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Introduction

In 2020, the market of lithium-ion batteries (LIB) reached 
230 GWh of capacity. The automotive market was the largest 
application (69%) and its share has considerably increased this 
last decade since it was less than 1% of LIB market in 2000 [1]. 
Reduce the environmental impacts of an electric vehicle (EV) 
requires the eco-design of electric batteries since it accounts up 
to 41 % of the total greenhouse emission gas (GES) of a EV
production [2]. Plenty of Life Cycle Assessments (LCA) have 
been led on electric batteries these last years [3]–[10]. Most of 
them focus on the production phase [11] and on the climate 
change impact category [4], [11], [12]. Results range from 
53 kg CO2 eq/kWh to 313 kg CO2 eq/kWh [4], [11]–[13]. As 
highlighted by several authors, a large variability appears 
between the studies due to the use of several functional units, 

boundaries, impact categories, but also due to the lack of 
primary data [14]–[17]. This comes from the nature of the 
battery itself, which appears to be a “complex system” which 
is characterized by a large number of interdependent sub-
systems, of numerous alternative solutions, with several 
operating modes, and which evolves during its lifetime by 
interacting with its environment [18]–[20]. Therefore, 
assessing the environmental impacts of LIBs is usually case-
specific due to the complex modeling of such systems made of 
a large variability in designs, in user behaviors or in geographic 
use conditions.
Another issue of LCAs of electric batteries lies in the high
sensitivity of the results. One of the major sensitive parameter 
is the lifespan of the battery, as noticed by several authors [6], 
[7], [11], [16], [21]–[23]. Indeed, the lifespan is arbitrarily 
chosen in most studies: usually 10 years or 150000 km. 
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Abstract

The electrification of vehicles is seen nowadays as a promising way to decarbonize the personal transportation. The assessment of 
environmental impacts of electric batteries is usually case-specific due to the complex modelling of such systems which present a 
large variability in designs, in user behavior or in geographic use conditions. A typical example is the battery lifespan which is 
arbitrarily chosen in most cases, even though it has a decisive influence on lifecycle emissions. Computing the battery lifespan in 
addition to a Life Cycle Assessment (LCA) would enable to highlight new hotspots and new parameters to reduce the environmental 
impacts of batteries. This paper introduces a new approach, based on a LCA conducted with the open-source software Brightway 
and built on primary data collected from a complete disassembly of a commercial electric vehicle. An original functional unit has 
been proposed that better represents the service offered by the battery over its lifetime and a semi-empirical ageing model has been 
integrated to predict more precisely the battery lifespan depending on design parameters and the use conditions. This innovative 
methodology is easily parameterized and aims to compare several eco-design strategies.
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However, in a cradle-to-grave approach, this value is used for 
normalization and can thus, greatly influences the final results 
[22], [24]. Arshad et al. [11] show that emissions from the same 
study can be extended from 9.86 g CO2 eq/km to 
72 – 80 g CO2 eq/km when the lifespan is decreased from 
300000 km to 150000 km. 
Several studies attempted to bring agility to their methodology. 
Cox et al. [25], [26] develop a parameterized model for the 
whole electric vehicle and build scenarios to assess the benefits 
of autonomous vehicles, and the influence of the future electric 
mix. This work has recently been reused by Sacchi et al. [27] 
to build an interactive tool carculator, which shares the same 
systemic approach than the Excel spreadsheet from the 
Argonne National Laboratory Everbatt [27], [28]. Egede [20] 
takes also advantage of a parameterized Life Cycle Inventory 
(LCI) to study the influence of the use conditions, the 
geographical conditions, and the lightening strategies. 
However, none of these studies incorporates the lifespan issue. 
With the ‘Dualfoil’ model, Lybbert et al. [17] consider simple 
ageing model to assess the influence of cell properties 
(thickness, porosity, ambient temperature, discharge rate) on 
the environmental impacts. Ma et Deng [29] go further by 
optimizing the cathode thickness and the bilayer number over 
the whole lifecycle of the battery thanks to a kinetic model. 
Nevertheless, these studies only focus on the cells and do not 
consider the battery pack as a whole system. 
This paper offers a more accurate method to assess the 
environmental impacts of electric batteries by integrating an 
ageing model to LCA in order to predict the lifespan depending 
on the design parameters. This model is easily parameterized 
and aims to be used as an eco-design tool for the battery pack. 
The details of the ageing model are presented in a first part, 
followed by a section that explains its integration into the LCA 
approach. The final part provides the first results that have been 
obtained through this methodology. 

1. Ageing model 

Previous internal projects have measured capacity losses for 
several commercial cells under different operating conditions. 
This work ended up with the construction of an ageing 
cartography for a LiNi1/3Mn1/3Co1/3O2 cell (NMC111). 
Calendar losses, related to the period where the battery is 
unused, and cycling losses, that occurs during the battery 
charge and discharge, are measured at different ‘breakpoints’ 
which refers to the following parameters of the cell: the 
temperature, the State of Charge (SoC), the current (or the C-
rate), and the previous loss capacity. Cells are tested at 5 
different temperatures, namely -10 °C, 10 °C, 25 °C, 45 °C and 
60 °C, with 7 different SoC window, namely 0-100 %, 0-80 %, 
0-90 %, 10-100 %, 10-90, 20-100 %, 20-90 % at 5 different 
charge/discharge rates (commonly called C-rate), namely 
0.30/3C, 1C/1C, 2C/2C, 3C/3C, 4C/4C. A 1C discharge means 
that a fully charged 1Ah battery should provide 1Ah for one 
hour. A 2C discharge would last only 30 minutes.  
This results in a cartography that contains all the measured 
capacity losses with the associated breakpoints. The Fig. 1 
illustrates what can provide the cartography for the cycling 
losses depending on only 2 parameters: the cell temperature 
and the SoC. This cartography is then interpolated so that, the 

total capacity loss – the sum of the calendar and the cycling 
losses – can be computed at any breakpoints. A similar 
approach has been proposed by Montaru et al. [30] to build a 
calendar ageing model. 

 

Fig. 1. 3D graph extract from the cartography: variation of the cycling 
capacity loss depending on the cell temperature and the State of charge 
(during a 1C discharge) 

 

Fig. 2. Use profile for the use of an small-size EV with a 33.3 kWh battery 
pack during one year 

The use profile described in Fig. 2 is used in parallel with the 
cartography to compute the capacity loss at any step of the 
profile. It is constructed over a whole year to represent an 
annual intense use of a small-size EV. It is based on the 
standard Worldwide Harmonised Light Vehicles Test 
Procedure (WLTP) wich relies on standardized driving cycles 
(WLTC). These cycles are subdivided into 4 phases which 
simulate an urban, semi-urban, rural and highway driving 
scenario. During the workweek, a complete WLTC, which is 
equivalent to 1800 seconds and 23.266 driven kilometers, is 
performed to go to work and go back home. During the 
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weekend, the car is used to drive 28.4 kilometres on highways, 
rural and semi-urban sections. Five holiday weeks are 
considered (the 1st week of April, the two first weeks of August, 
and the last two weeks of December). To simulate an intense 
holiday journey, 178 kilometres are driven the first and the last 
day of the holiday week (referred as ‘Journey’ in Fig. 2) mainly 
on highways. The same profile as the one from the weekend is 
used for the other days of the holiday week. In a year, 
14759 km are driven through this profile, which is a bit higher 
than the average of French drivers (12200 annual km) [31]. 
Thus, this use profile can be considered as a severe intensity 
use.  
To get the cell temperature Tcell, a simple electrothermal model 
is used to represent the internal heating by Joule effect and the 
thermal exchanges with ambient temperature:  

𝑚𝑚𝑚𝑚 𝑑𝑑𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑 = 𝑅𝑅𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

2 + ℎ𝑆𝑆(𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) (1) 

m is the cell mass (kg), c the specific cell heat capacity 
(J.K⁻¹.kg⁻¹), h the heat transfer coefficient (W.m⁻².K⁻¹), S the 
external cell surface (m²), Ri,cell the internal cell resistance (Ω) 
and Icell the cell current (A). This representation assumes that 
the battery pack has a homogeneous temperature distribution 
and that the cells exchange thermally directly with the ambient 
exterior on all the cell surface. The equation (1) is numerically 
solved through an implicit resolution to get Tcell. The numeric 
values of the parameters cannot be detailed for confidential 
reasons. A more complex model will be integrated in later 
works to better represent the temperature behaviour of a battery 
pack. Once we have access to the cell current, the cell 
temperature, and the SoC at each step of the use profile, it is 
now possible to compute the capacity loss at any time of the 
battery lifetime. Thus, we are able to compute a time-dependent 
function from this capacity loss 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑓𝑓(t) that enables to 
predict the battery lifespan.  

2. Integrating the ageing model into LCA 

The scope of the study is the battery system which includes the 
casing, the modules, the cooling circuit, the powerbox and the 
power electronics. On the contrary to most studies, the LCI of 
the battery takes into account the power electronics, which 
contains the inverter, the DCDC controller, and the charger. 
Since these elements interact directly with the battery and have 
an influence on ageing, we include these elements in our scope. 
The boundary of the LCA is cradle-to-grave, which goes from 
the extraction of the raw materials, the production of the 
battery, its use during its lifetime and its End-of-Life (EoL). As 
the scope of the study is only the battery, the consumption of 
the car without the battery nor charger, is subtracted to the total 
energy required to recharge the battery. 
The functional unit (FU) aims at describing the service offered 
by the object. As recommended by the IPCC Handbook, it shall 
answer the questions ‘what’, ‘how much’, ‘how well’, and ‘for 
how long’ [32]. Thus, concerning an automotive electric 
battery, the FU can be stated as follows :  to provide the energy 
to the car to perform the use profile during one year. Every 
year, we check if the energy stored in the battery wich is 
computed from the ageing model, is sufficient to perform the 
use profile during one year, that is to say, if the state of charge 
reaches 0% during the year. It is usually admitted that the 
battery has come to its EoL when 70 to 80% of the initial 

energy remains. However, Saxena et al showed this threshold 
has nothing to do with the real use of the drivers, since more 
than 85% of the american daily trips can still be performed at 
80% SoC [33]. Linking the EoL to the use profile makes 
possible to know exactly when the battery cannot fulfill the user 
needs instead of arbiratry choosing one threshold or one 
reference lifespan. 

 

Fig. 3. Structure of the model that integrates an ageing model within LCA and 
which enables to assess the impact score of several battery design 

The reference flow to meet the FU refers to the number of 
battery that is necessary to perform the use profile during one 
year. This value is assessed by dividing one year with the 
predicted lifespan, computed thanks to the ageing model. We 
assume this number can be decimal: the main purpose is to 
establish a reference baseline that allows the comparison of the 
impact score of several design configurations. A higher 
lifespan will lead to a smaller reference flow, which will reduce 
the impact score.  
The main asset of this method lies in its ability to take into 
account the influence of the design parameters not only on the 
Life Cycle Inventory (LCI) but also on the lifespan since it will 
change the breakpoints of the ageing model. Therefore, from 
several design configurations, it is now possible to compute a 
lifespan and a reference flow for each set of designs, that leads 
to different impact scores as shown in Fig. 3. The lifespan is 
not seen as an independent input parameter anmyore but is 
directly estimated from the design and the use conditions.  

3. Results 

3.1. Cradle-to-gate score 

The LCA is based on an EV with a 33.3 kWh battery pack that 
weighs 283 kg, and contains 96 prismatic cells 
LiNi1/3Mn1/3Co1/3O2 (NMC111). The cells have a 94 Ah 
capacity and are supposed to be manufactured in China. A Bill 
of Materials (BoM) is obtained from a whole disassembly of a 
small-size EV that gives the amount and the composition of 
each subcomponents of the battery pack. The EoL is modelled 
as a hydrometallurgy process with mechanical pretreatment 
(LithoRec process). Avoided impacts from the recovery of 
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However, in a cradle-to-grave approach, this value is used for 
normalization and can thus, greatly influences the final results 
[22], [24]. Arshad et al. [11] show that emissions from the same 
study can be extended from 9.86 g CO2 eq/km to 
72 – 80 g CO2 eq/km when the lifespan is decreased from 
300000 km to 150000 km. 
Several studies attempted to bring agility to their methodology. 
Cox et al. [25], [26] develop a parameterized model for the 
whole electric vehicle and build scenarios to assess the benefits 
of autonomous vehicles, and the influence of the future electric 
mix. This work has recently been reused by Sacchi et al. [27] 
to build an interactive tool carculator, which shares the same 
systemic approach than the Excel spreadsheet from the 
Argonne National Laboratory Everbatt [27], [28]. Egede [20] 
takes also advantage of a parameterized Life Cycle Inventory 
(LCI) to study the influence of the use conditions, the 
geographical conditions, and the lightening strategies. 
However, none of these studies incorporates the lifespan issue. 
With the ‘Dualfoil’ model, Lybbert et al. [17] consider simple 
ageing model to assess the influence of cell properties 
(thickness, porosity, ambient temperature, discharge rate) on 
the environmental impacts. Ma et Deng [29] go further by 
optimizing the cathode thickness and the bilayer number over 
the whole lifecycle of the battery thanks to a kinetic model. 
Nevertheless, these studies only focus on the cells and do not 
consider the battery pack as a whole system. 
This paper offers a more accurate method to assess the 
environmental impacts of electric batteries by integrating an 
ageing model to LCA in order to predict the lifespan depending 
on the design parameters. This model is easily parameterized 
and aims to be used as an eco-design tool for the battery pack. 
The details of the ageing model are presented in a first part, 
followed by a section that explains its integration into the LCA 
approach. The final part provides the first results that have been 
obtained through this methodology. 

1. Ageing model 

Previous internal projects have measured capacity losses for 
several commercial cells under different operating conditions. 
This work ended up with the construction of an ageing 
cartography for a LiNi1/3Mn1/3Co1/3O2 cell (NMC111). 
Calendar losses, related to the period where the battery is 
unused, and cycling losses, that occurs during the battery 
charge and discharge, are measured at different ‘breakpoints’ 
which refers to the following parameters of the cell: the 
temperature, the State of Charge (SoC), the current (or the C-
rate), and the previous loss capacity. Cells are tested at 5 
different temperatures, namely -10 °C, 10 °C, 25 °C, 45 °C and 
60 °C, with 7 different SoC window, namely 0-100 %, 0-80 %, 
0-90 %, 10-100 %, 10-90, 20-100 %, 20-90 % at 5 different 
charge/discharge rates (commonly called C-rate), namely 
0.30/3C, 1C/1C, 2C/2C, 3C/3C, 4C/4C. A 1C discharge means 
that a fully charged 1Ah battery should provide 1Ah for one 
hour. A 2C discharge would last only 30 minutes.  
This results in a cartography that contains all the measured 
capacity losses with the associated breakpoints. The Fig. 1 
illustrates what can provide the cartography for the cycling 
losses depending on only 2 parameters: the cell temperature 
and the SoC. This cartography is then interpolated so that, the 

total capacity loss – the sum of the calendar and the cycling 
losses – can be computed at any breakpoints. A similar 
approach has been proposed by Montaru et al. [30] to build a 
calendar ageing model. 

 

Fig. 1. 3D graph extract from the cartography: variation of the cycling 
capacity loss depending on the cell temperature and the State of charge 
(during a 1C discharge) 

 

Fig. 2. Use profile for the use of an small-size EV with a 33.3 kWh battery 
pack during one year 

The use profile described in Fig. 2 is used in parallel with the 
cartography to compute the capacity loss at any step of the 
profile. It is constructed over a whole year to represent an 
annual intense use of a small-size EV. It is based on the 
standard Worldwide Harmonised Light Vehicles Test 
Procedure (WLTP) wich relies on standardized driving cycles 
(WLTC). These cycles are subdivided into 4 phases which 
simulate an urban, semi-urban, rural and highway driving 
scenario. During the workweek, a complete WLTC, which is 
equivalent to 1800 seconds and 23.266 driven kilometers, is 
performed to go to work and go back home. During the 
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weekend, the car is used to drive 28.4 kilometres on highways, 
rural and semi-urban sections. Five holiday weeks are 
considered (the 1st week of April, the two first weeks of August, 
and the last two weeks of December). To simulate an intense 
holiday journey, 178 kilometres are driven the first and the last 
day of the holiday week (referred as ‘Journey’ in Fig. 2) mainly 
on highways. The same profile as the one from the weekend is 
used for the other days of the holiday week. In a year, 
14759 km are driven through this profile, which is a bit higher 
than the average of French drivers (12200 annual km) [31]. 
Thus, this use profile can be considered as a severe intensity 
use.  
To get the cell temperature Tcell, a simple electrothermal model 
is used to represent the internal heating by Joule effect and the 
thermal exchanges with ambient temperature:  

𝑚𝑚𝑚𝑚 𝑑𝑑𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑 = 𝑅𝑅𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

2 + ℎ𝑆𝑆(𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) (1) 

m is the cell mass (kg), c the specific cell heat capacity 
(J.K⁻¹.kg⁻¹), h the heat transfer coefficient (W.m⁻².K⁻¹), S the 
external cell surface (m²), Ri,cell the internal cell resistance (Ω) 
and Icell the cell current (A). This representation assumes that 
the battery pack has a homogeneous temperature distribution 
and that the cells exchange thermally directly with the ambient 
exterior on all the cell surface. The equation (1) is numerically 
solved through an implicit resolution to get Tcell. The numeric 
values of the parameters cannot be detailed for confidential 
reasons. A more complex model will be integrated in later 
works to better represent the temperature behaviour of a battery 
pack. Once we have access to the cell current, the cell 
temperature, and the SoC at each step of the use profile, it is 
now possible to compute the capacity loss at any time of the 
battery lifetime. Thus, we are able to compute a time-dependent 
function from this capacity loss 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑓𝑓(t) that enables to 
predict the battery lifespan.  

2. Integrating the ageing model into LCA 

The scope of the study is the battery system which includes the 
casing, the modules, the cooling circuit, the powerbox and the 
power electronics. On the contrary to most studies, the LCI of 
the battery takes into account the power electronics, which 
contains the inverter, the DCDC controller, and the charger. 
Since these elements interact directly with the battery and have 
an influence on ageing, we include these elements in our scope. 
The boundary of the LCA is cradle-to-grave, which goes from 
the extraction of the raw materials, the production of the 
battery, its use during its lifetime and its End-of-Life (EoL). As 
the scope of the study is only the battery, the consumption of 
the car without the battery nor charger, is subtracted to the total 
energy required to recharge the battery. 
The functional unit (FU) aims at describing the service offered 
by the object. As recommended by the IPCC Handbook, it shall 
answer the questions ‘what’, ‘how much’, ‘how well’, and ‘for 
how long’ [32]. Thus, concerning an automotive electric 
battery, the FU can be stated as follows :  to provide the energy 
to the car to perform the use profile during one year. Every 
year, we check if the energy stored in the battery wich is 
computed from the ageing model, is sufficient to perform the 
use profile during one year, that is to say, if the state of charge 
reaches 0% during the year. It is usually admitted that the 
battery has come to its EoL when 70 to 80% of the initial 

energy remains. However, Saxena et al showed this threshold 
has nothing to do with the real use of the drivers, since more 
than 85% of the american daily trips can still be performed at 
80% SoC [33]. Linking the EoL to the use profile makes 
possible to know exactly when the battery cannot fulfill the user 
needs instead of arbiratry choosing one threshold or one 
reference lifespan. 

 

Fig. 3. Structure of the model that integrates an ageing model within LCA and 
which enables to assess the impact score of several battery design 

The reference flow to meet the FU refers to the number of 
battery that is necessary to perform the use profile during one 
year. This value is assessed by dividing one year with the 
predicted lifespan, computed thanks to the ageing model. We 
assume this number can be decimal: the main purpose is to 
establish a reference baseline that allows the comparison of the 
impact score of several design configurations. A higher 
lifespan will lead to a smaller reference flow, which will reduce 
the impact score.  
The main asset of this method lies in its ability to take into 
account the influence of the design parameters not only on the 
Life Cycle Inventory (LCI) but also on the lifespan since it will 
change the breakpoints of the ageing model. Therefore, from 
several design configurations, it is now possible to compute a 
lifespan and a reference flow for each set of designs, that leads 
to different impact scores as shown in Fig. 3. The lifespan is 
not seen as an independent input parameter anmyore but is 
directly estimated from the design and the use conditions.  

3. Results 

3.1. Cradle-to-gate score 

The LCA is based on an EV with a 33.3 kWh battery pack that 
weighs 283 kg, and contains 96 prismatic cells 
LiNi1/3Mn1/3Co1/3O2 (NMC111). The cells have a 94 Ah 
capacity and are supposed to be manufactured in China. A Bill 
of Materials (BoM) is obtained from a whole disassembly of a 
small-size EV that gives the amount and the composition of 
each subcomponents of the battery pack. The EoL is modelled 
as a hydrometallurgy process with mechanical pretreatment 
(LithoRec process). Avoided impacts from the recovery of 
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energy (during battery discharging), and the production of 
recycled cobalt sulfate, nickel sulfate, manganese sulfate and 
lithium carbonate are taken into account. Metals such as 
aluminium, steel, copper but also plastics and electronics are 
supposed to be wastes. The LCI is completed by the database 
EcoInvent 3.8 for the background data. All computations are 
performed in Python 3.9 with the open-source LCA software 
Brightway2 [34]. The study will focus for now, on the impact 
category Global Waring Potential (GWP) of the methodology 
Environmental Footprint (EF) v3. 

 

Fig. 4. Mass share of the studied battery system 

As shown in the Fig. 4, active materials – cells in the modules – 
are the first contributor in the mass share with 74 % wt of the 
total mass followed by the casing (11 %). This is in line with 
the literature : Dai et al. [3] consider a battery with 73 % wt of 
cells higher than the 55% wt of cells for Kim et al. [9]. 
Fig. 5 represents the cradle-to-gate environmental impacts for 
the production of one kWh of battery in the impact category 
climate change. Contribution analysis is also presented in the 
Fig. 5 to highlight the relative share of each subcomponents. 
The LCA score of this study is 155 kg CO2 eq/kWh and the 
modules are the major contributor in this impact category. This 
belongs to the upper range of literature results: 
140 kg CO2 eq/kWh was obtained by Kim et al. [9], a mean of 
110 kg CO2eq/kWh by Peters et al. [4] or even lower with 
73 kg CO2 eq/kWh by Dai et al. [3]. This can be explained by 
the contribution of the power electronics, which is not 
integrated in the aforementioned LCAs, and which accounts in 
our study for 16 % of total Greenhouse Gas (GHG) emissions 
for the production phase. Besides, these studies are based on 
different data sources and assumptions that lead to an inherent 
variability of the results. 

3.2. Capacity loss 

Fig. 6 shows the result of the simulation of the loss capacity 
during 20 years. The mean consumption of the vehicle when 
driving is 0.1779 kWh/km. It can be noticed that the capacity 
drops highly in the first year and decreases in a linear way from 
5 years. At 10 years, the useable energy stored in the battery 

amounts to 71.2% of the initial energy. 
 

Fig. 5. Environmental impacts for the battery production phase in the climate 
change impact category with the contribution analysis for the subcomponents 

 

Fig. 6.  Capacity loss of a 33.3 kWh (26.6 kWh useable) during 20 years in 
Lyon and in Trondheim. 

In a recent study, Micari et al. [35] assessed the degradation of 
a LIB under the WLTP class 3 driving cycle. For a cell 
temperature of 25 °C, for a similar yearly driven distance 
(16984.18 km), their aged capacity is equal to 74.2% of the 
initial capacity after 10 years, which is very close to our value. 
The main difference comes from our electrothermal model that 
takes into account the variation of the cell temperature 
depending on the daily external temperatures. As highlighted 
by Micari et al. [35], this temperature has a strong impact on 
the loss capacity. 
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3.3. Comparison of the impact score with and without ageing 
model 

With the ageing model, as explained before, the EoL is reached 
when the use profile cannot be performed anymore, ie. when 
the SoC of the battery is equal for the first time to zero. For a 
33.3 kWh battery (26.64 kWh useable), the EoL happened at 
7 years which leads to a reference flow of 1/7 of battery. As a 
reference, as mentioned in the introduction, a 10 year is usually 
arbitrarily chosen for the lifespan, whatever the battery design 
is. The GHG emissions of the battery under study is 
672 kg CO2eq/year without integrating ageing (lifespan is 
10 years) whereas it increases to 959 kg CO2eq/year when we 
use the predicted lifespan that comes from our ageing model. 
This model is very flexible since it can adapted really quickly 
for several design configurations or use conditions to 
recalculate the lifespan. As an example, the external 
temperature has been changed while keeping the same battery 
system. The daily temperatures of Trondheim in the year 2020 
has been integrated to compute the cell temperature within the 
ageing model. This has a great impact on consumption 
(0.2020 kWh/km) and on ageing since capacity losses are 
higher for low temperatures, as shown in the Fig. 1. Therefore, 
the predicted lifespan drops to only 3 years in that case which 
leads to an increase of 233% of the impact as illustrated in 
Fig. 7. This suggests that benefits from EV could be largely 
reduced in cold country due to enhanced battery ageing. This 
conclusion was already introduced by Egede [20] when only 
looking at consumption and the electricity mix. The ageing 
mechanism would have been totally ignored by choosing a 
reference lifespan for every cases, which could lead to wrong 
decisions when eco-designing a battery system.  

 

Fig. 7.  Annual GWP (normalized) of the studied battery system with and 
without ageing and using two different daily temperatures in 2020 (Lyon and 
Trondheim) 

4. Conclusion 

In this paper, a new approach has been proposed to better 
predict the lifecycle environmental impacts of Lithium-ion 
Batteries.  A new functional unit has been introduced and an 
ageing model has been integrated to an LCA in order to predict 
the lifespan of the battery depending on its design and the use 
conditions. This model was used to compute the loss capacity 
of a 33.3 kWh battery from a small-size EV. A lifespan and a 
number of batteries necessary to fulfill the FU were deduced 
and permitted to assess the lifecycle GHG emissions of the 
battery. A significant difference appears when comparing the 
impact of the studied battery with and without the ageing 
model. This gap is further enhanced when the battery is used in 
a cold country, which demonstrates the ability of the model to 
adapt to several battery design and use conditions. After 
improving the electrothermal model, this model will be applied 
on other design parameters in a second time, to perform 
sensitivity analysis in order to identify what are the main trends 
and what are the most sensitive parameters when considering 
the lifespan. This could enable to highlight new environmental 
hotspots and improve the eco-design of batteries. 
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energy (during battery discharging), and the production of 
recycled cobalt sulfate, nickel sulfate, manganese sulfate and 
lithium carbonate are taken into account. Metals such as 
aluminium, steel, copper but also plastics and electronics are 
supposed to be wastes. The LCI is completed by the database 
EcoInvent 3.8 for the background data. All computations are 
performed in Python 3.9 with the open-source LCA software 
Brightway2 [34]. The study will focus for now, on the impact 
category Global Waring Potential (GWP) of the methodology 
Environmental Footprint (EF) v3. 
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leads to an increase of 233% of the impact as illustrated in 
Fig. 7. This suggests that benefits from EV could be largely 
reduced in cold country due to enhanced battery ageing. This 
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looking at consumption and the electricity mix. The ageing 
mechanism would have been totally ignored by choosing a 
reference lifespan for every cases, which could lead to wrong 
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predict the lifecycle environmental impacts of Lithium-ion 
Batteries.  A new functional unit has been introduced and an 
ageing model has been integrated to an LCA in order to predict 
the lifespan of the battery depending on its design and the use 
conditions. This model was used to compute the loss capacity 
of a 33.3 kWh battery from a small-size EV. A lifespan and a 
number of batteries necessary to fulfill the FU were deduced 
and permitted to assess the lifecycle GHG emissions of the 
battery. A significant difference appears when comparing the 
impact of the studied battery with and without the ageing 
model. This gap is further enhanced when the battery is used in 
a cold country, which demonstrates the ability of the model to 
adapt to several battery design and use conditions. After 
improving the electrothermal model, this model will be applied 
on other design parameters in a second time, to perform 
sensitivity analysis in order to identify what are the main trends 
and what are the most sensitive parameters when considering 
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