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Detection of Thermal Events by Semi-Supervised
Learning for Tokamak First Wall Safety
Christian Staron, Hervé Le Borgne, Raphaël Mitteau, Erwan Grelier, Nicolas Allezard

Abstract—This paper explores a semi-supervised object de-
tection approach to detect thermal events on the internal wall
of tokamaks. A huge amount of data is produced during an
experimental campaign by the infrared (IR) viewing systems used
to monitor the inner thermal shields during machine operation.
The amount of data to be processed and analyzed is such that
protecting the first wall is an overwhelming job. Automatizing this
job with artificial intelligence (AI) is an attractive solution, but
AI requires large labelled datasets that are not readily available
for tokamak walls. Semi-supervised learning (SSL) is a possible
solution to being able to train deep learning models with a small
amount of labelled data and a large amount of unlabelled data.
SSL is explored as a possible tool to rapidly adapt a model
trained on an experimental campaign A of tokamak WEST to
a new experimental campaign B by using labelled data from
campaign A, a little labelled data from campaign B and a lot
of unlabelled data from campaign B. Model performance is
evaluated on two labelled datasets and two methods including
semi-supervised learning. Semi-supervised learning increased the
mAP metric by over six percentage points on the first smaller-
scale database and over four percentage points on the second
larger-scale dataset depending on the method employed.

Index Terms—Fusion reactors protection, infrared thermogra-
phy, semi-supervised learning, domain adaptation, object detec-
tion

I. INTRODUCTION

THE search for abundant, cheap, low-carbon energy is
driving research into nuclear fusion. This reaction, in

which two atomic nuclei assemble to form a heavier nucleus
while releasing a large amount of energy, is naturally at work
in the sun and can be carried out on Earth within tokamaks [1]–
[4] or stellarators. Such devices confine a plasma in a limited
volume at very high temperatures thanks to powerful magnetic
fields.

However, some particles escape inevitably from confine-
ment and reach the Plasma Facing Components (PFC), leading
to intense though localized heating. Thermal events appear
on the first wall and can damage these in-vessel components
when exceeding armour material allowable. Among numerous
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sensors to monitor the first wall, infrared (IR) viewing sys-
tems provide the most relevant information about the surface
temperature of the inner walls of tokamaks (Figure 1).

The live image feeds are used for real-time feedback control
during operation.These data are also used for scientific post-
processing after the experiments, to localize and characterize
the different classes of thermal events that occur during
machine operation. This task requires long and tedious work
by high-level experts of plasma physics who would benefit
from automation through computer vision approaches.

First attempts in this direction were based on simple thresh-
olds [5] but were tedious to tune manually and suffered from
high sensitivity to false detection. It has been slightly improved
with the modelling of the background by clustering [6], but had
still limited performance in practice. More recent approaches
rely on large neural networks learned from visual data. Grelier,
Mitteau and Moncada [7] trained a Cascade R-CNN model [8]
from scratch using a dataset of 325 thermal events distributed
in seven classes, manually annotated from 20 infrared movies
from the WEST tokamak. They improved their approach more
recently [9] with a Faster R-CNN model [10]. Szucs et al. [11]
used the YOLOv5 [12] model, with a backbone pre-trained
on ImageNet and fine-tuning with 471 real images from the
W7-X stellarator and 250 synthetic images of hot spots. Such
approaches nevertheless still require tedious manual work to
annotate the IR video films.

Using a dedicated tool (described in [7]), labelling one IR
film takes between 20 and 30 minutes. Hence, labelling the
whole database with these tools manually would take over
three years as the database contains more than 13 000 films.

Even by taking multiple precautions, the process of annota-
tion is known to be subject to multiple potential biases [13].
The main potential subject for thermal event labelling is the
label bias because “different annotators may assign different
labels to the same type of [thermal event]” [14]. Since the
knowledge of plasma fusion progresses with time, even the
same experts can make subtle changes in their assessments
to categorize thermal events, between two annotation sessions
several months apart.

This article addresses the two aforementioned limitations
of the current approaches and proposes an automated process
to detect and classify thermal events on the internal wall
of tokamaks, which requires a significantly lesser amount
of manual work while maintaining efficiency. We rely on
the recent semi-supervised approach SoftTeacher [15] to take
advantage of the large amount of unlabelled data produced
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Figure 1. Annotation examples of several classes of hot spots on the wide-
angle line of sight of the tokamak WEST [4]

by the IR cameras, in the vein of the semi-supervised prin-
ciples [16], [17]. While still requiring a limited quantity of
manual annotations, this approach reduces their amount by
one to two orders of magnitude, with a controlled and limited
drop in performance.

The study also shows a phenomenon that was previously
unidentified. From an experimental campaign to the follow-
ing one, small changes in the tokamak’s configuration make
the images different without being clearly visible to human
experts. However, although difficult to see “humanly”, these
changes cause a collapse of the performance with a supervised
approach, learned during an acquisition campaign and applied
as is to a subsequent campaign. The method proposed here
overcomes this issue with a minimal manual annotation effort
on a novel campaign and adapts the model to the (humanly
imperceptible) new visual domain.

To summarize, the contributions of this paper are:
• a novel method for visual monitoring of the inner wall of

tokamaks, based on semi-supervised learning. Through
this paradigm, we show it addresses two major limits
of the previous fully-supervised approaches, namely the
need for massive annotated data and the subjectivity of
the human annotator that introduces noise to the labels;

• the identification of a novel phenomenon that arises
between two acquisition campaigns in a tokamak. While
difficult to see, even for human experts, it has a major
impact on fully-supervised approaches. We show that our
SSL-based approach is much more robust to this issue.

In the following, the method based on semi-supervised
learning is described in section II. The data handled in
the study, which come from two different acquisition cam-
paigns, as well as several experimental results are reported
in section III, showing the interest of the semi-supervised

approaches with regards to the compromise between manual
annotation effort and detection performance on the one hand,
and the ability to adapt to a new domain resulting from a new
acquisition campaign on the other hand. Finally, we discuss
the limitations of the method and possible future impact in
section IV.

II. PROPOSED APPROACH

Detecting and classifying thermal events on the internal wall
of tokamaks is processed here as an object detection problem.
Given an input image, an object detection model predicts a
collection of bounding boxes that localize and classify the
identified hot spots in the image. Each bounding box consists
of 5 predictions: (x, y, w, h) and the confidence for the class
label. The (x, y) coordinates represent the upper-left corner of
the box, w its width and h its height.

Most recent work proposed to estimate such a model in a
supervised learning setting [7], [9], [11]. They rely on a large
labelled dataset Lsup

train and minimize a loss, whose exact form
depends on the outputs design of the model. In that case, the
loss is the sum of a cross-entropy loss for classification and
a smooth L1 loss for regression. The regression allows us to
estimate the values (x, y, w, h) for each bounding box, while
the classification loss results in an estimation of the confidence
over the class label. The final loss Lsup is a weighted sum
of all these losses, that is minimized with stochastic gradient
descent.

A. Semi-supervised learning to detect thermal events

The main limit of the supervised approach is that it requires
a large dataset Lsup

train, which is tedious to manually annotate.
The Semi-Supervised Learning (SSL) paradigm is adopted
as it needs a much smaller labelled training set Ltrain but
takes advantage of a large unlabelled training set Utrain that
is obtained at marginal cost during each acquisition campaign
of plasma fusion within the tokamak. The general process of
SSL on infrared images encompasses two steps:
1.) Step 1: (burn-in phase) Train the model on annotated

images belonging to Ltrain. The burn-in phase is a fully
supervised learning phase, also used as a reference later
in the paper

2.) Step 2: Apply the model to the images of Utrain to
estimate a pseudo-label for each of them. Then train the
model with both the labelled images from Ltrain and the
pseudo labelled images from Utrain

Since the size of Ltrain is typically 1% of that of Lsup
train, it

reduces significantly the manual effort of annotation required.
On the other hand, the size of Utrain is of the same order
as that of Lsup

train but since the pseudo-labels are obtained
automatically, it does not require manual effort.

In the vein of the recent literature in SSL for object
detection [15], [18], [19] this work relies on a student-teacher
architecture that comprises two branches. The teacher model
receives the input of unlabelled images weakly augmented and
annotates them with pseudo labels. On the other branch, the
input images are strongly augmented and the student model
uses these images and the estimated pseudo labels to train the
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hot spot detector itself. During training, the student model is
trained by minimizing the weighted sum of a supervised loss
Lsup estimated with labelled images and an unsupervised loss
Lunsup that results from unlabelled images only. In practice,
L = Lsup + λLunsup, where λ is a hyperparameter that is 0
during the burn-in phase and is non-null during Step 2. The
teacher model is an exponential mean average (EMA) [20]
of the student model. Its parameters θteacher are updated
according to θteacher ← αθteacher + (1 − α)θstudent at each
iteration, where α is a hyperparameter slightly less than one
Note that to detect an object in an image, we face a class
imbalance between the boxes that contain a potential object
(foreground) and those that do not (background). This imbal-
ance is managed by object detectors such as Faster-RCNN,
which is used at the core of our approach, thanks to a binary
detector of objectness, that acts on the last convolutional layer
of the backbone, which is further used to detect (through
regression) and recognize the class of the hot spot (through
classification).

Applying data augmentations to input images is a well-
known efficient strategy in SSL [21]. They enable a diversi-
fication particularly of the unlabelled data so that the teacher
model does not fall into the trap of always predicting the same
boxes at each iteration. Different augmentations are applied
depending on the set from which the data is from.

• Weak augmentations are applied to unlabelled images
that are given as input to the teacher model. Weak
augmentations include resizing the image or flipping it
in relation to the vertical axis that separates the image in
half.

• Supervised augmentations are applied to the labelled
images given as input to the student model. Supervised
augmentations add to weak augmentations one extra
augmentation that is picked from a list of augmentations
with RandAugment [22]. The image can be for instance
sharpened, equalized, brightened, contrasted or even not
augmented at all.

• Strong augmentations are applied to the unlabelled im-
ages given as input to the student model. Strong augmen-
tations add to the already applied supervised augmenta-
tions transformations like translations, shearing, rotating
or erasing parts of the image by Cutout [23].

A choice was made on which augmentations could be
applied to WEST’s infrared images because the pixel values
in the IR images have a physical interpretation, namely the
surface temperature measurements. All augmentations listed
in [15] that strongly affect the pixel values are thus not
applied. This includes augmentations that equalize the image,
solarize it or mix the color channels. The weak augmentations
are unchanged. They are the same augmentations used when
training a supervised model in Step 1. The kept supervised
augmentations comprise of augmentations that contrast the
images, brighten or sharpen them. Strong augmentations are
linked to more physical augmentations. The preserved aug-
mentations consist of translating, shearing and erasing part of
the images at each iteration.

B. Adaptation to a novel acquisition campaign

As mentioned above, there may be a difference between
images generated by IR cameras for subsequent acquisition
campaigns. These differences are either imperceptible to the
human eye or blinded by the human brain which tends to
correct the images unconsciously. Differences can be due
to the installation of new components or various plasma
configurations that affect the location of the power deposition.

In this paper, the images are collected from two such
campaigns, denoted by A and B, described in subsection III-A.
As shown experimentally in Section III-C, when a detec-
tion/classification model is trained with data from campaign
A, its performance drops dramatically when applied directly
on data from campaign B. For a new campaign, the parameters
θA previously learned need to be adapted to new parameters
θB that provide acceptable performance. Such an issue can
be seen as a domain adaptation problem [24] that can be
addressed with transfer learning approaches such as using
universal backbones [25], [26].

Fine-tuning is a common method that enables the quick
adaptation of model weights. Hence, one can therefore adjust
a model’s weights when trained on campaign A with images
from campaign B to quickly gain good performance on a test
set containing exclusively images from campaign B. However,
it still requires a significant amount of labelled data to avoid
overfitting and reach the performance of a model that would
be learned from scratch on images from both A and B.

This article aims at demonstrating that an approach based
on SSL is more efficient than fine-tuning for a given budget of
labelled images. The two following scenarios are considered
in the following:

• method 1: the initial burn-in is performed from scratch
with a small amount of labelled images, either from
campaign A or B. Then, Step 2 is performed with these
images and unlabelled images from B only.

• method 2: the initial burn-in is performed from scratch
with a small amount of labelled images from campaign
A then fine-tuned with images from B. Then Step 2 is
performed similarly to method 1, with these images and
unlabelled images from B only.

Method 1 reflects an approach that requires retraining
the model at each new campaign, with a small amount of
labelled data. Method 2 is closer to an ideal realistic use
case for WEST’s operating team, in which the model learned
previously in campaign A is directly adapted to campaign B
without training from scratch.

C. Implementation details

The implementation of our model (Figure 2) is built upon
the code of SoftTeacher [15], that itself relies on MMDetec-
tion [27]. The (student) detection model is a Faster R-CNN
with a ResNet-50 [28] backbone. Such a model is thus similar
to that used by recent works in a supervised setting [9]. Hence,
the supervised loss Lsup is the sum of a cross entropy loss for
classification and a smooth L1 loss for regression, computed
with labelled data only. The unsupervised loss Lunsup is also
the sum of a classification and a regression losses, but the
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Figure 2. The architecture of the model used in this study. The student
model (bottom, in blue) learns a supervised loss Lsup with labelled data and
an unsupervised loss Lunsup with unlabelled data, which the pseudo-label is
provided by the teacher (top, yellow). At each epoch, the teacher is updated
from the weights of the student with an exponential moving average (EMA).
More details can be found in [15] which code was used at the base of our
implementation

Table I
MAIN HYPERPARAMETERS ADOPTED TO TRAIN FASTER R-CNN AND

SOFTTEACHER MODELS

Supervised training SSL training
(burn-in)

Relative weight λ – 4.0
Learning rate 5× 10−3 5× 10−4

Batch size 16 20
Total iterations 80 000

Scheduler 40 000 and 53 333 iterations
Weight Decay 0.0001

Momentum 0.9
EMA update α 0.999

annotation is provided through a pseudo-label computed by the
soft-teacher. The unsupervised classification loss is modified
such that the background boxes are weighted according to
their reliability score, while the unsupervised regression loss
is modified to filter the 2D boxes that the teacher model does
not regress with enough stability after a small jittering [15].
Table I shows the main hyperparameters used to train both the
supervised models and the semi-supervised models. The setup
of the hyperparameters results either from the values proposed
by [15] or thanks to a grid search conducted on a 2/3 / 1/3 split
of the training dataset of D1 (described in subsection III-A).
Hence, the relative weight λ of the unsupervised loss is fixed
at 4.0 during Step 2. The batch sizes are reduced to retain
the number of images per GPU while taking into account
the number of GPU used. The learning rates are first adapted
proportionally to the changes in batch sizes to keep their ratio
constant, then further reduced if needed to ensure convergence.
The models are trained on 4 NVIDIA Tesla V100 16 GB
GPU, each computing a quarter of the batch size before it is
aggregated to estimate the gradient.

The supervised models of the burn-in stage are trained on a
number of images from campaign A equivalent to 1% of the
fully labelled dataset and a number of images from campaign
B corresponding to 0.5% of the labelled dataset. Models are
often trained on 10%, 5% and 1% of labelled data in literature
[18], [19], usually on the RGB images of MSCOCO [29]. The
decision to train models on 1% relies on the fact that it is the

Table II
THE DIFFERENT THERMAL EVENT CLASSES IN THE LABELLED DATASETS

Class Class Number of hot spots per class
number name D1 D2

1 electron type 1 2 103 0
2 inboard strike point 13 078 26 132
3 outboard strike point 19 569 32 434
4 reflection 856 724
5 radiated heat flux 631 0
6 UFO 30 149
7 hot spot 61 237 119 751

hardest case because the least amount of labelled data is dealt
with during training but also it is the most realistic use case
for WEST, as a lot of unlabelled data is at disposal.

III. EXPERIMENTAL RESULTS ON WEST’S DATASETS

A. WEST Dataset

The work of this article is based on images from the
tangential line of sight of the WEST tokamak [4], [30]. The
line is equipped with an infrared camera, and provides an
overall wide-angle (WA) view of the WEST tokamak. It has
thus a key role in the protection of the machine because it has
the largest variety of thermal events (Figure 1).

A WEST fusion experiment lasts typically between 15 and
60 seconds, and the longest one up to several minutes. Acqui-
sition campaigns are organized on a regular basis, separated
by several months to service the tokamak and its utilities. The
images resulting from the videos are of size 512× 640px and
encoded over 16 bits.

The thermal events are labelled according to seven classes
for the purpose of this work (reported in Table II, illustrated
in Figure 3, and presented in [7]), while a full data processing
pipeline would have many more classes. Distinguishing the
different categories and assigning a label to a bounding box is
a difficult task, that requires a good knowledge of the machine
and the use of both the temporal behavior of the thermal
event and data from other diagnostics. Each label consists
of four integers corresponding to the surrounding box of the
spot, and one to its class. The six first classes correspond
to well-defined wall events and the seventh is the catchall
class, which is appropriate when the exact definition of the
thermal event is undefined. In practice, with progress in plasma
fusion concerning the identification of these thermal events,
new classes can be defined in the future and include a part of
the annotations in this catchall class. Note that the distinction
is made between “thermal events” and “hot spots”: a hot spot
is related to one single timestamp. By contrast, a thermal
event is a sequence of hot spots. This distinction is important
because some classes of thermal events can only be determined
using spatio-temporal information. For instance, UFOs can be
classified as such only by looking at the movement between
subsequent hot spots.

Acquisition Campaigns. WEST’s experimental campaigns
last over several months. WEST goes through many different
plasma configurations during these campaigns and evolves
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Figure 3. Examples of different manual annotations (upper left: reflection
and hot spot; upper right: radiated heat flux and electrons type 1; lower left:
inboard and outboard strike point; lower right: UFOs)

from one campaign to another (adding new components, new
diagnostics...).

Such changes make the images acquired by the IR cameras
different from one campaign to another, as illustrated in
Figure 4. Some changes may not be detected by human experts
because human tend to correct the images unconsciously,
but those changes have a significant impact on the low-level
statistics of the images and, as a result, on the performance of
the automatic vision systems.

The images we consider were extracted from video films
acquired during two different acquisition campaigns to be
able to study this effect, namely the campaign A which took
place between July and November 2019, and the campaign B
(November 2020 – January 2021).

Annotation Campaigns. Two annotation sessions were
organized to study potential differences between annotation
campaigns. D1 is made of eight video films annotated in
September 2021, corresponding to 12 156 images [7]. D2 was
annotated by the same expert in August 2022, on 21 other
video films, corresponding to 18 336 images [9]. Note that
both D1 and D2 contain images from acquisition campaigns A
and B. A unique expert annotated both D1 and D2 to mitigate
the risk of inter-annotator variation. The experiments of D1 are
picked by experts because they contain interesting events from
a machine protection standpoint, whereas the ones of D2 are
selected algorithmically to maximize the diversity in machine
configurations (plasma configuration, duration, injected power
and energy). Table II shows the number of occurrences of each
class of hot spot for both datasets. A value of 0 indicates that
the dataset does not contain any image that has a given class
of thermal event.

Splitting for Experiments.
Each of the two annotated datasets is divided into a train

and a test set. The splits are made at the video film level
to avoid data leakage. If a detector were trained with images

Figure 4. Image from campaign A (left) during an experiment with similar
experimental conditions as the image from campaign B (right)

from a given video film, it would be much easier to recognize
hot spots from images of the same video film (even if they are
not seen during training), due to the strong temporal coherency
within each video film. Table III gives the number of images
in the training and test sets. In the following, each subset
is referred by the notation Xα

β , where X ∈ {A,B} is the
acquisition campaign, α ∈ {1, 2} refers to the annotation
session datasets (D1 or D2) and β ∈ {train, test} is the split.
X̄ denotes the complement of X with respect to the set of
labelled data from the campaign X . The considered subsets
of X contain images that are equally distributed between the
video films.

The same number of images is extracted from each labelled
film to have a well-defined representation of each film in the
training set. During experiments, if one needs to train on a
number of images equivalent to e.g. 1% of the dataset, 96
labelled images are considered for D1 and 144 for the larger
dataset D2.

B. Evaluation metric

The mean Average Precision (mAP) is used to measure
the performance. It is a reference metric in object detection
that both reflects the localization and classification ability
of the model, and aggregates the performance for all the
classes considered. The mAP values reported for SSL ex-
periments in the following are always those of the student
model. The mAP implementation is the same as the one
adopted for the COCO challenges, usually noted mAP0.5:0.95,
that is the mAP averaged over an “intersection over union”
(IoU) between the detected hot spot and the ground truth
at 0.5, 0.55, 0.6, . . . , 0.95. Following [31], the mAP is only
computed for boxes with a confidence higher than 10−3.

During the preliminary tests of our work, we considered
all the standardized COCO metrics, but did not notice any
remarkable results both globally or by class. In other words,
the relative order of the performances was always the same
regardless of the metric. For this reason, we only report the
(integrated) mAP as described above.

C. Inter-campaigns and Annotations Domain Shift

Subsection III-A explains that the datasets have been created
to study the transfer of a model learned on the data of
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Table III
CONTENT OF THE LABELLED DATASETS D1 AND D2 USED IN EXPERIMENTS. IMAGE DATA COME FROM TWO ACQUISITION CAMPAIGNS (A AND B) AND

LABELS FROM TWO ANNOTATIONS CAMPAIGNS (CORRESPONDING TO THE DATASETS D1 AND D2).

D1 D2

Train Test Train Test
Number of films from A 2 1 8 1
Number of films from B 3 2 9 3

Number of images 7 879 4 277 15 130 3 206
Notation A1

train +B1
train A1

test +B1
test A2

train +B2
train A2

test +B2
test

campaign A to the test data of a campaign B. Firstly, a series
of experiments in a fully labelled setting is conducted. The
reporting of the results is in Table IV.

The results are quite good (lines (i), (iv) and (v) of Table IV)
when the model is trained and tested on data from the same
campaign (and annotated homogeneously in D1: see below).
The results on B1 are better than on A1 but the inclusion
of data from B boosts performance. This may be due to a
larger training dataset or more relevant images in B1. However,
the performance drops dramatically to near zero (lines (ii)
and (iii) of Table IV) when the training and test data are
from different campaigns. These experiments show that the
changes in tokamak configurations from one campaign to
another produce subtle changes in the low-level statistics of
the images that are not visible to experts (see Figure 4) but
have a significant impact on performance, comparable to that
of a domain shift.

The datasets enable the study of the influence of a potential
light change in the annotation process. Indeed, while both
datasets D1 and D2 contain data from campaigns A and B,
D2 is annotated almost one year after D1. Even though the
annotators are the same, the criterion to classify the thermal
events by experts changed slightly, introducing minor differ-
ences between the two. For instance, following discussions
with experts, for D2, the reciprocating Langmuir probe saw its
classification change from “radiated heat flux” to “hot spot”,
and some thermal events on the upper divertor were annotated
and classified as “reflection”. Furthermore, the differences in
diversity of the configuration of the machine, described in
subsection III-A, also introduce differences between the two
datasets.

Good performance is still attained when the training and test
data is homogeneous (lines (vii), (x) and (xi) of Table IV) but
a significant drop is noted when the training set and the test
one come from different annotation sessions (lines (vi) and
(viii) of Table IV). The fact that the model trained on D2 has
better performance than that trained on D1 shows that later
data encapsulates earlier ones. The domain shift identified in
D1 is nevertheless still present in D2 (lines (ix) to (xii) of
Table IV).

The change in model performance between datasets and
campaigns demonstrates that there is a need to quickly adjust
model weights when faced with a new experimental campaign.
The following subsections explicit how semi-supervised learn-
ing can address this need.

Table IV
mAP FOR DIFFERENT CAMPAIGNS AND DATASETS

Initial training Evaluation
Experiment Number

set
Test

mAP
number of images set

(i) 5 575 A1
train A1

test 0.381
(ii) 5 575 A1

train B1
test 0.030

(iii) 2 304 B1
train A1

test 0.037
(iv) 2 304 B1

train B1
test 0.435

(v) 7 879
A1

train A1
test 0.434

+B1
train +B1

test

(vi) 7 879
A1

train A2
test 0.087

+B1
train +B2

test

(vii) 15 130
A2

train A2
test 0.385

+B2
train +B2

test

(viii) 15 130
A2

train A1
test 0.168

+B2
train +B1

test

(ix) 4 606 B2
train A2

test 0.030
(x) 4 606 B2

train B2
test 0.330

(xi) 10 524 A2
train A2

test 0.396
(xii) 10 524 A2

train B2
test 0.017

D. SSL Gets Near Supervised Performance at Lower Cost

This section compares the approach based on semi-
supervised learning and the classical supervised setting [7],
[9]. Experiments are conducted both on D1 and D2. The
results are reported in respectively Table V and Table VI with
the same experiments for both datasets, numbered from (i)
to (vii). The supervised settings is reproduced with the same
code as our approach for a fair comparison.

The best possible performance is achieved with the Faster
R-CNN model in a supervised setting with a ResNet-50
backbone, when the model is trained with all data (from
campaigns A and B). This performance varies from 0.32 to
0.477 (line (i) in both tables) depending on the test dataset.
The performance logically decreases between 0.267 and 0.435
when only a part of the training data is used (line (ii) to (iv)),
depending on the exact settings either at training or testing.

The performance drops with regard to the best fully super-
vised model with the proposed approach based on SSL (line
(vi) of both tables). The drop is at most 4 mAP percentage
points on D1 with 7879

96+48 ≈ 54 times less data and 3.7
percentage points on D2 with 15130

144+72 ≈ 70 times less data. If
one uses the same number of annotated data (line (iii) versus
(vi)) the SSL approach surpasses the supervised approach. On
D1, the SSL approach even surpasses the model trained on all
the data from B1

train (0.456 vs 0.435) when both are tested on
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Figure 5. Performance according to the number of annotated data (Log scale
in x) for our approach (SSL) compared to fine-tuning and supervised learning,
both on D1 and D2. The performance of our approach is given for a unique
number of annotated data (points). The dashed line is merely drawn as an
aid for figure readability : the dashed line recalls the reference level for the
continuous lines

B1
test (line (vi) versus (ii)), although it gets lower ones (0.303

vs 0.33) on D2. Semi-supervised learning is therefore a way
to get near fully supervised performance at a much smaller
labelling cost.

E. SSL Better Adapts than Fine-Tuning

The SSL approach is compared to the classical fine-tuning
as a method to adapt the model to a novel campaign. On
line (v) of Table V and Table VI, a model is first trained
during 80 000 iterations with 1% of data from campaign A(96
images for D1, 144 for D2), then fine-tuned during 10 000
iterations with 0.5% data from campaign B (48 images for
D1, 72 for D2). Fine-tuning allows the expected adaptation,
since the performance on Btest is no longer almost null (line
(v) versus (iv) of Table V and Table VI, respectively). There
is an expected decrease of performance on Atest as fine-
tuning specializes the model’s parameters to the new campaign
B (line (v) of Table V and Table VI). Fine-tuning remains
however inferior to the model trained with the same amount
of annotated data from A and B (line (iii) versus (v) of Table V
and Table VI, respectively).

For both datasets, the same amount of labelled data is
handled but additional unlabeled data is used for the SSL
model training. The SSL approach surpasses fine-tuning by
3 to 10 percentage points (line (vi) versus (v) of Table V and
Table VI, respectively). With a small amount of labelled data
representing less than 2% of all available data1, SSL even
surpasses the supervised approach on the later campaign Btest

(line (vi) versus (iii) of Table V and Table VI, respectively),
in accordance with the results of the previous section. A study
including an increased number of annotated images used for
fine-tuning to a factor of 2, 5, and 10 times the number
of annotated data used with SSL is carried out. The results

1 144 annotated images from D1 used in line (vi) of Table V, from a total
of 7879 images; 216 from D2 used in line (iii) of Table VI, from a total of
15130.

are reported in Figure 5. The fine-tuning on D2 requires
4 times more labelled data to reach the same performance
as SSL, while on D1, the performance of fine-tuning is
still significantly below, even with 10 times more annotated
data. We also report the results for the supervised learning
approaches with 2304 annotated data on D1 and 4606 ones
on D2, that are presented in detail in section subsection III-D.

These experiments on D1 and D2 show that it is in
the tokamak operating team’s best interest to apply semi-
supervised learning rather than fine-tuning. It should however
be noted that the SSL approach includes a burn-in stage that
consists in 80 000 iterations with data from both campaigns,
while the fine-tuning approach can directly use the model
already available from a previous campaign and compute the
adaptation during only 10 000 iterations. The need for the
burn-in phase can make the SSL less attractive than fine-tuning
for practical usage.

F. SSL Enables Rapid Campaign Adaptation

The combination of fine-tuning with SSL during the second
step of learning (method 2 in Section II) is applied to address
the limits of the previous section. It consists in starting from a
model available from a previous campaign (campaign A), fine-
tuning it on the novel campaign (campaign B) then continuing
to learn with unlabelled data from the novel campaign. Note
that the step of fine-tuning is required since the model from
the previous campaign is not reliable enough to create good
pseudo-labels. The results of this approach are reported on line
(vii) of Table V and Table VI.

The performance is better (on D1) or on-par (on D2) with
a supervised approach with the same amount of labelled data
(line (iii) of Table V and Table VI) but do not need to retrain
the model from scratch. In comparison to the SSL approach
only (method 1, line (vi) of Table V and Table VI) the results
are globally equivalent, depending on the considered test set.
As a consequence, this second version of the approach that
relies on SSL still surpasses the fine-tuning only approach
(line (v) of Table V and Table VI).

Applying semi-supervised learning is therefore a labelling
cost-effective way to adapt a model trained on a certain
experimental campaign to a new one and rapidly get good
detection performance on images from the new campaign.
The pairing of fine-tuning and semi-supervised learning even
achieves the best mAP value after an experiment including
semi-supervised learning on D2, the larger and more realistic
dataset.

IV. CONCLUSION AND PERSPECTIVES

This article explored the application of semi-supervised
learning to infrared cameras used to monitor the inside of fu-
sion reactors during experimental campaigns. Semi-supervised
learning can help quickly adapt a model trained on a certain
acquisition campaign to a new one with a lesser data labelling
cost. This work establishes that semi-supervised learning out-
performs fine-tuning when faced with a new campaign, and
that semi-supervised learning can achieve near fully super-
vised performance but with extensively fewer annotations.
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Table V
EXPERIMENTAL RESULTS ON D1

Initial training Fine-tuning Semi-supervised learning
Experiment Number

Set
Number

Set
Number Unlabelled Test

mAP
number of images of images of images set set

(i) 7 879
A1

train

– – – –
A1

test 0.397
+B1

train B1
test 0.477

both 0.434
(ii) 2 304 B1

train – – – – B1
test 0.435

(iii) 96/48
A1

train/ – – – –
A1

test 0.282
B1

train B1
test 0.415

(iv) 96 A1
train – – – –

A1
test 0.267

B1
test 0.020

(v) 96 A1
train 48 B1

train – –
A1

test 0.202
B1

test 0.351

(vi) 96/48
A1

train/ – – 2 256 B̄1
train

A1
test 0.357

B1
train B1

test 0.456

(vii) 96 A1
train 48 B1

train 2 256 B̄1
train

A1
test 0.355

B1
test 0.416

Table VI
EXPERIMENTAL RESULTS ON D2

Initial training Fine-tuning Semi-supervised learning
Experiment Number

Set
Number

Set
Number Unlabelled Test

mAP
number of images of images of images set set

(i) 15 130
A2

train

– – – –
A2

test 0.425
+B2

train B2
test 0.320

both 0.385
(ii) 4 606 B2

train – – – – B2
test 0.330

(iii) 144/72
A2

train/ – – – –
A2

test 0.389
B2

train B2
test 0.291

(iv) 144 A2
train – – – –

A2
test 0.374

B2
test 0.015

(v) 144 A2
train 72 B2

train – –
A2

test 0.12
B2

test 0.272

(vi) 144/72
A2

train/ – – 4 534 B̄2
train

A2
test 0.388

B2
train B2

test 0.302

(vii) 144 A2
train 72 B2

train 4 534 B̄2
train

A2
test 0.372

B2
test 0.317

A little over six mAP percentage points separate at most
the performance of the trained semi-supervised model with
the performance of the model trained on all data on the
labelled datasets of tokamak WEST but this performance is
accomplished with up to 70 times fewer annotations.

Semi-supervised learning is therefore an attractive tool for
future scientific experimental campaigns. This article focuses
on the wide-angle viewing line of sight of the WEST toka-
mak. Experiments including semi-supervised learning could
be carried out on other lines of sight available among the 12
cameras installed on WEST as a continuation of this work.
Other possibilities include adapting a model trained on an ex-
perimental campaign of WEST to other fusion devices or in the
near future to the International Thermonuclear Experimental
Reactor (ITER) [2].
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