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MAFIA: Protecting the Microarchitecture of
Embedded Systems Against Fault Injection Attacks

Thomas Chamelot, Damien Couroussé, Karine Heydemann

Abstract—Fault injection attacks represent an effective threat
to embedded systems. Recently, Laurent et al. have reported that
fault injection attacks can leverage faults inside the microarchi-
tecture. However, state-of-the-art counter-measures, hardware-
only or with hardware support, do not consider the integrity
of microarchitecture control signals that are the target of these
faults.

We present MAFIA, a microarchitecture protection against
fault injection attacks. MAFIA ensures integrity of pipeline
control signals through a signature-based mechanism, and en-
sures fine-grained control-flow integrity with a complete indirect
branch support and code authenticity. We analyse the security
properties of two different implementations with different secu-
rity/overhead trade-offs: one with a CBC-MAC/Prince signature
function, and another one with a CRC32. We present our
implementation of MAFIA in a RISC-V processor, supported
by a dedicated compiler toolchain based on LLVM/Clang. We
report a hardware area overhead of 23.8 % and 6.5 % for the
CBC-MAC/Prince and CRC32 respectively. The average code size
and execution time overheads are 29.4 % and 18.4 % respectively
for the CRC32 implementation and are 50 % and 39 % for the
CBC-MAC/Prince.

Index Terms—fault injection attacks, code integrity, control-
flow integrity, execution integrity, code authenticity, control logic,
counter-measures

I. INTRODUCTION

CONTEXT. Fault injection attacks are an important threat
to the security of embedded systems [1]. An attacker

injects physical disturbances in a circuit, such as power or clock
glitches, electromagnetic pulses, or laser beams, to induce a
faulty behaviour. This may result at the logical level in the
alteration of several bits in different ways. State-of-the-art
attackers are able to control the alteration of one or few bit
values [1], [2]. The attacker aims at inducing computation
errors or modifying values in the circuit under attack in order
to leverage fault injection for many attack objectives such as
the extraction of confidential data or privilege escalation.

State-of-the-art counter-measures against fault injection
attacks ensure three security properties: data integrity, code
integrity, and control-flow integrity. Data integrity ensures that
data in storage, in transit or manipulated by the processor
are not modified by any illegitimate means, e.g., by a fault
inducing a bit-flip in a register. Code integrity ensures that
instructions of the program are not modified before their
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execution, for example a fault inducing a bit-flip in an
instruction encoding. Control-flow integrity ensures that the
control-flow transfers, such as branches and calls, are correct
with respect to a reference control-flow graph (CFG). A full
control-flow integrity also ensures the correct execution order
of branchless instructions sequences, e.g., protects against a
fault inducing an instruction skip. All these properties are
required to ensure the correct processing of a program.

Several works study code and control-flow integrity hardware
mechanisms based on the computation of an integrity signature.
In [3], a hardware monitor, external to the processor, computes a
code integrity signature and uses additional metadata to validate
the code and control-flow integrity in separate verification
mechanisms. In [4], a single signature mechanism ensures
both code and control-flow integrity. Finally, recent counter-
measures for code and control-flow integrity are based on
the authenticated decryption of program instructions [5]–[7].
They also ensure code confidentiality and code authenticity in
addition to control-flow integrity. Note that code confidentiality
prevents non-authorized entities from reading the program
instructions thanks to encryption. Code authenticity ensures
that the binary program is emitted by an authorized entity,
and if based on sound cryptographic mechanisms, also implies
code integrity.

Problem. Recently, Laurent et al. have reported that attacks
can leverage faults inside the microarchitecture [8]. For
example, a fault corrupting the write-back control signals after
the decode stage will change the instruction behaviour. State-
of-the-art code and control-flow integrity counter-measures fail
to catch such fault injection attacks because the fault does not
modify the binary encoding of the instruction nor the control
flow. We argue that integrity of the control logic in the processor
is required, together with data integrity, code integrity and
control-flow integrity, to protect against fault injection attacks.
We call execution integrity the security property ensuring the
integrity of the control logic in the processor.

Goal & Challenges. Our goal is to design a counter-measure
against fault injection attacks simultaneously supporting control-
flow integrity, code authenticity, and execution integrity. Ex-
ecution integrity is achieved by ensuring the integrity of
the processor’s control signals, hence protecting the whole
instruction path of the processor microarchitecture against
fault injection attacks. The first challenge is to implement an
execution integrity mechanism, that is, to protect the whole
control signals in the processor microarchitecture against fault
injection attacks. The second challenge is to combine execution
integrity with a code and control-flow integrity approach that
is robust against fault injection attacks. Our last challenge is to
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implement the counter-measure in an embedded system with
complete hardware and software support while maintaining a
minimum overhead.

Contributions. This paper presents MAFIA, the first counter-
measure of our knowledge to ensure execution integrity
against fault injection attacks, in combination with control-
flow integrity and code authenticity.

MAFIA is designed around the concept of pipeline state,
which is a selection of control signals representative of the
current state of the processor. An integrity signature is derived
from the pipeline state, and any deviation from the expected
signature can be detected and highlights a fault injection.
This approach ensures the integrity of all the control signals
monitored upstream from the pipeline state. Downstream from
the pipeline state, the monitored control signals are protected
by a redundancy scheme, which is typical of counter-measures
against fault injection attacks. The combination of an integrity
signature derived from the pipeline state with a redundancy-
based protection ensures a full protection coverage of the
control signals in the processor microarchitecture.

We detail the properties of the function signature required to
ensure code integrity and control-flow integrity in our attacker
model. Code authenticity is also ensured when the function
signature provides message authentication.

MAFIA is extended with support for indirect control-flow
transfers and interrupts, which provides full support of software
used in embedded systems.

MAFIA is implemented as an extension of the CV32E40P
RISC-V in-order processor, and is supported by a dedicated
compiler toolchain. We describe how MAFIA is integrated to
the processor architecture, and we describe the modifications
required for the compiler toolchain to fully support the counter-
measure.

The signature function at the core of MAFIA supports many
possible implementations. We evaluate two implementations
with different security/overhead trade-offs: one with a CBC-
MAC integrating the Prince block cipher providing code
authenticity, and another one with a CRC32 error detection
code providing code integrity only. Notably, the integration of
MAFIA in the microarchitecture of the CV32E40P does not
impact the critical paths of the design, allowing to maintain
the target frequency of the reference ASIC implementation, at
400 MHz in the GF-22FDX FDSOI technology. We report
a hardware area overhead of 23.8 % and 6.5 % for CBC-
MAC/Prince and CRC32 respectively. The average code
size and execution time overheads are 29.4 % and 18.4 %
respectively for CRC32 and are 50 % and 39 % for CBC-
MAC/Prince.

This paper is an extension of the work published in [9],
in particular it presents support for indirect branches, branch
prediction and interrupts. It also gives more details regarding
the hardware and software implementations, and it provides
an analysis of MAFIA’s security.

Outline. The paper is organized as follows. Section III
introduces our threat model and then give some background on
code and control-flow integrity. Section IV details the design
of MAFIA, Section V details our implementation. Section VI
provides a security analysis of MAFIA, and Section VII

loop:
ff f2 82 93 addi t0, t0, #-1
fe 04 9e e3 bne t0, zero, loop

Listing 1. Example of RISC-V instructions sequence implementing a loop.
Binary code on the left, assembly machine instructions on the right.

loop:
ff f2 82 93 addi t0, t0, #-1
fe 04 8e e3 beq t0, zero, loop

Listing 2. Instructions sequence from Listing 1 with a single bit-flip applied
on bit 8 of the second binary instruction (in bold face). The faulted bne
instruction is decoded as a beq.

presents an evaluation of the resulting hardware and software
overheads. Finally, Section VIII discusses related work and
Section IX concludes.

II. MOTIVATING EXAMPLE

To illustrate the necessity of protecting the control signals in
the microarchitecture with execution integrity, and to combine
this security property with code and control-flow integrity, we
use the small piece of RISC-V assembly code of Listing 1. It
implements a loop that exits when register t0 is equal to 0. A
single bit-flip applied on the binary encoding of the instructions,
for example in program memory, could for example lead to
the replacement of the bne instruction by a instruction beq,
as illustrated in Listing 2, which leads to an inversion of the
branch conditions. Counter-measures ensuring code integrity
would detect such a fault [3], [4], [6], [7], [10], [11].

If a fault with a similar branch inversion effect occurs in the
microarchitecture during or after instruction decoding, code
integrity counter-measures fail to detect the fault because it
does not modify the instruction encoding. Moreover, regarding
the control flow, the fault only appears as a branch inversion and
does not alter the original program CFG. Therefore the fault
can only be detected by control-flow integrity counter-measures
tracking the integrity of branch conditions [12].

Other faults in the microarchitecture can have harmful effects.
For example in Listing 1, a single bit-flit in the control signal
of the forwarding mechanism can prevent forwarding of the
addi instruction result in register t0 to the bne instruction.
If such a fault is injected during the last loop iteration, the
bne instruction uses the previous value in t0, leading to
an additional iteration instead of loop exiting. This is why,
ensuring execution integrity in the microarchitecture is required
to ensure the correct execution of a program.

It is important to notice that a fault applied before instruction
decoding, i.e., into program memory or during instruction fetch,
may be detected by code integrity but cannot be detected by
execution integrity. Therefore, it is required to ensure code,
control-flow and execution integrity and to cover the whole
instruction path.

III. BACKGROUND

A. Threat Model

We consider an attacker that only has physical access to
the device under attack. The attacker is supposed to use fault
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injection on the device. They can arbitrarily inject two kinds
of faults in the memory or in the processor logic: either a fault
with full control over a few bits (typically less than 8 bits),
or a fault altering many bits but without any control on the
faulted value (random bit-flips). They can inject multiple faults
at different time locations. Note that state-of-the-art attackers
are able to selectively inject up to 4 bit faults thanks to laser
illumination [2]. We consider fault injections targeting the
instruction path only; faults targeting the data path are assumed
to be covered by a complementary dedicated mechanism,
typically, error detection code in internal data registers and data
memory. Besides, the attacker does not have logical access to
the device, and therefore cannot perform common software
attacks, nor cannot modify the memory contents through logical
access, e.g., by reprogramming it. Moreover, side-channel
analysis and invasive attacks such as micro-probing are out of
scope.

B. Signature-Based Code and Control-Flow Integrity
A program can be decomposed in maximal instruction

sequences with a single entry instruction and a single exit
instruction, commonly called basic blocks. A standard tech-
nique to ensure code integrity is to compute a runtime
signature for each basic block from the binary encoding of its
instructions [3], [10]. The signature Si associated to a basic
block Bi composed of instructions I0, . . . , In is computed
using a signature function f and an initialization vector IVi (1).
Note that fine-grained signature mechanisms are required in the
context of fault injection attacks in order to detect any alteration
of instructions. Hence, the signature is usually computed from
the binary encoding of every machine instruction executed.

si0 = f(IVi , I0), sin = f(sin−1
, In), Si = sin (1)

The runtime signature is updated each time a new instruction
or sequence of instructions (e.g., basic block) is processed. The
runtime signature is regularly verified, for example during
control-flow transfers. Verification is usually performed by
checking the signature for equality with a reference value,
thereafter called reference signature. Reference signatures are
precomputed offline, they are either stored in a dedicated
memory or embedded in the program memory, e.g., at the
end of basic blocks.

Generalized path signature analysis (GPSA) ensures a fine-
grained code and control-flow integrity by computing signatures
that depend on the control-flow graph [13]. Typically, the
signature of the basic block Bi−1 is used as the initialization
vector IVi of the successor basic block Bi . Each basic block
(and each instruction in a basic block) is associated with a
single and distinct signature value. As a consequence, if several
execution paths merge into a basic block, patch values are
applied to the signature of all but one of each predecessor
basic blocks Bj ,Bk , . . .: an update function u generates a
unique initialization vector IVi for every tuple of signatures
Sj , Sk, . . . and patch values Pj , Pk, . . . (2):

IV i = u(Sj , Pj) = u(Sk, Pk) = . . . (2)

GPSA requires that reference signatures are accessible
to the signature verification mechanism. Similarly to code

integrity presented above, such signatures are intertwined with
program instructions, or stored in a separate memory section.
Additionally, GPSA requires to instrument the program for the
application of patch values.

C. Indirect Branch Integrity

Control-flow integrity (CFI) was first studied to prevent
control-flow attacks on indirect branches such as ROP or JOP
attacks [14], [15]. The main bottleneck lies in the precise
identification of the possible targets of indirect branches. As a
consequence, CFI techniques rely on some over-approximations,
for example equivalence classes, to regroup targets reachable
from the same indirect branch [16]. Equivalence classes can
be defined by various means, but usually exploit some type
information associated with the target functions. From a security
perspective, the equivalence classes need to be as small as
possible, because their size define the number of targets
reachable by permitted control-flow transfers [16].

CFI techniques typically associate a unique label to each
equivalence class, and an equivalence class to each indirect
branch. The label is verified at runtime before the control flow
transfer [17]. Similarly, in GPSA, all the basic blocks belonging
to the same equivalence class are associated to the same entry
signature (i.e., IV value). We call this signature confusion.

Other techniques protect indirect branches by replacing them
with sequences of direct branches [18], which removes the
need for shared labels in classical CFI approaches or signature
confusion in GPSA. Note that, this approach does not prevent
control-flow hijacking resulting from an alteration of the stack
or of the register stroing the branch target address.

IV. MAFIA CONCEPTS

A. MAFIA Overview

MAFIA combines GPSA with a redundancy-based mecha-
nism to ensure control-flow integrity, code authenticity, and
execution integrity. Fig. 1 illustrates how MAFIA would
typically be integrated into a 5-stage in-order pipeline processor
architecture. MAFIA is composed of two modules: The Code
Authenticity and Control-Flow Integrity module (CACFI)
implements the hardware support for GPSA and ensures
execution integrity up to the decode stage. The Control Signal
Integrity module (CSI) completes the coverage of execution
integrity through a redundancy-based mechanism. The two
modules run in parallel with the pipeline stages and therefore
do not modify the information flow within the pipeline. On the
software side, MAFIA requires modifications of the compiler
backend to insert GPSA signature verifications and patch
values.

Instead of using binary encoding of program instructions
to compute a signature, CACFI uses signals coming from the
decode pipeline stage, called the pipeline state. CSI checks
that signals from the pipeline state are correctly propagated up
to their consumption in the subsequent pipeline stages. The
selected signals are duplicated into CSI at the output of the
decode stage. Then, for each subsequent pipeline stage, CSI
checks the original control signals against their duplicates.
Therefore, the CSI module can detect any fault on control
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Fetch Decode Execute Memory Write
Back

CACFI CSI
Reference
Signatures

Pipeline State

Fig. 1. Illustration of a 5-stage processor extended with MAFIA (grey modules)

signals included in the pipeline state after the decode stage up
to the pipeline end. Execution integrity of the whole instruction
path is ensured by the combination of the CACFI and CSI
modules: CACFI ensures the integrity of the pipeline state, and
CSI then ensures the integrity of control signals up to their
consumption stage.

We argue that the design of a single module dealing with the
control signals in all the pipeline stages, instead of two separate
modules as presented in our approach, would be increasingly
more complex, if not impossible. Indeed, many dynamic events
(e.g., stalls due to memory latencies or jumps) may make
the computation of reference signatures and the design of
the hardware module more complex. Our decomposition into
two coordinated modules avoids such complexity: the control
signals selected in the decode stage are not impacted by the
execution of instructions in later stages. Moreover, it allows
different implementations of the two modules as they are
independent.

B. Pipeline State

The pipeline state is a bit vector composed of control signals
coming from the decode stage. To ensure that each instruction
is associated with a single signature independently of the
previously executed instructions, each instruction must also
be associated with a unique pipeline state value. We call this
property pipeline state uniqueness. In order to ensure code
integrity, the pipeline state must include the control signals that
deterministically result from the decoding of binary instructions.
Also, GPSA requires that the reference signature is computed
ahead of program execution (i.e., by static analysis), which
implies that the value of the signals monitored by the signature
(and hence included in the pipeline state) can also be computed
ahead of program execution. We discuss below which control
signals can be included in the pipeline state.

There are two kinds of control signals: the static ones and
the dynamic ones. The static control signals only depend on
the instruction currently in the decode stage. These signals
can be integrated in the pipeline state, since their value
can be computed from the only knowledge of the related
instruction. For example, the signals for selecting the source and
destination operands are directly linked to the binary encoding
of instructions. The binary encoding also contains opcode
fields which control the operation to perform in the execute
and memory stages. To ensure full code integrity, the pipeline
state can in addition include the contents of any immediate
field in instruction encodings.

add t0, t0, #1
add t1, a0, t0
load t1, 0(t1)

B1

(a)

mov t0, #0

B1

add t0, t0, #1
. . .
bne t0, #16, B2

B2

(b)

Fig. 2. Illustration of forwarding: intra (left) and inter basic block (right)

The dynamic control signals depend on processed data
or on other processed instructions. Data-dependent control
signals, such as branch decision, cannot be integrated into
the pipeline state because their values cannot be statically
computed.Dynamic control signals that depend on other in-
structions in flight in the pipeline can be integrated to the
pipeline state under certain conditions. In the context of the
processor architectures targeted by our counter-measure, that
is, simple in-order processors targeting embedded systems, this
restricts to forwarding control signals. A forwarding mechanism
enables to bypass the write-back stage when there is a data
dependency between two instructions. The computation of the
forwarding signal is implementation-dependant, but without
loss of generality we assume that forwarding is computed in the
decode stage, and hence that its control signals can be integrated
to the pipeline state. Note that forwarding control signals that
are computed after the decode stage can be protected by the CSI
module. Figure 2 illustrates cases where forwarding is involved.
Figure 2a illustrates a basic block where the forwarding is
enabled between the two successive add instructions. The
sequence of instructions is invariable (program-dependant),
the forwarding control signal can be statically determined,
and hence can be safely integrated into the pipeline state. In
Figure 2b, forwarding is enabled in the transition B1 → B2
between the mov and add instructions, but is disabled in the
transition B2 → B2 between the bneq and add instructions.
This case illustrates that forwarding may be involved at the
transitions between basic blocks. As a consequence, the value
of the forwarding control signal cannot be statically computed.
In such case, the forwarding dependency must be broken to
ensure the pipeline state uniqueness property, for example by
the insertion of additional instructions (Section V-D1). Such
modification is not required when the forwarding mechanism
is placed after the decode stage as its control signals cannot
be included in the pipeline state.
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C. CACFI – Code Authenticity and Control-Flow Integrity

The CACFI module implements the hardware support for
GPSA. It requires two functions, for the signature computation
and for the application of patch values, with specific properties
summarized in this section. Cf. Werner et al. [4] for a detailed
discussion. Note that most cryptographic functions intrinsically
support all these properties.

1) The signature function: The signature function f is the
core of GPSA. In CACFI, f computes the runtime signature
from the pipeline state and the previous runtime signature.
The runtime signature is stored in the signature register within
CACFI. The signature register should not be directly accessible
from any instruction to limit the attack surface on CACFI. The
GPSA fault detection capabilities depend on f ’s properties.

1) Collision resistance: prevents an attacker from forging
a faulted basic block presenting the same signature as
the signature of the original basic block (also known as
second-preimage resistance). This property also prevents
the attacker from reverting the signature to a valid value
after the introduction of one or many faults.

2) Error preservation: alterations of signature values are
not cancelled by any following fault-free sequence. This
property, in combination with collision resistance, allows
for the arbitrary placement of signature verifications.

3) Non associativity: sequences of instructions with different
orderings produce different signatures. This property en-
sures control-flow integrity at the granularity of machine
instructions.

4) Invertibility: is introduced by [4] to compute patch values.
However, it is not required by our approach because patch
values are applied on the basic block signature instead
of being applied on intermediate signatures (see below).

Note that many function signatures can support the properties
listed above, which allows for many implementation trade-offs.
For example, key-based cryptographic signature functions such
as Message Authentication Codes (MAC) are good candidates.
MACs require a secret key, which prevents the generation
of valid reference signatures without knowledge of the secret
key. Using such function signatures, MAFIA ensures code
authenticity in addition to code integrity. In Section V, we
present two implementations, one using CBC-MAC with the
Prince block cipher and another one, only supporting code
integrity and not code authenticity, using an error detection
code.

2) The update function: GPSA requires the application of
an update function u before merging execution paths. This
function must support the following properties:

1) Full control: given a signature, there exists a patch value
for any target IV.

2) Error preservation: any fault previously introduced in the
signature cannot be reverted by applying an error-free
update.

3) Invertibility: a patch value can be computed from an
initialization vector and a signature.

The update function is triggered at each control-flow transfer
(i.e., taken branch, call and return). The runtime signature in the
signature register is updated using function u and the current

I1.0

. . .
I1.n

;; S ← S1.0 = f(Σ1.0, IV )
;; S ← . . .
;; S ← S1.n = f(Σ1.n, S1.n−1)

B1

I3.0

. . .
I3.n

;; S ← S3.0 = f(Σ3.0, S1.n)
;; S ← . . .
;; S ← S3.n = f(Σ3.n, S3.n−1)

B3

I2.0

. . .
I2.n

;; S ← S2.0 = f(Σ2.0, S1.n)
;; S ← . . . + Patch loading
;; S ← S2.n = f(Σ2.n, S2.n−1)

B2

I4.0

. . .
I4.n

;; S ← S4.0 = f(Σ4.0, S2.n)
;; S ← . . .
;; S ← S4.n = f(Σ4.n, S4.n−1)

B4
S ← S2.n = u(S3.n, Patch)

Fig. 3. Illustration of the application of GPSA to a small program sequence
of 4 basic blocks. The application of a patch is required in basic block B2

because of the merging of two execution paths.

patch value. The patch value is stored in a patch register in
CACFI, and can be updated by a dedicated instruction that
loads a patch value from memory. Additionally, the patch
register is reset to a default, constant patch value after the
processing of each control-flow instruction (taken or not). This
default patch value must be known at compile time to compute
the reference signatures, and the identity element of u, if it
exists, can be used as the default patch value.

When several basic blocks Bi ,Bk , . . . have the same suc-
cessor Bs , there is at most a single basic block Bf falling
into Bs (i.e., the basic block immediately preceding Bs in
the memory layout). If Bf exists, its signature Sf is used
as the initialization vector IVs of Bs : IVs = Sf . Otherwise,
IVs is chosen randomly among the signatures of Bi ,Bk , . . ..
Knowing IVs and u−1, a patch value is computed for all
the other predecessors of Bs . Fig. 3 shows a simple example
of a CFG that requires an update on one of its edges. The
instructions in basic blocks B1, B2 and B3 do not require
an update because they all have only one predecessor. The
instruction I4.0 has two predecessors, I2.n and I3.n, and
therefore requires an update. B3 falls into B4 which means that
if I3.n is a branch, then it is not taken on this execution path.
Therefore, it is not possible to have an update on the execution
path B3–B4. This is why the update is applied in B2 during
the control transfer to the taken branch, i.e., B4.

3) Signature verification: A runtime signature is computed
for every instruction in the program. Thanks to the properties
of the functions f and u, any fault captured in the signature
will be forwarded into the next ones (cf. IV-C1). Therefore, it
is possible to insert verifications anywhere in the program.

MAFIA uses custom control-flow transfer instructions,
thereafter called verification instructions, which have the same
semantics as their original counterpart. Verification instructions
load a reference signature immediately following in the program
memory, and trigger the signature verification. Then, they
proceed similarly to other control-flow instructions: if the
branch is taken, the runtime signature is updated with the
current patch value. Finally, the current patch value is reset to
its default value.

The substitution of a control-flow instruction by a verification
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instruction impacts code size, as a reference signature is inserted
after each verification instruction, and potentially execution
time if the delay due to the loading of the reference signature is
not masked. When the verification fails, it triggers an exception
that calls a software user-designed fault handler.

Thanks to the use of verification instructions as control-
flow instructions, our approach provides great flexibility in the
insertion of signature verifications, which allows to fine-tune
the trade-off between the detection delay and the overheads
due to code size and execution time. Similarly to GPSA, it is
possible to use a single verification instruction at the exit point
of a secured function to minimize the performance overheads
without reducing the detection coverage of the counter-measure.
We discuss the security impact of such trade-offs in Section VI.

D. CSI – Control Signal Integrity

The CSI module ensures execution integrity for the pipeline
stages following the decode stage. The principle is to use
a redundancy scheme to detect any change in the control
signals constituting the pipeline state, from their emission
to their consumption stage. This approach is lightweight
because it involves only a small part of the pipeline’s control
logic. The CSI module duplicates the propagation of selected
signals between the different stages in the pipeline. In each
pipeline stage, the duplicated signals are checked against the
original ones. The duplication can use any redundancy scheme,
potentially with several duplicates, e.g., a simple copy, a
complementary copy or the initial value xored with an arbitrary
value.

E. Indirect Control-Flow Handling

In this section we focus on the protection of indirect
function calls and function returns. Other indirect branches
can be removed using a compiler option. We discuss this in
Section V-D.

MAFIA uses equivalence classes derived from function
prototypes to identify indirect call targets. Equivalence classes
regroup functions with identical function prototypes (return
type, number of arguments and type of each argument).

MAFIA combines GPSA with indirect call elimination
to remove signature confusion, hence reducing the attack
surface. Each indirect function call is replaced by a dispatcher
(illustrated in Listing 4), that is, a sequence of direct branch
instructions that forwards the control flow to the target function.
With this approach, each function remains associated with a
unique IV even if the function is the target of indirect branches.

For function returns, which are also indirect branches,
MAFIA uses signature confusion only, although it would be
possible to use dispatchers. All the basic blocks that follow the
calls to a given function belong to the same equivalence class,
and hence share the same IV. When a function has several exit
points, MAFIA assumes a constant signature value at each of
the exit points. As a consequence, patch values are applied
to all but one of the exit points. Note that without indirect
call elimination, all the function sharing the same indirect call
site would also share the same signature at their exits, hence
increasing the attack surface. To increase the protection level

void bar();
void baz();

void foo(void (*fptr)()) {
/* fptr is either assigned to &bar or to &baz */
fptr();

}

Listing 3. Example of indirect function call in language C

foo:
call dispatcher_EC0_a0_0
ret

dispatcher_EC0_a0_0:
push ra
push s11

dispatcher_EC0_a0_0_bar:
li s11, bar
bne s11, a0, dispatcher_EC0_a0_0_baz
load_patch PATCH_bar
call bar
load_patch PATCH_ret_dispatcher
jmp dispatcher_EC0_a0_0_ret

dispatcher_EC0_a0_0_baz:
li s11, baz
bne s11, a0, error_handler
load_patch PATCH_target1
call baz

dispatcher_EC0_a0_0_ret:
pop ra
pop s11
ret

Listing 4. Protection of the source-code example from Figure 3 with MAFIA
(in RISC-V pseudo assembly). The indirect function call is replaced by a
dispatcher. In the original code of function foo, register a0 stores the branch
target address.

of function returns, it is possible to extend MAFIA with a
shadow stack.

F. Branch Prediction

When the pipeline implements branch prediction, the control
flow might roll back to the previous branch in case of a
misprediction. The pipeline then flushes the speculatively
executed instructions and the execution resumes at the correct
address. In order to be compatible with branch prediction,
CACFI saves the signature register after a branch in order to
support signature roll back. On misprediction, the signature
register is restored to the saved signature. When a branch
is predicted not taken, the update function is applied to
the signature register before saving it so that in case of
misprediction the restored signature is the one that would
have been computed if the branch had been taken.

After a misprediction, the instructions in the pipeline are
invalidated but may impact the value of the dynamic control
signals of the next pipeline state, which may impact the
pipeline state uniqueness (Section IV-B). Since MAFIA already
requires breaking dependencies such as forwarding dependency
at basic block transitions, branch prediction does not add more
constraints to the CACFI module. In Section V-D1, we propose
to break forwarding dependency at basic block boundaries using
a dedicated compiler pass.
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To protect speculatively executed instructions and invalidated
instructions, the CSI module should also cover all the control
signals related to branch prediction.

In conclusion, branch prediction can be supported by MAFIA
with a negligible increase of the complexity of the CACFI and
CSI modules.

Note that the branch prediction mechanism itself remains
sensitive to some fault injection attacks. MAFIA is not able
to detect a fault targeting the misprediction control signal that
would change the branch decision. To protect against such
case, it would be necessary to ensure data integrity or/and
to duplicate the misprediction control signal. Any other fault
affecting the control flow is detected by MAFIA.

G. Interrupts Handling and Protection

Interrupts can occur at any time during program execution
and hence interrupt handlers cannot be associated with a set
of predecessor instructions. As a consequence, a dedicated
mechanism is required to handle interrupts and to protect
interrupt handlers. MAFIA is designed to fully protect the
execution of interrupt handlers and to increase the difficulty to
leverage interrupts in an attack scenario.

Each interrupt handler is associated to a different IV, and
all the IVs are stored in a table similar to the interrupt vector
table. Upon triggering of an interrupt, the signature register is
saved in a dedicated register, called the context register. The
CACFI module selects the IV corresponding to the triggered
interrupt to reset the signature register, and the processor starts
the execution of the interrupt handler. A verification instruction
can be placed at the end of the interrupt handler to ensure
its integrity. Similarly to other sequences of code, verification
instructions can be added inside the interrupt handler if needed
to reduce the delay between verifications. When the interrupt
handler returns, the signature register is restored to the value
saved in the context register.

After the interrupt handler has returned, the last instructions
of the interrupt handler are still in the pipeline. This might
impact the pipeline state uniqueness the same way as forward-
ing dependency between basic blocks (Section IV-B). To avoid
this, MAFIA delays interrupt processing until the end of a
basic block, since forwarding dependencies are already broken
at basic block transitions.

In our design, the signature register is not saved in memory,
which prevents attacks on the saved signature, e.g., during
memory transactions. This helps reduce the attack surface of
interrupts, for a negligible hardware overhead, and allows for
the use of dedicated protections on the context register if need
be. To support nested interrupts, a context stack, internal to
the processor, can be used in place of the context register.

V. IMPLEMENTATION

We integrate MAFIA to the CV32E40P processor [19], a 32-
bit, in-order RISC-V core with a 4-stage pipeline implementing
the RV32I base instruction set version 2.1. We select the
CV32E40P because such small in-order core is representative
of typical fault injection targets, and because a 4-stage pipeline
is representative of the main challenges of microarchitectural

design due to control and data hazards such as forwarding
mechanisms. The integration to more complex processors is
left for future work.

A. Pipeline State

We manually select the control signals to integrate to the
pipeline state. The pipeline state consists of 64 bits composed
as follows:

1) All the non-redundant control signals internal to the
decode stage that are involved in the operand selection
and the forwarding mechanisms.

• 23 bits from the operand selection multiplexers
• 4 bits from the operand forwarding multiplexers

2) All the control signals produced by the decode stage and
transmitted to the next stages and that deterministically
result from the decoding of the instruction opcode.

• 7 bits to control the arithmetic and logic unit
• 2 bits to control the read and write enable of the

load store unit
• 10 bits to control the registers to write in the write-

back stage

3) All the signals derived from the immediate data fields.

• 10 bits from the binary instruction’s immediate
fields. Note that RISC-V ISA supports up to 20
bits immediate, but the remaining immediate fields
overlap with the operand selection fields which are
already included in the pipeline sate.

4) 8 bits of padding to fill the 64 bits of the pipeline state.

The control signals outputted by the decode stage and that
will go through subsequent stages are duplicated in the CSI
module. The remaining ones are directly used after the decode
stage and do not go through more than one other stage. We use
a simple duplication scheme to implement the CSI redundancy.

B. Signature and Update Functions

MAFIA is implemented with two different single cycle
signature functions for the CACFI module:

• a CBC-MAC based on a fully unrolled hardware imple-
mentation of the Prince block cipher, which is selected
for its small silicon area. Prince is a symmetric cipher
using 64-bit blocks and a 128-bit key, and the CBC-
MAC therefore generates 64-bit tags. In order to limit the
code size and runtime overheads, the CACFI signature is
composed of the 32 lowest significant bits of the CBC-
MAC output tag. We discuss the security impact of this
design choice in Section VI.

• a CRC32 designed to detect up to 8 bit-flips per basic
block. Because CRC32 functions do not use any secret to
compute the signature MAFIA only ensures code integrity
and not code authenticity with CRC32 signature function.

We select the exclusive or (XOR) for the update function in
the two implementations.
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Fig. 4. MAFIA compiler toolchain with the files in light gray and the tools in rounded boxes

C. MAFIA RISC-V ISA Extension

The CV32E40P is modified as follows. All the control-
flow instructions update the runtime signature with the cur-
rent patch value if the branch is taken (Section IV-C2).
The core is also extended with custom instructions: we
implement a verification instruction (Section IV-C3) for
each control-flow instruction in the RV32I instruction
set (MAFIA.beq, MAFIA.bne, MAFIA.blt, MAFIA.bge,
MAFIA.bltu, MAFIA.bgeu, MAFIA.jal, MAFIA.jalr). We
also add a load patch instruction (MAFIA.ldp) that fetches a
patch value from memory, in the .patches section; the base
address is stored in a new Control Status Register (CSR). This
CSR is set during the core bootstrap to point to the memory
section of the binary program that gathers all the patches. The
patch value offset in the memory section is encoded as a 20-bit
immediate value in the MAFIA.ldp instruction, which limits
the number of patch values accessible to 220. If patch values
are aligned on 4-byte boundaries in memory, it is possible to
fix to 0 the two least significant bits of the offset, and increase
the number of accessible patch values to 222.

Note that it is not desirable to store patch values in the
immediate fields of instruction encoding, because this would
introduce a circular dependency between the signature values
and the patch values. A solution to avoid this dependency is
to remove the immediate fields from the pipeline state for
MAFIA.ldp instructions, hence increasing the complexity of
the decoding logic. Furthermore, locating patch values in a
dedicated section offers the possibility to store the values in a
separate, secured memory.

D. Software Support

Fig. 4 presents the complete MAFIA compilation process. We
select LLVM version 12.0 to build MAFIA compiler toolchain.
We extend the RISC-V backend with several passes to apply
the code modification required by MAFIA.

1) Forwarding dependency elimination pass: This pass
ensures the pipeline state uniqueness property at basic block
transitions (Section IV-B), which is mandatory to support
basic blocks with multiple predecessors, branch prediction
and interrupts. For the first instructions of a basic block, this
pass ensures that the forwarding mechanism is deactivated for
all the predecessors and if need be inserts a nop instruction

to break the forwarding dependency. The insertion of a single
instruction is sufficient for the 4-stage CV32E40P core, but
longer instruction sequences may be required for more complex
pipeline architectures.

2) Dispatcher pass: This pass replaces each indirect call by
a direct call to a dispatcher (Section IV-E). The code for each
dispatcher is generated separately by the Dispatcher Generator
before the linking process.

Indirect branches that do not represent function calls are
eliminated using the -fno-jump-table option.

3) Patch placement pass: This pass performs a control-flow
analysis to insert the MAFIA.ldp instructions. As described
in Section IV-C2, MAFIA requires a patch for all but one
predecessor for each basic block. A MAFIA.ldp is also
inserted before each call instruction and all but one functions
returns. Loops require a dedicated analysis regarding the
update function to prevent circular dependencies during the
reference signature computation. The simple rule of placing a
MAFIA.ldp in all but one predecessor can fail to break such a
circular dependency. In this case, the pass adds a MAFIA.ldp

in one of the loop’s basic blocks. Note that this pass disables
tail call optimization only when a function has multiple exit
points so that the caller function and the tail-called function
do not share the same signature.

The patch values and offsets in the .patches section are
computed later by the Signature Generator tool.

4) Reference signature placement pass: The third pass
identifies all the functions annotated with the dedicated attribute,
MAFIA_secured, and replaces the control-flow instructions
by the MAFIA equivalent ones that trigger the signature
verification. This pass inserts a signature placeholder after
each branch that performs a signature verification.

5) Dispatcher Generator: Before the link process, this
tool builds the dispatchers by leveraging debug information
from the clang compiler. The Dispatcher Generator computes
the equivalence classes through a context-insensitive analysis
from the type information of the target function prototypes
(Section IV-E). Each equivalence class is associated with one
dispatcher for each register storing a target address in an
original function call (e.g., register a0 in Figure 4). From
the perspective of an attacker, this design choice increases
the difficulty to fault the target function address because the
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address can be stored in different registers, depending on the
register allocation policy used by the compiler.

6) Instrumentation of the Newlib C-library: We use LLVM
infrastructure to link the sources object files with the dispatchers
and the Newlib C-library. The C-library is not protected with
verification instruction, but it is instrumented with signature
updates (MAFIA.ldp instructions) so that the signatures are
correctly propagated through the library. Yet, extending the
C-library with signature verifications only requires minimum
changes by adding the MAFIA_secured attribute to the desired
function prototypes.

7) Signature Generator: Post link, the Signature Generator
extracts the CFG by static analysis. Then, it computes the
reference signatures and patch values. The computation is
done by exploring the CFG recursively basic block per basic
block. Each basic block is processed through a stateful signal-
accurate model of the CV32E40P’s decode stage to extract the
pipeline state and derive the signature. When a MAFIA.ldp

is present in a basic block, the Signature Generator attributes
it a unique offset in the .patches section. The associated
patch value is computed from the basic block signature and its
successor signature. Finally, the Signature Generator creates a
new ELF file with the reference signature placeholder and the
MAFIA.ldp offset filled and the additional .patches section
containing the patch values.

VI. SECURITY ANALYSIS

This section presents a security analysis of MAFIA regarding
our threat model. MAFIA is designed to ensure code authen-
ticity or code integrity, control-flow integrity and execution
integrity. The data integrity property is not supported by
MAFIA and is supposed to be ensured by a complementary
dedicated mechanism.

A. Pipeline State Verification

The pipeline state is the corner stone of MAFIA as the control
signals for the pipeline state feed both the CACFI and CSI
modules. The construction of the pipeline state determines the
capabilities of MAFIA to ensure code integrity and execution
integrity. As presented in Section V, in our implementation,
we build the pipeline state through a manual analysis of the
control signals emitted by the decode stage. Such analysis is
prone to errors which could lead to MAFIA being unable to
ensure the claimed security properties.

We use the workflow of Tollec et al. [20] to perform a
formal verification of our pipeline state construction and of
the execution integrity property ensured by MAFIA. This
workflow combines software and hardware descriptions into a
single formal model to verify robustness against fault injection
vulnerabilities in the microarchitecture. As this workflow
requires a software application, we selected the VerifyPIN
application where a user (input) PIN code is compared to a
secret (card) code allowing user authentication. The formal
verification assumes that the user and the secret PIN codes
differ, and searches for vulnerabilities leveraging a single fault
(mono or multi-bit) in the microarchitecture. A vulnerability
is found if all the following properties are satisfied:

1) the PIN authentication succeeds;
2) faults applied upstream from the pipeline state do not

lead to an alteration of the pipeline state (i.e., a fault
leading to an alteration of the pipeline state would be
captured by the signature);

3) faults applied downstream from the pipeline state are not
detected by the CSI module.

The verification failed to find such a fault. This shows that
there is no vulnerability for the execution of the VerifyPIN on
MAFIA. Furthermore, MAFIA eliminates all the vulnerabilities
identified by the same workflow on the original (unprotected)
CV32E40P when running the VerifyPIN application. Note
that, due to the error preservation property of the signature
function, multiple fault injections that do not exceed the
attacker capabilities (e.g., 8 cumulative bit flips for the
CRC32 implementation) are also detected by the CACFI
module. Multiple fault injections may not be captured by
our implementation of the CSI module, but can be supported
by other redundancy schemes for a negligible increase in
overhead (Section IV-D). Therefore, this brings confidence
in the pipeline state construction and in MAFIA’s capacity to
protect the execution of an application against fault injections
in the microarchitecture.

B. Signature Functions

We first analyse the security properties of the two signature
functions implemented.

The CBC-MAC/Prince signature function uses a secret key,
which prevents an attacker from inverting the signature function
to identify collision values. Furthermore, CBC-MAC with
Prince provides strong resistance to collision attacks because in
our threat model the attacker cannot control the whole contents
of a basic block. In our implementation, only 32 bits of the
64-bit signature are verified, which reduces the probability
to find a collision to 1/216 because of the birthday paradox.
Yet, a successful attack by collision is unlikely because the
complexity of this attack combines with the complexity of fault
injection. Last, the known weaknesses of CBC-MAC, such
as message forgery for variable length messages or variable
initialization vectors, are not relevant here because our threat
model assumes that it is not possible to modify the memory
contents except by the use of fault injection.

The CRC32 signature function protects against a weaker
attacker model, because it is designed to ensure code and
control-flow integrity only. Moreover, CRC functions are
invertible, meaning that an attacker could easily identify the
fault to inject to create a signature collision. Yet, CRC functions
are designed so that collision happens only above a fixed
amount of bit-flips (Hamming distance). Therefore, instead of
relying on direct collision resistance, CRC functions rely on the
detection capabilities to increase the fault injection complexity.

We determine the best candidate function according to our
security model. To do so, we search, in a list of polynomials
known for providing good detection capabilities [21], the
polynomial that requires the highest minimal number of bit-
flips to create a collision in the signature. The search tests
exhaustively all the basic block lengths up to 40 instructions,
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and all the collision vectors with a Hamming Weight value
smaller than 11. The best generator polynomial identified is
0xFA567D89, which detects up to 8 bit-flips in the input
sequence. Thus, in order to create a collision in the signature, an
attacker has to control precisely the alteration of at least 8 bits
in the pipeline state. Note that such collision can be obtained in
one or several fault injections. It can also be obtained indirectly
by faults targeting the update function (including the patch
value) or the runtime signature value, since these values are in
the end combined with subsequent values of the pipeline state.
However, such fault targets do not reduce the security level of
the candidate CRC32 function.

C. Signature Verification

A possible attack is the case where a fault triggers a
jump outside the program sections instrumented with signature
verifications. This attack is equivalent to the case where several
faults target all the subsequent verifications after a first fault.
In such case, the attack is undetected by the counter-measure,
and the security level of MAFIA is determined by the time
intervals between verifications. As the substitution of control-
flow instructions by verification instructions is performed at
compile time, it is possible to determine the maximum delay
between successive verifications, or to constrain it by inserting
extra verification instructions (i.e., direct branch instructions
jumping to the instruction following in program memory). A
watchdog could then ensure that this maximum delay is never
reached, and so detect an attacker jumping outside the program
section instrumented with signature verification.

D. Control Signal Integrity

The CSI module covers all the control signals transmitted
from the decode stage to the next stages. An attack targeting
the pipeline stages after the decode stage can be effective if
it simultaneously faults the original signal and its duplicate
in the CSI module. Should such an attack be relevant, it can
be mitigated by the use of redundancy schemes with better
detection capabilities, and we believe that the implementation
of more complex redundancy schemes will have a negligible
impact on the hardware area overhead, since the number of
control signals monitored by CSI is low. Additionally, the
comparison result is encoded as a single bit connected to the
exception mechanism. A single fault could then prevent the
detection propagation and the software handler triggering. A
common way to prevent such case is to use specific encoding
(e.g., differential encoding) for the connection to the exception
mechanism.

E. Control-Flow Integrity

MAFIA only ensures a static CFI policy, which ensures that:
i) for indirect branch, the target address is part of the identified
equivalence class; ii) for return, the target address follows
a valid call site of the current function for return. MAFIA
thus considerably reduces the number of reachable addresses
that would not be detected. Thanks to the combination with
code authenticity and execution integrity, the replacement of a

TABLE I
NUMBER OF DISPATCHER FUNCTIONS AND NUMBER OF CLASSES USED IN

BENCHES WITH INDIRECT BRANCHES

Bench Number of
dispatchers

Number
of equiv.
classes

Classes
sizes

Non-
legitimate
functions

picojpeg (Os) 1 1 [1] [0]
picojpeg (O2) 2 1 [1] [0]
sglib-combined (Os) 2 2 [1, 3] [1, 3]
sglib-combined (O2) 1 1 [3] [3]
wikisort (Os) 9 2 [1, 9] [0, 0]
wikisort (O2) 3 2 [1, 9] [0, 0]

control-flow target address by a valid address is restricted to
data corruption, which is outside our threat model.

In the following, we proceed with an in-depth security
analysis of our design, considering the possibility of attacks
outside our threat model. Regarding the protection of indirect
branches, the security level is impacted by the precision of the
analysis of indirect branch targets, e.g., the size of equivalence
classes (Section III-C). Table I reports an analysis of the
benches with indirect branches that we evaluated in Embench-
IOT (Section VII). The table reports the number of dispatchers
inserted, the number of equivalence classes, the size of each
equivalence class, and the number of non-legitimate functions
per class. The number of dispatchers depends on the number
of indirect call sites in the original bench. The classes size
reports the number of reachable functions in each equivalence
class. In the evaluated benches, the number of equivalence
classes does not exceed 2 and the largest class is limited to 9
elements, which fairly restricts the possibility of attacks. Note
that several dispatchers can correspond to the same equivalence
class (but using different registers for the target branch address):
for wikisort and for sglib-combined -Os there are more
dispatchers than equivalence classes. Finally, non-legitimate
functions are functions that are not reachable from a given
call site. In an equivalence class, the non-legitimate functions
correspond to functions unreachable from an indirect call site
but that share the same property (e.g., prototype) with the other
functions. Out of 3 benches, sglib-combined is the only
one to present equivalence classes that include non-legitimate
functions, and these non-legitimate functions correspond to
a whole equivalence class. The context-insensitive analysis
performed by the Dispatcher Generator is not able to detect
that there is a function pointer set to NULL in the source code.
This result into one or two useless dispatchers depending on the
optimization level. Such issue could be avoided by manually
selecting the dispatchers to include into the program after a
cross-analysis of the source code and of the metrics reported by
the Dispatcher Generator. Therefore, even against an attacker
able to control the data, MAFIA only leaves a small attack
surface against attack such as ROP or JOP compared to a
non-protected system.

VII. EXPERIMENTAL EVALUATION

To evaluate the hardware overhead due to MAFIA, we
synthesize the modified CV32E40P into an Application Spe-
cific Integrated Circuit (ASIC). The ASIC is designed for a
frequency of 400MHz, in the GF-22FDX FDSOI technology,
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TABLE II
EMBENCH-IOT RESULT WITH THE SIZE (IN BYTES, AND OVERHEAD WRT. UNPROTECTED VERSION), SIGNATURES AND PATCHES AND THE EXECUTION TIME

(IN CPU CYCLES, AND OVERHEAD WRT. UNPROTECTED VERSION) FOR MAFIA WITH THE CRC SIGNATURE FUNCTION

Bench O2 Os
Size Signatures Patches Exec. time Size Signatures Patches Exec. time

aha-mont64 6204 (×1.30) 124 106 75335 (×1.38) 4720 (×1.28) 92 70 67461 (×1.18)
crc32 824 (×1.34) 8 21 380997 (×1.21) 856 (×1.35) 9 21 381006 (×1.21)
cubic 97460 (×1.16) 98 1611 14787617 (×1.16) 96920 (×1.16) 95 1608 14802517 (×1.16)
edn 3564 (×1.29) 53 63 1157814 (×1.22) 3944 (×1.25) 53 64 1157585 (×1.22)
huffbench 4028 (×1.39) 90 90 382404 (×1.20) 3548 (×1.33) 61 73 383163 (×1.16)
matmult-int 3376 (×1.26) 29 70 1119255 (×1.21) 2588 (×1.23) 10 54 1200057 (×1.21)
minver 21472 (×1.24) 56 489 151685 (×1.18) 21404 (×1.24) 59 474 178843 (×1.17)
nbody 20576 (×1.20) 52 404 55767175 (×1.18) 19944 (×1.20) 42 387 55780098 (×1.18)
nettle-aes 5600 (×1.14) 46 63 136279 (×1.10) 5512 (×1.14) 44 59 136447 (×1.10)
nettle-sha256 7864 (×1.07) 39 44 9573 (×1.03) 7720 (×1.08) 46 46 10239 (×1.03)
nsichneu 25204 (×1.45) 654 565 3693 (×1.44) 25152 (×1.45) 648 546 3685 (×1.44)
qrduino 21840 (×1.39) 554 455 1605197 (×1.18) 18304 (×1.37) 448 357 1610103 (×1.16)
slre 7604 (×1.55) 242 211 – 6760 (×1.52) 214 168 45480 (×1.17)
st 21964 (×1.20) 58 420 6618952 (×1.17) 21764 (×1.19) 44 409 6626187 (×1.17)
statemate 8956 (×1.29) 203 141 1573 (×1.09) 9116 (×1.28) 198 138 1672 (×1.08)
ud 3456 (×1.25) 39 62 23674 (×1.16) 3232 (×1.27) 37 62 24125 (×1.16)
picojpeg 31116 (×1.47) 881 665 2403701 (×1.21) 22548 (×1.49) 642 485 2424312 (×1.16)
sglib-combined 8332 (×1.47) 197 219 409637 (×1.18) 8736 (×1.46) 206 214 466871 (×1.31)
wikisort 32340 (×1.30) 354 647 28465027 (×1.38) 31956 (×1.29) 318 625 24817089 (×1.20)
geo. average (×1.30) (×1.19) (×1.29) (×1.18)

and the target frequency is not impacted by the addition of
MAFIA. The core occupies 64 kGE with CBC-MAC/Prince
and 55 kGE with CRC32, which represents an area overhead
wrt. the unmodified core of 23.8% and 6.5% respectively.

The software evaluation is carried out through HDL cycle-
accurate simulations of the modified CV32E40P with CRC32.
We benchmark our implementation with the Embench-IoT [22]
test suite, which targets embedded systems without operating
system. All the test programs are compiled with the MAFIA
toolchain, with optimization levels -Os and -O2, and are
linked with the Newlib C-library and the LLVM multiplication
and soft float libraries. The benches are compiled with the
option -ffunction-section to eliminate any dead code.
Embench-IOT contains 4 benches with indirect branches. We
prevent the compiler from using indirect branches with the
-fno-jump-table compiler option, which leaves 3 benches
with indirect function calls (picojpeg, sglib-combined

and wikisort). Note that slre could not be compiled with
the -O2 optimization level because our reference signature
generation does not support the inter-procedural loop caused
by a recursive call.

We add the attribute MAFIA_secure to the benchmarked
functions only, meaning that only those functions contain
signature verifications. The C-library and the LLVM library do
not contain any signature verification but are still instrumented
with MAFIA.ldp instructions.

The code size evaluation considers only the sections im-
pacted by MAFIA (.text and .patches), which provides a
pessimistic, upper bound of the overall code size overheads
for a complete firmware image.

Table II and Figure 5 summarize the results of our ex-
perimental evaluation. The results show that MAFIA can
handle different kind of software as selected by Embench-
IOT. Execution time overheads range between 2.5% and 44.0%
with a geometric average of 18.4%. The code size overheads

range between 7.3% and 55.4% with a geometric average
of 29.4%. For the majority of the benches, the difference
between the optimization levels -Os and -O2 is negligible,
except for aha-mont64, sglib-combined, and wikisort.
The difference is explained by the execution of instruction
sequences where a MAFIA.ldp is immediately followed by a
branch. In this case, the pipeline controller stalls the processor
so that the memory stage can fetch the patch before the branch
is taken. For those 3 benches, this pattern is present in a
loop nest increasing considerably the number of stalled cycles
between optimization level -O2 and -Os.

The evaluation results show that the update function (patch
values and MAFIA.ldp) is responsible for the largest part of
the code size overhead. The number of reference signatures is
dependent of the number of branches in the functions annotated
with MAFIA_secured. In our evaluations, reference signatures
are only inserted for the benches core functions. But, all the
functions need MAFIA.ldp independently whether they come
from the benchmark core or from libraries.

The forwarding dependency elimination pass and the patch
placement pass (Section V-D) also contribute to the code
size overhead (“Other” in Fig. 5). Those passes insert nop
instructions to break some forwarding dependencies and disable
some tail call optimization respectively. Also, MAFIA LLVM
passes insert new instructions in the code (e.g. MAFIA.ldp
instructions). This requires to adapt direct branch offsets. The
new offsets might not fit in the original branch binary encoding
anymore. In such a case, an additional direct branch is inserted
which increases the code size.

Table III reports the overhead induced by the dispatchers. In
the worst case, the dispatchers contribute to 15.3% of the
total overhead for wikisort -Os. The absolute overhead
induced is only 4% at worst. For all the other benches, the
dispatchers contribute to less than 10% of the total overhead.
Note that this overhead could even be reduced by replacing
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Fig. 5. Execution time (left) and code size (right) overheads for the Embench-IoT benchmarks, with the -Os and -O2 compiler optimization levels for
MAFIA with the CRC signature function.

TABLE III
CODE SIZE OVERHEAD (CONTRIBUTION TO THE GLOBAL OVERHEAD IN
BYTES) AND NUMBERS OF PATCHES AND SIGNATURES INDUCED BY THE

DISPATCHERS

Bench Total Patches Signatures
picojpeg (Os) 84 (1.1%) 4 2
picojpeg (O2) 168 (1.7%) 4 4
sglib-combined (Os) 256 (9.3%) 8 6
sglib-combined (O2) 172 (6.4%) 6 4
wikisort (Os) 1108 (15.3%) 34 26
wikisort (O2) 604 (8.2%) 22 14

dispatcher targeting equivalence classes with a single element to
a direct call to the target function. This demonstrates that using
dispatchers is a practical solution to avoid GPSA signature
confusion for a small additional overhead.

We observe that the compiler optimization level has a
moderate impact on the code size and execution time overheads,
but that there is a large variation of overheads, which are
due to the different code structures used in the benches.
Furthermore, smaller basic block sizes are more impacted by
the instrumentation with MAFIA instructions. The maximum
code size overhead is 400% (×4) for a single basic block
composed of a single branch instruction, as MAFIA’s code
instrumentation requires the addition of 3 memory words: a
MAFIA.ldp instruction, the corresponding patch value, and the
reference signature. Our results show that the average code size
overhead is far less because basic blocks have greater sizes.
Some optimizations (such as tail duplication or loop unrolling)
could increase the size of basic blocks or reduce the number
of branches to reduce the execution time overheads.

It is possible to get an approximation of the CBC-
MAC/Prince overheads from the CRC32 results. Both CBC-
MAC/Prince and CRC32 compute a signature in a single
cycle and verify 32-bit reference signature. However, CBC-
MAC/Prince works with 64-bit blocks and therefore requires
64-bit patch values. To handle 64-bit patch values MAFIA uses
two update instructions, one for the 32 most significant bits and
the other for the 32 least significant bits. Such implementation
leads to double the software overheads induced by the update
function (patch values and MAFIA.ldp). Therefore, with the
CBC-MAC/Prince implementation, MAFIA induces an average
execution time overhead close to 39% and an average code size
overhead close to 50%, but it also ensures code authenticity.

Replacing Prince with a 32-bit block cipher, such as Simon [23],
could close the performance gap between the CBC-MAC and
the CRC32 implementations of MAFIA.

VIII. RELATED WORK

Counter-measures ensuring code and control-flow integrity
are often implemented as hardware components external to the
processor microarchitecture [3], [10]. Such counter-measures
are easier to integrate in a processor design but are intrinsically
blind to faults targeting the microarchitecture. For these reasons,
they are not further discussed in this section.

Table IV provides a comparison between MAFIA and
the related counter-measures. It reports the claimed security
properties ensured by the counter-measures, the estimated
hardware area, code size execution time overhead. Regarding
the hardware area overhead, note that Table IV is only indicative
of a trend because each work is based on different processor
architectures and different technologies.

Werner et al. use GPSA in the context of fault injection [4].
The signature is derived from the binary encoding of program
instructions using a CRC32 signature function. In MAFIA,
the CRC32 implementation presents slightly larger hardware
overhead due to the additional CSI module. Actually, the
CACFI module, which handles GPSA in MAFIA, is equivalent
to the GPSA monitor in [4]. The main difference is the origin of
the signature input which in MAFIA is the pipeline state instead
of the binary encoding of program instructions. On the software
side, MAFIA induces half less code size overhead and execution
time overhead. The reason is that MAFIA handles the loading
of patch values in a single dedicated MAFIA.ldp instruction
while [4] requires several standard loads and stores to place
the patch values in a memory mapped register. Regarding
the security properties, both MAFIA and [4] ensure code and
control-flow integrity. Additionally, MAFIA supports execution
integrity, meaning that it can detect fault targeting the control
signals after the fetch stage.

[5]–[7] are code and control-flow integrity counter-measures
based on authenticated decryption. MAFIA ensures code
authenticity, but is not designed to ensure code confidentiality
as is. [6] is the closest to MAFIA implemented with a CBC-
MAC signature function. Both designs have similar hardware
overheads. They are both based on the Prince cryptographic
primitive, which is responsible for the most important usage
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TABLE IV
SECURITY AND OVERHEAD COMPARISON OF CODE AND CONTROL FLOW INTEGRITY PROTECTION TARGETING FAULT INJECTION ATTACKS

Security Target Technology Area
overhead

Exec. time
overhead

Code size
overhead

Arora et al. [10] CI/CFI ARM9TDMI ARM920T FPGA Virtex 2 13.7% 100% NA
Werner et al. [4] CI/CFI ARMv7-M Cortex-M3 ASIC UMC 130nm 4% 32% 57%
Danger et al. [3] CI/CFI RISC-V PicoRV32 FPGA Artix 7 20% 2% to 63% 118% to 160%
Clercq et al. [5] CC/CA/CFI SPARC LEON3 FPGA Virtex 6 28.2% 13.7% 140%
Werner et al. [6] CC/CA/CFI RISC-V CV32E40P ASIC UMC 65nm 28.8% 9.1% 19.8%
Savry et al. [7] CC/CA/CFI/DC/DA RISC-V CV32E40P – – 167% 24%
MAFIA CRC CI/CFI/EI RISC-V CV32E40P ASIC FDSOI 22nm 6.5% 18.4% 29.4%
MAFIA CBC-MAC CA/CFI/EI RISC-V CV32E40P ASIC FDSOI 22nm 23.8% 39% 50%

CI: Code Integrity, CA: Code Authenticity, CC: Code Confidentiality, CFI: Control Flow Integrity, DC: Data Confidentiality, DA: Data Authenticity,
EI: Execution Integrity, NA: Non-Applicable, –: Not provided

of extra silicon area. However, the software overheads of [6]
are approximately 30% smaller for two reasons: (i) faults are
detected in case of bad instruction decoding, which alleviates
the need for reference signatures; (ii) control-flow instructions
simultaneously load patch values, whereas MAFIA requires a
dedicated instruction.

Regarding indirect control flow, [5] also relies on indirect
branch elimination. By design, the basic blocks cannot have
more than 4 or 5 instructions, and cannot have more than
2 predecessors. Those limitations considerably increase the
complexity of the dispatchers, which leads to larger software
overheads as compared MAFIA. In [6] all the functions
reachable from the same indirect branch share the same state,
which is similar to signature confusion. However, the state is
also used for code encryption. To avoid possible cryptographic
vulnerabilities, an additional patch value is inserted at the
beginning of the target functions, which restricts possible
signature confusions to the function entry points. In [7], indirect
branch patch values are stored in a word placed before the
indirect branch target. This approach prevents any signature
confusion and allows more flexibility to support software
constructs such as C++ vtables. However, this mechanism
requires confidential patch values to prevent the forging of new
indirect branches. MAFIA relies on indirect branch elimination
to prevent signature confusion. We evaluated that the overheads
due to the use of dispatchers are low, and that they could
be further reduced with additional code optimizations in the
toolchain. Finally, all the related works in the context of control-
flow integrity against fault injection attacks implicitly assume
that indirect branch targets can be identified by external means.
This is a major bottleneck for the use of any counter-measure
in practice. It implies either that the burden is moved to another
tool or to an application designer, or in the worst case the
use of a single equivalence class containing all the targets of
indirect branches. Our work is the only one to provide a fully
automated solution for indirect branch target identification.

While MAFIA has comparable overheads to the related
counter-measures, it is still possible to reduce those overheads.
First, the area overhead is estimated considering the overhead
on the processor core only. However, the CV32E40P is a small
processor core and we expect the contribution of the core to
the area of a full system to be small, even in the case of IoT
devices. Hence, MAFIA’s relative area overhead measured in
a complete system, including memory and peripherals, would

be much smaller. It is also possible to reduce MAFIA’s area
overhead and code size overhead, at the expense of security, by
selecting a more lightweight signature function such as CRC8.
Finally, our work reports MAFIA’s code size and execution
time overheads when applied globally to the application. By
extending MAFIA with a secure on/off mechanism, it would be
possible to enable MAFIA protection for sensitive code only.
The local overheads on the sensitive code would be the same
as the ones reported in Section VII, but the global overheads
on the application would be much smaller.

MAFIA is, to the best of our knowledge, the only counter-
measure to ensure execution integrity against fault injection
attacks. Kim and Somani propose an on-line integrity moni-
toring of the microprocessor control logic for safety-critical
systems sensible to soft errors [24]. They use a non-secure
function (XOR) to derive a signature from the static control
signals in every pipeline stages, and dynamic control signals
are protected by duplication. A caching mechanism is used
to store reference signatures from the first execution (cache
miss), and verifies the runtime signatures in the subsequent
executions (cache hit). However, such a caching mechanism
does not protect against attacks targeting executions leading to
a signature cache miss (e.g., first program execution) because
the reference signature is not available. Moreover, this solution
does not detect attacks targeting the program memory, hence
does not ensure code integrity. Another independent mechanism
ensures control-flow integrity. In MAFIA, a unique signature is
derived from static and dynamic control signals of the decode
stage. This signature ensures simultaneously execution, code
and control-flow integrity.

IX. CONCLUSION

This paper presents MAFIA, a counter-measure extending
the state-of-the-art against fault injection attacks by combining
execution integrity with code integrity, code authenticity
and control-flow integrity. MAFIA articulates two security
mechanisms to protect the control logic of the processor against
faults targeting the processor microarchitecture. MAFIA also
protects against faults injected outside of the processor that
have an impact on the processor control logic. A first module
implements generalized path signature analysis (GPSA). The
signature is computed from the pipeline state, a set of data-
independent control signals that deterministically result from
the decoding of the binary instruction. This module ensures
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simultaneously control-flow integrity, code authenticity, and
control signal integrity from the fetch stage to the end of the
decode stage. A second module, implementing a redundancy-
based mechanism, ensures the integrity of the same control
signals in the subsequent pipeline stages, which completes the
full protection coverage of the processor microarchitecture.

The flexibility of the design allows for trade-offs between
security and overheads. The paper presents two implementa-
tions of MAFIA based on the CV32E40P RISC-V processor,
with different signature functions: one with CBC-MAC and
Prince, and another one with a CRC32 error detector code.
CBC-MAC/Prince makes use of the full capabilities of MAFIA.
It induces a hardware area overhead of 23.8 %, and average
code size and an execution time overheads of 50 % and 39 %
respectively. CRC32 detects a minimum number of 8 bit-flips
and ensures code integrity only instead of code authenticity; it
induces a hardware area overhead of 6.5 %, and average code
size and an execution time overheads of 29.4 % and 18.4 %
respectively. On the software side, the compiler extension offers
a complete automatic processing of the program source code to
generate the MAFIA executable program. Moreover, thanks to
the support of indirect branches and interrupts, MAFIA is fully
compliant with software stacks used in embedded system.
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