
HAL Id: cea-04094208
https://cea.hal.science/cea-04094208

Submitted on 10 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Accelerating exp-log based finite field multiplication
Nicolas Belleville

To cite this version:
Nicolas Belleville. Accelerating exp-log based finite field multiplication. Cryptology ePrint Archive,
2023, 2023, pp.375. �cea-04094208�

https://cea.hal.science/cea-04094208
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Accelerating exp-log based finite field

multiplication

Nicolas Belleville
nicolas.belleville@cea.fr

Univ. Grenoble Alpes, CEA, List, F-38000 Grenoble, France

Abstract

Finite field multiplication is widely used for masking countermeasures
against side-channel attacks. The execution time of finite field multipli-
cation implementation is critical as it greatly impacts the overhead of the
countermeasure. In this context, the use of exp-log tables is popular for
the implementation of finite field multiplication. Yet, its performance is
affected by the need for particular code to handle the case where one of
the operands equals zero, as log is undefined for zero. As noticed by two
recent papers, the zero case can be managed without any extra code by
extending the exp table and setting log[0] to a large-enough value. The
multiplication of a and b then becomes as simple as: exp[log[a] + log[b]].
In this paper, we compare this approach with other implementations of
finite field multiplication and show that it provides a good trade-off be-
tween memory use and execution time.

1 Introduction

Side-channel attacks represent a major threat for the security of embedded
systems [MOP07]. In particular, they are particularly effective for finding secret
keys of block ciphers, such as AES.

The masking countermeasures can provide a strong protection against these
attacks [GP99]. The general principle is to split the secret data into several
variables, called shares, in a way that any strict subset of the shares do not
provide information about the secret data. In other words, masking forces an
attacker to learn information about all the shares in order to get information
about the secret data.

The masking countermeasures require modifying how computations are per-
formed. Indeed, instead of manipulating the secrets directly, one needs to use
the shares instead. All the complexity relies on the requirement to avoid re-
vealing any information about the secret during intermediate computations.
Depending on the masking scheme used and the computation to perform, this
code transformation may be complex, and the resulting overhead can be high.

In this context, finite field multiplication implementation can be critical.
Indeed, finite field multiplication is a key operation for various masking types:

• Affine masking [FMPR11] and inner-product masking [BFG15] involve
finite field multiplications for masking the secret data.

1

• Boolean masking can involve many finite field multiplications when mask-
ing SBoxes. Multiplications can be used to compute finite field powers,
like x254 for AES SBox that involves 4 multiplications of masked vari-
ables. It can also be used to compute a polynomial that interpolates a
given SBox in a finite field [CRV14].

In addition, in the case of boolean masking, each secure multiplication on
masked variables involves 4 finite field multiplications at first order, i.e. when
only the secret is decomposed into 2 shares [RP10]. When increasing the num-
ber of shares, the number of finite field multiplication required to performed one
multiplication on masked data gets higher and higher.

As such, the number of finite field multiplications required can grow quickly
and represent a big part of the overhead of the countermeasure, and there is a
strong need for fast constant-time finite field multiplication algorithms.

In [GR17], the authors do an overview of the different methods to imple-
ment the finite field multiplication. Among these methods, the exp-log method
provides a nice trade-off between execution time and memory consumption.
However, its main issue is that it requires particular code to handle the case
where one of the operand equals zero, as log is undefined for zero. Until recently,
no approach had emerged to implement finite field multiplication with exp-log
tables without such particular code for zero.

In this paper, we present an approach that solves this problem. This ap-
proach was independently discovered and presented in both [BCH+20] and
[CdSGGS22].

We start by recalling the exp-log method in section 2.1. Then, we remind
the well-known optimization of the modulo in section 2.2. We explain the tech-
nique that avoids any extra code to handle the case where one of the operands
equals zero in section 2.3. We compare extensively the exp-log method with this
optimization to the other methods for implementing finite field multiplication
that were detailed in [GR17], showing the impact on memory (section 3.2), and
execution time (section 3.3).

2 Exp-log multiplication and its optimization

2.1 Näıve implementation

The exp-log method is based on the use of a generator element e of the multi-
plicative group F∗

2n . We have: ∀x ∈ F∗
2n ,∃k, x = ek. The number k is called

the log of x. We can use this generator element to multiply 2 numbers in F∗
2n .

Let log t be a 2n entry table that contains the logs in base e of all 2n − 1
non-zero values (log t[0] is usually set to 0), and exp t a 2n−1 entries table that
contains e raised to the power of all values in J0, 2n−2K. Then the multiplication
of two non-zero elements a and b is given by1:

a.b = exp t[(log t[a] + log t[b])%(2n − 1)]

Some code is needed to handle the case where a or b equals zero. In [GR17],
the authors propose a sequence of 4 ARM instructions to create a bitmask that
equals zero if and only if one of the operands equals zero (asr32 designates

1% designates the modulo and & designates the AND operator

2

the arithmetic shift right by 32bits, that propagates the sign bit): bitmask =
asr32(−(asr32(−a)&b))

The multiplication of 2 numbers of F2n is given by:

a.b =asr32(−(asr32(−a)&b))

& exp t[(log t[a] + log t[b]) % (2n − 1)]

2.2 Removal of the modulo

A first optimization to make the implementation faster consists in removing the
modulo [GR17]. To achieve this goal, a wider exp t table with 2 ∗ (2n − 1)
entries is used. It is defined as follows:

∀x ≤ 2n+1 − 2, exp t[x] = ex

The multiplication of 2 numbers of F2n with this optimization is given by:

a.b = asr32(−(asr32(−a)&b))

& exp t[log t[a] + log t[b]]

2.3 Removal of the code that handles the zero case

We and Cardoso dos Santos et al. proposed an optimization to remove the
code that handles the case where one operand equals zero, at the price of a
wider exp t table [BCH+20, CdSGGS22]. Note that this optimization cannot
be deployed without the modulo optimization.

The general idea is that the sum of 2 logs is bounded by a maximum value:
setting log t[0] higher than this maximum allows to easily detect any multipli-
cation that involves a zero operand.

First, we notice that:

∀a ∈ F∗
2n , log(a) ≤ 2n − 2

We deduce that:

∀a, b ∈ F∗
2n , log(a) + log(b) ≤ 2n+1 − 4

Setting log t[0] = 2n+1 − 3, we have:

∀a, b ∈ F2n ,((log t[a] + log t[b] ≥ 2n+1 − 3)

⇔(a = 0 or b = 0))

With such a value for log t[0], we need the exp t table to be extended as
the sum of 2 logs can now be as high as 2 ∗ (2n+1 − 3) = 2n+2 − 6. The exp t

table becomes a 2n+2 − 5 entries table and is set as follows:

• ∀x, 0 ≤ x ≤ 2n+1 − 4, exp t[x] = ex

• ∀x, 2n+1 − 3 ≤ x ≤ 2n+2 − 6, exp t[x] = 0

The multiplication of 2 numbers of F2n is given by:

a.b = exp t[log t[a] + log t[b]]

Note: log t[0] can be set to other (higher) values if needed, for instance to
get a particular hamming weight, at the price of a larger exp t table.

3

Table 1: Total size of lookup tables (lut) used in various multiplication algo-
rithms. ES is the size necessary to store one element of the field, e.g. byte for
integers up to 255.

exp-log exp-log exp-log kara- half full
Method näıve w/o mod w/o zero tsuba table table

lut size 2n+1 − 1 3 ∗ 2n − 2 c ∗ 2n − 5 3 ∗ 2n 2
3n
2 +1 22n

(in ES) c = 5 or c = 6

3 Comparison to alternative table-based imple-
mentations

3.1 Alternative approaches considered

In order to evaluate the interest of the optimization, we compare in the next
sections its memory impact and number of cycles with other table-based finite
field multiplication implementation from [GR17].

We consider the following methods: (1) exp-log tables with optimizations
previously presented, (2) karatsuba, (3) half-table, (4) full table. In this section
we briefly describe the general ideas of each method. Full algorithms descrip-
tions can be found in [GR17].

The karatsuba method involves 3 lookup tables. Its main principle is to split
the multiplication into computations involving smaller numbers represented on
half as many bits. For instance, to multiply to bytes, this methods uses 4-bits
numbers. Each table access combines 2 of those numbers.

The half-table method involves 2 lookup tables. Similarly to karatsuba, it
splits the multiplication into computations involving smaller numbers repre-
sented on half as many bits. Yet, instead of combining 2 numbers, each table
access depends on 3 numbers.

The full-table method consists in fully tabulating the multiplication, for all
possible values of both operands. The multiplication is then done in one table
access.

3.2 Memory impact

In this section we compare the size of the lookup tables of considered methods,
for a finite field of 2n elements.

Table 1 presents the total memory size taken by the lookup table of the
various methods. The sizes are reported as multiples of the size taken by a
single element, i.e. as a number of bytes for n ≤ 8, as halfwords for 8 < n ≤ 16,
and as words for 16 < n ≤ 32. Our method is reported as ”exp-log w/o zero”
in the table. It has a variable overhead depending on n: c = 5 except if n is
equal to 8 or 16 or 32. In these cases, c = 6. Indeed, for these cases, we need
to change the size of the elements in the log t table due to the larger value of
log t[0].

Karatsuba and all exp-log methods including ours feature a table size in
O(2n). This is not the case for half-table and full-table: with these methods the

table size evolve in O(2
3n
2) and O(22n) respectively.

4

Table 2: Total size of lookup tables used in various multiplication algorithms,
in bytes, for various n

exp-log exp-log exp-log kara- half full
näıve w/o mod w/o zero tsuba table table

n=1 3 B 4 B 5 B 6 B 6 B 4 B
n=2 7 B 10 B 15 B 12 B 16 B 16 B
n=3 15 B 22 B 35 B 24 B 45 B 64 B
n=4 31 B 46 B 75 B 48 B 128 B 256 B
n=5 63 B 94 B 155 B 96 B 362 B 1 KB
n=6 127 B 190 B 315 B 192 B 1 KB 4 KB
n=7 255 B 382 B 635 B 384 B 3 KB 16 KB
n=8 511 B 766 B 1.5 KB 768 B 8 KB 64 KB
n=9 2 KB 3 KB 5 KB 3 KB 45 KB 512 KB
n=10 4 KB 6 KB 10 KB 6 KB 128 KB 2 MB
n=11 8 KB 12 KB 20 KB 12 KB 362 KB 8 MB
n=12 16 KB 24 KB 40 KB 24 KB 1 MB 32 MB
n=13 32 KB 48 KB 80 KB 48 KB 3 MB 128 MB
n=14 64 KB 96 KB 160 KB 96 KB 8 MB 512 MB
n=15 128 KB 192 KB 320 KB 192 KB 23 MB 2 GB
n=16 256 KB 384 KB 768 KB 384 KB 64 MB 8 GB

To make the comparison easier, the actual total size of lookup tables in bytes
are reported in Table 2 for various n. While our optimization make the lookup
table size clearly bigger than exp-log without this optimization and karatsuba
method, the memory impact remains way lower than the one of half-tables.

3.3 Instruction count and estimated number of clock cy-
cles

We compare the number of ARM assembly instructions necessary for the dif-
ferent methods, following the implementations provided by [GR17]. Figure 1
shows the assembly of exp-log method with our optimization. In order to save
a load instruction, the exp table is stored right after the load table in memory.
The address to the exp table is thus retrieved from the address of the log table,
with an addition. Note that the offset used in this addition has to be adjusted
depending on the field size, as logs may be stored as halfwords or words instead
of bytes.

The measured numbers are presented in Table 3. For each implementation,
we indicate the number of arithmetic instructions (alu), and the number of
loads (ldr). We estimate the clock cycles of each implementation by count-
ing 1 clock cycle per alu instruction and 3 clock cycles per ldr instruction,
similarly as in [GR17]. We also estimate the number of clock cycles without
initialization, i.e. the number of clock cycles the multiplication would take if
memory addresses of the various tables were already in registers. This number
makes sense when several multiplications are done in a row. Such case happens
for instance when a multiplication is done on masked data, requiring several
finite field multiplications under the hood.

Our method has an estimated number of clock cycles per multiplication that

5

log_exp_opt $a, $b, $res,
$tmp, $ptrlog, $ptrexp

;; init phase

ldr $ptrlog, =log_t

add $ptrexp, $ptrlog, #(2^n)

;; log(a) + log(b)

ldr $tmp, [$ptrlog, $a]
ldr $res, [$ptrlog, $b]
add $tmp, $res

;; res <- exp(tmp)

ldrb $res, [$ptrexp, $tmp]

Figure 1: Implementation of exp-log multiplication with our optimization

Table 3: Number of ARM assembly instruction for each method. Loads and alu
operations are separated as their performance impact is different. An estimated
number of clock cycles is computed, considering 1 clock cycle per alu instruction
and 3 clock cycles per load instruction.

exp-log exp-log exp-log kara- half full

näıve w/o mod w/o zero tsuba table table

#
l
d
r init only 1 1 1 1 1 1

w/o init 3 3 3 3 2 1

total 4 4 4 4 3 2

#
a
l
u init only 1 1 1 2 1 1

w/o init 7 5 1 7 3 1

total 8 6 2 9 4 1

cy
cl

es full 20 18 14 21 13 7

w/o init 16 14 10 16 9 4

is largely improved compared to previous exp-log methods and to the karatsuba
method. It is also very close to the estimated number of clock cycles of the half-
table method, both with and without initialization: in both cases, our method
is only one clock cycle slower than the half-table implementation. As such, our
method provides a good trade-off between impact on memory and on execution
time: while its execution time is almost on par with half-table, its memory
impact is much lower.

4 Conclusion

This short paper presents an optimization of the finite field multiplication with
exp-log tables that handles the case where an operand equals zero by expanding
the exp table and by setting a particular value for 0 in the log table. Compared
with other table-based methods to implement the finite field multiplication, this

6

optimization makes the exp-log implementation very competitive. It becomes
almost as fast as the half-table implementation while having a way lower impact
on memory, whatever the size of the finite field.

5 Acknowledgements

This work was funded as part of the SARMENTI project, which has received
funding from the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 825325, and by the French National Research
Agency in the framework of the ”Investissements d’avenir” program (ANR-10-
AIRT-05).

References

[BCH+20] Nicolas Belleville, Damien Couroussé, Karine Heydemann,
Quentin Meunier, and Inès Ben El Ouahma. Maskara: Compi-
lation of a masking countermeasure with optimized polynomial
interpolation. IEEE TCAD, 39(11):3774–3786, 2020.

[BFG15] Josep Balasch, Sebastian Faust, and Benedikt Gierlichs. Inner
product masking revisited. In EUROCRYPT, pages 486–510.
Springer Berlin Heidelberg, 2015.

[CdSGGS22] Luan Cardoso dos Santos, François Gérard, Johann Großschädl,
and Lorenzo Spignoli. Rivain-Prouff on Steroids: Faster and
Stronger Masking of the AES. In CARDIS, pages 123–145, Cham,
2022. Springer International Publishing.

[CRV14] Jean-Sébastien Coron, Arnab Roy, and Srinivas Vivek. Fast eval-
uation of polynomials over binary finite fields and application to
side-channel countermeasures. In CHES, pages 170–187. Springer,
2014.

[FMPR11] Guillaume Fumaroli, Ange Martinelli, Emmanuel Prouff, and
Matthieu Rivain. Affine Masking against Higher-Order Side Chan-
nel Analysis. In Selected Areas in Cryptography, pages 262–280,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[GP99] Louis Goubin and Jacques Patarin. DES and Differential Power
Analysis (The ”Duplication” Method). In Proceedings of the First
International Workshop on Cryptographic Hardware and Embed-
ded Systems, CHES ’99, pages 158–172, London, UK, UK, 1999.
Springer-Verlag.

[GR17] Dahmun Goudarzi and Matthieu Rivain. How fast can higher-
order masking be in software? In EUROCRYPT 2017, pages
567–597, Cham, 2017. Springer International Publishing.

[MOP07] S. Mangard, E. Oswald, and T. Popp. Power Analysis attacks:
Revealing the secrets of smart cards. Power Analysis Attacks:
Revealing the Secrets of Smart Cards. 2007. DOI: 10.1007/978-0-
387-38162-6.

7

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably Secure Higher-
Order Masking of AES. In CHES, volume 6225, pages 413–427.
Springer Berlin Heidelberg, 2010.

8

