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Time-averaged approach to the dewetting problem at evaporation
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Service de Physique de l’Etat Condensé, CEA Paris-Saclay, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette

Cedex, France

Abstract – Dewetting of liquid films on solid surfaces in the presence of evaporation is a common
phenomenon and has been studied by many researchers. The previous numerical approach has
revealed that evaporation accelerates the dewetting speed of the triple contact line and established
correlations between the dewetting speed and the surface wettability and superheating. However,
such a numerical calculation is time- and resource-consuming. We examine dewetting physics and
propose a time-averaged approach based on the multiscale theory. The new approach averages the
dewetting process over time and consists of only several algebraic equations, making the problem
easier to solve. It can produce time-averaged values of essential quantities, such as the dewetting
speed and contact angle as a function of superheating, which agrees with the previous numerical
results. This simple approach is valuable for many applications, such as modeling pulsating heat
pipes and describing the microlayer dynamics under growing vapor bubbles in nucleate boiling.

Introduction. – Dewetting of liquid films is a com-
mon phenomenon, which can be observed on a daily basis
and used in numerous industrial applications. We recapit-
ulate the classical dewetting theory. Consider an ideally
smooth and homogeneous solid surface initially covered by
a liquid film of viscous fluid. Such a film is metastable un-
der partial wetting conditions; once a dry hole is created in
the film (the contact line appears), the dry area will grow
spontaneously, because capillary forces drive the motion.
As the dry hole enlarges, a liquid ridge forms ahead of
the expanding contact line by collecting the liquid that
previously covered the solid surface. Due to the high vis-
cous friction in the thin film, the liquid in the ridge cannot
re-enter back the film. Therefore, the ridge grows at the
rate of liquid accumulation during the dry area expansion.
This problem can be described in two dimensions, illus-
trated in fig. 1. Understanding the hydrodynamics of the
contact line (CL) that demarcates the boundary between
the wetted and dry solid surface parts is fundamental to
the dewetting problem.

Until recently, the dewetting studies [1, 2] concerned
the adiabatic conditions (in the absence of net heat and
mass transfer between liquid, solid and ambient gas). The
work of [3] investigated dewetting in the presence of phase
change over the liquid film (evaporation/condensation).
The co-occurrence of the two processes is frequently en-
countered in studies of heat exchange systems, such as liq-
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Fig. 1: Dewetting of a liquid film: the ridge collects liquid as
the contact line (CL) recedes.

uid film dynamics in pulsating heat pipes [4] and the dry-
ing of liquid microlayer beneath vapor bubbles in nucleate
boiling [5]. In these cases, the liquid film is surrounded by
the pure vapor of the same fluid. The numerical results of
[3] indicated that evaporation accelerates the dewetting;
the contact line recedes faster when the solid substrate is
heated. This Letter is structured as follows. First, we will
briefly summarize the problem in [3] because these results
will help to understand the multiscale analysis discussed
next. Based on it new (“time-averaged”) approach will be
finally introduced.

2D lubrication problem. – The problem is de-
scribed in [3] in the 2D cross-section of the liquid ridge
shown in fig. 1. It uses the “one-sided” formulation, where
the vapor-side hydrodynamic stress and the heat flux into
the vapor at the interface are neglected compared to those

p-1



X. Zhang and V. S. Nikolayev

�

� �

A A(a) (b)

J

�	


�

CL �	


�

�

vapor liquid

Fig. 2: Sketches of the curved interface (a) and the straight
liquid wedge (b) corresponding to the point A.

on the liquid side. Therefore, the vapor pressure pv is as-
sumed to be spatially homogeneous. The solid substrate
is highly conductive and thus isothermal. Its temperature
Tw = Tsat + ∆T can differ from the saturation temper-
ature Tsat = Tsat(pv), which induces liquid evaporation
or condensation for positive or negative ∆T , respectively.
We focus on the evaporation case ∆T > 0, the most im-
portant for applications.
As the interface slope increases considerably in the pres-

ence of evaporation, the conventional lubrication theory,
valid for slopes below ∼ 30◦, becomes insufficient. The
generalized lubrication theory [6–8] is used to describe the
thin film flow and free liquid-vapor interface of local height
h(x). The theory uses the parametric interface description
in terms of the curvilinear coordinate s that runs along the
interface (fig. 2a), with s = 0 at the CL. Therefore, the
following geometrical relations hold:

∂h/∂s = sinφ, ∂x/∂s = cosφ, (1a,b)

where φ is the local interface slope. The major conve-
nience of this parametrization is the simplicity of rigorous
expression for curvature K,

K =
∂φ

∂s
=

1

cosφ

∂2h

∂s2
. (2)

Consider an interfacial point A (fig. 2a). A straight
wedge can be formulated by the tangent line and the solid
surface with the opening angle equal to the local interface
slope φ. The length of the intercepted arc ζ is expressed
as φr, where r is the radius of the straight wedge (fig. 2b)
and is related to h through h = r sinφ. Therefore, ζ =
hφ/ sinφ.
The generalized lubrication theory approximates the liq-

uid pressure pl at A (fig. 2a) by the pressure created by
the flow in the corresponding straight liquid wedge with
the opening angle φ, cf. fig. 2b.
The interfacial pressure jump

∆p ≡ pv − pl = σK − J2(ρ−1
v − ρ−1

l ), (3)

accounts for the vapor recoil effect, where K can be ex-
pressed with eq. (2) and J is the local mass flux assumed
positive at evaporation.
Because the liquid films are thin, heat conduction is the

main energy exchange mechanism, which can be taken as
stationary due to their low thermal inertia. The liquid
temperature is assumed to vary linearly along the arc ζ
from Tw to T i, as suggested by the rigorous thermal analy-
sis of straight wedges where the heat flow is radial [9]. The

heat flux supplied to the vapor-liquid interface is spent to
vaporize the liquid. Therefore, the energy balance at the
interface reads

J = k(Tw − T i)/(ζL), (4)

where L is the latent heat. The interfacial temperature
T i is impacted by the Kelvin, vapor recoil, and molecular-
kinetic effects:

T i = Tsat[1+∆p/(Lρl)+J2(ρ−2
v −ρ−2

l )/(2L)]+RiJL, (5)

where

Ri =
Tsat

√
2πRvTsat(ρl − ρv)

2L2ρlρv
. (6)

is the kinetic interfacial thermal resistance. Here Rv is the
specific gas constant.
The governing equation

∂h

∂t
cosφ

︸ ︷︷ ︸

A

+
∂

∂s

{

1

µG(φ)

[

ζ

2
(ζ + 2ls)

∂σ

∂s
︸ ︷︷ ︸

B1

+

ζ2

3
(ζ + 3ls)

∂∆p

∂s
︸ ︷︷ ︸

B2

]

−Uclζ
F (φ)

G(φ)
︸ ︷︷ ︸

C

}

= − J

ρl
︸︷︷︸

D

, (7)

is written in the frame of reference of the moving CL,
which is receding at speed Ucl. Here, µ and σ are the
liquid viscosity and surface tension, respectively; ls is the
hydrodynamic slip length.
Several other effects counterbalance the capillarity

(term B2). Since the interface temperature T i is not con-
stant, cf. eq. (5), the flow due to variation of surface
tension is accounted for by the term B1,

∂σ/∂s ≃ −γ∂T i/∂s, (8)

where γ = −∂σ/∂T is generally positive. The term C
reflects the flow induced by the CL motion. The functions
[6, 7]

F (φ) =
2φ2

3

sinφ

φ− sinφ cosφ
, (9)

and

G(φ) =
φ3

3

4

sinφ cosφ− φ cos 2φ
, (10)

are the correction factors. With F (φ → 0) = 1 and
G(φ → 0) = 1, this formulation reduces to the conven-
tional lubrication theory.
The flow induced by the phase change corresponds to

the term D. Finally, the term A describes the temporal
ridge growth.
The governing equation (7) can be solved for s ∈ [0, sf ],

with a point sf far from the ridge, where the interface is
flat of thickness h∞. At (sf , h∞), the boundary condition
is zero spatial derivatives φ = 0. Due to evaporation, h∞

decreases with time,

h∞ = h0

√

1− t/td, (11)
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where h0 is the initial (t = 0) film thickness and

td = Lρlh2
0/(2k∆T ) (12)

is the time of complete film drying.
At CL (s = 0), the geometry implies

h = 0, (13)

∂h/∂s = sin θmicro, (14)

where θmicro is the microscopic contact angle controlling
the wetting conditions. The set of lubrication equations
(3, 7) is of fourth order; one more boundary condition is
needed. It expresses the solution regularity at CL [10], in
particular, the pressure finiteness:

∂∆p/∂s|s→0 = 0. (15)

This form is convenient [11] to provide good numerical
stability. Another equation determines the CL speed Ucl

(which is a part of the problem). The relation between
Ucl and the evaporation flux at CL [3]

J(s → 0) =
UclF (θmicro)

G(θmicro)

θmicroρl
+

lsLθmicro

µk
γ

. (16)

A numerical result is illustrated in fig. 3, which includes
the interface profiles at selected time moments (in the CL
frame reference) fig. 3a, and the corresponding Ucl de-
pendence of time (expressed with the capillary number
Ca = µUcl/σ), fig. 3b.
Numerically solving eq. (7) is a delicate issue because

it is a non-linear and non-stationary partial differential
equation. Producing the results in fig. 3 took dozens of
hours of calculation time on a regular PC.

Multiscale analysis. – Our new approach is based
on the multiscale analysis of dewetting problem. To ex-
plain it, we plot in fig. 4 the interface slope φ(x) at
t = 0.5td obtained from the numerical result (fig. 3).
Three regions can be identified [12, 13]. In the microre-
gion (the distance from the CL x . 100 nm), phase change
dominates the flow that is described by the balance of the
terms B1, B2 and D of eq. (7). The CL motion term (C)
and slow ridge growth (A) can both be neglected [12]. The
microregion problem is thus steady, and the corresponding
curve is identified for this reason as Ca = 0 in fig. 4. The
microregion problem has been investigated by many re-
searchers (see [13] for a review). To solve the microregion
problem, one applies the zero-pressure jump condition far
from CL,

∆p|s→∞
= 0. (17)

The other three boundary conditions are (13-15). At x →
∞, φ saturates to the value θV that is called hereafter the
Voinov angle; in the case of fig. 4, θV ≃ 33.3◦; θV (∆T =
0) = θmicro. A particularity of the problem statement [14]
presented here is its applicability to the partial wetting
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Fig. 3: Numerical results showing the evolution of dewetting
ridge for ethanol at pv = 23.2 kPa; ∆T = 10K, θmicro = 5◦,
ls = 10 nm, and h0 = 50µm.
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case. Note that the solution results in θV as a function of
the local superheating (that at CL, cf. fig. 5) and wetting
properties. Note that θV = θmicro at ∆T = 0.
Above the microregion, there is an “intermediate” re-

gion, within which the CL motion governs fluid flows
(fig. 4). The nanoscale effects: the hydrodynamic slip,
vapor recoil, and Marangoni effects are nonessential here
[12]. The interface is thus controlled by the balance of the
terms C and B2 (with ls → 0) in eq. (7). It is the classical
dynamic CL problem studied by Voinov and Cox, and has
an asymptotic solution

φ3 = θ3V − 9Ca ln(x/ℓV ), (18)

where the Voinov length ℓV can be found by fitting eq. (18)
(blue dashed curve in fig. 4) to the full numerical solution
[12]. In the case of fig. 4, ℓV ≃ 13 nm. θV appears in
the intermediate region solution as an integration constant
defined from the condition φ(Ca → 0) = θV .
Finally, at the macroscopic (millimetric) scale, the ridge

growth is described by the balance of the terms A and B2
in eq. (7). Its profile is defined by the capillary forces only
and can thus be fitted by a circular arc (violet dotted curve
in fig. 4). The limit x → 0 of this latter solution results
in the apparent contact angle θapp, which is an appar-
ent slope at the CL seen from the macroscopic viewpoint:
θapp ≃ 17◦ in this case.
A multiscale approach has been applied [2] to solve the

conventional adiabatic dewetting case ∆T = 0 (where
θV ≡ θmicro as mentioned above) by analytical asymp-
totic methods. They resulted in two expressions giving
θapp and Ca,

θ3app = θ3V − 9Ca ln[2w/(eℓV )],

Ca =
θ3V
9

[

ln

(
4a

e2
Ca1/3

w2

ℓV h∞

)]−1

,
(19)

where a ≃ 1.094, e = 2.71 . . . is the Euler number, and
w is the ridge half-width (fig. 1). The second asymptotic
expression is obtained in the limit of large times, where
the ridge growth is slow so the ridge is quasi-steady.

Time-averaged model. – During the ridge growth,
all the quantities, Ca,w and h∞ (considering phase
change), are not constant. Ca slowly decreases with time,
cf. fig. 3b; w grows as the ridge collecting more liquid,
and h∞ decreases because of evaporation, cf. eq. (11).
The variation in ℓV turns out to be small during the film
evaporation [3].
In applications (e.g. in pulsating heat pipe modeling),

the focus is primarily on Ca and θapp, which experience
slow variations during the dewetting process. Therefore
their time-averaged values are sufficient. We perform the
averaging of the lubrication 2D approach [3] over a time
interval ∆t = t2 − t1 with t1 = 0.1td and t2 = 0.6td; the
time-averaged quantities are denoted hereafter by the an-
gle brackets. Such a time interval is reasonably large, as
it corresponds to a half of the thin film lifetime td. Fig. 6
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Fig. 6: Comparison of numerical (characters with bars) and
time-averaged model (lines) results of Ca(∆T ) for several
θmicro and different fluids.

plots the 〈Ca〉 data from the lubrication approach as char-
acters with bars for three fluids and several θmicro values.
The upper and lower limits of the bars correspond to the
Ca values at t1 and t2, respectively. The bars are relatively
short with respect to the absolute values of Ca, indicating
that the averaging is reasonable. Noticeably, these numer-
ical data demonstrate that the dewetting accelerates with
superheating, i.e. with the evaporation rate. As shown in
fig. 7, 〈θapp〉 also grows with superheating.
The characters in figs. 6, 7 result from the full numerical

solution of eq. (7). However, such a solution is time- and
resource-consuming because of several reasons: (i) neces-
sity to resolve a big range of the length scales; (ii) numeri-
cal iteration at each time moment to manage the nonlinear
terms (iii) solving of a transient ridge evolution. A simpler
approach is thus desirable.
The adiabatic asymptotic expressions (19) can be gen-

eralized [3] to the case ∆T 6= 0 thanks to the scale sep-
aration between the three asymptotic regions discussed
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averaged model (lines) results of 〈θapp〉(∆T ) for several θmicro

and different fluids.

above. We propose here the time averaging of the above
expressions. When this process is slow with respect to
the dewetting dynamics, the evolution is quasi-static, and
eqs. (19) should hold for the time-averaged quantities:

〈θapp〉3 = θ3V − 9〈Ca〉 ln 2〈w〉
eℓV

,

〈Ca〉 = θ3V
9

[

ln

(
4a

e2
〈Ca〉1/3 〈w〉2

ℓV 〈h∞〉

)]−1

.

(20)

Consider now all the parameters in these expressions. For
given θmicro, θV can be calculated from the microregion
model (fig. 5). As shown in [3], ℓV can be approximated
by the formula

ℓV ≃ 3ls/(eθV ). (21)

This expression is inspired by the adiabatic result [2] and
signifies that ℓV is largely controlled by the hydrodynamic
slip. Two remaining parameters, 〈w〉 and 〈h∞〉 are yet to
be defined.

During the film evaporation, h∞ decreases, which affects
the dynamics. The value of 〈h∞〉 can be computed with

eq. (11),

〈h∞〉 = 1

∆t

∫ t2

t1

h0

√

1− t

td
dt = βh0, (22)

where the time averaging is performed over ∆t = t2 − t1;
for the same time interval ∆t = 0.5td as in fig. 6, β ≃ 0.8.
Following the theory simplified in the spirit of [1], we can

calculate 〈w〉. Recall the dewetting physics; as the con-
tact line recedes, the liquid previously covering the solid
surface accumulates in the ridge (fig. 1). Because of cap-
illary action, the interface profile of the dewetting ridge is
approximated by a circular arc of radius R, and the center
of the circle is marked as point O. The arc intersects the
solid surface at point A of apparent contact angle θapp and
the liquid film surface with an angle ϕ. Point B on the
substrate is under the ridge peak. The radius R satisfies

R sin θ = w, (23)

where w = AB. The angles θapp and ϕ satisfy the geomet-
rical relation OC−OB = CB, resulting in

R(cosϕ− cos θapp) = h∞. (24)

The substitution of (23) into (24) and averaging leads
to

cos〈ϕ〉 = cos〈θapp〉+
1

w̃
sin〈θapp〉, (25)

where w̃ = 〈w〉/h∞.
The volume of liquid (per unit CL length)

S =

∫ t2

t1

h∞(t)Ucl(t)dt (26)

collected from A′ to A (during the time ∆t) is approxi-
mately equal to the excessive ridge area

S = R2(ϕ− sinϕ cosϕ), (27)

colored in light blue in fig. 1. Since the evolution is slow,
one can replace eq. (26) with 〈S〉 ≃ 〈Ucl〉〈h∞〉∆t.
By combining eqs. (23, 25, 26) and averaged eq. (27),

we arrive at

sin2〈θapp〉∆t̃ = Nw̃2(〈ϕ〉 − sin〈ϕ〉 cos〈ϕ〉), (28)

where ∆t̃ = ∆t/td and the dimensionless parameter

N = 〈h∞〉/(td〈Ucl〉) (29)

is a ratio of drying and CL receding speeds. The N small-
ness is a necessary condition for validity of the quasi-
steady approximation and then of the whole model. An-
other quasi-steadiness criterion is a smallness of the vis-
cous relaxation time with respect to td, i.e. of M =
µ〈h∞〉/(σtd) ≡ N〈Ca〉. However, as 〈Ca〉 ≪ 1, this crite-
rion always holds if N ≪ 1 holds.
The set of algebraic equations (20, 21, 25, 28) is com-

plete provided that θV is known for the working fluid and
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for given θmicro and ∆T (fig. 5). We can now compute
four quantities 〈ϕ〉, w̃, 〈θapp〉 and 〈Ca〉, the latter two be-
ing the most significant. Note that their dependence on a
particular choice of ∆t is extremely weak.

The ∆T variations of 〈θapp〉 and 〈Ca〉 produced by the
time-averaged method (lines) are compared to the numer-
ical solution of eq. (7) in figs. 6 and 7 for several con-
tact angles and three different fluids commonly used in
heat transfer applications. A good agreement between
the lubrication solution and the time-averaged theory is
achieved. It is explained by N ∼ 10−3 in all the cases
considered here. Note that N given by eq. (29) remains
bounded at increasing ∆T due to 〈θapp〉 growth with ∆T
slightly faster than linear (figs. 6) thus compensating the
td decrease, cf. eq. (12). While remaining small, M grows
with ∆T nearly linearly, which probably explains a small
but growing discrepancy between the lines and the char-
acters in figs. 6 and 7.

While figs. 6 and 7 may look similar to figs. 6 and 7 of
[3], they are not the same at all. Certainly, the characters
representing the numerical data, which gives a reference
for comparison, are the same in both cases. However, the
lines are different. To obtain the lines in [3], one averaged
the time-dependent results for w, h∞, and ℓV of numeri-
cal simulations; by using these values, 〈Ca〉 was calculated
with eqs. (19). In contrast, the lines in the present Let-
ter are produced directly by solving equations (20, 21, 25,
28), which are independent of the non-stationary lubrica-
tion simulation. Only the microregion solution is needed
for them. Such an approach requires only seconds of com-
putation time instead of weeks to obtain the results in
[3].

Conclusions. – The dewetting phenomenon in the
presence of evaporation can be described in two dimen-
sions with the generalized lubrication approach. Its nu-
merical solution has shown that the dewetting speed in-
creases with the substrate superheating, indicating that
evaporation accelerates the dewetting. However, this nu-
merical approach requires solving a non-linear and non-
stationary partial differential equation, which is time and
resource-consuming. To obviate heavy numerical calcu-
lations, we propose a time-averaged approach, which is
based on the multiscale theory and consists of several al-
gebraic equations. The new approach employs an integra-
tion quantity as input data, the Voinov angle, which can
be obtained by solving the stationary microregion prob-
lem. This value is much easier to calculate and is famil-
iar to many researchers. We compared the time-averaged
model to the full numerical solution for different wettabil-
ity and three different fluids. Thanks to the slowness of
the film evaporation (with respect to dewetting), the re-
sults of this simple model are in good agreement with the
numerical results. This approach is original and valuable
for multiple applications involving liquid film evaporation,
for instance, in the modeling of heat transfer systems such
as pulsating heat pipes [15], and bubble growth in boiling

[16].
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