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Accelerating exp-log based finite field multiplication

Finite field multiplication is widely used for masking countermeasures against side-channel attacks. The execution time of finite field multiplication implementation is critical as it greatly impacts the overhead of the countermeasure. In this context, the use of exp-log tables is popular for the implementation of finite field multiplication. Yet, its performance is affected by the need for particular code to handle the case where one of the operands equals zero, as log is undefined for zero. As noticed by two recent papers, the zero case can be managed without any extra code by extending the exp table and setting log[0] to a large-enough value. The multiplication of a and b then becomes as simple as:

In this paper, we compare this approach with other implementations of finite field multiplication and show that it provides a good trade-off between memory use and execution time.

Introduction

Side-channel attacks represent a major threat for the security of embedded systems [START_REF] Mangard | Power Analysis attacks: Revealing the secrets of smart cards. Power Analysis Attacks: Revealing the Secrets of Smart Cards[END_REF]. In particular, they are particularly effective for finding secret keys of block ciphers, such as AES.

The masking countermeasures can provide a strong protection against these attacks [START_REF] Goubin | DES and Differential Power Analysis (The "Duplication" Method)[END_REF]. The general principle is to split the secret data into several variables, called shares, in a way that any strict subset of the shares do not provide information about the secret data. In other words, masking forces an attacker to learn information about all the shares in order to get information about the secret data.

The masking countermeasures require modifying how computations are performed. Indeed, instead of manipulating the secrets directly, one needs to use the shares instead. All the complexity relies on the requirement to avoid revealing any information about the secret during intermediate computations. Depending on the masking scheme used and the computation to perform, this code transformation may be complex, and the resulting overhead can be high.

In this context, finite field multiplication implementation can be critical. Indeed, finite field multiplication is a key operation for various masking types:

• Affine masking [START_REF] Fumaroli | Affine Masking against Higher-Order Side Channel Analysis[END_REF] and inner-product masking [START_REF] Balasch | Inner product masking revisited[END_REF] involve finite field multiplications for masking the secret data.

• Boolean masking can involve many finite field multiplications when masking SBoxes. Multiplications can be used to compute finite field powers, like x 254 for AES SBox that involves 4 multiplications of masked variables. It can also be used to compute a polynomial that interpolates a given SBox in a finite field [START_REF] Coron | Fast evaluation of polynomials over binary finite fields and application to side-channel countermeasures[END_REF].

In addition, in the case of boolean masking, each secure multiplication on masked variables involves 4 finite field multiplications at first order, i.e. when only the secret is decomposed into 2 shares [START_REF] Rivain | Provably Secure Higher-Order Masking of AES[END_REF]. When increasing the number of shares, the number of finite field multiplication required to performed one multiplication on masked data gets higher and higher.

As such, the number of finite field multiplications required can grow quickly and represent a big part of the overhead of the countermeasure, and there is a strong need for fast constant-time finite field multiplication algorithms.

In [START_REF] Goudarzi | How fast can higherorder masking be in software?[END_REF], the authors do an overview of the different methods to implement the finite field multiplication. Among these methods, the exp-log method provides a nice trade-off between execution time and memory consumption. However, its main issue is that it requires particular code to handle the case where one of the operand equals zero, as log is undefined for zero. Until recently, no approach had emerged to implement finite field multiplication with exp-log tables without such particular code for zero.

In this paper, we present an approach that solves this problem. This approach was independently discovered and presented in both [BCH + 20] and [START_REF] Cardoso Dos Santos | Rivain-Prouff on Steroids: Faster and Stronger Masking of the AES[END_REF].

We start by recalling the exp-log method in section 2.1. Then, we remind the well-known optimization of the modulo in section 2.2. We explain the technique that avoids any extra code to handle the case where one of the operands equals zero in section 2.3. We compare extensively the exp-log method with this optimization to the other methods for implementing finite field multiplication that were detailed in [START_REF] Goudarzi | How fast can higherorder masking be in software?[END_REF], showing the impact on memory (section 3.2), and execution time (section 3.3).

Exp-log multiplication and its optimization 2.1 Naïve implementation

The exp-log method is based on the use of a generator element e of the multiplicative group F * 2 n . We have:

∀x ∈ F * 2 n , ∃k, x = e k .
The number k is called the log of x. We can use this generator element to multiply 2 numbers in F * 2 n . Let log t be a 2 n entry table that contains the logs in base e of all 2 n -1 non-zero values (log t[0] is usually set to 0), and exp t a 2 n -1 entries table that contains e raised to the power of all values in 0, 2 n -2 . Then the multiplication of two non-zero elements a and b is given by1 :

a.b = exp t[(log t[a] + log t[b])%(2 n -1)]
Some code is needed to handle the case where a or b equals zero. In [START_REF] Goudarzi | How fast can higherorder masking be in software?[END_REF], the authors propose a sequence of 4 ARM instructions to create a bitmask that equals zero if and only if one of the operands equals zero (asr 32 designates the arithmetic shift right by 32bits, that propagates the sign bit): bitmask = asr 32 (-(asr 32 (-a)&b))

The multiplication of 2 numbers of F 2 n is given by:

a.b =asr 32 (-(asr 32 (-a)&b)) & exp t[ (log t[a] + log t[b]) % (2 n -1) ]

Removal of the modulo

A first optimization to make the implementation faster consists in removing the modulo [START_REF] Goudarzi | How fast can higherorder masking be in software?[END_REF]. To achieve this goal, a wider exp t table with 2 * (2 n -1) entries is used. It is defined as follows:

∀x ≤ 2 n+1 -2, exp t[x] = e x
The multiplication of 2 numbers of F 2 n with this optimization is given by:

a.b = asr 32 (-(asr 32 (-a)&b)) & exp t[log t[a] + log t[b]]

Removal of the code that handles the zero case

We and Cardoso dos Santos et al. proposed an optimization to remove the code that handles the case where one operand equals zero, at the price of a wider exp t table [BCH + 20, CdSGGS22]. Note that this optimization cannot be deployed without the modulo optimization. The general idea is that the sum of 2 logs is bounded by a maximum value: setting log t[0] higher than this maximum allows to easily detect any multiplication that involves a zero operand.

First, we notice that:

∀a ∈ F * 2 n , log(a) ≤ 2 n -2 We deduce that: ∀a, b ∈ F * 2 n , log(a) + log(b) ≤ 2 n+1 -4 Setting log t[0] = 2 n+1 -3, we have: ∀a, b ∈ F 2 n ,((log t[a] + log t[b] ≥ 2 n+1 -3) ⇔(a = 0 or b = 0))
With such a value for log t[0], we need the exp t table to be extended as the sum of 2 logs can now be as high as 2 * (2 n+1 -3) = 2 n+2 -6. The exp t table becomes a 2 n+2 -5 entries table and is set as follows:

• ∀x, 0 ≤ x ≤ 2 n+1 -4, exp t[x] = e x • ∀x, 2 n+1 -3 ≤ x ≤ 2 n+2 -6, exp t[x] = 0
The multiplication of 2 numbers of F 2 n is given by:

a.b = exp t[log t[a] + log t[b]]
Note: log t[0] can be set to other (higher) values if needed, for instance to get a particular hamming weight, at the price of a larger exp t table. 

lut size 2 n+1 -1 3 * 2 n -2 c * 2 n -5 3 * 2 n 2 3n 2 +1 2 2n (in ES) c = 5 or c = 6
3 Comparison to alternative table-based implementations

Alternative approaches considered

In order to evaluate the interest of the optimization, we compare in the next sections its memory impact and number of cycles with other table-based finite field multiplication implementation from [START_REF] Goudarzi | How fast can higherorder masking be in software?[END_REF].

We consider the following methods: (1) exp-log tables with optimizations previously presented, (2) karatsuba, (3) half-table, (4) full table. In this section we briefly describe the general ideas of each method. Full algorithms descriptions can be found in [START_REF] Goudarzi | How fast can higherorder masking be in software?[END_REF].

The karatsuba method involves 3 lookup tables. Its main principle is to split the multiplication into computations involving smaller numbers represented on half as many bits. For instance, to multiply to bytes, this methods uses 4-bits numbers. Each table access combines 2 of those numbers.

The half-table method involves 2 lookup tables. Similarly to karatsuba, it splits the multiplication into computations involving smaller numbers represented on half as many bits. Yet, instead of combining 2 numbers, each table access depends on 3 numbers.

The full-table method consists in fully tabulating the multiplication, for all possible values of both operands. The multiplication is then done in one table access.

Memory impact

In this section we compare the size of the lookup tables of considered methods, for a finite field of 2 n elements.

Table 1 presents the total memory size taken by the lookup table of the various methods. The sizes are reported as multiples of the size taken by a single element, i.e. as a number of bytes for n ≤ 8, as halfwords for 8 < n ≤ 16, and as words for 16 < n ≤ 32. Our method is reported as "exp-log w/o zero" in the table. It has a variable overhead depending on n: c = 5 except if n is equal to 8 or 16 or 32. In these cases, c = 6. Indeed, for these cases, we need to change the size of the elements in the log t To make the comparison easier, the actual total size of lookup tables in bytes are reported in Table 2 for various n. While our optimization make the lookup table size clearly bigger than exp-log without this optimization and karatsuba method, the memory impact remains way lower than the one of half-tables.

Instruction count and estimated number of clock cycles

We compare the number of ARM assembly instructions necessary for the different methods, following the implementations provided by [START_REF] Goudarzi | How fast can higherorder masking be in software?[END_REF]. Figure 1 shows the assembly of exp-log method with our optimization. In order to save a load instruction, the exp table is stored right after the load table in memory.

The address to the exp table is thus retrieved from the address of the log table, with an addition. Note that the offset used in this addition has to be adjusted depending on the field size, as logs may be stored as halfwords or words instead of bytes.

The measured numbers are presented in Table 3. For each implementation, we indicate the number of arithmetic instructions (alu), and the number of loads (ldr). We estimate the clock cycles of each implementation by counting 1 clock cycle per alu instruction and 3 clock cycles per ldr instruction, similarly as in [START_REF] Goudarzi | How fast can higherorder masking be in software?[END_REF]. We also estimate the number of clock cycles without initialization, i.e. the number of clock cycles the multiplication would take if memory addresses of the various tables were already in registers. This number makes sense when several multiplications are done in a row. Such case happens for instance when a multiplication is done on masked data, requiring several finite field multiplications under the hood.

Our method has an estimated number of clock cycles per multiplication that is largely improved compared to previous exp-log methods and to the karatsuba method. It is also very close to the estimated number of clock cycles of the halftable method, both with and without initialization: in both cases, our method is only one clock cycle slower than the half-table implementation. As such, our method provides a good trade-off between impact on memory and on execution time: while its execution time is almost on par with half-table, its memory impact is much lower.

Conclusion

This short paper presents an optimization of the finite field multiplication with exp-log tables that handles the case where an operand equals zero by expanding the exp table and by setting a particular value for 0 in the log table. Compared with other table-based methods to implement the finite field multiplication, this optimization makes the exp-log implementation very competitive. It becomes almost as fast as the half-table implementation while having a way lower impact on memory, whatever the size of the finite field.

Figure 1 :

 1 Figure 1: Implementation of exp-log multiplication with our optimization

Table 1 :

 1 Total size of lookup tables (lut) used in various multiplication algorithms. ES is the size necessary to store one element of the field, e.g. byte for integers up to 255.

		exp-log	exp-log	exp-log	kara-	half	full
	Method	naïve w/o mod	w/o zero tsuba	table table

  table due to the larger value of log t[0]. Karatsuba and all exp-log methods including ours feature a table size in O(2 n ). This is not the case for half-table and full-table: with these methods the table size evolve in O(2

3n 2 ) and O(2 2n ) respectively.

Table 2 :

 2 Total size of lookup tables used in various multiplication algorithms,

	in bytes, for various n					
		exp-log	exp-log	exp-log	kara-	half	full
		naïve w/o mod w/o zero	tsuba	table	table
	n=1	3 B	4 B	5 B	6 B	6 B	4 B
	n=2	7 B	10 B	15 B	12 B	16 B	16 B
	n=3	15 B	22 B	35 B	24 B	45 B	64 B
	n=4	31 B	46 B	75 B	48 B	128 B	256 B
	n=5	63 B	94 B	155 B	96 B	362 B	1 KB
	n=6	127 B	190 B	315 B	192 B	1 KB	4 KB
	n=7	255 B	382 B	635 B	384 B	3 KB	16 KB
	n=8	511 B	766 B	1.5 KB	768 B	8 KB	64 KB
	n=9	2 KB	3 KB	5 KB	3 KB	45 KB	512 KB
	n=10	4 KB	6 KB	10 KB	6 KB 128 KB	2 MB
	n=11	8 KB	12 KB	20 KB	12 KB 362 KB	8 MB
	n=12	16 KB	24 KB	40 KB	24 KB	1 MB	32 MB
	n=13	32 KB	48 KB	80 KB	48 KB	3 MB 128 MB
	n=14	64 KB	96 KB	160 KB	96 KB	8 MB 512 MB
	n=15 128 KB	192 KB	320 KB 192 KB	23 MB	2 GB
	n=16 256 KB	384 KB	768 KB 384 KB	64 MB	8 GB

Table 3 :

 3 Number of ARM assembly instruction for each method. Loads and alu operations are separated as their performance impact is different. An estimated number of clock cycles is computed, considering 1 clock cycle per alu instruction and 3 clock cycles per load instruction.

			exp-log	exp-log	exp-log kara-	half	full
			naïve w/o mod w/o zero tsuba table table
	# ldr	init only w/o init total	1 3 4	1 3 4	1 3 4	1 3 4	1 2 3	1 1 2
	# alu	init only w/o init total	1 7 8	1 5 6	1 1 2	2 7 9	1 3 4	1 1 1
	cycles	full w/o init	20 16	18 14	14 10	21 16	13 9	7 4

% designates the modulo and & designates the AND operator
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