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Abstract
A statistical ensemble of neural networks can be described in terms of a quantum

field theory (NN-QFT correspondence). The infinite-width limit is mapped to a free
field theory, while finite N corrections are mapped to interactions. After reviewing the
correspondence, we will describe how to implement renormalization in this context and
discuss preliminary numerical results for translation-invariant kernels. A major outcome
is that changing the standard deviation of the neural network weight distribution
corresponds to a renormalization flow in the space of networks.
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1 Introduction
While neural networks (NN) perform extremely well on several tasks, they generally behave as
black boxes which are hard to interpret [1, 2]. This is a problem for applications where safety
can be put in jeopardy [3], but also if concrete explanations are needed, as in sciences [4–
6]. Training is another concern because it is computationally expensive and has possible
convergence issues. Indeed, the loss function is typically non-convex such that it can be
hard to find the global minimum [7, 8]. There is also no systematic hyperparameter tuning
procedure and one has to rely on random scans, possibly improved with Bayesian and bandit
methods [9–12] which results in very high financial [13] and environmental costs [14–16].
Finally, the question of knowing which functions can be expressed by a given NN remains
open [17, 18]: while universal approximation theorems guarantee existence [19–24], finding
the appropriate architecture for a new task often boils down to trials and errors. Improving
our theoretical understanding of NN is primordial for addressing these issues.

Physics provides a natural starting point for designing a theory of NN [25–27]. First,
thanks to its effective descriptions, it is not necessary to know the fundamental theory.
Second, efficient representations of statistical models have been developed (path integrals,
Feynman diagrams, statistical mechanics. . . ). Third, it allows characterizing the collective
dynamics of degrees of freedom and organizing a phenomenon by scales. Applications of
physics to machine learning include statistical physics [7, 28–34], renormalization [35–38],
and QFT [39–45].

In this paper, we will review the neural network-quantum field theory (NN-QFT) cor-
respondence developed in [41, 44] since it provides concrete and testable tools to improve
our analytical understanding of neural network building and training. This correspondence
states that, for a very general class of architectures, it is possible to associate a quantum
field theory (QFT) with a statistical ensemble of NN. We focus on a fully connected NN
with a single hidden layer and setup non-perturbative renormalization group equations (valid
for any finite width). The main result is that varying the standard deviation of the weight
distribution induces a renormalization group (RG) flow in the space of NN. Code is available
at: https://github.com/melsophos/nnqft.

2 NN-QFT correspondence
Take a fully connected neural network fθ,N : Rdin → Rdout with one hidden layer of width N :

fθ,N (x) = W1

(
g(W0x+ b0)

)
+ b1, (2.1)
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where g is the non-linear activation function, and the parameters θ = (W0, b0,W1, b1) (weights
and biases) have Gaussian distributions:

W0 ∼ N (0, σ2
W /din), W1 ∼ N (0, σ2

W /N), b0, b1 ∼ N (0, σ2
b ) . (2.2)

Consider next a statistical ensemble of neural networks, such that a given neural network
is sampled from the distribution in parameter space: fθ,N ∼ P [θ]. Then, there is a dual
description in terms of another distribution in function space, which is induced by the
parameter distribution plus the architecture: fθ,N ∼ p[f ] [41]. Changing the parameter
distribution by training corresponds to flowing in the function space.

In the large N limit (infinite width), the function distribution becomes a Gaussian process
with kernel K (as a consequence of the central limit theorem) [46]:

f ∼ N (0,K) . (2.3)

This statement generalizes to most architecture and training [47]. We denote as S0[f ] the
(Gaussian) log-probability:

S0[f ] := 1
2

∫
ddinxddinx′ f(x)Ξ(x, x′)f(x′), Ξ := K−1 , (2.4)

and as
G

(n)
0 (x1, . . . , xn) := E0[f(x1) · · · f(xn)] ≡

∫
df e−S0[f ] f(x1) · · · f(xn) (2.5)

the Gaussian expectation value (GEV) for a product of n fields f(xi). The measure df is
suitably normalized such that

∫
df exp(−S0[f ]) = 1. In physics, this setting corresponds

to a free QFT, K to the free propagator and G(n)
0 to the free n-point correlation functions

(also called Green functions). At finite N , the distribution is not a Gaussian process, and we
denote as

∆G(n) := G(n) −G(n)
0 (2.6)

the difference between the full expectation value (FEV)

G(n)(x1, . . . , xn) := E[f(x1) · · · f(xn)] ≡
∫

df e−S[f ] f(x1) · · · f(xn) (2.7)

and the GEV. The main message of the NN-QFT correspondence is that even at finite N , the
log-probability S[f ] can be designed with non-Gaussian contributions to reproduce the FEVs
with arbitrary precision up to the numerical uncertainties in the simulations. We denote as
Sint[f ] the non-Gaussian contributions in S[f ]:

S[f ] = S′0[f ] + Sint[f ], (2.8)

where S′0[f ] 6= S0[f ] is some new Gaussian action. Indeed, the 2-point FEV G(2)(x, y) is
N -independent and fixed by the NN, such that the Gaussian part must be different and such
that:

G(2)(x, y) = G
(2)
0 (x, y) ≡ K(x, y) . (2.9)

A complete dictionary between NN and QFT is given by Table 1. This formulation is
promising because correlation functions between outputs give a measure of learning; e.g., the
1-point function E[f(x)] corresponds to the average prediction for input x (which is related
to the idea of symmetry breaking in QFT [42]). Hence, having a QFT may allow performing
(semi-)analytic predictions in advance of the outcome of the learning process.

Kernels in data-space are typically bi-local [41] such that one can expect non-local
interactions. Moreover, it is not clear what are the symmetries of the inputs and outputs (in
the QFT sense) for general data. With these observations, we follow an approach which can
be called NN phenomenology: 1) make assumptions dictated by numerical evidence, 2) write
a QFT model to match observations, 3) use the model to check theoretical facts.
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QFT NN / GP
x spacetime points data-space inputs
p momentum space dual data-space
f field neural network

K(x, y) propagator Gaussian kernel
S action negative log-probability
S0 free action Gaussian log probability
Sint interactions non-Gaussian corrections

〈·〉 ≡ E[·] expectation value, Green function correlation function

Table 1: NN-QFT dictionary.

3 Constructing the QFT
The expectation values G(n) can be computed analytically using QFT tools (“theory”) or
computed from a statistical ensemble of neural networks (“measurements”). Hence, we
can make an ansatz for Sint[f ] and match the parameters by computing enough correlation
functions. The choice of this ansatz especially regarding symmetries and the way the fields
are coupled depend on the Gaussian kernel K. In this paper, we set din = dout = 1 and focus
on a translation-invariant activation function:

g(W0x+ b0) = exp(W0x+ b0)√
exp

[
2
(
σ2
b + σ2

W

din
x2
)] (3.1)

such that the Gaussian kernel is [41]:

K(x, y) := σ2
b +KW (x, y), KW (x, y) = σ2

W e−
σ2
W

2din
|x−y|2 . (3.2)

In order to compute the “experimental” Green functions for a given N , we create nbags

distinct statistical ensembles of nnets networks each [41, 44], and compute Ḡ(n)
exp as the average

of the (empirical) FEV:

G(n)
exp = 1

nnets

nnets∑
α=1

fα(x1) · · · fα(xn) , (3.3)

computed in a given bag. We furthermore define

∆G(n)
exp := Ḡ(n)

exp −G
(n)
0 , (3.4)

and the normalized deviation mn := ∆G(n)
exp/G

(n)
0 . For the numerical investigations, we con-

sider the points x(1), . . . , x(6) ∈ {−0.01,−0.006,−0.002, 0.002, 0.006, 0.01} and evaluate the
Green functions for all inequivalent combinations. Moreover, all numerical tests are performed
with σb = 1, σW = 1, nbags = 20, nnets = 30000, and N ∈ {2, 3, 4, 5, 10, 20, 50, 100, 500, 1000}.
Computations ran during one week on the internal cluster of one of our institute. Empirically,
we find that m2 ≈ 0 (the second momentum is almost independent of N) and m2n = O

( 1
N

)
for n > 1, the last result meaning that the empirical 2n-cumulant of the distribution G(2n)

c,exp
must be of order 1/Nn−1. The histogram of values for m2 and m4 are given in Figure 1.

The translation invariance of the Gaussian kernel is reminiscent of standard QFTs, where
Sint can be expanded in powers of f coupled at the same point, namely:

Sint[f ] :=
n0∑
n=2

ūn
(2n)!

∫
ddinx f(x)2n, (3.5)
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Figure 1: Normalized deviations with respect to the free theory. For m2, values centered
around 0 and independent of N . For m4, the values decrease as N increases.

for some n0 ∈ N. We can check the validity of this ansatz experimentally. Indeed, in that
expression, ūn is nothing but the magnitude of the lowest order deviation from the GEV,
and is called bare coupling. It is different from the effective coupling un which is measured by
the simulations and which includes quantum corrections; in perturbation theory (assuming
ūn small enough), and un = ūn + O(ū2

n) (schematically). At higher order, this deviation
receives many contributions which can be formally resumed. For the lowest order, the full
(normalized) deviation from the GEV u4(x1, x2, x3, x4) reads:

u4(x1, x2, x3, x4) = − ∆G(4)
exp(x1, x2, x3, x4)∫

ddinxKW (x, x1)KW (x, x2)KW (x, x3)KW (x, x4)
. (3.6)

Empirically, focusing on the truncation n0 = 3, we find that u4 is negative but almost
constant and u6 remains small but positive as required for stability. Results for different σW
and N are given below in Figure 2.

4 Renormalization group
In the previous section, we considered an effective field theory able to reproduce FEV
corresponding to a NN ensemble. The RG is a set of techniques allowing to understand the
dependency of the effective theory on a typical observation scale. The machine precision
provides an example of such an observation scale, and we could consider the dependency of
the parameters defining the QFT regarding the machine precision. In this paper, we consider
another kind of scaling, induced by the NN itself and called active RG. The motivation stems
from the observation that the propagator (3.2) in momentum space looks like the usual
Gaussian kernel in QFT at low momentum:

KW (p) = (σ2
W )1− din

2

(
din

2π

) din
2

exp
[
− din

2σ2
W

p2
]
≈ Z−1

0
Λ2 + p2 +O(p2) . (4.1)

In the QFT terminology, Λ defines the mass scale, and the large momenta p2 � Λ2 are
exponentially suppressed, blinding the physics beyond scale p2 ∼ Λ2. Hence, in the active
RG, Λ (or equivalently the standard deviation σW ) define the typical momentum scale.

Having defined the notion of scale, we are aiming to construct a smooth interpolation
between a large cut-off regime (called ultraviolet regime) and a small cut-off regime (called
infrared regime). In the large cut-off regime, fluctuations are essentially frozen and the
behavior of the network is mainly fixed by the saddle point of the log-probability S[f ]. On
the contrary, in the infrared regime, fluctuations are integrated out and look as a novel
effective physics. The Wetterich equation describes how the effective description changes
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with the observation scale and leads to:

Λ d
dΛΓ(2)

Λ (p,−p) = −1
2

∫ ddinq

(2π)din
ΛdrΛ

dΛ (q2) Γ(4)
Λ (p,−p, q,−q)G2

Λ(q2), (4.2)

where Γ(n)
Λ is the n-th derivative of ΓΛ with respect to fcl, which is defined such that:

ΓΛ[fcl] := j · fcl −WΛ[j]− 1
2 fcl · rΛ · fcl, fcl(x) := δWΛ

δj
, (4.3)

where
WΛ[j] := E[e− 1

2 f ·rΛ·f+j·f ] , (4.4)

the dot denoting the inner-product defined by integrating over the data space. Once again,
let us note that in the power field expansion of ΓΛ the weights are effective rather than bare
couplings. The regulator rΛ depends on p2 and is designed such that ΓΛ→∞ → S (large cut-off
regime) and ΓΛ→0 ≡ Γ (vanishing cut-off regime), Γ being the full effective action, i.e. the
Legendre transform of the characteristic function E[ej·f ]. The expectation value KW (p)
being fixed by the NN, although both Γ(2)

Λ (p1, p2) and rΛ(p2) δ(din)(p1 + p2) can be arbitrary
functions of the momentum p2, their sum is constrained to be Λ2 exp

(
p2

1
Λ2

)
δ(din)(p1 + p2)

for any Λ. Because ΛdrΛ
dΛ (q2) has to select only a short window of momenta in the vicinity

of the scale Λ, the smooth function Γ(4)
Λ (p,−p, q,−q) can be expanded in power of q for Λ

small enough. At zero order and using the Litim’s regulator:

rΛ(p2) := α (Λ2 − p2)θ(Λ2 − p2) , (4.5)

we predict a purely scaling behavior with respect to the standard deviation σW for the zero
momenta function Γ(4)

Λ (0, 0, 0, 0) =: u4(Λ)δ(0):

σW
du4

dσW
= (4− din)u4 =⇒ log u4 = (4− din) log σW + cst. (4.6)

This equation can be verified numerically (Figure 2). A similar equation can be derived for
u6: log u6 = (6− 2din) log σW + cst.

5 Conclusion
In this paper, we have reviewed the NN-QFT correspondence and described several checks.
Our main result is about the derivation of exact renormalization equations where the standard
deviation σW looks like a RG flow parameter, and the nice agreement between theoretical
predictions and numerical experiments.

Future directions include: increasing din, dout and N expansion, studying the large din
limit (large data), increasing number of hidden layers and extending to non-translation
invariant kernels (ReLU. . . ) using the 2PI formalism [48], and finally studying the evolution
of the QFT under training.
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Figure 2: Dependence of u4 in terms of σW , computed numerically and with the flow equation
(4.6). Parameters: σb = 0, σW ∈ {1.0, 1.5, . . . , 10, 20}, nbags = 30, nnets = 30000.
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