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Abstract—This paper explores a semi-supervised object de-
tection approach to detect hot spots on the internal wall of
Tokamaks. A huge amount of data is produced during an
experimental campaign by the infrared (IR) viewing systems used
to monitor the inner thermal shields during machine operation.
The amount of data to be processed and analysed is such that
protecting the first wall is an overwhelming job. Automatizing
this job with artificial intelligence (AI) is an attractive solution,
but AI requires large labelled databases which are not readily
available for Tokamak walls. Semi-supervised learning (SSL) is a
possible solution to being able to train deep learning models with
a small amount of labelled data and a large amount of unlabelled
data. SSL is explored as a possible tool to rapidly adapt a model
trained on an experimental campaign A of Tokamak WEST to
a new experimental campaign B by using labelled data from
campaign A, a little labelled data from campaign B and a lot
of unlabelled data from campaign B. Model performances are
evaluated on two labelled datasets and two methods including
semi-supervised learning. Semi-supervised learning increased the
mAP metric by over six percentage points on the first smaller
scale database and over four percentage points on the second
larger scale dataset depending on the employed method.

Index Terms—Fusion reactors protection, infrared thermogra-
phy, semi-supervised learning, domain adaptation, object detec-
tion

I. INTRODUCTION

THE search for abundant, cheap, low-carbon energy is
driving research into nuclear fusion. This reaction, in

which two atomic nuclei assemble to form a heavier nucleus
while releasing a large amount of energy, is naturally at
work in the sun and can be carried out on Earth within
Tokamaks [1]–[4]. Such devices confine a plasma in a limited
volume at very high temperatures thanks to powerful magnetic
fields.

However, some particles escape inevitably from confine-
ment and reach the Plasma Facing Components (PFC), leading
to intense though localised heating. Hot spots appear on
the first wall, and can damage these in-vessel components
when exceeding armour material allowables. Among numerous
sensors to monitor the first wall, infrared (IR) viewing systems
provide the most relevant information about the surface tem-
perature of the inner walls of Tokamaks.
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Figure 1. Annotation examples of several types of hot spots on the wide-
angle line of sight of the Tokamak WEST [4]

The resulting live image feeds are used for real-time feed-
back control during operation, and also for science after the
experiments. In that last case, the experts aim at localizing and
characterizing the different types of hot spots that occur during
machine operation. This task requires long and tedious work
by high level experts of plasma physics who would benefit
from automation through computer vision approaches. First
attempts in this direction were based on simple thresholding
and clustering [5]. More recent approaches rely on large neural
networks learned from visual data [6], [7], such as Faster
R-CNN [8]. The results are much more informative, they
nevertheless still require tedious manual work to annotate the
IR video films (Figure 1).

This article proposes an automated process that detects and
classifies thermal events on the internal wall of Tokamaks that
requires a significant lesser amount of manual work while
maintaining efficiency. The large amount of unlabelled data
produced by the IR cameras is taken advantage of, in the vein
of the semi-supervised principles [9]. While still requiring a
limited quantity of manual annotations, this approach reduces
their amount by one to two orders of magnitude, with a
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controlled and limited drop in performances.
The study also shows a phenomenon that was previously

unidentified. From an experimental campaign to the following
one, small changes in the Tokamak’s configuration make
the images different without being clearly visible to human
experts. However, although difficult to see ”humanly”, these
changes cause a collapse of the performances with a super-
vised approach, learned during an acquisition campaign and
applied as is to a subsequent campaign. The method proposed
here overcomes this issue with a minimal manual annotation
effort on a novel campaign, and adapts the model to the
(humanly imperceptible) new visual domain.

In the following, Section II presents the data handled in the
study, that result from two different acquisition campaigns.
The method based on semi-supervised learning is described
in III. Several experimental results are reported in Section
IV, showing the interest of the semi-supervised approaches
with regards to the compromise between manual annotation
effort and detection performances on the one hand, and the
ability to adapt to a new domain resulting from a new
acquisition campaign on the other hand. Last, the main results
are presented, including potential limitations to the method
and possible future works in Section V.

II. WEST’S LABELLED IMAGE DATASETS

The work of this article is based on images from the infrared
cameras of Tokamak WEST [4]. The monitoring of WEST’s
PFC and more generally its first wall is provided by a total
of 12 infrared viewing systems [10]. These viewing systems
are used for science and real-time feedback control during
operation [11]. Each one is installed at different locations to
capture multiple fields of view. The images for this study come
from the wide-angle (WA) line of sight of WEST. They are
illustrated on Figure 1. The WA line of sight provides an
overall view of the Tokamak and thus has a key role for the
protection of the machine. Moreover, this view has the largest
variety of hot spots, while other views may contain only a
restricted number of the types of hot spots further considered.

A WEST fusion experiment typically lasts between 30 and
60 seconds, during which each camera produces a video
film. Acquisition campaigns are organized on a regular basis
separated by several months to maintain the Tokamak. The
images resulting from the videos are of size 512× 640px and
encoded over 16 bits.

The hot spots are labelled according to seven classes for the
purpose of this work, while a full system would have many
more classes. Each label consists of four integers correspond-
ing to the surrounding box of the spot, and one to the class
that characterizes its type. The six first classes correspond to
well defined wall events and the seventh is the catchall class,
that is appropriate when the exact definition of the hot spot is
undefined. In practice, with progresses in plasma fusion with
regard to the identification of these hot spots, new classes can
be defined in the future and include a part of the annotations
in this catchall class. The different types of labelled hot spots,
illustrated in Figure 2, are the following:

Table I
THE DIFFERENT HOT SPOT CLASSES IN THE LABELLED DATASETS

Class Class Number of labels per class
number names D1 D2

1 electron type 1 2 103 0
2 inboard strike point 13 078 26 132
3 outboard strike point 19 569 32 434
4 reflection 856 724
5 radiated heat flux 631 0
6 UFO 30 149
7 hot spot 61 237 119 751

Figure 2. Examples of different hot spot annotations (from left to right:
outboard strike point, hot spot, inboard strike point, reflection, radiated heat
flux)

• ‘electron type 1’: a hot spot that appears on the lateral
protections of antennas. Its appearance is correlated with
the power injected by the antenna.

• ‘inboard strike point’: a strike line located on the inboard
part of the divertor.

• ‘outboard strike point’: a strike line located on the out-
board part of the divertor.

• ‘reflection’: the photonic reflection of a thermal event on
the metallic wall of the vessel.

• ‘radiated heat flux’: a hot component, such as a Langmuir
probe, heated by plasma radiation.

• ‘UFO’: a hot particle or speck of dust that moves from
frame to frame.

• ‘hot spot’: a catchall class for events that do not belong
to any of the other categories

Image labelling is performed with a user-friendly anno-
tation tool detailed in [6]. This tool assists experts during
the annotation task, allowing to reduce annotation time and
inconsistencies between annotators. Labelling one IR film
takes between 20 and 30 minutes. Hence, labelling the whole
dataset with these tools manually would take over three years
as the database contains more than 13 000 films.

Even by taking multiple precautions, the process of annota-
tion is known to be subject to multiple potential biases [12].
The main potential subject for hot spot labelling is the label
bias due to the fact that “different annotators may assign
different labels to the same type of [hot spot]” [13]. Since the
knowledge in plasma fusion progresses with time, even the
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Figure 3. Image from campaign A (left) during an experiment with similar
experimental conditions as the image for campaign B (right)

same experts can make subtle changes in their assessments to
categorize hot spots, between two annotation sessions several
months apart. Two annotation sessions were organised to
study such potential biases. D1 is made of eight video films
annotated in September 2021, corresponding to 12 156 images.
D2 was annotated by the same expert in August 2022, on 21
other video films, corresponding to 18 336 images. A unique
expert annotated both D1 and D2 to mitigate the risk of inter-
annotator variation.

WEST’s experimental campaigns last over several months.
Hundreds of experiments are conducted during these exper-
imental campaigns for the development of multiple plasma
scenarios. WEST goes through many different plasma config-
urations during these campaigns and evolves from one cam-
paign to another (adding new components, new diagnostics...).
Such changes make the images acquired by the IR cameras
quite different from one campaign to another, as illustrated in
Figure 3. Such changes may not be detected by human experts
but have a significant impact on the low-level statistics of the
images and, as a result, on the performances of the automatic
vision systems. Each labelled dataset was made from video
films acquired during two different acquisition campaigns to
be able to study this effect, namely the campaign A which took
place between July and November 2019, and the campaign B
which was a shorter campaign between November 2020 and
January 2021.

Each of the two annotated datasets are divided into a train
and a test set. The splits are made at the video film level
to avoid data leakage. If a detector were trained with images
from a given video film, it would be much easier to recognize
hot spots from images of the same video film (even if they are
not seen during training), due to the strong temporal coherency
within each video film. Table II gives the number of images in
the training and test sets, for both datasets D1 and D2. Each
subset is referred by the notation Xα

β , where X ∈ {A,B} is
the acquisition campaign, α ∈ {1, 2} refers to the annotation
session and β ∈ {train, test} is the split in the following.
X̄ denotes the complement of X with respect to the set of
labelled data from the campaign X . The considered subsets
of X contain images that are equally distributed between the
video films.

III. PROPOSED APPROACH

Detecting and classifying hot spots on the internal wall of
Tokamaks is processed here as an object detection problem.
Given an input image, an object detection model predicts a
collection of bounding boxes that localise and classify the
identified hot spots in the image. Each bounding box consists
of 5 predictions: (x, y, w, h) and the confidence for the class
label. The (x, y) coordinates represent the upper-left corner of
the box, w its width and h its height.

Recent works proposed to estimate such a model with
supervised learning [6], [14]. It relies on a large labelled
dataset Lsup

train and minimises a loss, which the exact form
depends on the outputs design of the model. Grelier et al.
trained a Faster R-CNN [8]. The same base model is selected
in the following for fair comparison. In that case, the loss is
the sum of log losses for classification and smooth L1 losses
for regression. The regression allows to estimate the t-uplet
(x, y, w, h) for each bounding box, while the classification
loss results in an estimation of the confidence over the class
label. The final loss Lsup is a weighted sum of all these losses,
that is minimized with stochastic gradient descent (SGD).

A. Semi-supervised learning to detect hot spots

The main limit of the supervised approach is that it requires
a large dataset Lsup

train, that is tedious to manually annotate.
The Semi-Supervised Learning (SSL) paradigm is adopted
as it needs a much smaller labelled training set Ltrain but
takes advantage of a large unlabelled training set Utrain that
is obtained at marginal cost during each acquisition campaign
of plasma fusion within the Tokamak. The general process of
SSL on infrared images encompasses two steps:
1.) Step 1: (burn-in phase) Train the model on annotated

images belonging to Ltrain.
2.) Step 2: Apply the model to the images of Utrain to

estimate a pseudo-label for each of them. Then train the
model with both the labelled images from Ltrain and the
pseudo labelled images from Utrain.

Since the size of Ltrain is typically 1% of that of Lsup
train, it

reduces significantly the manual effort of annotation required.
On the other hand, the size of Utrain is of the same order
as that of Lsup

train but since the pseudo-labels are obtained
automatically, it does not require manual effort.

In the vein of the recent literature in SSL for object detec-
tion [15]–[17] this work relies on a student-master architecture
that comprises two branches. The master model receives the
input of unlabelled images weakly augmented and annotates
them with pseudo labels. On the other branch, the input
images are strongly augmented and the student model uses
these images and the estimated pseudo labels to train the
hot spot detector itself. During training, the student model is
trained by minimizing the weighted sum of a supervised loss
Lsup estimated with labelled images and an unsupervised loss
Lunsup that results from unlabelled images only. In practice,
L = Lsup + λLunsup, where λ is a hyperparameter that is 0
during the burn-in phase and is non-null during Step 2. The
master model is an exponential mean average (EMA) [18]
of the student model. Its parameters θmaster are updated
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Table II
COMPOSITION OF THE LABELLED DATASETS CONSIDERED IN THIS STUDY

D1 D2

Train Test Train Test
Nb. films from A 2 1 8 1
Nb. films from B 3 2 9 3

Nb. images (100%) 7 879 4 277 15 130 3 206
Notation A1

train +B1
train A1

test +B1
test A2

train +B2
train A2

test +B2
test

according to θmaster ← αθmaster + (1 − α)θstudent at each
iteration, where α is a hyperparameter slightly less than one.

Applying data augmentations to input images is a well-
known efficient strategy in SSL [19]. They enable a diver-
sification particularly of the unlabelled data so that the master
model does not fall into the trap of always predicting the same
boxes at each iteration. Different augmentations are applied
depending on the set from which the data is from.

• Weak augmentations are applied to unlabelled images
that are given as input to the master model. Weak
augmentations include resizing the image or flipping it
in relation to the vertical axis that separates the image in
half.

• Supervised augmentations are applied to the labelled
images given as input to the student model. Supervised
augmentations add to weak augmentations, one extra
augmentation that is picked from a list of augmentations
with RandAugment [20]. The image can be for instance
sharpened, equalised, brightened, contrasted or even not
augmented at all.

• Strong augmentations are applied to the unlabelled im-
ages given as input to the student model. Strong augmen-
tations add to the already applied supervised augmenta-
tions transformations like translations, shearing, rotating
or erasing parts of the image by Cutout [21].

A choice was made on which augmentations could be
applied to WEST’s infrared images because the pixel values
in the IR images have a physical interpretation, namely the
surface temperature measurements. All augmentations listed in
[17] that strongly affect the pixel values are thus not applied.
This includes augmentations that equalise the image, solarise
it or mixes the colour channels. The weak augmentations
are unchanged. They are the same augmentations used when
training a supervised model at step 1. The kept supervised
augmentations comprise of augmentations that contrast the
images, brighten or sharpen them. Strong augmentations are
linked to more physical augmentations. The preserved aug-
mentations consist in translating, shearing and erase part of
the images at each iteration.

B. Adaptation to a novel acquisition campaign

As mentioned above, there may be a difference between
images generated by IR cameras for subsequent acquisition
campaigns. These differences are either imperceptible to the
human eye, or blinded by the human brain which tends to
correct the images unconsciously. Differences can be due to
the installation of new components, or various plasma config-
urations which affect the location of the power deposition.

An explanation on how the images are collected from two
such campaigns, namely A and B is in Section II. As shown
experimentally in Section IV-B, when a detection/classification
model is trained with data from campaign A, its performances
drop dramatically when applied directly on data of campaign
B. For a new campaign, the parameters θA previously learnt
need to be adapted to new parameters θB that provide accept-
able performances. Such an issue can be seen as a domain
adaptation problem [22] that can be addressed with transfer
learning approaches such as using universal backbones [23],
[24].

Fine-tuning is a common method that enables the quick
adaptation of model weights. Hence, one can therefore adjust
a model’s weights when trained on campaign A with images
from campaign B to quickly gain good performances on a test
set containing exclusively images from campaign B. However,
it still requires a significant amount of labelled data to avoid
overfitting and reach the performances of a model that would
be learnt from scratch on images from both A and B.

This article claims that an approach based on SSL is more
efficient than fine-tuning for a given budget of labelled images.
The two following scenarios are considered in the following:

• method 1: the initial burn-in is performed from scratch
with a small amount of labelled images, either from
campaign A or B. Then, Step 2 is performed with these
images and unlabelled images from B only.

• method 2: the initial burn-in is performed from scratch
with a small amount of labelled images from campaign
A then fine-tuned with images from B. Then Step 2 is
performed similarly to method 1, with these images and
unlabelled images from B only.

Method 1 reflects an approach that requires to retrain the
model at each new campaign, with a small amount of labelled
data. Method 2 is closer to an ideal realistic use case for
WEST’s operating team, in which the model learnt previously
in campaign A is directly adapted to campaign B without
training from scratch.

C. Implementation details

The implementation of the model in this work is built upon
the code of SoftTeacher [17], that itself relies on MMDe-
tection [25]. The (student) detection model is a Faster R-
CNN with a ResNet-50 [26] backbone. The setup of the
hyperparameters results either from the values proposed by
[17] or thanks to the grid search conducted on a 2/3 / 1/3 split
of the training dataset of D1. Hence, the relative weight λ of
the unsupervised loss is fixed at 4.0 during Step 2. Table III
exposes the other main hyperparameters used to train both
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Table III
MAIN HYPERPARAMETERS ADOPTED TO TRAIN FASTER R-CNN AND

SOFTTEACHER MODELS

Supervised training SSL training
(burn-in)

Learning rate 5× 10−3 5× 10−4

Batch size 16 20
Total iterations 80 000

Scheduler 40 000 and 53 333 iterations
Weight Decay 0.0001

Momentum 0.9
EMA update α 0.999

the supervised models and the semi-supervised models. The
models are trained on 4 NVIDIA Tesla V100 16 GB GPU.

The supervised models of the burn-in stage are trained on a
number of images from campaign A equivalent to 1% of the
fully labelled dataset and a number of images from campaign
B corresponding to 0.5% of the labelled dataset. Models are
often trained on 10%, 5% and 1% of labelled data in literature
[15], [16], usually on the RGB images of MSCOCO [27]. The
decision to train models on 1% relies on the fact that it is the
hardest case because the least amount of data is dealt with
during training but also it is the most realistic use case for
WEST, as a lot of unlabelled data is at disposal.

It is chosen to use a number of images that can be equally
distributed amongst the labelled video films during training.
The same number of images are extracted from each labelled
film to have a well defined representation of each film in the
training set. In dataset D1, for an experiment involving training
on a number of images equivalent to 1% of the dataset, 96
labelled images are exploited. The larger dataset D2 handles
144 labelled images when supervised models are trained on a
number of images comparable to 1% of D2. The number of
images taken for D1 corresponds in reality to 1.02% and the
number of images for D2 coincides with 0.95%.

IV. EXPERIMENTAL RESULTS ON WEST’S DATASETS

A. Evaluation metric

The mean Average Precision (mAP) is used to measure
the performances on the infrared images. It is a reference
metric in object detection that both reflects the localisation and
classification ability of the model. The mAP values reported
for SSL experiments in the following are always those of
the student model. The mAP implementation is the same
as the one adopted for the COCO challenges, usually noted
mAP0.5:0.95, that is the mAP averaged over an “intersection
over union” (IoU) between the detected hot spot and the
ground truth at 0.5, 0.55, 0.6 . . . , 0.95. Following [28], the
mAP is only computed for boxes with a confidence higher
than 10−3.

B. Inter-campaigns and Annotations Domain Shift

Section II explains that the datasets have been made to study
the transfer of a model learned on the data of campaign A to
the test data of a campaign B. Firstly, a series of experiments

Table IV
mAP FOR DIFFERENT CAMPAIGNS AND DATASETS

Initial training
Experiment Number

set
Test

mAP
number of images set

(a) 5 575 A1
train A1

test 0.381
(b) 5 575 A1

train B1
test 0.030

(c) 2 304 B1
train A1

test 0.037
(d) 2 304 B1

train B1
test 0.435

(e) 7 879
A1

train A1
test 0.434

+B1
train +B1

test

(f) 7 879
A1

train A2
test 0.087

+B1
train +B2

test

(g) 15 130
A2

train A2
test 0.385

+B2
train +B2

test

(h) 15 130
A2

train A1
test 0.168

+B2
train +B1

test

(j) 4 606 B2
train A2

test 0.030
(k) 4 606 B2

train B2
test 0.330

(l) 10 524 A2
train A2

test 0.396
(m) 10 524 A2

train B2
test 0.017

in a fully labelled setting are conducted. The reporting of the
results is in Table IV.

The results are quite good (lines (a), (d) and (e) of Table IV)
when the model is trained and tested on data from the same
campaign (and annotated homogeneously in D1: see below).
The results on B1 are better than on A1 but the inclusion of
data from B boosts performances. This may be due to a larger
training dataset or more relevant images in B1. However, the
performances drop dramatically to near zero (lines (b) and
(c)) when the training and test data are from different cam-
paigns. These experiments show that the changes in plasma
configurations from one campaign to another produces subtle
changes on the low-level statistics of the images that are not
visible to experts (see Figure 3) but have a significant impact
on performances, comparable to that of a domain shift.

The datasets enable the study of the influence of a potential
light change in the annotation process. Indeed, while both
datasets D1 and D2 contain data from campaigns A and B, D2

is annotated almost one year after D1. Even if the annotators
are the same, the criterion to classify the hot spots by experts
changed slightly, introducing minor differences between the
two. Good performances are still attained when the training
and test data is homogeneous (line (g), (k) and (l)) but a
significant drop is noted when the training set and the test
one come from different annotation sessions (lines (f) and (h)).
The fact that the model learned on D2 has better performances
than that trained on D1 shows that later data encapsulates more
earlier ones. The domain shift identified in D1 is nevertheless
still present in D2 (lines (j) to (m)).

The change in model performances between datasets and
campaigns demonstrates that there is a need to quickly adjust
model weights and protect Tokamak WEST when faced with
a new experimental campaign. The following subsections
explicit how semi-supervised learning can address this need.
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C. SSL Gets Near Supervised Performances at Lower Cost

This section compares the approach based on semi-
supervised learning (SSL) and the classical supervised set-
ting [6], [14]. Experiments are conducted both on D1 and D2.
The results are reported in resp. Table V and Table VI) with
the same experiments for both datasets, numbered from (i) to
(vii).

The better possible performances are achieved with the
Faster R-CNN model in a supervised setting with a ResNet-
50 backbone, when the model is trained with all data (from
campaigns A and B). These performances vary from 0.32 to
0.477 (line (i) in both tables) depending on the test dataset.
The performances logically decrease between 0.267 and 0.435
when only a part of the training data is used (line (ii) to (iv)),
depending on the exact settings either at training or testing.

The performances drop with regard to the best fully su-
pervised model with the proposed approach based on SSL
(line (vi) of both Tables). The drop is at most 4.2 mAP
percentage points on D1 with 7879

96+48 = 54 times less data and
6.1 percentage points on D2 with 15130

144+72 = 70 times less data.
If one uses the same number of annotated data (line (iii) versus
(vi)) the SSL approach surpasses the supervised approach. On
D1, the SSL approach even surpasses the model trained on all
the data from B1

train (0.456 vs 0.435) when both are tested on
B1

test ((line (vi) versus (ii)), although it gets lower ones (0.303
vs 0.33) on D2.

Semi-supervised learning is therefore a way to get near fully
supervised performances at a much smaller labelling cost.

D. Semi-Supervised Better Adapts than Fine-Tuning

The SSL approach is compared to the classical fine-tuning
as a method to adapt the model to a novel campaign. On line
(v) of Table V and Table VI, a model is first trained during
80 000 iterations with 1% of data from campaign A, then fine
tuned during 10 000 iterations with 0.5% data from campaign
B. Fine tuning allows the expected adaptation, since the
performance on Btest are no longer almost null (line (v) versus
(iv)). There is an expected decrease of performances on Atest

as fine-tuning specialises the model’s parameters to the new
campaign B (line (v)). Fine tuning remains however inferior
to the model trained with the same amount of annotated data
from A and B (line (iii) versus (v)).

For both datasets, the same amount of labelled data is
handled but additive unlabeled data is used for the SSL model
trainings. The SSL approach surpasses fine-tuning by 3 to 10
percentage points (line (vi) versus (v)). With a small amount
of labelled data (representing less than 2% of all available
data), SSL even surpasses the supervised approach on the later
campaign Btest (line (vi) versus (iii)), in accordance with the
results of the previous section. A study including an increased
number of annotated images used for fine tuning to a factor
×2/ × 5/ × 10 the number of annotated data used with SSL
is carried out. The results are reported in Figure 4. The fine-
tuning on D2 requires 4 times more labelled data to reach the
same performances as SSL, while on D1, the performances
of fine-tuning are still significantly below, even with 10 times
more annotated data.

Figure 4. Performances of fine-tuning w.r.t the number of annotated data
used in D1 (blue) and D2 (green). The performances of SSL are given for a
unique number of annotated data (cyan/yellow point)

These experiments on D1 and D2 show that it is in the toka-
mak operating team’s best interest to apply semi-supervised
learning rather than fine-tuning. However in practice, the SSL
approach includes a burn-in stage that consists in 80 000
iterations with data from both campaigns, while the fine-tuning
approach can directly use the model already available from a
previous campaign and compute the adaptation during only 10
000 iterations.

E. Semi-supervised learning enables rapid campaign adapta-
tion

The combination of fine-tuning with SSL during the second
step of learning (method 2 in Section III) is applied to address
the limits of the previous section. It consists in starting from a
model available from a previous campaign (campaign A), fine-
tuning it on the novel campaign (campaign B) then continue
to learn with unlabelled data from the novel campaign. Note
that the step of fine-tuning is required since the model from
the previous campaign is not reliable enough to create good
pseudo-labels. The results of this approach is reported on line
(vii) of Table V and Table VI.

The performances are better (on D1) or on-par (on D2)
with a supervised approach with the same amount of labelled
data (line (iii)) but do not need to retrain the model from
scratch. In comparison to the SSL approach only (method 1,
line (vi)) the results are globally equivalent, depending on the
considered test set. As a consequence, this second version of
the approach that relies on SSL still surpasses the fine-tuning
only approach (line (v)).

Applying semi-supervised learning is therefore a labelling
cost effective way to adapt a model trained on a certain
experimental campaign to a new one and rapidly get good
detection performances on images from the new campaign.
The pairing of fine-tuning and semi-supervised learning even
achieves the best mAP value after an experiment including
semi-supervised learning on D2, the larger and more realistic
dataset.
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Table V
EXPERIMENTAL RESULTS ON D1

Initial training Fine-tuning Semi-supervised learning
Experiment Number

Set
Number

Set
Number Unlabelled Test

mAP
number of images of images of images set set

(i) 7 879
A1

train

– – – –
A1

test 0.397
+B1

train B1
test 0.477

both 0.434
(ii) 2 304 B1

train – – – – B1
test 0.435

(iii) 96/48
A1

train/ – – – –
A1

test 0.282
B1

train B1
test 0.415

(iv) 96 A1
train – – – –

A1
test 0.267

B1
test 0.020

(v) 96 A1
train 48 B1

train – –
A1

test 0.202
B1

test 0.351

(vi) 96/48
A1

train/ – – 2 256 B̄1
train

A1
test 0.357

B1
train B1

test 0.456

(vii) 96 A1
train 48 B1

train 2 256 B̄1
train

A1
test 0.355

B1
test 0.416

Table VI
EXPERIMENTAL RESULTS ON D2

Initial training Fine-tuning Semi-supervised learning
Experiment Number

Set
Number

Set
Number Unlabelled Test

mAP
number of images of images of images set set

(i) 15 130
A2

train

– – – –
A2

test 0.425
+B2

train B2
test 0.320

both 0.385
(ii) 4 606 B2

train – – – – B2
test 0.330

(iii) 144/72
A2

train/ – – – –
A2

test 0.389
B2

train B2
test 0.291

(iv) 144 A2
train – – – –

A2
test 0.374

B2
test 0.015

(v) 144 A2
train 72 B2

train – –
A2

test 0.12
B2

test 0.272

(vi) 144/72
A2

train/ – – 4 534 B̄2
train

A2
test 0.388

B2
train B2

test 0.302

(vii) 144 A2
train 72 B2

train 4 534 B̄2
train

A2
test 0.372

B2
test 0.317

V. CONCLUSION AND PERSPECTIVES

This article explores the application of semi-supervised
learning to infrared cameras used to monitor the inside of fu-
sion reactors during experimental campaigns. Semi-supervised
learning can help quickly adapt a model trained on a certain
acquisition campaign to a new one with a lesser data labelling
cost. This work also establishes that semi-supervised learning
outperforms fine-tuning when faced with a new campaign,
and that semi-supervised learning can achieve near fully
supervised performances but with extensively less annotations.
A little over six mAP percentage points separate at most
the performances of the trained semi-supervised model with
the performances of the model trained on all data on the
labelled datasets of Tokamak WEST but these performances
are accomplished with up to 70 times less annotations.

Semi-supervised learning is therefore an attractive tool for
future scientific experimental campaigns. This article focused

on the wide-angle viewing line of sight of the WEST Toka-
mak. Experiments including semi-supervised learning could
be carried out on other lines of sight available among the 12
cameras installed on WEST as a continuation of this work.
Other possibilities include adapting a model trained on an
experimental campaign of WEST to other fusion devices or in
the near future the International Thermonuclear Experimental
Reactor (ITER) [2].
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The data that supports the findings of this study are available
from the corresponding author upon reasonable request, ac-
cording to the CEA general datasharing framework, or through
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