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1 Introduction

Physical closed string states satisfy the level-matching condition [1–5]

L−0 := L0 − L̄0 = 0, (1.1a)

where L−0 generates translation along the periodic spatial direction σ of the string using
cylinder coordinates. This is necessary to fix the origin of σ when parametrizing the closed
string worldsheet: indeed, there is no natural gauge fixing condition and this must be
imposed as a constraint. In the BRST formalism, one needs to impose the equivalent
condition on the associated b-ghost:

b−0 := b0 − b̄0 = 0. (1.1b)

This condition extends to off-shell states by investigating the properties of off-shell am-
plitudes: metrics in patches whose coordinates differ by a phase cannot be distinguished
(rotations in the complex plane are generated by L−0 ). A corollary is that the antibracket
from the BV algebra on the moduli spaces of Riemann surfaces with general local coordi-
nates is degenerate [6]. Moreover, moduli space topology implies that no global choice of
local coordinates exists, making off-shell amplitudes without level-matching multi-valued.
Finally, (1.1) becomes clearly apparent in string field theory (SFT) [5, 7–9]: the propagator
obtained by factorizing amplitudes in Siegel gauge contains a factor b−0 δ(L

−
0 ). Inverting the

propagator gives a degenerate kinetic term if the string field does not obey (1.1) and, while
the degeneracy due to the Siegel gauge condition b+0 := b0 + b̄0 = 0 can be lifted by restoring
the gauge invariance, this does not appear to be possible for the level-matching condition.
Similarly, the natural inner-product between closed string states (used for example to define
string products from interaction vertices) includes a factor c−0 δ(L

−
0 ).

This situation is not completely satisfactory. Indeed, fields in a fundamental theory
should arguably not be restricted by any condition outside representation theory, and all
constraints should derive from dynamics or gauge fixing. Additionally, constraints can be
understood as degrees of freedom integrated out, which makes the theory more complicated
than it should be [10, p. 28]. Recently, it was understood by Okawa and Sakaguchi [11, 12]
that the level-matching conditions (1.1) can be lifted by introducing a new spurious field
(see also [13, p. 10]). This mirrors exactly what happens when attempting to describe the
Ramond sector in the superstring theory. While the kinetic term for the NS sector is not
degenerate (after imposing the level-matching condition for the closed superstring), it is
not the case for the Ramond sector. One solution is to impose constraints on the field and
define a non-degenerate inner-product [10, 14, 15], which is formally the same as imposing
the level-matching conditions. Another approach was proposed in [9, 16–18], where it
was shown that a free field could be introduced to write an unconstrained Ramond field.
This new spurious field has a non-trivial kinetic term and seems to couple to the original
string field, but it can be shown that it describes only free degrees of freedom. Moreover,
the additional degrees of freedom in the unconstrained string field are not physical, and
correspond to gauge and auxiliary fields. Given the analogy mentioned above, the same
strategy can be followed to relax (1.1) [11, 12].
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Removing the level-matching condition is interesting for several reasons. First, it was
observed in [11, 12] that the additional fields, which are trivial in a flat background, can
yield fluxes in a toroidal background. Hence, they can lead to new backgrounds whose
physics should be explored, for example, its T -duality properties. Second, the level-matching
condition descends to the weak constraint in double field theory [8], such that the same
technique could be relevant to formulate double field theory without constraint. Finally,
interacting closed SFT is non-polynomial and difficult to describe: removing the level-
matching condition could help in finding new simpler formulations [10], ideally cubic. Indeed,
this new formulation allows for more flexibility in writing the kinetic term as the operator
B can be replaced by other operators (again, in full analogy with the superstring, where
different kinetic terms are used) [11].

In this paper, we focus on free closed bosonic SFT. Our goal is to understand better
this theory after removing the level-matching condition, with the long-term goal of studying
T -duality and Buscher rules. We will expand the string field in terms of spacetime fields up
to the massless sectors, compute the equations of motion, action and gauge transformations.
The main additions of our work to [11, 12] are: 1) working out the massless even sector
(containing the B field, which is needed to discuss T -duality), and the level (2, 0), then 2)
showing that fields are non-dynamical by using field redefinitions to reach a formulation
transforming canonically under field redefinitions, 3) making explicit the reality condition
on the new fields and gauge parameters, proving that the action is real.

In section 2, we will set up our notations and reproduce the derivation from [11, 12] of
the SFT action without level-matching. In section 3, we compute the spacetime properties
for the levels (0, 0) (tachyon), (1, 0) (non-level-matched tachyon), (1, 1) (massless), (2, 0)
(non-level matched massless).

Note added. The current paper is scheduled to appear together with [11]. A large part
of this work has been realized independently, using the results announced in [12]. However,
the authors from [11] have shared their draft such that we could compare our results with
theirs. We tried to provide reference to [11] for every result derived there, and we encourage
the readers to read [11] first, as it provides more details on the construction, in particular,
including interactions.

2 Closed string field theory without level-matching

In this section, we start by reviewing the free string field theory (SFT) for the closed bosonic
string (section 2.1). In particular, we show how the level-matching condition (1.1) appears
to be necessary to write the kinetic term. Afterwards, we will show how this condition can
be removed by extending the space in which lives the string field (section 2.2).

2.1 Closed string field theory

String field theory is a second quantized version of worldsheet string theory. The string
background on which the theory lives is described by a 2d theory made of a matter sector
and a bc reparametrization ghost sector. In this paper, we consider a flat Minkowski

– 2 –
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background with d = 26 free scalar fields Xµ (µ = 0, . . . , d− 1) for the matter sector. We
provide the necessary CFT definitions and formulas in appendix A, and refer the reader to
the literature for more details [5, 7, 9, 10].

The string field is a general element of the CFT Hilbert space restricted to states with
ghost number 2 satisfying the level-matching condition (1.1):

Ngh(Ψ) = 2, L−0 |Ψ〉 = b−0 |Ψ〉 = 0, (2.1)

together with the reality condition

|Ψ〉† = −〈Ψ| , (2.2)

where 〈Ψ| := |Ψ〉t is the BPZ conjugate of |Ψ〉 and the dagger denotes Euclidean conjugation
(both defined in appendix A).

The classical action for the free closed bosonic SFT is:

S[Ψ] = 1
2 〈Ψ| δ(L

−
0 )c−0 QB |Ψ〉 , (2.3)

where QB is the BRST charge. This action is real thanks to (2.2). The c−0 insertion is
necessary to reach Ngh = 6, as required by the ghost number anomaly on the sphere. Hence,
the natural inner-product in closed string theory is 〈·| c−0 |·〉.

The action (2.3) clearly shows why it is necessary to impose the level-matching condi-
tion (1.1). Indeed, an unconstrained field can be decomposed as:

|Ψ〉 = |Ψ−〉+ c−0 |Ψ+〉 , b−0 |Ψ±〉 = 0. (2.4)

Inserting such a field in the action yields a degenerate kinetic term, since 〈Ψ| c−0 = 〈Ψ−| c−0 .
The constraint b−0 |Ψ〉 = 0 implies that Ψ+ = 0, and the kinetic term is well-defined.

The action is invariant under the gauge transformation

δΛ |Ψ〉 = QB |Λ〉 , (2.5)

where the gauge parameter satisfies the condition:

Ngh(Λ) = 1, L−0 |Λ〉 = b−0 |Λ〉 = 0. (2.6)

Physical states are solutions to the equation of motion

QB |Ψ〉 = 0, (2.7)

up to gauge transformations, since c−0 is invertible in the subspace of level-matched states.
Not all Λ gauge parameters are independent, since the gauge transformation is trivial

when |Λ〉 = QB |Ω〉. Indeed, Q2
B = 0 implies that Λ itself transforms as:

δΩ |Λ〉 = QB |Ω〉 , Ngh(Ω) = 0, L−0 |Ω〉 = b−0 |Ω〉 = 0. (2.8)

In turn, there is a gauge invariance of Ω, and this continues recusively: however, we will
not need to consider more parameters in this paper.

– 3 –
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The gauge symmetry (2.5) can be fixed with the Siegel condition:

b+0 |Ψ〉 = 0. (2.9)

In this case, the action (2.3) becomes

Sgf[Ψ] = 1
2 〈Ψ| δ(L

−
0 )c−0 c

+
0 L

+
0 |Ψ〉 , (2.10)

which allows identifying the propagator:

∆ := b+0
L+

0
B, B := b−0 δ(L

−
0 ). (2.11)

The string propagator is a cylinder with two moduli: a length (proper-time) s and a twist θ.
Scale dilatations correspond to shifting s and are generated by L+

0 , rotations are generated
by L−0 ; b

+
0 and b−0 are the BRST anti-ghost modes corresponding to these transformations

(in off-shell string theory, they arise from Beltrami differentials used to write a form on the
moduli space). In momentum space, the first term in the r.h.s. becomes the well-known
(k2 +m2)−1 from local QFT (see section 3), while the second term B has no direct QFT
interpretation.

Since (Bc−0 )2 = Bc−0 , the operator B can be used to rewrite the level-matching
condition (1.1) as a projection equation [11]:

Bc−0 |Ψ〉 = |Ψ〉 . (2.12)

This is formally the same as the condition XY |Ψ〉 = |Ψ〉 for the Ramond sector superstring
field (X and Y are so-called picture changing operators and are not needed in this paper) [10,
14, 15]. Note also that operator B commutes with the BRST operator:

{QB, B} = δ(L−0 ) {QB, b−0 } = δ(L−0 )L−0 = 0. (2.13)

2.2 Removing the level-matching condition

Given an operator K on a Hilbert space H which is not invertible, there are two ways
to define a non-degenerate inner-product. The first, as we have seen above, is to restrict
the Hilbert space to the subspace where K is invertible. The second runs in the opposite
direction and consists in embedding H into a higher-dimensional space Hext and defining a
new operator A+BK (with A and B matrices) which is invertible in this space, without
using K−1. This idea was successfully applied to the Ramond sector in [16–18], and it was
understood in [11, 12] that it can also be used for the level-matching condition. In the rest
of this subsection, we summarize the results from [11, 12] relevant for the free theory, and
refer the readers to them for more details.

Starting from the gauge-fixed action (2.10), we introduce a new spurious1 field Ψ̃ and
write

Sext,gf[Ψ, Ψ̃] = 1
2 〈Ψ̃| c

+
0 L

+
0 B |Ψ̃〉+〈Ψ̃| c+

0 L
+
0 |Ψ〉 , (2.14)

1This is not an auxiliary field because it is dynamical, whereas an auxiliary field would have an algebraic
equation of motion. However, its main role is to behave like a Lagrange multiplier in the action, without
affecting the dynamics since it remains free.

– 4 –
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where we need
Ngh(Ψ̃) = 3 (2.15)

from the ghost anomaly on the sphere. The kinetic operator in the basis (Ψ̃,Ψ) reads

K := c+
0 L

+
0

(
B 1
1 0

)
, (2.16)

and its inverse is:
K−1 = b+0

L+
0

(
0 1
1 B

)
. (2.17)

The lower-right component reproduces the propagator ∆ between string fields (Ψ,Ψ). Given
this structure, it is clear that states which do not satisfy (1.1) have a non-trivial propagator,
and the inner-product in the action is not degenerate.

It is straightforward to remove the Siegel gauge fixing condition to get the gauge
invariant action:

Sext[Ψ, Ψ̃] = 1
2 〈Ψ̃|QBB |Ψ̃〉+〈Ψ̃|QB |Ψ〉 . (2.18)

Both fields Ψ and Ψ̃ are completely unconstrained (except for the ghost number condition).
The action is invariant under two sets of transformations:

δΛ |Ψ〉 = QB |Λ〉 , δΛ |Ψ̃〉 = 0, (2.19a)

δΛ̃ |Ψ〉 = 0, δΛ̃ |Ψ̃〉 = QB |Λ̃〉 , (2.19b)

where the gauge parameters have no constraints, except:

Ngh(Λ) = 1, Ngh(Λ̃) = 2. (2.20)

While we are not interested in interactions, let us note that they take the same form as in
the constrained closed SFT, which means that Ψ̃ only appears in the quadratic terms. Like
for (2.8), not all Λ and Λ̃ gauge parameters are independent [11]:

δΩ |Λ〉 = QB |Ω〉 , Ngh(Ω) = 0, δΩ̃ |Λ̃〉 = QB |Ω̃〉 , Ngh(Ω̃) = 1. (2.21)

Like before, the second-order parameters have themselves a gauge invariance, and so on.
We can recover the original action (2.3) for level-matched components by imposing the

following constraints:

|Ψ̃〉 = −δ(L−0 ) c−0 |Ψ〉 , L−0 |Ψ〉 = L−0 |Ψ̃〉 = 0, b−0 |Ψ〉 = c−0 |Ψ̃〉 = 0, (2.22)

where the sign in the first condition is a consequence of c−0 being BPZ odd. Note that, even
though the gauge symmetry is larger in the theory without level-matching (because of the
additional parameters δ(L−0 ) |Λ〉, b−0 |Λ〉 and |Λ̃〉), the original theory cannot be reached by
gauge fixing because the field combinations above are generically not BRST closed.2 Rather,
they are analogue to self-duality constraints which must be imposed beside the action. We

2We thank Ted Erler for discussions.
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want to stress that we are not setting to zero all the degrees of freedom in Ψ̃, since this
would be inconsistent with the non-linear equations of motion, but also remove the kinetic
term in the action (free or interacting). Instead, we set those free fields components equal
to the ones of Ψ. This is exemplified at level (0, 0) in section 3.2.4. Exactly the same holds
for the superstring, where the original theory is recovered by setting Ψ̃ = Ψ (NS sector) and
Ψ̃ = YΨ (R sector), which is equivalent to the condition GΨ̃ = Ψ [16] for fields satisfying
Ψ = XYΨ [15] (where X and Y are PCO operators, G is the identity in the NS sector, and
X in the Ramond sector).

The action (2.18) is real if:

|Ψ〉† = −〈Ψ| , |Ψ̃〉† = 〈Ψ̃| . (2.23)

Indeed, we have:

〈Ψ̃, QBBΨ̃〉† = 〈BQBΨ̃†, Ψ̃†〉 = 〈BQBΨ̃, Ψ̃〉 = −〈Ψ̃, BQBΨ̃〉 = 〈Ψ̃, QBBΨ̃〉 ,

〈Ψ̃, QBΨ〉† = 〈QBΨ†, Ψ̃†〉 = −〈QBΨ, Ψ̃〉 = 〈Ψ̃, QBΨ〉 .

For the first equation, we took the Euclidean conjugate in the first step, using that QB
and B are Euclidean self-adjoint. Then, we inserted the reality conditions (2.23), used the
relation (A.32) (there is a sign since Ψ̃ and BQBΨ̃ are both Grassmann-odd), and finally
that B and QB anti-commute with each other. The second derivation is similar. This can be
expected since Ngh(Ψ̃) = 3, which means that the Euclidean conjugate of Ψ̃ contains one ad-
ditional c ghost compared to Ψ, giving an additional sign in the BPZ conjugate given (A.28).
This condition was not discussed in full generality in [11], but agrees with the conditions
on the level expansion, assuming that all spacetime fields are real. Note that it is not the
same condition as in [19], since the spurious fields for the Ramond sector have Ngh = 2.

The gauge parameters obey the following reality conditions:

|Λ〉† = −〈Λ| , |Λ̃〉
†

= −〈Λ̃| . (2.24)

To obtain these relations, we impose that QB |Λ〉 and QB |Λ̃〉 have the same transformation
as Ψ and Ψ̃ respectively:

(QB |Λ〉)† = 〈Λ†|QB, 〈QBΛ| = −〈Λ|QtB = 〈Λ|QB,

(QB |Λ̃〉)† = 〈Λ̃†|QB, 〈QBΛ̃| = 〈Λ̃|QtB = −〈Λ̃|QB.

For Λ, we used that QB is Euclidean self-adjoint (first equation), and that it is BPZ odd and
anti-commutes with Λ since Ngh(Λ) = 1 (second equation). Matching with (2.23) implies
the relation above for Λ. The only difference with Λ̃ is that Ngh(Λ̃) = 2, such that its state
commutes with QB, and we need a different sign for the reality condition.

The equations of motion obtained by varying (2.18) with respect to Ψ̃ and Ψ:

QBB |Ψ̃〉+QB |Ψ〉 = 0, (2.25a)
QB |Ψ̃〉 = |J(Ψ)〉 . (2.25b)

– 6 –
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We have added a Ψ-dependent source (which would get replaced by interactions in the full
theory) for illustrating why Ψ̃ contains only free degrees of freedom. Multiplying the second
equation by B and using the first equation to substitute Ψ̃, we get (remember that QB
anti-commutes with B)

QB |Ψ〉 = B |J(Ψ)〉 . (2.26)

This reproduces the equation of motion (2.7) for the field Ψ with a source B |J(Ψ)〉 when
Ψ satisfies (1.1). For the full proof of equivalence in the presence of a source, we refer
the reader to [11]. Once a solution for Ψ is found from the previous equation, the second
equation of motion fixes Ψ̃ up to a free field. As a consequence, both theories with and
without level-matching are perturbatively equivalent.

3 Tachyonic and massless spacetime actions

The objective of this section is to provide an extensive analysis of tachyonic and massless
sectors of the free closed SFT. To achieve this, we perform a level expansion of the string
field, impose reality conditions, and compute the action (2.18) together with the equations
of motion and gauge transformations.

Next, in order to show that the additional spacetime fields are not physical, we perform
field redefinitions to work with fields which have canonical gauge transformations. Indeed,
it is well-known that the spacetime fields appearing in the string field expansion have
non-standard gauge transformations, and one must perform appropriate field redefinitions
to put them in a canonical form [20–24]. One possible strategy is to start with the field
whose gauge transformation has the lowest power of momentum, and then modify the other
fields to make them invariant.

This section provides the new results of this paper: while the levels (0, 0) and (1, 0),
and the odd sector of (1, 1) have been worked out in [11], we use a different approach to
show that the new fields are not physical (in flat space). Moreover, we also consider the
even sector of the level (1, 1), as well as the level (2, 0). CFT formulas used in this section
are gathered in appendix A.

We have made the computations with Cadabra [25, 26]. The code can be found at
github:teaduality/closed-sft-without-level-matching.

3.1 Level expansion

Let’s start by focusing first on the SFT with level-matching (section 2.1). We decompose
the string field Ψ in eigenstates of the level operators (N, N̄) and of the momentum operator
p as:

|Ψ〉 =
∫ ddk

(2π)d |Ψ(k)〉 , |Ψ(k)〉 =
∑
`,¯̀≥0

|Ψ`,¯̀(k)〉 , (3.1)

where

p |Ψ`,¯̀(k)〉 = k |Ψ`,¯̀(k)〉 ,

N |Ψ`,¯̀(k)〉 = ` |Ψ`,¯̀(k)〉 , N̄ |Ψ`,¯̀(k)〉 = ¯̀|Ψ`,¯̀(k)〉 .
(3.2)

– 7 –
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This implies:

L+
0 |Ψ`,¯̀(k)〉 =

(
α′k2

2 + `+ ¯̀− 2
)
, L−0 |Ψ`,¯̀(k)〉 = (`− ¯̀) |Ψ`,¯̀(k)〉 . (3.3)

We will often omit the momentum dependence when there is no ambiguity. The BPZ
conjugate are defined as:

〈Ψ`,¯̀(k)| := |Ψ`,¯̀(k)〉t. (3.4)

The reality condition (2.2) becomes

|Ψ`,¯̀(k)〉† = −〈Ψ`,¯̀(−k)| . (3.5)

Since N and N̄ commute with the BRST charge and c−0 , the fields at different levels are
orthogonal, such that the action splits into a single sum over ` and ¯̀ of S[Ψ`,¯̀]. Moreover,
fields with different worldsheet parity are orthogonal, so it is possible to separate each term
S`,¯̀ even further into even and odd sectors. The final simplification is achieved by noting
that the inner-product is proportional to δ(d)(k+ k′) from (A.30), such that there is a single
integral over momentum. Thus, the action can be written as:

S =
∑
`,¯̀≥0

(
S+
`,¯̀ + S−

`,¯̀

)
,

S±
`,¯̀ := 1

2V

∫ ddk
(2π)d 〈Ψ

±
`,¯̀(−k)| c−0 QB |Ψ

±
`,¯̀(k)〉 ,

(3.6)

where V is the spacetime volume (to cancel δ(d)(0) from the momentum inner-product),
and Ψ+ and Ψ− are respectively even and odd under worldsheet parity:

Ω |Ψ±
`,¯̀(k)〉 = ± |Ψ±

`,¯̀(k)〉 . (3.7)

We will omit the parity index for levels where the field has a definite parity, and in generic
formulas below.

The equation of motion of a given component is simply:

QB |Ψ`,¯̀〉 = 0. (3.8)

The gauge parameters are expanded in the same manner:

|Λ〉 =
∫ ddk

(2π)d |Λ(k)〉 , |Λ(k)〉 =
∑
`,¯̀≥0

|Λ`,¯̀(k)〉 , (3.9)

and also satisfy the reality condition:

|Λ`,¯̀(k)〉† = 〈Λ`,¯̀(−k)| . (3.10)

Then, string field components transform as:

δΛ |Ψ`,¯̀〉 = QB |Λ`,¯̀〉 . (3.11)

– 8 –
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The same considerations apply for the parameter Ω in (2.8), but it will be non-trivial only
for the even sector of the level (1, 1) (for other levels, it is not possible to satisfy all the
constraints).

In the theory without level-matching (section 2.2), we also expand Ψ̃ and Λ̃ in level,
momentum, and parity eigenstates. All formulas are similar to the one above, except for
the action [11]:

Sext =
∑
`,¯̀≥0

(
S+

ext,`,¯̀ + S−ext,`,¯̀

)
, (3.12a)

S±
`,¯̀ := 1

V

∫ ddk
(2π)d

[1
2 〈Ψ̃

∓
`,¯̀(−k)|QBB |Ψ̃∓`,¯̀(−k)〉+〈Ψ̃∓

`,¯̀(−k)|QB |Ψ±`,¯̀(−k)〉
]
, (3.12b)

and reality condition:

|Ψ`,¯̀(k)〉† = −〈Ψ`,¯̀(−k)| , |Ψ̃`,¯̀(k)〉† = 〈Ψ̃`,¯̀(−k)| . (3.13)

The even-parity component of Ψ̃ couples with the odd-parity part of Ψ because of the
difference in ghost numbers. By convention, the sign superscript on the action corresponds
to the parity of the physical string field Ψ. Note that the first vanishes for fields which are
not level-matched since B contains δ(L−0 ).

We will not discuss the equations of motion for the spurious field Ψ̃, with the exception
of the level (0, 0) and (1, 0) as illustrations of the field redefinitions (see [11] for a detailed
analysis). For the same reason, we do not search for field redefinitions of those fields.

3.2 Level (0, 0) — level-matched tachyonic fields

3.2.1 Fields

Physical string field. The string field reads:

|Ψ0,0(k)〉 = T (k) |k, ↓↓〉 , (3.14)

where T (k) is the tachyon, and |k, ↓↓〉 := c1c̄1 |k, 0〉 is the ghost energy vacuum, built on
top of the SL(2,C) vacuum (appendix A). The Euclidean and BPZ conjugates are:

|Ψ0,0(k)〉† = −T (k)∗〈k,−| , 〈Ψ0,0(k)| = T (k)〈−k,−| , (3.15)

such that the reality condition (2.23) implies:

T (k)∗ = T (−k). (3.16)

Spurious string field. The spurious field is:

|Ψ̃0,0〉 =
(
A+(k) c+

0 +A−(k) c−0
)
|k, ↓↓〉 . (3.17)

The Euclidean and BPZ conjugates are:

|Ψ̃0,0(k)〉† = −〈k,−|
(
A+(k)∗ c+

0 +A−(k)∗ c−0
)
,

〈Ψ̃0,0(k)| = −〈−k,−|
(
A+(k) c+

0 +A−(k) c−0
)
,

(3.18)

– 9 –



J
H
E
P
0
3
(
2
0
2
3
)
0
9
1

and the reality condition (2.23) implies that the spacetime fields are real:

T (k)∗ = T (−k). (3.19)

For the other levels, we will not work out the BPZ and Euclidean conjugates nor the reality
condition for the physical and spurious fields, since it is simple to compute them.

3.2.2 Gauge invariance and field redefinition

Physical string field. The string field has no gauge transformation:

δ |Ψ0,0(k)〉 = 0 =⇒ δT (k) = 0. (3.20)

Spurious string field. The spurious field has the following gauge parameter:

|Λ̃(0,0)(k)〉 = α(k) |k,−〉 , (3.21)

with α(k) real. We get the gauge transformations by acting with QB:

δ |Ψ̃(0,0)〉 = QB |Λ̃(0,0)〉 =
(
α′k2

2 − 2
)
α(k) c+

0 |k, ↓↓〉 , (3.22)

which gives:

δA+(k) =
(
α′k2

2 − 2
)
α(k), δA−(k) = 0. (3.23)

3.2.3 Equation of motion

Physical string field. We have

QB |Ψ0,0〉 =
(
α′k2

2 − 2
)
T (k) c+

0 |k, ↓↓〉 , (3.24)

which gives:
0 =

(
k2 − 4

α′

)
T (k). (3.25)

One recognizes the equation of motion for a tachyonic scalar with mass m2 = −4/α′.

Spurious string field. We have

QB |Ψ̃0,0〉 =
(
−α
′k2

2 + 2
)
A−(k) c−0 c

+
0 |k,−〉 , (3.26)

which gives
0 =

(
k2 − 4

α′

)
A−(k). (3.27)

This is also the equation of motion of a tachyonic scalar of the same mass. The field A+
has no equation of motion, and it is pure gauge off-shell, according to (3.23).
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3.2.4 Action

The action reads:

S0,0 = −
∫ ddk

(2π)d

[
1
2 A−(−k)

(
α′k2

4 − 1
)
A−(k) +A−(−k)

(
α′k2

4 − 1
)
T (k)

]
. (3.28)

We see that the auxiliary field A+ does not appear inside, which is expected since it does not
have any equation of motion. The reason is that T and A+ are odd under the worldsheet
parity, and A− is even: from (3.6), it implies that A− cannot couple to any physical field.

Setting A− = −T as given in (2.22) gives the usual action for the tachyon in Euclidean
signature:

S0,0 = α′

8

∫ ddk
(2π)d T (−k)

(
k2 − 4

α′

)
T (k). (3.29)

Varying this equation gives the equation (3.25) as needed. We see that the action can
be canonically normalized if one defines T → 2T/

√
α′. Note that the action above is not

obtained by integrating out A− = −2T , since it gives a vanishing action.

3.3 Level (1, 0) — non-level-matched tachyonic fields

3.3.1 Fields

Physical string field. The string field reads:3

|Ψ1,0(k)〉 =
(
iDµ(k)αµ−1 + C+(k) c+

0 b−1 + C−(k) c−0 b−1
)
|k, ↓↓〉 . (3.30)

All fields are correctly real.

Spurious string field. The spurious field is:

|Ψ̃1,0〉 =
(
E(k) c−0 c

+
0 b−1 + J(k) c−1 + iFµ(k) c−0 α

µ
−1 + iHµ(k) c+

0 α
µ
−1

)
|k, ↓↓〉 . (3.31)

3.3.2 Gauge invariance and field redefinition

Physical string field. The gauge parameter reads:

|Λ1,0(k)〉 = λ(k) b−1 |k, ↓↓〉 . (3.32)

The action of QB gives

QB |Λ1,0〉 = λ(k)

(α′
2 k2 − 1

)
c+

0 b−1 + c−0 b−1 +

√
α′

2 k · α−1

 |k, ↓↓〉 , (3.33)

which gives the gauge transformations of each spacetime fields:

δDµ(k) = −

√
α′

2 ikµλ(k), δC+(k) =
(
α′

2 k2 − 1
)
λ(k), δC−(k) = λ(k). (3.34)

3We use the basis (c+
0 , c

−
0 ), while [11] uses (c0, c̄0).
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In the gauge transformations above, C− has no power of k, which suggests the following
field redefinitions:

C̄−(k) = C−(k), C̄+(k) = C+(k) + C−(k)−

√
α′

2 ikµDµ(k),

D̄µ(k) = Dµ(k) +

√
α′

2 ikµC−(k),

(3.35)

such that
δC̄−(k) = λ(k), δC̄+(k) = δD̄µ(k) = 0. (3.36)

Note that C+ is a Nakanishi-Lautrup (NL) field for Dµ, but it is not interesting to exploit
this property here. In terms of these new variables, the string field is:

|Ψ1,0(k)〉 =

iD̄µ(k)

αµ−1 +

√
α′

2 kµ c+
0 b−1

+ C̄+(k) c+
0 b−1

+C̄−(k)

√α′

2 kµα
µ
−1 +

(
α′

2 k2 − 1
)
c+

0 b−1 + c−0 b−1

 |k, ↓↓〉 .
(3.37)

Spurious string field. The gauge parameter of the spurious field is:

|Λ̃1,0(k)〉 =
(
γ(k) c+

0 b−1 + ζ(k) c−0 b−1 + iεµ(k)αµ−1

)
|k, ↓↓〉 . (3.38)

The gauge parameter for the gauge transformation is

|Ω̃1,0(k)〉 = σ(k) b−1 |k, ↓↓〉 , (3.39)

such that

δγ(k) =
(
α′k2

2 − 1
)
σ(k), δζ(k) = σ(k), δεµ(k) = −

√
α′

2 ikµσ(k). (3.40)

This suggests the following redefinitions for the parameters:

γ̄(k) = γ(k)−
(
α′k2

2 − 1
)
ζ(k), ζ̄(k) = ζ(k),

ε̄µ(k) = εµ(k) +

√
α′

2 ikµζ(k).

(3.41)

The action of QB gives the following gauge transformations:

δE(k) = γ(k)−
(
α′k2

2 − 1
)
ζ(k),

δJ(k) = −γ(k)− ζ(k) +

√
α′

2 ikµεµ(k),

δFµ(k) = εµ(k) +

√
α′

2 ikµζ(k),

δHµ(k) =
(
α′k2

2 − 1
)
εµ(k) +

√
α′

2 ikµγ(k).

(3.42)
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We perform the change of variables for the gauge parameters, gauge fixing ζ = 0, which gives:

δE(k) = γ̄(k), δJ(k) = −γ̄(k) +

√
α′

2 ikµε̄µ(k),

δFµ(k) = ε̄µ(k), δHµ(k) =
(
α′k2

2 − 1
)
ε̄µ(k) +

√
α′

2 ikµγ̄(k).
(3.43)

We perform the field redefinitions

Ē(k) = E(k), J̄(k) = E(k) + J(k)−

√
α′

2 ikµFµ(k),

F̄µ(k) = Fµ(k), H̄µ(k) = Hµ(k)−
(
α′k2

2 − 1
)
Fµ(k)−

√
α′

2 ikµE(k),
(3.44)

such that
δĒ(k) = γ̄(k), δF̄µ(k) = ε̄µ(k), δJ̄(k) = δH̄µ(k) = 0. (3.45)

3.3.3 Equation of motion

Physical string field. We have

QB |Ψ1,0〉 =

(α′
2 k2 − 1

)
iDµ(k)−

√
α′

2 kµC+(k)

αµ−1c
+
0 |k, ↓↓〉

+

iDµ(k)−

√
α′

2 kµC−(k)

αµ−1c
−
0 |k, ↓↓〉

+
[
C+(k)−

(
α′

2 k2 − 1
)
C−(k)

]
c−0 c

+
0 b−1 |k, ↓↓〉

+

√α′

2 ikµDµ(k)− C+(k)− C−(k)

 c−1 |k, ↓↓〉 ,

(3.46)

which gives the equations of motion:

0 =
(
α′

2 k2 − 1
)
Dµ(k) +

√
α′

2 ikµC+(k), 0 = Dµ(k) +

√
α′

2 ikµC−(k),

0 =
(
α′

2 k2 − 1
)
C−(k)− C+(k), 0 =

√
α′

2 ikµDµ(k)− C+(k)− C−(k).

(3.47)

In terms of the redefined fields (3.35), the equations of motion become, after simpli-
fication:

0 = C̄+(k) = D̄µ(k). (3.48)

Note that C̄−(k) does not appear anymore, which is normal since it can be completely
gauge fixed, this shows that there are no dynamical degrees of freedom as expected.
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Spurious string field. The equations of motion are:

0 = J(k) + E(k) +

√
α′

2 ikµFµ(k),

0 = Hµ(k)−
(
α′k2

2 − 1
)
Fµ(k)−

√
α′

2 ikµE(k),

0 = −
(
α′k2

2 − 1
)
J(k) + E(k) +

√
α′

2 ikµHµ(k).

(3.49)

We can now perform the field redefinitions and set Ē = H̄µ = 0 with a gauge transformation:

0 =
(
α′k2

2 − 1
)
J(k), 0 =

(
α′k2

2 − 1
)
Fµ(k),

0 = J(k) +

√
α′

2 ikµFµ(k).

(3.50)

This corresponds to free equations of motion for J and Fµ as it should for the spurious fields.
The additional constraint means that J describes the spin 0 component of the massive
vector field Fµ.

3.3.4 Action
The action is

S = 1
2

∫ ddk
(2π)d

E(−k)

−C+(k)− C−(k) +

√
α′

2 ikµDµ(k)


+ J(−k)

(
−C+(k) +

(
α′k2

2 − 1
)
C−(k)

)

− Fµ(−k)

(α′k2

2 − 1
)
Dµ(k) +

√
α′

2 ikµC+(k)


+Hµ(−k)

Dµ(k) +

√
α′

2 ikµC−(k)

 .

(3.51)

Note that we cannot integrate out the spurious field to get an action reproducing the
equations of motion (3.47). Performing the field redefinitions (3.35) and (3.44), the action
becomes:

S = 1
2

∫ ddk
(2π)d

−Ē(−k)C̄+(k)−

√
α′

2 F̄µ(−k)ikµC̄+(k)

−

J̄(−k)− Ē(−k)−

√
α′

2 ikµF̄µ(−k)


×

C̄+(k) +

√
α′

2 ikµD̄µ(k)


+

H̄µ(−k) +
(
α′k2

2 − 1
)
F̄µ(−k)−

√
α′

2 ikµĒ(−k)

 D̄µ(k)

 .

(3.52)

Note that C̄− does not appear at all in the action.
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3.4 Level (1, 1) odd — level-matched massless fields

3.4.1 Fields
Physical string field. The string field reads:

|Ψ−1,1(k)〉 =
(
Gµν(k) (αµ−1ᾱ

ν
−1 + αν−1ᾱ

µ
−1) + iE−µ (k) c+

0
(
αµ−1b̄−1 + b−1ᾱ

µ
−1
)

+ iA−µ (k) c−0
(
αµ−1b̄−1 − b−1ᾱ

µ
−1
)

+D(k)
(
b−1c̄−1 − c−1b̄−1

)
+B(k) c−0 c

+
0 b−1b̄−1

)
|k, ↓↓〉 ,

(3.53)

where Gµν = Gνµ corresponds to the metric, D to the ghost-dilaton, and E−µ to the NL
field associated with diffeomorphisms. All fields are correctly real.

Spurious string field. The spurious field is:

|Ψ̃+
1,1〉 =

(
M(k) (b−1c̄−1 − c−1b̄−1)c−0 +N(k) (b−1c̄−1 + c−1b̄−1)c+

0

+ iPµ(k) (αµ−1b̄−1 + b−1ᾱ
µ
−1)c−0 c

+
0 + iQµ(k) (αµ−1c̄−1 − c−1ᾱ

µ
−1)

+Rµν(k) (αµ−1ᾱ
ν
−1 + αν−1ᾱ

µ
−1)c−0

+ Sµν(k) (αµ−1ᾱ
ν
−1 − αν−1ᾱ

µ
−1)c+

0

)
|k, ↓↓〉 .

(3.54)

All fields are correctly real.

3.4.2 Gauge invariance and field redefinition
Physical string field. The gauge parameter reads:

|Λ−1,1(k)〉 =
(
χ−(k) c−0 b−1b̄−1 + iξ−µ (k)

(
αµ−1b̄−1 + b−1ᾱ

µ
−1
))
|k, ↓↓〉 , (3.55)

and its components are real.
The gauge transformations we obtain by acting with QB are

δB(k) = −α
′k2

2 χ−(k), δE−µ (k) = −α
′k2

2 ξ−µ (k),

δD(k) = χ−(k)−

√
α′

2 ikµξ−µ (k), δA−µ (k) = −

√
α′

2 ikµχ−(k),

δGµν(k) = 1
2

√
α′

2
(
ikµξ−ν (k) + ikνξ−µ (k)

)
.

(3.56)

With the same logic as in the (1, 0) case, we perform the following field redefinition:

B̄(k) = B(k) +

√
α′

2 ikµA−µ (k), (3.57)

which renders B̄(k) gauge invariant. Next, we also redefine the ghost-dilaton and the NL
fields as [24, 27]

D̄(k) = D(k) +Gµµ(k),

Ē−µ (k) = E−µ (k)−A−µ (k)− 2

√
α′

2 ikνGµν(k)−

√
α′

2 ikµD(k),
(3.58)
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such that D̄ is invariant under reparametrizations generated by ξ−µ , and Ē−µ is completely
gauge invariant. With this parametrization, the metric is in the string frame [27]. We could
perform further field redefinitions to get the metric in the Einstein frame [24, 27], but it is
sufficient to keep the string frame. Note that D̄− still transforms under the transformation
with parameter χ−, and in a way which says that it is pure gauge. This is expected since
the ghost-dilaton is non-trivial only in the semi-relative cohomology where b−0 = 0 [28–30].
We could make A−µ gauge invariant and gauge fix χ− by removing D, but it is simpler to
keep the ghost-dilaton as a state and gauge fix χ− with a condition on A−µ .4 Hence, we do
not change the remaining fields:

Ḡµν(k) = Gµν(k), Ā−µ (k) = A−µ (k). (3.59)

Spurious string field.

|Λ̃+
1,1(k)〉 =

(
α(k) (b−1c̄−1 + c−1b̄−1) + iβµ(k) (αµ−1b̄−1 − b−1ᾱ

µ
−1) c+

0

+ iγµ(k) (αµ−1b̄−1 + b−1ᾱ
µ
−1) c−0

+ δµν(k) (αµ−1ᾱ
ν
−1 − αν−1ᾱ

µ
−1)
)
|k, ↓↓〉 .

(3.60)

The gauge transformations we obtain by acting with QB are

δM(k) = −

√
α′

2 ikµγµ(k),

δN(k) = α′k2

2 α(k) +

√
α′

2 ikµβµ(k) (3.61)

δPµ(k) = α′k2

2 γµ(k),

δQµ(k) = βµ(k)− γµ(k)− i

√
α′

2 kµα(k)− 2i

√
α′

2 kνδµν(k),

δRµν(k) = 1
2

√
α′

2
(
ikνγµ(k) + ikµγν(k)

)
,

δSµν(k) = 1
2

√α′

2
(
ikνβµ(k)− ikµβν(k)

)
+ α′k2δµν(k)

 . (3.62)

4However, the zero-momentum mode χ−(0) remains and can be used to gauge-fix the zero-momentum
dilaton. As a result, it is not clear which operator changes the string coupling. We thank Ted Erler for
discussions on this point.
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3.4.3 Equation of motion

Physical string field. Omitting computational details, QB |Ψ−1,1〉 = 0 gives:

0 = α′k2

2 D(k)−

√
α′

2 ikµE−µ (k) +B(k),

0 = α′k2

2 A−µ (k)−

√
α′

2 ikµB(k),

0 = α′k2Gµν(k) +

√
α′

2
(
ikνE−µ (k) + ikµE−ν (k)

)
,

0 = E−µ (k)−A−µ (k)−

√
α′

2 ikµD(k)−
√

2α′ ikνGµν(k),

0 = B(k) +

√
α′

2 ikµA−µ (k),

0 =

√
α′

2
(
ikνA−µ (k)− ikµA−ν (k)

)
.

(3.63)

As usual, some equations are redundant and can be obtained by combining others and their
products with kµ. The penultimate equation shows that B is a NL field for A−µ , consistently
with the transformation (3.56), motivating further the choice for the redefinition (3.57).

We can combine the 3rd and 4th equations of motion to get:

0 = α′
[
k2Gµν + kµkνG

ρ
ρ − kνkρGµρ − kµkρGνρ − ηµνk2Gρρ + ηµνk

ρkσGρσ
]

+ α′
(
k2

2 ηµν − kµkν

)
D̄ +

√
α′

2
(
ikνA−µ + ikµA−ν

)
−

√
α′

2 ikρA−ρ ηµν .
(3.64)

The first line corresponds to the linearized Einstein equation.
The last equation tells that the field strength of A−µ is zero:

Fµν(A−) = 0, (3.65)

which implies A−µ = 0 on flat space (the r.h.s. of this equation stays zero even after including
interaction, such that this field is genuinely non-propagating [11]). However, on a toroidal
background it is possible to have non-trivial fluxes, implying that new solutions may be
found without the level-matching condition [11]. This is the observation which sparked our
interest in studying the complete free action, before being able to investigate properties of
the background such as T -duality. On flat space, the penultimate equation implies B = 0,
such that the other equations reduce to the usual equations of motion for the ghost-dilaton,
metric and NL vector field. Hence, closed string theories with and without level-matching
are equivalent at the perturbative level, but may be inequivalent non-perturbatively.
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After performing the field redefinition, we get:
0 = Ē−µ (k) = B̄(k),

0 = α′k2 D̄(k) + α′(ηµνk2 + kµkν) Ḡµν(k)− 2

√
α′

2 ikµĀ−µ (k),

0 = α′k2 Ḡµν(k)− α′
(
kνk

ρḠµρ(k) + kµk
ρḠνρ(k)

)
− α′ kµkνD̄(k)

+

√
α′

2
(
ikνA−µ (k) + ikµĀ−ν (k)

)
,

0 =

√
α′

2
(
ikνĀ−µ (k)− ikµĀ−ν (k)

)
.

(3.66)

3.4.4 Action
The action is:

S−1,1 =
∫ ddk

(2π)d

M(−k) α
′k2

4 M(k)−

√
α′

2 Pµ(−k) ikµM(k)

− 1
2 P

µ(−k)Pµ(k)−Rµν(−k) α
′k2

2 Rµν(k)

+

√
α′

2 Rµν(−k)
(
ikνPµ(k)+ikµPν(k)

)
+
∫ ddk

(2π)d

M(−k)

α′k2

2 D(k)−

√
α′

2 ikµE−µ (k)+B(k)


+N(−k)

B(k)+i

√
α′

2 k
µA−µ (k)


+Pµ(−k)

E−µ (k)−A−µ (k)−i

√
α′

2 kµD(k)−2iGµν(k)

√
α′

2 k
ν


−Qµ(−k)

α′k2

2 A−µ (k)−

√
α′

2 ikµB(k)


−Rµν(−k)

α′k2Gµν(k)+

√
α′

2
(
ikνE−µ (k)+ikµE−ν (k)

)
+Sµν(−k)

√α′

2
(
ikνA−µ (k)−ikµA−ν (k)

) .

(3.67)

3.5 Level (1, 1) even — level-matched massless fields

3.5.1 Fields
Physical string field. The string field reads:

|Ψ+
1,1(k)〉 =

(
D+(k) (b−1c̄−1 + c−1b̄−1) + iE+

µ (k) (αµ−1b̄−1 − b−1ᾱ
µ
−1)c+

0

+ iA+
µ (k) (αµ−1b̄−1 + b−1ᾱ

µ
−1)c−0

+Bµν(k) (αµ−1ᾱ
ν
−1 − αν−1ᾱ

µ
−1)
)
|k, ↓↓〉

(3.68)

where Bµν = −Bνµ corresponds to the Kalb-Ramond field, and E+
µ its NL field.
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Spurious string field. The spurious field is:

|Ψ̃−1,1〉 =
(
M ′(k) (b−1c̄−1 + c−1b̄−1)c−0 +N ′(k) (b−1c̄−1 − c−1b̄−1)c+

0

+ iP ′µ(k) (αµ−1b̄−1 − b−1ᾱ
µ
−1)c−0 c

+
0 + iQ′µ(k) (αµ−1c̄−1 + c−1ᾱ

µ
−1)

+R′µν(k) (αµ−1ᾱ
ν
−1 + αν−1ᾱ

µ
−1)c+

0

+ S′µν(k) (αµ−1ᾱ
ν
−1 − αν−1ᾱ

µ
−1)c−0

)
|k, ↓↓〉 .

(3.69)

3.5.2 Gauge invariance and field redefinition
Physical string field. The gauge parameter reads:

|Λ+
1,1(k)〉 =

(
χ+(k) c+

0 b−1b̄−1 + iξ+
µ (k)

(
αµ−1b̄−1 − b−1ᾱ

µ
−1
))
|k, ↓↓〉 . (3.70)

By acting with QB, we obtain the gauge transformations:

δD+(k) = −χ+(k) +

√
α′

2 ikµξ+
µ (k),

δE+
µ (k) = −α

′k2

2 ξ+
µ (k)−

√
α′

2 ikµχ+(k), δA+
µ (k) = 0,

δBµν = 1
2

√
α′

2
(
ikνξ+

µ (k)− ikµξ+
ν (k)

)
.

(3.71)

The gauge parameter for the transformation of Λ+
1,1(k) is:

|Ω+
1,1(k)〉 = ω+(k) b−1b̄−1 |k, ↓↓〉 , (3.72)

and we find:

δχ+(k) = α′k2

2 ω+(k), δξ+
µ (k) = −

√
α′

2 ikµω+(k). (3.73)

Hence, we can redefine the Λ+
1,1 parameters as:

χ̄+(k) = χ+(k)−

√
α′

2 ikµξ+
µ (k), ξ̄+

µ (k) = ξ+
µ (k). (3.74)

This gives the new transformations for the Ψ components:

δD+(k) = −χ̄+(k), δA+
µ (k) = 0,

δE+
µ (k) = α′

2 ikµ
(
ikν ξ̄+

µ (k)− ikµξ̄+
ν (k)

)
−

√
α′

2 ikµχ̄+(k),

δBµν = 1
2

√
α′

2
(
ikνξ+

µ (k)− ikµξ̄+
ν (k)

)
.

(3.75)

Note that the field strength of ξ̄+
µ (k) now appears in the transformations of both E+

µ

and Bµν .
The field D+ is pure gauge, and we can make the following field redefinition to make

E+ gauge invariant [24]:

Ē+
µ (k) = E+

µ (k)−

√
α′

2 (2ikνBµν(k) + ikµD+(k)). (3.76)

– 19 –



J
H
E
P
0
3
(
2
0
2
3
)
0
9
1

Spurious string field. The gauge parameter of the spurious field is

|Λ̃−1,1(k)〉 =
(
ε(k) c−0 c

+
0 b−1b̄−1 + κ(k) (b−1c̄−1 − c−1b̄−1)

+ iθµ(k) (αµ−1b̄−1 + b−1ᾱ
µ
−1)c+

0 + iλµ(k) (αµ−1b̄−1 − b−1ᾱ
µ
−1)c−0

+ ρµν(k) (αµ−1ᾱ
ν
−1 + αν−1ᾱ

µ
−1)
)
|k, ↓↓〉

(3.77)

So the gauge transformations we obtain by acting with QB are

δM ′(k) = ε(k) +

√
α′

2 ikµλµ(k),

δN ′(k) = ε(k)− α′k2

2 κ(k)−

√
α′

2 ikµθµ(k),

δP ′µ(k) = α′k2

2 λµ(k)−

√
α′

2 ikµε(k),

δQ′µ(k) = θµ(k)− λµ(k)− 2

√
α′

2 ikµρµν(k)−

√
α′

2 ikµκ(k),

δR′µν(k) = α′k2

2 ρµν(k) + 1
2

√
α′

2
(
ikνθµ(k) + ikµθν(k)

)
,

δS′µν(k) = 1
2

√
α′

2
(
ikνλµ(k)− ikµλν(k)

)
.

(3.78)

3.5.3 Equation of motion

Physical string field. The equations of motion obtained from (2.7) are:

0 = α′k2

2 D+(k) +

√
α′

2 ikµE+
µ (k),

0 = α′k2Bµν(k) +

√
α′

2
(
ikνE+

µ (k)− ikµE+
ν (k)

)
,

0 =
√

2α′ ikµBµν(k)−

√
α′

2 ikνD+(k) + E+
ν (k)−A+

ν (k),

0 = α′k2

2 A+
µ (k), 0 =

√
α′

2 ikµA+
µ (k),

0 =

√
α′

2
(
ikνA+

µ (k) + ikµA+
ν (k)

)
. (3.79)

Let us prove that A+
µ = 0, implying that there is no additional propagating degree

of freedom. Writing µ = 0, 1, i with i = 2, . . . , d − 1 and kµ = (k0, k1, ki), the equation
k2A+

µ = 0 implies k1 = ±k0. Then, kµA+
µ = 0 yields A+

1 = ±A+
0 . The last equation for

(µ, ν) = (0, i) gives A+
i = 0, and A+

0 = A+
1 = 0 for (µ, ν) = (0, 0).

After applying the field redefinition, the first equation becomes:

0 = ikµĒ+
µ (k). (3.80)
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We can obtain the usual equation of motion for the Kalb-Ramond field by multiplying the
third equation with kρ and anti-symmetrizing, before combining with the second equation:

0 = α′
[
k2Bµν + kµk

ρBνρ − kνkρBρµ
]

+

√
α′

2
(
ikνA+

µ (k)− ikµA+
ν (k)

)
. (3.81)

3.5.4 Action
The action is:

S+
1,1 =

∫
ddk

(2π)d

−1
4 M

′(−k)α′k2M ′(k)−

√
α′

2 P ′µ(−k)ikµM ′(k)

−

√
α′

2 S′µν(−k)
(
ikνP ′µ(k)− ikµP ′ν(k)

)
−1

2 P
′µ(−k)P ′µ(k)− 1

2 S
′
µν(−k)α′k2S′µν(k)


+
∫

ddk

(2π)d

−M ′(−k)

α′k2

2 D+(k) +

√
α′

2 ikµE+
µ (k)


+

√
α′

2 N ′(−k)ikµA+
µ (k)− 1

2 Q
′µ(−k)α′k2A+

µ (k)

− P ′µ(−k)

√2α′ ikµBµν(k)−

√
α′

2 ikνD+(k) + E+
ν (k)−A+

ν (k)


+ S′µν(−k)

α′k2Bµν(k) +

√
α′

2
(
ikνE+

µ (k)− ikµE+
ν (k)

)
+

√
α′

2 R′µν(−k)
(
ikνA+

µ (k) + ikµA+
ν (k)

) . (3.82)

3.6 Level (2, 0) — non-level-matched massless fields

3.6.1 Field
Physical string field. The string field reads:

|Ψ2,0(k)〉 =
(
R(k) b−2c

−
0 + S(k) b−2c

+
0 +X(k) b−1c−1

+ iYµ(k) b−1α
µ
−1c

+
0 + iWµ(k) b−1α

µ
−1c
−
0

+ Zµν(k)αµ−1α
ν
−1 + iVµ(k)αµ−2

)
|k, ↓↓〉 .

(3.83)

Spurious string field. The spurious field is

|Ψ̃(2,0)(k)〉 =
(
I(k) b−2c

−
0 c

+
0 + J(k) c−2 +A(k) b−1c−1c

−
0 +B(k) b−1c−1c

+
0

+ iCµ(k) b−1α
µ
−1c
−
0 c

+
0 + iDµ(k) c−1α

µ
−1

+ Eµν(k)αµ−1α
ν
−1c
−
0 + Fµν(k)αµ−1α

ν
−1c

+
0

+ iGµ(k)αµ−2c
+
0 + iHµ(k)αµ−2c

−
0

)
|k, ↓↓〉 .

(3.84)
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3.6.2 Gauge invariance and field redefinition

Physical string field. The gauge parameter reads:

|Λ2,0(k)〉 =
(
α(k) b−2 + iβµ(k) b−1α

µ
−1

)
|k, ↓↓〉 . (3.85)

The gauge transformations we obtain by acting with QB are

δR(k) = −2α(k), δS(k) = −α
′k2

2 α(k),

δX(k) = −3α(k)−

√
α′

2 ikµβµ(k),

δYµ(k) = −α
′k2

2 βµ(k), δWµ(k) = −2βµ(k),

δZµν(k) = 1
2

√
α′

2
(
ikµβν(k) + ikνβµ(k)

)
, δVµ(k) = βµ(k).

(3.86)

We perform the following field redefinitions:

R̄(k) = R(k), S̄(k) = S(k)− α′k2

4 R(k),

X̄(k) = X(k)− 3
2 R(k)− 1

2

√
α′

2 ikµWµ(k),

V̄µ(k) = Vµ(k), W̄µ(k) = Wµ(k) + 2Vµ(k),

Ȳµ(k) = Yµ(k) + α′k2

2 Vµ(k),

Z̄µν = Zµν −
1
2

√
α′

2
(
ikµVν(k) + ikνVµ(k)

)
,

(3.87)

such that

δR̄(k) = −2α(k), δVµ(k) = βµ(k), δS̄(k) = 0,
δX̄(k) = 0, δȲµ(k) = 0, δW̄µ(k) = 0, δZµν(k) = 0.

(3.88)

This shows that R̄ and V̄µ are pure gauge fields.

Spurious string field. The gauge parameter of the spurious field is

|Λ̃2,0〉 =
(
γ(k) b−2c

−
0 + δ(k) b−2c

+
0

+ ε(k) b−1c−1 + iκµ(k) b−1α
µ
−1c

+
0 + iθµ(k) b−1α

µ
−1c
−
0

+ λµν(k)αµ−1α
ν
−1 + iπµ(k)αµ−2

)
|k, ↓↓〉 ,

(3.89)
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and the gauge transformations we obtain by acting with QB are

δI(k) = −2δ(k) + α′k2

2 γ(k), δJ(k) = 2δ(k) + 2γ(k) + 3ε(k),

δA(k) = 2ε(k)−

√
α′

2 ikµθµ(k)− 3γ(k),

δB(k) = α′k2

2 ε(k)−

√
α′

2 ikµκµ(k)− 3δ(k),

δCµ(k) = −2κµ(k) + α′k2

2 θµ(k),

δDµ(k) = κµ(k) + θµ(k) + 2πµ(k)−
√

2α′ ikνλµν(k)−

√
α′

2 ikµε(k),

δGµ(k) = α′k2

2 πµ(k) + κµ(k), δHµ(k) = 2πµ(k) + θµ(k),

δEµν(k) = 2λµν(k) +

√
α′

2 ikµθν(k),

δFµν(k) = α′k2

2 λµν(k) +

√
α′

2 ikµκν(k).

(3.90)

3.6.3 Equation of motion

Physical string field. The equations of motion are:

0 =−2S(k)+α′k2

2 R(k), 0 = 2X(k)−3R(k)−

√
α′

2 ikµWµ(k),

0 =Yµ(k)+α′k2

2 Vµ(k), 0 = 2S(k)+2R(k)+3X(k),

0 =−2Yµ(k)+α′k2

2 Wµ(k), 0 = 2Vµ(k)+Wµ(k),

0 =Yµ(k)+α′k2

2 Vµ(k), 0 = 2S(k)+2R(k)+3X(k),

0 = 2Zµν(k)+ 1
2

√
α′

2
(
ikνWµ(k)+ikµWν(k)

)
,

0 =−3S(k)+α′k2

2 X(k)−

√
α′

2 ikµYµ(k)

0 = α′k2

2 Zµν(k)+ 1
2

√
α′

2
(
ikνYµ(k)+ikµYν(k)

)
,

0 =Yµ(k)+Wµ(k)+2Vµ(k)−

√
α′

2 ikµX(k)−2

√
α′

2 ikνZµν(k). (3.91)

Setting R = Vµ = 0 through a gauge transformation, the equations of motion simplify to:

0 = S̄(k) = X̄(k) = Ȳµ(k) = W̄µ(k) = Z̄µν(k), (3.92)

which shows that there are no physical degrees of freedom.
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Spurious string field. The equations of motion are:

0 = 3A(k)−2J(k)−2I(k), 0 =B(k)−α
′k2

4 A(k),

0 = 2Hµ(k)−2Dµ(k)−Cµ(k)+

√
α′

2 ikνEµν(k)+

√
α′

2 ikµA(k),

0 = 2iFµν(k), 0 = α′k2

2 Eµν(k),

0 =

√
α′

2 kµEµν(k), 0 =

√
α′

2 kµFµν(k), 0 =

√
α′

2 kµCν(k),

0 =Cµ(k)+2Gµ(k)−α
′k2

2 Hµ(k), 0 = 2I(k)+3B(k)−α
′k2

2 J(k),

0 =Cµ(k)+2Gµ(k)−α
′k2

2 Dµ(k)+

√
α′

2 ikνFµν(k)+

√
α′

2 ikµB(k),

0 = 3I(k)−

√
α′

2 ikµCµ(k).

(3.93)

3.6.4 Action

The action is

S2,0 =
∫ ddk

(2π)d

I(−k)
(
S(k)+R(k)+ 3

2X(k)
)

+J(−k)
(
S(k)−α

′k2

4 R(k)
)

+A(−k)

α′k2

4 X(k)− 1
2

√
α′

2 ikµYµ(k)− 3
2 S(k)


+B(−k)

−X(k)+ 1
2

√
α′

2 ikµWµ(k)+ 3
2R(k)


+ 1

2 C
µ(−k)

Yµ(k)+Wµ(k)+2Vµ(k)−

√
α′

2
(
2ikνZµν+ikµX(k)

)
+Dµ(−k)

(
Yµ(k)−α

′k2

4 Wµ(k)
)

− 1
2E

µν(−k)

α′k2Zµν(k)+

√
α′

2
(
ikµYν(k)+ikνYµ(k)

)
+Fµν(−k)

2Zµν(k)+ 1
2

√
α′

2
(
ikµWν(k)+ikνWµ(k)

)
+Gµ(−k)

(
2Vµ(k)+Wµ(k)

)
−Hµ(−k)

(
α′k2

2 Vµ(k)+Yµ(k)
) . (3.94)
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4 Discussion

In this paper, we have pushed further the study of closed bosonic string field theory
without the level-matching condition, which has been constructed [11]. We have studied
the equations of motion for the physical fields Ψ up to the massless level, and given the
action for all levels except (2, 0). In particular, we have studied the even sector of the (1, 1)
level, which contains the Kalb-Ramond B field. The total action computed in this way
provides the quadratic part of the low-energy effective theory without level-matching.

As was observed in [11] and discussed in section 3.4, string theory without level-matching
may not be equivalent to string theory with level-matching condition at the non-perturbative
level, since it admits additional background solutions. It would be interesting to investigate
these new backgrounds with more details, especially, from the point of view of T -duality
and double field theory. A first step would be to make contact with the sigma model fields
associated to the new components of the string field, following [27]. Another possibility is
to reproduce the analysis from [31] for the Ramond sector to get an interpretation of the
additional fields.

As discussed in [11], it is not clear how to interpret interactions without level-matching.
Indeed, off-shell amplitudes (and string vertices) become multi-valued for states which are
not level-matched: while it is always possible to write string vertices which project each input
on level-matched states, this does not seem very interesting. This also requires investigating
the ghost-dilaton theorem [28, 29, 32], by understanding both which operator changes
the string coupling (see footnote 4) and how to deal with the more general interactions.
The solution could arise again by analogy with the superstring:5 super-SFT can also
be formulated in terms of super-Riemann surfaces [33, 34] (see [35] for a proof of the
equivalence), and PCOs appear after bosonization of the βγ system and act as projectors.
Hence, one can ask if there is a generalized notion of Riemann surface which can incorporate
string fields without level-matching. Another avenue is to study hyperbolic string field
theory [36–39] without level-matching to see how it is affected. We hope to come back to
these issues later.
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A Useful formulas

We consider closed bosonic string theory in the critical dimension, d = 26, described by a 2d
CFT made of d = 26 free scalar fields Xµ (µ = 0, . . . , d− 1) and a bc ghost system (see [5]
for more details). Except when necessary, we provide formulas only for the holomorphic
sector ∂Xµ(z), b(z) and c(z), since the formulas involving ∂̄Xµ(z), b̄(z) and c̄(z) for the
anti-holomorphic sector follow by adding a bar.

i∂Xµ(z) =

√
α′

2
∑
n∈Z

αµn
zn+1 , b(z) =

∑
n∈Z

bn
zn+2 , c(z) =

∑
n∈Z

cn
zn−1 . (A.1)

The zero-modes of ∂Xµ(z) and ∂̄Xµ(z) are related to the momentum operator

αµ0 = ᾱµ0 :=

√
α′

2 pµ, (A.2)

whose eigenvalue kµ gives the momentum of the string center-of-mass.
The energy-momentum tensor is:

T (z) := Tm + T gh =
∑
n∈Z

Ln
zn+2 , Ln := Lm

n + Lgh
n , (A.3)

where
Tm = − 1

α′
∂X · ∂X, T gh = −2 b∂c− ∂b c, (A.4)

and
Lm
n = 1

2
∑
n∈Z

αn · αm−n, Lgh
n =

∑
n∈Z

(m+ n)bm−ncn. (A.5)

It is also useful to introduce the following combinations of zero-modes:

L±0 := L0 ± L̄0, b±0 := b0 ± b̄0 c±0 := 1
2 (c0 ± c̄0). (A.6)

The BRST charge admits the following useful decomposition:

QB := c+
0 L

+
0 − b

+
0 M

+ + c−0 L
−
0 − b

−
0 M

− + Q̂+
B, (A.7)

Q̂± :=
∑
n 6=0

(c−nLm
n ± c̄−nL̄m

n )

− 1
2

∑
m,n 6=0
m+n 6=0

(m− n)(c−mc−nbm+n ± c̄−mc̄−nb̄m+n), (A.8)

M± :=
∑
n>0

n(c−ncn ± c̄−nc̄n), (A.9)

L+
0 := N + N̄ + α′

2 p2 − 2, (A.10)

L−0 := N − N̄ , (A.11)

Lm
m := 1

2
∑

n 6=0,m
αn · αm−n +

√
α′

2 p · αm (m 6= 0), (A.12)
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where the level and number operators are defined as:

N := Nm +Nb +N c, (A.13)

Nm :=
∑
n>0

nNm
n , Nm

n := 1
n
α−n · αn, (A.14)

Nb :=
∑
n>0

nNb
n , Nb

n := b−ncn (A.15)

N c :=
∑
n>0

nN c
n, N c

n := c−nbn, (A.16)

Ngh := N̂gh + c0b0 + c̄0b̄0 + 2, (A.17)

N̂gh :=
∑
n>0

(N c
n −Nb

n) (A.18)

The (anti)-commutation relations between the different modes appearing previously
are:

[αµm, ανn] = mηµνδm+n, {bm, cn} = δm+n, (A.19)
[Lm
n , α

µ
−n] = nαµm−n, (A.20)

[Nm
n , α

µ
−n] = δm,nα

µ
−m, [Nm, αµ−n] = mαµ−m, (A.21)

[Nb
n , b−n] = δm,nb−m, [N c

n, c−n] = δm,nc−m. (A.22)

The string Hilbert space H is a Fock space built from the vacuum |k, ↓↓〉 which is
defined as:

b±0 |k, ↓↓〉 = 0, pµ |k, ↓↓〉 = kµ |k, ↓↓〉 , (A.23)

n > 0 :
αµn |k, ↓↓〉 = 0, Lm

n |k, ↓↓〉 = 0,
bn |k, ↓↓〉 = 0, cn |k, ↓↓〉 = 0.

(A.24)

The previous definitions immediately imply:

L+
0 |k, ↓↓〉 =

[
α′k2

2 − 2
]
|k, ↓↓〉 ,

L−0 |k, ↓↓〉 = Q̂± |k, ↓↓〉 = M± |k, ↓↓〉 = 0.
(A.25)

For all computations in section 3 except at level (2, 0), we need only the first terms in
each expansion:

Q̂+
B ∼ c−1L

m
1 + c1L

m
−1 + c̄−1L̄

m
1 + c̄1L̄

m
−1, (A.26a)

M± ∼ c−1c1 ± c̄−1c̄1, (A.26b)

Lm
±1 ∼

√
α′

2 k · α±1, (A.26c)

[Lm
1 , α

µ
−1] = αµ0 =

√
α′

2 pµ, (A.26d)

Lm
−1 |k, ↓↓〉 =

√
α′

2 k · α−1 |k, ↓↓〉 , (A.26e)

[αµ1 , αν−1] = ηµν , {b1, c−1} = 1. (A.26f)
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Euclidean and BPZ conjugations are respectively defined as:(
λA1 · · ·An |0〉

)†
= λ∗ 〈0|A†n · · ·A

†
1,

φ†n = φ−n, |k〉† = 〈k| ,

|k, ↓↓〉† = 〈−k| c̄−1c−1 =: −〈k, ↓↓ | ,

(A.27)

and (
λA1 · · ·An |0〉

)t
= λ 〈0|At1 · · ·Atn,

φtn = (−1)hφ−n, |k〉t = 〈−k| ,
αtn = −α−n, btn = b−n, ctn = −c−n,

|k, ↓↓〉t = 〈−k| c−1c̄−1 =: 〈−k, ↓↓ | ,

(A.28)

where we use I(z) = 1/z for the inversion, λ ∈ C, and φ is any field with conformal weight
h. The BPZ operator is BPZ odd and self-adjoint:

QtB = −QB, Q†B = QB. (A.29)

This allows to define the BPZ inner-product 〈·, ·〉 which is normalized as:

〈k, ↓↓ | c−0 c
+
0 |k

′, ↓↓〉 = 〈k, 0| c−1c̄−1c
−
0 c

+
0 c1c̄1 |k′, 0〉 := 1

2 (2π)dδ(d)(k − k′) (A.30)

since
〈−k, ↓↓ | := |k, ↓↓〉t = 〈k| c−1c̄−1, c−0 c

+
0 = 1

2 c0c̄0. (A.31)

The inner-product has the following properties:

〈A,B〉 = (−1)AB 〈B,A〉 , 〈A,B〉† = 〈B†, A†〉 , (A.32)

where an operator in exponent indicates its Grassmann parity.
Finally, the worldsheet parity Ω exchanges the left- and right-moving modes:

ΩαµnΩ−1 = ᾱµn, ΩbnΩ−1 = b̄n, ΩcnΩ−1 = c̄n, (A.33)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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