as predicted by problem ðE00Þ solution. The inner

dashed limit corresponds to the failure limit in pure flexure (without

any membrane contribution). Both limits are equivalent along the

diagonals (pure flexure) or their vicinities. However, this situation

appears to be an unrepresentative exception. In practice, it means that

the risks of failure uncountered with modules in pure flexure (curved

in a single direction) are very different from the ones encountered in

other cases. The first case causes less intense stresses than the sec-

ond one. Please note that the curvature may be because of the mod-

ule normal shape or the consequence of a mechanical loading.

Problem ðE10Þ takes into account the anisotropic behavior of

mono-crystalline silicon. Its solution is presented in Appendix A.1.4.

This solution contributes in proportion to the anisotropic factor

ðb¼0:21Þ. The principal membrane stress σI and the shear membrane

stress are presented in Figure 3A–C. The contribution of the aniso-

tropic term is twofold. First, it breaks the stress invariance in rotation.

Second, it increases the inner and outer maximum tensile stress by

18% (FEM computations predict an increase of 13%). One can notice

that the shear stress is not nil at the outer boundary despite the defi-

nition of problem ðE10Þ. This is due to the first order approximation,

shear stresses are therefore proportional to b2. Their intensities gives

an idea about the relevance of the first order model. The error

provides another mean to assess this model accuracy to �10%. Using

the anisotropic solution, the curvature at failures is computed and

presented in Figure 3D. In the figure, the curvature at failure is weakly

impacted by the anisotropic nature of mono-crystalline silicon.

Problem (E01) describes the membrane mechanical equilibrium for

a disk turned into a pseudo-square. A way to compute its solution for

every perturbation frequency is presented in Appendix A.1.5. The

membrane stress tensor first principal stress σI is presented in

Figure 4A,B. The corresponding shear stress is presented in Figure 4C.

Regarding problem (E01), the bulk equation has no second member.

Therefore, the additional terms must rely on the homogenous solu-

tions (see Appendix A.1.2). These solutions take the form

rn�1 cosðnθþϕÞ in displacement. Please note that the first perturba-

tion term which is not nil has a frequency n¼4. Thus, the lower order

homogenous term scales in proportion to r3 in displacement and to r2

in strain. As a consequence, the shape impact near the system center

is negligible. However, 10% higher levels of radial stresses are pre-

dicted along each corner direction. According to FEM simulations, the

membrane stress levels are 7% lower near the system center and

radial stresses are constant in the central area. This result indicates

that the first order model is only of moderate accuracy. Regarding σI

in the saddle shape case, the maximum stress is, once again, located in

F IGURE 3 (E00) membrane stresses (A) σI (κ¼ κΣ, κΔ ¼0), (B) σI (κ¼ κΔ, κΣ ¼0), and (C) σrθ (κ¼ κΣ , κΔ ¼0). (D) Failure boundary in curvature
space. Parameters used are as follows: L¼78 mm (R0 ¼87 mm) and κ¼2�10�3 mm�1, E¼130 GPa, b¼0:21, ν¼0:278, and σc ¼120 MPa
[Colour figure can be viewed at wileyonlinelibrary.com]
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the vicinity of the outer boundary. At the pseudo-square boundary

(r¼ L¼78 mm, θ¼0), inside the mapped disk of radius R0 ¼87 mm

presented in Figure 4B, the predicted maximum stress is 24% higher

than the isotropic disk one. With FEM computations the prediction at

the same location is very close (26%). Finally, intense shear stresses

are predicted near the pseudo-square corners (see Figure 4C). The

corresponding values confirm that the accuracy of the first order

model is limited. Using the maximum tensile stress at the system cen-

ter and outer boundary for the isotropic and saddle shape curvature

respectively, the failure limit is computed and presented on

Figure 4D. In this case, the failure radius is not strongly impacted

either.

4 | RELEVANCE AND PRACTICAL
CONSEQUENCES

In the last section, the computations were performed with the param-

eters of a typical M0 PV cell. With these dimensions, the radius of

curvature at failure is κ�1 m�1. The product of cell size and curvature

is κL�8�10�2. Thus, the small curvature hypothesis made in

Section 2.1 is reasonable. At this curvature, the corresponding

maximum displacement is ðκL2Þ=2�3 mm. In a standard module, the

encapsulant thickness is �1 mm. As a consequence, the cell does not

have a sufficient space to adapt its conformation and relax itself. Fur-

thermore, the total energy stored in the cell due to membrane stres-

ses scales as Eel � EWL2ðLκ=64Þ2. Since the stored energy scales as

the product of the displacement times the effort ðκL2=2ÞðL2PÞ, the
pressure required to curve the cell is P�2EWκ=642. In the present

problem, it gives P�0:03 MPa. The encapsulant shear modulus is typ-

ically in the range 1–100 MPa,21 but its bulk modulus is substantially

greater (�1 GPa22). Therefore, this level of stress is not sufficient to

cause substantial strains within the encapsulant. Therefore, the

hypothesis of an imposed conformation is realistic.

In practical applications, residual stresses exist within cells at

ambiant temperature due to the interconnection or lamination pro-

cess. In both cases, the materials in contact with the cells, that is, the

ribbons and the encapsulant, apply a mechanical loading on them. As

a consequence, one should question the hypothesis of no external

loading performed to write Equations (10) and (13). However, since

the system (13) is linear, the superposition principle is valid. As a con-

sequence, the solution with an external loading and a curvature would

be the sum of the solution with an external loading (and no curvature)

and the solution with a curvature (and no external loading). The

F IGURE 4 (E01) membrane stresses (A) σI (κ¼ κΣ, κΔ ¼0), (B) σI (κ¼ κΔ, κΣ ¼0), and (C) σrθ (κ¼ κΣ , κΔ ¼0). (D) Failure boundary in curvature
space. Parameters used are as follows: L¼78 mm (R0 ¼87 mm), c¼0:13, κ¼2�10�3 mm�1, E¼130 GPa, ν¼0:278, and σc ¼120 MPa [Colour
figure can be viewed at wileyonlinelibrary.com]
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present work is restricted to the second contribution. The first one

(residual stresses) goes beyond the scope of the present paper.

Numerous works regarding this issue can be found in the

literature.23–26

Membrane stresses scale in proportion to ðLκÞ2. As a conse-

quence, decreasing cell sizes is an efficient way to reduce this contri-

bution. In contrast, the thickness W impacts the flexure stress which

scales in proportion to Wκ. Therefore, to reduce stresses within a

given curved module, one should try first to compute the Kármán

number. If this number is greater than 1 then cell size L is the key

parameter. Otherwise, the cell thickness W is. In the later case, other

contributions may be affected by cell thickness (for instance residual

stresses24). Please note that the parameters used in the present work:

L¼78 mm and W¼0:2 mm provide a low membrane to flexure ratio

since it scales in proportion to L2κ=W and cells sizes are and tend to

be larger and thinner.27,28

Another current trend is to use fractions of cells.28 In the case of

a strip of length 2Lx and width 2Ly such as represented on Figure 5A,

the in-plane equilibrium can be solved in an asymptotic case, that is,

an extremely thin strip (Lx � Ly). A complete derivation is presented in

Section A.1.6. This model still corresponds to the description provided

in Section 2.1. As a consequence, its solution is independent of the

curvature orientation and the isotropic and saddle shape solutions are

the opposite of one another. The evolution of the maximum tensile

stress has been computed with this analytical model and FEM simula-

tions. The results are presented in Figure 5B. Surprisingly, the asymp-

totic model is already in good agreement with FEM predictions for a

ratio as low as Ly=Lx ¼1=2. The model solution predicts that mem-

brane stresses scale in proportion to ðLyκÞ2. The curvature at failure

for aspect ratio of 1 (pseudo-square), 1/2, 1/3, 1/4, and 1/6 are

reported in Figure 5C. Note the strong decrease of the failure area is

due to the increased aspect ratio. In contrast, the impact of cell format

is presented in Figure 5D with an aspect ratio of 1. Each cell format

corresponds to an in-plane size. Namely, M0, M6, M10, and M12 cor-

respond to sizes of 2L¼156, 166, 200, and 210 mm; respectively. In

the figure, larger cell sizes have substantially larger curvature radius at

failure. Finally, the influence of cell thickness is presented on

Figure 5E. At failure, the influence of this parameter is quite limited.

F IGURE 5 (A) Sketch of a curved strip. (B) Evolution of maximum tensile stress as a function of the aspect ratio Ly=Lx. In this figure, colors
represent the same conformation for all types of computations (FEM, asymptotic and (E) 1st order solution). Curvature limit for (C) aspect ratios
from 1 to 1/6 with Lx ¼78 mm (D) cell standard size from M0 to M12, and (E) cell thickness from 0.1 to 0.2 mm. When not specified, the aspect
ratio is 1, L¼78 mm (M0) and W¼0:2 [Colour figure can be viewed at wileyonlinelibrary.com]
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In order to highlight the relevance of this solution in a practical

situation, a case study is presented: The integration of cells in an

imaginative curved structure, that is, the car hood represented in

Figure 6A. In the present example, curvature radii are about of a few

meters and they vary slowly at the module scale. Both of these carac-

teristics are typical of vehicle-integrated photovoltaics (VIPV). The

equation describing this shape is presented in Appendix A.1.7. In the

figure, the first principal stress within cells predicted by the present

model are represented with colors. The highest stresses are at about

45 MPa with thick (W¼0:2 mm) M0 (L¼78mm) cells. The stress dis-

tribution in cells is membrane dominated. The maximum stress in each

cell is presented in Figure 6B for different cell sizes and aspect ratios.

In order to make the comparison meaningful, local curvatures are

identical with each cell format, thickness or fraction. In the figure,

maximum stresses increase substantially with cell size. For a pseudo-

square shape (Ly=Lx ¼1), the highest stress increases up to 65 MPa

with M12 cells. However, stresses decrease quickly when fractions of

cells are used instead of full ones. For instance, the use of thirds of

cells decreases the maximum stress from 45 to 25 MPa with M0 for-

mat and from 65 to 30MPa with M12 one. In contrast, reducing cell thick-

ness has a limited impact. With the M0 format decreasing cell thickness

from 0.2 to 0.1 mm decreases the maximum stress from 45 to 35MPa.

Therefore, the use of fractions of cell is a promising solution to

make modules of important curvatures or to reduce stresses within

less curved one. Note, that the process used to produce fractions of

cell may induce new defaults and thus reduce the characteristic frac-

ture stress.2–5 Another current trend is to use alternative architec-

tures based on fractions of cells, that is, shingles.27 However, in PV

shingles, the cells are rigidly bonded to one another. As a conse-

quence, the characteristic length is not expected to be the side of a

fraction of cell but rather the side of the assembly. Therefore, the

membrane contribution is expected to be high.

Finally, in order to design a module for PV applications, a certain

margin must be taken to ensure the integrity of cells and prevent

additional undesired effects. In this scenario, the target module curva-

ture may be quite different from the limits or cases reported in the pre-

sent work or a more specific failure criterion may be applied to the

stress field in order to predict failure. In such situations, solutions to

problems (E00), (E10), (E01) and the asymptotic one are still expected to

be of relevance. They are also believed to be of interest in similar

problems which imply to curve silicon wafers.18,19 To make their use

simpler, an open python code is provided in the attached material.

This code purpose is to display the solutions as functions of the input

parameters.

5 | CONCLUSION

The production of conventional but curved modules causes the cells

to curve inside them. Such a constraint induces both flexure and

membrane stresses. With standard cells dimensions and for curva-

tures in the range 1–5 m, membrane stresses dominates flexure ones.

In contrast with flexure stresses, membrane stresses are not uniformly

distributed within cells. They are strongly sensitive to cells sizes and

aspect ratios. As a consequence for a designer, the main degree of

freedom to reduce stresses with a cell is to reduce cell sizes or to

increase the aspect ratio. The second is probably more suitable since

fractions of cells are already widely spread and their use will continue

to grow. For specific applications, the curvature may be close to pure

flexion. Even in such situations, small Gaussian curvature can cause

important membrane stresses. As a consequence, cell sizes and aspect

ratio may still be the problem key parameters. Therefore, cells thick-

ness is a second order one. Its relevance is mainly limited to pure flex-

ure cases. Furthermore, other contributions (for instance, residual

thermomechanical stresses) should also be accounted for to design a

curved module. Finally, the solutions presented in this work are

believed to be of importance to predict and therefore reduce internal

stresses within mono-crystalline silicon cells.

F IGURE 6 (A) Curved module with pseudo-square M0 cells of thickness W¼0:2 mm. Cells texture represent the local σI stress computed
with the present model. (B) Evolution of the maximum stress σI for all cells in the curved module using different standard cell size and aspect
ratios [Colour figure can be viewed at wileyonlinelibrary.com]

CHARPENTIER ET AL. 9

 1099159x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pip.3666 by French A

tom
ic A

nd A
lternative E

nergy C
om

m
ission, W

iley O
nline L

ibrary on [01/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


ACKNOWLEDGMENTS

This work has been supported by the Commissariat à l' �Energie Atomique

et aux �Energies Alternatives (CEA), the Institut pour la Transition Energétique

(INES.2S), and the MicroFlex project of the Carnot Energies du Futur.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the

corresponding author upon reasonable request.

REFERENCES

1. Hopcroft MA, Nix WD, Kenny TW. What is the Young's modulus of

silicon? J Microelectromech Syst. 2010;19(2):229-238.

2. Coletti G, Van Der Borg NJCM, De Iuliis S, Tool CJJ, Geerligs LJ.

Mechanical strength of silicon wafers depending on wafer thickness

and surface treatment. In: Proc. of the 21st European Photovoltaic

Solar Energy Conf. Dresden, Germany; 2006.

3. Möller HJ, Funke C, Rinio M, Scholz S. Multicrystalline silicon for solar

cells. Thin Solid Films. 2005;487(1-2):179-187.

4. Sekhar H, Fukuda T, Tanahashi K, et al. Mechanical strength problem

of thin silicon wafers (120 and 140 μm) cut with thinner diamond

wires (Si kerf 120! 100 μm) for photovoltaic use. Materials Sci Semi-

conduct Process. 2020;119:105209.

5. Wang L, Gao Y, Pu T, Yin Y. Fracture strength of photovoltaic silicon

wafers cut by diamond wire saw based on half-penny crack system.

Eng Fract Mech. 2021;251:107717.

6. McLaughlin JC, Willoughby AFW. Fracture of silicon wafers. J Crystal

Growth. 1987;85(1-2):83-90.

7. Sekhar H, Fukuda T, Kida Y, Tanahashi K, Takato H. The impact of

damage etching on fracture strength of diamond wire sawn mono-

crystalline silicon wafers for photovoltaics use. Japanese J Appl Phys.

2018;57(12):126501.

8. Pérez R, Gumbsch P. Directional anisotropy in the cleavage fracture

of silicon. Phys Rev Lett. 2000;84(23):5347.

9. Carton L, Riva R, Nelias D, Fourmeau M, Coustier F, Chabli A. Com-

parative analysis of mechanical strength of diamond-sawn silicon

wafers depending on saw mark orientation, crystalline nature and

thickness. Solar Energy Mater Solar Cells. 2019;201:110068.

10. Barredo J, Parra V, Guerrero I, Fraile A, Hermanns L. On the mechani-

cal strength of monocrystalline, multicrystalline and quasi-

monocrystalline silicon wafers: a four-line bending test study. Progress

Photovoltaics: Res Appl. 2014;22(12):1204-1212.

11. Borrero-L�opez O, Vodenitcharova T, Hoffman M, Leo AJ. Fracture

strength of polycrystalline silicon wafers for the photovoltaic indus-

try. J Am Ceramic Soc. 2009;92(11):2713-2717.

12. Funke C, Kullig E, Kuna M, Möller HJ. Biaxial fracture test of silicon

wafers. Adv Eng Mater. 2004;6(7):594-598.

13. Landau LD, Lifshitz EM. Theory of elasticity (Pergamon Press, Oxford,

1959); 1970.

14. Paulsen JD. Wrapping liquids, solids, and gases in thin sheets. arXiv

preprint arXiv:180407425; 2018.

15. Aly SP, Ahzi S, Barth N, Abdallah A. Numerical analysis of the reliabil-

ity of photovoltaic modules based on the fatigue life of the copper

interconnects. Solar Energy. 2020;212:152-168.

16. Hasan O, Arif AFM. Performance and life prediction model for photo-

voltaic modules: effect of encapsulant constitutive behavior. Solar

Energy Mater Solar Cells. 2014;122:75-87.

17. Song WJR, Tippabhotla SK, Tay AAO, Budiman AS. Effect of intercon-

nect geometry on the evolution of stresses in a solar photovoltaic

laminate during and after lamination. Solar Energy Materials Solar Cells.

2018;187:241-248.

18. Chambion B, Nikitushkina L, Gaeremynck Y, et al. Tunable curvature

of large visible CMOS image sensors: towards new optical functions

and system miniaturization. In: 2016 IEEE 66th Electronic Compo-

nents and Technology Conference (ECTC) IEEE; 2016:178-187.

19. Tekaya K, Fendler M, Inal K, Massoni E, Ribot H. Mechanical behavior

of flexible silicon devices curved in spherical configurations. In: 2013

14th International Conference on Thermal, Mechanical and Multi-

Physics Simulation and Experiments in Microelectronics and Micro-

systems (EUROSIME) IEEE; 2013:1-7.

20. Hall JJ. Electronic effects in the elastic constants of n-type silicon.

Phys Rev. 1967;161(3):756.

21. Eitner U, Kajari-Schröder S, Köntges M, Brendel R. Non-linear

mechanical properties of ethylene-vinyl acetate (EVA) and its rele-

vance to thermomechanics of photovoltaic modules. In: 25th

European Photovoltaic Solar Energy Conference; 2010; Valencia,

Spain:1-3.

22. Burns J, Dubbelday PS, Ting RY. Dynamic bulk modulus of various

elastomers. J Polymer Sci Part B: Polymer Phys. 1990;28(7):1187-

1205.

23. Beinert AJ, Romer P, Büchler A, Haueisen V, Aktaa J, Eitner U. Ther-

momechanical stress analysis of PV module production processes by

raman spectroscopy and FEM simulation. Energy Proc. 2017;124:

464-469.

24. Beinert AJ, Romer P, Heinrich M, Aktaa J, Neuhaus H. Thermomecha-

nical design rules for photovoltaic modules. Progress Photovoltaics:

Res Appl. 2022:1-13.

25. Rendler LC, Romer P, Beinert AJ, et al. Thermomechanical stress in

solar cells: contact pad modeling and reliability analysis. Solar Energy

Materials Solar Cells. 2019;196:167-177.

26. Tippabhotla SK, Song WJR, Tay AAO, Budiman AS. Effect of encapsu-

lants on the thermomechanical residual stress in the back-contact sili-

con solar cells of photovoltaic modules—a constrained local curvature

model. Solar Energy. 2019;182:134-147.

27. International technology roadmap for photovoltaic (ITRPV); 2021.

28. Wilson GM, Al-Jassim M, Metzger WK, et al. The 2020 photovoltaic

technologies roadmap. J Phys D: Appl Phys. 2020;53(49):493001.

How to cite this article: Charpentier J-B, Duigou T,

Chambion B, Voarino P, Chabuel F. Photovoltaic integration in

curved parts: Mechanical limits and key parameters from a

theoretical point of view. Prog Photovolt Res Appl. 2023;1‐14.

doi:10.1002/pip.3666

10 CHARPENTIER ET AL.

 1099159x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pip.3666 by French A

tom
ic A

nd A
lternative E

nergy C
om

m
ission, W

iley O
nline L

ibrary on [01/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

info:doi/10.1002/pip.3666


APPENDIX A

A.1 | Simplification of ϵk

The expression of ϵk is the sum of three terms of different

frequencies:

ϵkðr,θÞ ¼ r2

8

κ2Σþ
κ2Δ
2

0

0
κ2Δ
2

2
6664

3
7775þ κΔκΣ 2cosð2θÞ� sinð2θÞ� sinð2θÞ0½ �

0
BBB@

þκ2Δ
2

cosð4θÞ� sinð4θÞ� sinð4θÞ� cosð4θÞ½ �
�

ðA15Þ

If ones defines a displacement field un such that

unðr,θÞ¼ r3 AncosðnθÞBn sinðnθÞ½ � ðA16Þ

Then, according to Equation (3), the corresponding in-plane strain

writes

ϵp
n
ðr,θÞ¼ r2

3An cosðnθÞ 1
2

2Bn�nAnð ÞsinðnθÞ
1
2

2Bn�nAnð ÞsinðnθÞ nBnþAnð ÞcosðnθÞ

2
664

3
775 ðA17Þ

Using this expression along with Equation (4), the three independent

components of the term with n¼2 are canceled with A2 ¼�2κΔκΣ=3

and B2 ¼ κΔκΣ=3. The three independent components of the term with

n¼4 are canceled with A4 ¼�κ2Δ=6 and B4 ¼ κ2Δ=6. Therefore, the cor-

responding terms of ϵk will not appear in ϵ and thus induce elastic

strain in the system. Regarding the term with n¼0, no value of A0 can

cancel the three independent components of ϵk for every values of κΔ

and κΣ. However, there is a solution A0 ¼�κ2=2 if κ2Σ ¼ κ2Δ ¼ κ. This

implies that the following ϵκ is equivalent to the previous one:

ϵκðrÞ¼ r2

8

κ2Σþ
κ2Δ
2

0

0
κ2Δ
2

2
664

3
775� 3

κ2

2
0

0
κ2

2

2
664

3
775

0
BB@

1
CCA ðA18Þ

for every value of κ. As a consequence, the curvature strain for κ2Σ ¼
κ2, κ2Δ ¼0 is exactly opposite to the curvature strain for κ2Σ ¼0, κ2Δ ¼ κ2.

Finally, for a linear problem without external loading, the solution to

one of the two gives the solution to the second problem. Therefore,

solving one problem provides the solution for every set of curvatures

(since it can always be decomposed into the two specific cases dis-

cussed before). In the text, the reference problem will be treated with

Equation (A18) in the case κ2 ¼ κ2Δ. The corresponding curvature strain

tensor writes

ϵκðrÞ¼ r2

8
κ2Σ�κ2Δ 0

0 0

" #
ðA19Þ

These are results are deeply connected to the Gaussian curvature and

the theorema egregium. In our problem, the Gaussian curvature writes

κ1κ2 ¼4ðκ2Σ�κ2ΔÞ. This quantity scales in proportion to membrane

stresses.

A.1.1 | Fourier series of a pseudo-square

The pseudo-square shape is basically a square with a portion of circle

at each of its corner. In the following, the square part corresponds to

an angle θ0. RðθÞ writes

RðθÞ¼ 1
cosðθÞ θ� ½0,θ0� ðA20Þ

RðθÞ¼ 1
cosðθ0Þ θ� θ0,

π

4

h i
ðA21Þ

with a pseudo-square side of length 2. Thanks to the symmetry of the

pseudo-square, this description is sufficient to represent it fully (only

terms with a frequency divisible by 4 are not nil). Since R is a periodic

function, its Fourier decomposition exists and is simpler to use in the

present problem. In order to find its coefficient, the function 1=cosðθÞ
is approximated using a Taylor expansion:

1
cosðθÞ ≈1þ1

2
θ2þ 5

24
θ4þ 61

720
θ6 ðA22Þ

Then, Fourier series coefficients are computed with this

approximation:

d0 ¼4
π

ðπ
4�θ0

0
1þ1

2
θ2þ 5

24
θ4þ 61

720
θ6

� �
dθ

þ2
π

ðπ
4

π
4�θ0

1
cosðθ0Þdθ

ðA23Þ

dn ¼8
π

ðπ
4�θ0

0
1þ1

2
θ2þ 5

24
θ4þ 61

720
θ6

� �
cosðnθÞdθ

þ4
π

ðπ
4

π
4�θ0

cosðnθÞ
cosðθ0Þdθ

ðA24Þ

with n>0 and n divisible by 4 (other coefficients are nil). Finally, these

functions are computed with Imn and Jn:

Imn ¼
ðθ0
0
θm cosðnθÞdθ ðA25Þ

Jn ¼
ðπ

4

θ0

cosðnθÞdθ ðA26Þ
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which are can be computed using the following relations:

Im0 ¼ θmþ1
0

mþ1
ðA27Þ

I0n ¼ sinðnθ0Þ
n

ðA28Þ

Imn ¼ θm�1
0

n

� �
θ0 sinðnθ0Þþm

n
cosðnθ0Þ

� �
�mðm�1Þ

n2
Im�2n ðA29Þ

J0 ¼ nπ
4
�θ0 ðA30Þ

Jn ¼1
n

sin
nπ
4

� �
� sin nθ0ð Þ

� �
ðA31Þ

with m,n>0. Please note that the coefficients dn describe a pseudo-

square of half side 1 and a perturbated disk of radius d0. In the manu-

script, the perturbated disk described by the cn coefficients has a

radius equal to 1. Thus, cn ¼ dn=d0 and the pseudo-square half side L

is different. It writes

L
R0

¼
XN
n

cn ðA32Þ

In practice, L≈0:9R0 for a typical (M2 format) pseudo-square shape.

A.1.2 | Homogeneous solutions

Problems (E00), (E10) and (E01) are based on the same partial differen-

tial equations but with different second members or boundary condi-

tions. Thus, their homogeneous solutions take the same form. They

must verify

1
2
r: Ci : truþru

� �� �
¼0 ðA33Þ

Considering a displacement field u of the form:

uðr,θÞ¼ rm arccosðnθÞþars sinðnθÞaθc cosðnθÞþaθs sinðnθÞ½ � ðA34Þ

and using their complex representation, one finds that Equation (A33)

gives

n2ν�n2þ2m2�2 in mνþmþν�3ð Þ
in mνþm�νþ3ð Þ �2n2�m2νþm2þν�1

" #
:û¼0 ðA35Þ

with û the complex displacement field. This matrix is singular if its

determinant is equal to zero. This condition writes

ðm�ðnþ1ÞÞðmþðnþ1ÞÞðm�ðn�1ÞÞðmþðn�1ÞÞ¼0 ðA36Þ

The four solutions are m¼ n�1 and m¼�ðn�1Þ. In the

present problem, the displacement field must be nil in r¼0.

Therefore, the remaining solutions are m¼1 if n¼0 and m¼ n�1

if n>0. Please note that in the present problem, the numbers n

must be integers since no displacement discontinuities are expected

in the system. Therefore, the different m are themselves integers.

Looking back at the three problems, one can notice that the compo-

nents of ϵκ take the form described in Equation (A34). Furthermore,

different operators in these problems will also produce terms of the

same form. As a consequence the solutions must write as a series of

such form.

A.1.3 | Solution to problem (E00)

As mentioned in Section A.1, solving a problem for a given set

of curvatures κΣ, κΔ is equivalent to solving them all. Therefore

in the upcoming sections we will assume: κΔ ¼0. As seen in

Section A.1.2, the solutions to each one of the three problems

must take similar forms like the one presented in Equation (A34).

Prior to presenting their respective solutions, a notation is introduced:

The coefficients of a displacement vector are named urcmn
00 where r

(or θ) is the vector component c stands for cos (and s for sin),

m is the exponent of r, n is the frequency and 00 refers to the

problem solution. Using this notation, the solution to problem (E00)

with κΔ ¼0 writes

ur3000 ¼�ð3�νÞ
64

ðκ2Σ� κ2ΔÞ ðA37Þ

ur1000 ¼ðRðκ2Σ� κ2ΔÞÞ
2

64
ð1�νÞ ðA38Þ

Therefore, its strain tensor writes

ϵ
00
ðrÞ¼ κ2Σ� κ2Δ

64

� � ð1�νÞR2�ð3ν�1Þr2 0

0 ð1�νÞR2�ð3�νÞr2

" #

ðA39Þ

This solution may then be used in Equation (11) to find the corre-

sponding stress tensor.

A.1.4 | Solution to problem (E10)

The solution to problem (E10) writes

ur3010 ¼�1þν

128
κ2Σ�κ2Δ
� � ðA40Þ

ur1010 ¼1þν

128
κ2Σ�κ2Δ
� �

R2
0 ðA41Þ

12 CHARPENTIER ET AL.
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for the terms with a frequency n¼0. Then, an inhomogeneous term

with n¼1 and m¼4 is expected (due to the ur1000 coefficient, which is

not nil). From the equilibrium equation, one can find that its coeffi-

cients must verify the equation:

8ν�8 0 0 4ν�4

0 8ν�8 4ν�4 0

0 8 �16 0

�8 0 0 �16

2
666664

3
777775:

urc1410

urs1410

uθc1410

uθs1410

2
666664

3
777775

¼�

1 0 �1 0 0 0

0 0 0 0 �2 0

0 0 0 0 �2 0

�1 0 1 0 0 0

2
666664

3
777775:

ur1000

0

ur1000

0

0

0

2
666666666664

3
777777777775

ðA42Þ

The second member is nil, and therefore, its coefficients are nil as

well. Finally, two terms are expected for n¼4, m¼ n�1. However,

after tedious computation based on the equilibrium and boundary

condition, one can find that the coefficients of the term n¼4, m¼5

are nil. The remaining term with n¼4 and m¼3 writes

urc3410

urs3410

uθc3410

uθs3410

2
6664

3
7775¼ 1þν

1�ν

� �
κ2Σ�κ2Δ
� �

192

1

0

0

�1

2
6664

3
7775 ðA43Þ

Therefore, the strain tensor of problem (E10) writes

ϵ
10
ðr,θÞ ¼ 1þνð Þ κ2Σ�κ2Δ

64

� �
1
2

R2
0�3r2 0

0 R2
0� r2

" # 

þ 1
1�ν

� �
r2 cosð4θÞ� sinð4θÞ� sinð4θÞ� cosð4θÞ½ �

�
ðA44Þ

A.1.5 | Solution to problem (E01)

The solution to this problem (E01) will only contain terms of frequency

n>0. For each frequency two homogeneous solutions with rn�1 exist.

Using the equilibrium and boundary conditions of problem (E01), one

can derive the following system that the coefficient of such terms

must verify

f1 f1 0 0

0 0 f2 f3
g1 g2 g5 g6
�g3 g4 �g7 g7

2
6664

3
7775:

urcn�1n
01

uθsn�1n
01

urcnþ1n
01

uθsnþ1n
01

2
66664

3
77775¼ cn

c4

ðκ2Σ� κ2ΔÞR2
0

32

 !
ð1�ν2Þ

0

0

1

n

2
6664
3
7775
ðA45Þ

with f1 ¼ðνþ1Þn2=2�2n, f2 ¼ðνþ1Þn2=2þ2n,

f3 ¼ n2ð1þνÞ=2þnðν�1Þ, g1 ¼ðn�1þνÞRn�2, g2 ¼ nνRn�2,

g3 ¼ nð1�νÞRn�2=2, g4 ¼ðn�2Þð1�νÞRn�2=2, g5 ¼ðnþ1�νÞRn,

g6 ¼ nνRn, g7 ¼ nð1�νÞRn=2. The four missing coefficients are nil.

Please note that in this particular case, no explicit solution has been

found. However, a numerical solution may be found for each fre-

quency n and for a given set of parameters. After its computation, the

strain tensor writes

ϵ
01

r,θð Þ¼
X
n>0

rn�2

n�1ð Þcos nθð Þurcn�1n
01

1
2

n�2ð Þuθsn�1n
01 �nurcn�1n

01

� �
sin nθð Þ

1
2

n�2ð Þuθsn�1n
01 �nurcn�1n

01

� �
sin nθð Þ nuθsn�1n

01 þurcn�1n
01

� �
cos nθð Þ

2
6664

3
7775

þ rn
nþ1ð Þcos nθð Þurcn�1n

01

n
2

uθsn�1n
01 �urcn�1n

01

� �
sin nθð Þ

1
2

n�2ð Þuθsn�1n
01 �nurcn�1n

01

� �
sin nθð Þ nuθsn�1n

01 þurcn�1n
01

� �
cos nθð Þ

2
664

3
775

ðA46Þ

In this form, the solution can easily be adapted for other values of cn,

that is, other geometries that correspond to a weakly perturbated

disks.

A.1.6 | Solution for a thin strip

A flat rectangular strip of half length Lx and half width Ly is consid-

ered. This strip is conformed to a curved surface, and this conforma-

tion is modeled with a normal displacement uzez such as described in

Section 2.1. As Ly tends to be nil, it is assumed that there is an area

where the strain field does not depend on x. One can compute the

local variation in length of a small piece of matter along the x axis (see

Figure 4A). At a given position y, the strip length is

dlðyÞ¼ 1
κx
�1
2
y2κy

� �
dϕ ðA47Þ

with κx and κy the curvatures along x and y and ϕ the angle presented

on Figure 4A. This length variation corresponds to the existence of a

varying ϵxx strain. Such a strain can be computed as: dlðyÞ=dlð0Þ�1.

Since the choice of dlð0Þ as the reference length is arbitrary, this result

is valid to a constant.

ϵðyÞ¼ �1
2
y2κxκyþA ϵxyðyÞ
ϵxyðyÞ ϵyyðyÞ

2
4

3
5 ðA48Þ

With an elastic material the corresponding stress field writes

σðyÞ¼ E
1�ν2

�1
2
y2κxκyþAþνϵyyðyÞ 1�νþ2b

2

� �
ϵxyðyÞ

1�νþ2b
2

� �
ϵxyðyÞ νð�1

2
y2κxκyþAÞþϵyyðyÞ

2
6664

3
7775

ðA49Þ
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At equilibrium, the divergence of this tensor is nil. The corresponding

vector writes

r: σ
� �

ðyÞ¼ E
1�ν2

1�νþ2b
2

� �
dϵxy
dy

ðyÞ

�νyκxκyþdϵyy
dy

ðyÞ

2
664

3
775¼0 ðA50Þ

As a consequence, the shear strain is constant, ϵxy ¼B and

ϵyy ¼ ν1
2y

2κxκyþC. Finally, the loading on the outer boundaries must

be nil. This condition writes

σ:ey
� �

ðy¼ LyÞ¼
1�νþ2b

2

� �
B

νAþC

2
4

3
5¼0 ðA51Þ

So B¼0, there is no shear. Finally, the external in-plane loading

applied to the system is nil. Therefore, the overall stress applied at a

given x must be nil. This writes

ðLy
�Ly

σ:exdy¼
E

1�ν2
� 1�ν2

3

� �
L3yκxκyþ2LyðAþνCÞ

0

2
4

3
5¼0 ðA52Þ

From the above equations, A¼ L2yκxκy=6 and C¼�νL2yκxκy=6. Finally,

using the notations, κΣ and κΔ. The strain tensor writes

ϵðyÞ¼ κ2Σ�κ2Δ
24

L2y �3y2 0

0 ν 3y2�L2y

� �
2
4

3
5 ðA53Þ

This last expression provides a strain prediction in the bulk of thin

curved strips at equilibrium.

A.1.7 | Equation of the case study shape

The curved module presented as a case study in Section 4 is described

by an out-of-plane transformation. Namely, the out of Oxy plane com-

ponent z writes

z¼�0:1 1:2 yþ0:4ð Þ2�yþ2 yþ0:35ð Þ3
� �

�0:2 1þyð Þx2 ðA54Þ

where the coordinates are in meters. The shape is described for

x� �0:75;0:75½ � and y� �0:35;0:35½ �.

14 CHARPENTIER ET AL.
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