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Renormalization in the neural network-quantum field theory correspondence

A statistical ensemble of neural networks can be described in terms of a quantum field theory (NN-QFT correspondence). The infinite-width limit is mapped to a free field theory, while finite N corrections are mapped to interactions. After reviewing the correspondence, we will describe how to implement renormalization in this context and discuss preliminary numerical results for translation-invariant kernels. A major outcome is that changing the standard deviation of the neural network weight distribution corresponds to a renormalization flow in the space of networks.

Introduction

While neural networks (NN) perform extremely well on several tasks, they generally behave as black boxes which are hard to interpret [START_REF] Weld | The Challenge of Crafting Intelligible Intelligence[END_REF][START_REF] Zhang | A Survey on Neural Network Interpretability[END_REF]. This is a problem for applications where safety can be put in jeopardy [START_REF]Ethics Guidelines for Trustworthy AI[END_REF], but also if concrete explanations are needed, as in sciences [START_REF] Roscher | Explainable Machine Learning for Scientific Insights and Discoveries[END_REF][START_REF] Cranmer | Discovering Symbolic Models from Deep Learning with Inductive Biases[END_REF][START_REF] Raghu | A Survey of Deep Learning for Scientific Discovery[END_REF]. Training is another concern because it is computationally expensive and has possible convergence issues. Indeed, the loss function is typically non-convex such that it can be hard to find the global minimum [START_REF] Choromanska | The Loss Surfaces of Multilayer Networks[END_REF][START_REF] Li | Visualizing the Loss Landscape of Neural Nets[END_REF]. There is also no systematic hyperparameter tuning procedure and one has to rely on random scans, possibly improved with Bayesian and bandit methods [START_REF] Bergstra | Random Search for Hyper-Parameter Optimization[END_REF][START_REF] Snoek | Practical Bayesian Optimization of Machine Learning Algorithms[END_REF][START_REF] Li | Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization[END_REF][START_REF] Falkner | BOHB: Robust and Efficient Hyperparameter Optimization at Scale[END_REF] which results in very high financial [START_REF] Sharir | The Cost of Training NLP Models: A Concise Overview[END_REF] and environmental costs [START_REF] Strubell | Energy and Policy Considerations for Deep Learning in NLP[END_REF][START_REF] Lacoste | Quantifying the Carbon Emissions of Machine Learning[END_REF][START_REF] Henderson | Towards the Systematic Reporting of the Energy and Carbon Footprints of Machine Learning[END_REF]. Finally, the question of knowing which functions can be expressed by a given NN remains open [START_REF] Lu | The Expressive Power of Neural Networks: A View from the Width[END_REF][START_REF] Raghu | On the Expressive Power of Deep Neural Networks[END_REF]: while universal approximation theorems guarantee existence [START_REF] Cybenko | Approximation by Superpositions of a Sigmoidal Function[END_REF][START_REF] Hornik | Multilayer Feedforward Networks Are Universal Approximators[END_REF][START_REF] Hornik | Approximation Capabilities of Multilayer Feedforward Networks[END_REF][START_REF] Leshno | Multilayer Feedforward Networks with a Nonpolynomial Activation Function Can Approximate Any Function[END_REF][START_REF] Pinkus | Approximation Theory of the MLP Model in Neural Networks[END_REF][START_REF] Csáji | Approximation with Artificial Neural Networks[END_REF], finding the appropriate architecture for a new task often boils down to trials and errors. Improving our theoretical understanding of NN is primordial for addressing these issues.

Physics provides a natural starting point for designing a theory of NN [START_REF] Lin | Why Does Deep and Cheap Learning Work so Well?[END_REF][START_REF] Zdeborová | Understanding Deep Learning Is Also a Job for Physicists[END_REF][START_REF] Agliari | Machine Learning and Statistical Physics: Preface[END_REF]. First, thanks to its effective descriptions, it is not necessary to know the fundamental theory. Second, efficient representations of statistical models have been developed (path integrals, Feynman diagrams, statistical mechanics. . . ). Third, it allows characterizing the collective dynamics of degrees of freedom and organizing a phenomenon by scales. Applications of physics to machine learning include statistical physics [START_REF] Choromanska | The Loss Surfaces of Multilayer Networks[END_REF][START_REF] Amit | Statistical Mechanics of Neural Networks near Saturation[END_REF][START_REF] Gardner | The Space of Interactions in Neural Network Models[END_REF][START_REF] Gardner | Optimal Storage Properties of Neural Network Models[END_REF][START_REF] Krauth | Basins of Attraction in a Perceptron-like Neural Network[END_REF][START_REF] Mézard | Learning in Feedforward Layered Networks: The Tiling Algorithm[END_REF][START_REF] Saitta | Phase Transitions in Machine Learning[END_REF][START_REF] Bahri | Statistical Mechanics of Deep Learning[END_REF], renormalization [START_REF] Bény | Deep Learning and the Renormalization Group[END_REF][START_REF] Mehta | An Exact Mapping between the Variational Renormalization Group and Deep Learning[END_REF][START_REF] Bény | Inferring Relevant Features: From QFT to PCA[END_REF][START_REF] De Mello Koch | Is Deep Learning a Renormalization Group Flow?[END_REF], and QFT [START_REF] Schoenholz | A Correspondence Between Random Neural Networks and Statistical Field Theory[END_REF][START_REF] Helias | Statistical Field Theory for Neural Networks[END_REF][START_REF] Halverson | Neural Networks and Quantum Field Theory[END_REF][START_REF] Maiti | Symmetry-via-Duality: Invariant Neural Network Densities from Parameter-Space Correlators[END_REF][START_REF] Halverson | Building Quantum Field Theories Out of Neurons[END_REF][START_REF] Erbin | Nonperturbative Renormalization for the Neural Network-QFT Correspondence[END_REF][START_REF] Grosvenor | The Edge of Chaos: Quantum Field Theory and Deep Neural Networks[END_REF].

In this paper, we will review the neural network-quantum field theory (NN-QFT) correspondence developed in [START_REF] Halverson | Neural Networks and Quantum Field Theory[END_REF][START_REF] Erbin | Nonperturbative Renormalization for the Neural Network-QFT Correspondence[END_REF] since it provides concrete and testable tools to improve our analytical understanding of neural network building and training. This correspondence states that, for a very general class of architectures, it is possible to associate a quantum field theory (QFT) with a statistical ensemble of NN. We focus on a fully connected NN with a single hidden layer and setup non-perturbative renormalization group equations (valid for any finite width). The main result is that varying the standard deviation of the weight distribution induces a renormalization group (RG) flow in the space of NN. Code is available at: https://github.com/melsophos/nnqft.

NN-QFT correspondence

Take a fully connected neural network f θ,N : R din → R dout with one hidden layer of width N :

f θ,N (x) = W 1 g(W 0 x + b 0 ) + b 1 , (2.1)
where g is the non-linear activation function, and the parameters θ = (W 0 , b 0 , W 1 , b 1 ) (weights and biases) have Gaussian distributions:

W 0 ∼ N (0, σ 2 W /d in ), W 1 ∼ N (0, σ 2 W /N ), b 0 , b 1 ∼ N (0, σ 2 b ) . (2.2)
Consider next a statistical ensemble of neural networks, such that a given neural network is sampled from the distribution in parameter space: f θ,N ∼ P [θ]. Then, there is a dual description in terms of another distribution in function space, which is induced by the parameter distribution plus the architecture: f θ,N ∼ p[f ] [START_REF] Halverson | Neural Networks and Quantum Field Theory[END_REF]. Changing the parameter distribution by training corresponds to flowing in the function space.

In the large N limit (infinite width), the function distribution becomes a Gaussian process with kernel K (as a consequence of the central limit theorem) [START_REF] Neal | Bayesian Learning for Neural Networks[END_REF]:

f ∼ N (0, K) . (2.3)
This statement generalizes to most architecture and training [START_REF] Yang | Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture Are Gaussian Processes[END_REF]. We denote as S 0 [f ] the (Gaussian) log-probability:

S 0 [f ] := 1 2 d din xd din x f (x)Ξ(x, x )f (x ), Ξ := K -1 , ( 2.4) 
and as

G (n) 0 (x 1 , . . . , x n ) := E 0 [f (x 1 ) • • • f (x n )] ≡ df e -S0[f ] f (x 1 ) • • • f (x n ) (2.5)
the Gaussian expectation value (GEV) for a product of n fields f (x i ). The measure df is suitably normalized such that df exp(-S 0 [f ]) = 1. In physics, this setting corresponds to a free QFT, K to the free propagator and G

(n) 0

to the free n-point correlation functions (also called Green functions). At finite N , the distribution is not a Gaussian process, and we denote as

∆G (n) := G (n) -G (n) 0 (2.6)
the difference between the full expectation value (FEV)

G (n) (x 1 , . . . , x n ) := E[f (x 1 ) • • • f (x n )] ≡ df e -S[f ] f (x 1 ) • • • f (x n ) (2.7)
and the GEV. The main message of the NN-QFT correspondence is that even at finite N , the log-probability S[f ] can be designed with non-Gaussian contributions to reproduce the FEVs with arbitrary precision up to the numerical uncertainties in the simulations. We denote as

S int [f ] the non-Gaussian contributions in S[f ]: S[f ] = S 0 [f ] + S int [f ], (2.8) 
where y) is N -independent and fixed by the NN, such that the Gaussian part must be different and such that:

S 0 [f ] = S 0 [f ] is some new Gaussian action. Indeed, the 2-point FEV G (2) (x,
G (2) (x, y) = G (2) 0 (x, y) ≡ K(x, y) .
(2.9)

A complete dictionary between NN and QFT is given by Table 1. This formulation is promising because correlation functions between outputs give a measure of learning; e.g., the 1-point function E[f (x)] corresponds to the average prediction for input x (which is related to the idea of symmetry breaking in QFT [START_REF] Maiti | Symmetry-via-Duality: Invariant Neural Network Densities from Parameter-Space Correlators[END_REF]). Hence, having a QFT may allow performing (semi-)analytic predictions in advance of the outcome of the learning process.

Kernels in data-space are typically bi-local [START_REF] Halverson | Neural Networks and Quantum Field Theory[END_REF] such that one can expect non-local interactions. Moreover, it is not clear what are the symmetries of the inputs and outputs (in the QFT sense) for general data. With these observations, we follow an approach which can be called NN phenomenology: 1) make assumptions dictated by numerical evidence, 2) write a QFT model to match observations, 3) use the model to check theoretical facts. 

Constructing the QFT

The expectation values G (n) can be computed analytically using QFT tools ("theory") or computed from a statistical ensemble of neural networks ("measurements"). Hence, we can make an ansatz for S int [f ] and match the parameters by computing enough correlation functions. The choice of this ansatz especially regarding symmetries and the way the fields are coupled depend on the Gaussian kernel K. In this paper, we set d in = d out = 1 and focus on a translation-invariant activation function:

g(W 0 x + b 0 ) = exp(W 0 x + b 0 ) exp 2 σ 2 b + σ 2 W din x 2 (3.1) 
such that the Gaussian kernel is [START_REF] Halverson | Neural Networks and Quantum Field Theory[END_REF]:

K(x, y) := σ 2 b + K W (x, y), K W (x, y) = σ 2 W e - σ 2 W 2d in |x-y| 2 . (3.2)
In order to compute the "experimental" Green functions for a given N , we create n bags distinct statistical ensembles of n nets networks each [START_REF] Halverson | Neural Networks and Quantum Field Theory[END_REF][START_REF] Erbin | Nonperturbative Renormalization for the Neural Network-QFT Correspondence[END_REF], and compute Ḡ(n) exp as the average of the (empirical) FEV:

G (n) exp = 1 n nets nnets α=1 f α (x 1 ) • • • f α (x n ) , ( 3.3) 
computed in a given bag. We furthermore define

∆G (n) exp := Ḡ(n) exp -G (n) 0 , ( 3.4) 
and the normalized deviation

m n := ∆G (n) exp /G (n) 0 .
For the numerical investigations, we consider the points x (1) , . . . , x (6) ∈ {-0.01, -0.006, -0.002, 0.002, 0.006, 0.01} and evaluate the Green functions for all inequivalent combinations. Moreover, all numerical tests are performed with σ b = 1, σ W = 1, n bags = 20, n nets = 30000, and N ∈ {2, 3, 4, 5, 10, 20, 50, 100, 500, 1000}. Computations ran during one week on the internal cluster of one of our institute. Empirically, we find that m 2 ≈ 0 (the second momentum is almost independent of N ) and m 2n = O 1 N for n > 1, the last result meaning that the empirical 2n-cumulant of the distribution G (2n) c,exp must be of order 1/N n-1 . The histogram of values for m 2 and m 4 are given in Figure 1.

The translation invariance of the Gaussian kernel is reminiscent of standard QFTs, where S int can be expanded in powers of f coupled at the same point, namely: for some n 0 ∈ N. We can check the validity of this ansatz experimentally. Indeed, in that expression, ūn is nothing but the magnitude of the lowest order deviation from the GEV, and is called bare coupling. It is different from the effective coupling u n which is measured by the simulations and which includes quantum corrections; in perturbation theory (assuming ūn small enough), and u n = ūn + O(ū 2 n ) (schematically). At higher order, this deviation receives many contributions which can be formally resumed. For the lowest order, the full (normalized) deviation from the GEV u 4 (x 1 , x 2 , x 3 , x 4 ) reads:

S int [f ] := n0 n=2 ūn (2n)! d din x f (x) 2n , ( 3 
u 4 (x 1 , x 2 , x 3 , x 4 ) = - ∆G (4) exp (x 1 , x 2 , x 3 , x 4 ) d din x K W (x, x 1 )K W (x, x 2 )K W (x, x 3 )K W (x, x 4 ) . ( 3.6) 
Empirically, focusing on the truncation n 0 = 3, we find that u 4 is negative but almost constant and u 6 remains small but positive as required for stability. Results for different σ W and N are given below in Figure 2.

Renormalization group

In the previous section, we considered an effective field theory able to reproduce FEV corresponding to a NN ensemble. The RG is a set of techniques allowing to understand the dependency of the effective theory on a typical observation scale. The machine precision provides an example of such an observation scale, and we could consider the dependency of the parameters defining the QFT regarding the machine precision. In this paper, we consider another kind of scaling, induced by the NN itself and called active RG. The motivation stems from the observation that the propagator (3.2) in momentum space looks like the usual Gaussian kernel in QFT at low momentum:

K W (p) = (σ 2 W ) 1-d in 2 d in 2π d in 2 exp - d in 2σ 2 W p 2 ≈ Z -1 0 Λ 2 + p 2 + O(p 2 ) . ( 4.1) 
In the QFT terminology, Λ defines the mass scale, and the large momenta p 2 Λ 2 are exponentially suppressed, blinding the physics beyond scale p 2 ∼ Λ 2 . Hence, in the active RG, Λ (or equivalently the standard deviation σ W ) define the typical momentum scale.

Having defined the notion of scale, we are aiming to construct a smooth interpolation between a large cut-off regime (called ultraviolet regime) and a small cut-off regime (called infrared regime). In the large cut-off regime, fluctuations are essentially frozen and the behavior of the network is mainly fixed by the saddle point of the log-probability S[f ]. On the contrary, in the infrared regime, fluctuations are integrated out and look as a novel effective physics. The Wetterich equation describes how the effective description changes with the observation scale and leads to:

Λ d dΛ Γ (2) 
Λ (p, -p) = -

1 2 d din q (2π) din Λ dr Λ dΛ (q 2 ) Γ (4) 
Λ (p, -p, q, -q) G 2 Λ (q 2 ), (

where Γ

(n)

Λ is the n-th derivative of Γ Λ with respect to f cl , which is defined such that:

Γ Λ [f cl ] := j • f cl -W Λ [j] - 1 2 f cl • r Λ • f cl , f cl (x) := δW Λ δj , ( 4.3) 
where 

W Λ [j] := E[e -1 2 f •r Λ •f +j•f ] , ( 4 
Λ (p 1 , p 2 ) and r Λ (p 2 ) δ (din) (p 1 + p 2 ) can be arbitrary functions of the momentum p 2 , their sum is constrained to be Λ 2 exp

p 2 1 Λ 2 δ (din) (p 1 + p 2 )
for any Λ. Because Λ dr Λ dΛ (q 2 ) has to select only a short window of momenta in the vicinity of the scale Λ, the smooth function Γ

Λ (p, -p, q, -q) can be expanded in power of q for Λ small enough. At zero order and using the Litim's regulator:

r Λ (p 2 ) := α (Λ 2 -p 2 )θ(Λ 2 -p 2 ) , (4.5) 
we predict a purely scaling behavior with respect to the standard deviation σ W for the zero momenta function Γ

Λ (0, 0, 0, 0) =: u 4 (Λ)δ(0):

σ W du 4 dσ W = (4 -d in )u 4 =⇒ log u 4 = (4 -d in ) log σ W + cst. ( 4.6) 
This equation can be verified numerically (Figure 2). A similar equation can be derived for u 6 : log u 6 = (6 -2d in ) log σ W + cst.

Conclusion

In this paper, we have reviewed the NN-QFT correspondence and described several checks. Our main result is about the derivation of exact renormalization equations where the standard deviation σ W looks like a RG flow parameter, and the nice agreement between theoretical predictions and numerical experiments. Future directions include: increasing d in , d out and N expansion, studying the large d in limit (large data), increasing number of hidden layers and extending to non-translation invariant kernels (ReLU. . . ) using the 2PI formalism [START_REF] Blaizot | Functional Renormalization Group and 2PI Effective Action Formalism[END_REF], and finally studying the evolution of the QFT under training. 
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 1 Figure 1: Normalized deviations with respect to the free theory. For m 2 , values centered around 0 and independent of N . For m 4 , the values decrease as N increases.
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  = 100, log10|u4,0| = 0.349 log10|u4| = 3.09log10 W + 0.19 theory: log10|u4| = 3.00log10 W + 0.35 exp fit (c) N = 100. = 1000, log10|u4,0| = 0.828 log10|u4| = 3.08log10 W 0.83 theory: log10|u4| = 3.00log10 W 0.83 exp fit (d) N = 1000.

Figure 2 :

 2 Figure 2: Dependence of u 4 in terms of σ W , computed numerically and with the flow equation (4.6). Parameters: σ b = 0, σ W ∈ {1.0, 1.5, . . . , 10, 20}, n bags = 30, n nets = 30000.

Table 1 :

 1 NN-QFT dictionary.

		QFT	NN / GP
	x	spacetime points	data-space inputs
	p	momentum space	dual data-space
	f	field	neural network
	K(x, y)	propagator	Gaussian kernel
	S	action	negative log-probability
	S 0	free action	Gaussian log probability
	S int	interactions	non-Gaussian corrections
	• ≡ E[•] expectation value, Green function	correlation function

  .[START_REF] Roscher | Explainable Machine Learning for Scientific Insights and Discoveries[END_REF] the dot denoting the inner-product defined by integrating over the data space. Once again, let us note that in the power field expansion of Γ Λ the weights are effective rather than bare couplings. The regulator r Λ depends on p 2 and is designed such that Γ Λ→∞ → S (large cut-off regime) and Γ Λ→0 ≡ Γ (vanishing cut-off regime), Γ being the full effective action, i.e. the Legendre transform of the characteristic function E[e j•f ]. The expectation value K W (p) being fixed by the NN, although both Γ
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