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Infrared (IR) diagnostics are used to measure the surface temperature of plasma-facing components in 
fusion devices. However, the interpretation of such images and any quantitative analysis are very complex in 
all-reflective environments because of unknown emissivity and multiple reflections. This is an important issue 
for safe operation and understanding of plasma-wall interaction phenomena. Moreover, it can also benefit 
other industrial applications e.g., monitor heating on production lines, additive manufacturing devices, etc. 
Recently, a first demonstration of simulation-assisted machine learning method has proven to be effective in 
retrieving surface temperatures from IR measurements. Yet, the performances of such an approach has been  
evaluated on a tokamak prototype considering pure specular surfaces. This paper presents an optimised  
generation of training dataset based on a synthetic data generated by a deterministic ray tracer model. The 
obtained results shows that the proposed methodology enables very accurate simulations minimizing the 
computational burden associate to greedy models (i.e., Monte Carlo type) to generate training data for 
realistic surfaces. 
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1. Introduction 

Infrared (IR) thermography system is a key diagnostic in fusion devices to monitor the Plasma Facing Components 
(PFC). However, obtain reliable surface temperatures of metallic PFCs directly from infrared images is challenging. 
Indeed, in a fully metallic and reflective environment, IR interpretation is disturbed by the low and variable emissivities 
of targets. Parasitic flux coming from reflections of a hot environment may cause important measurement errors from 
little percentage up to 100 percent in cold regions [1]. Such errors are critical for machine operations with risks of 
component damage due to underestimated temperature or false alarms limiting the plasma performances due to 
temperature overestimation. Therefore, our objective is to develop a robust and efficient numerical inverse method 
for estimating temperatures from IR images. 
Toward this end, our forward model is based on an efficient synthetic diagnostics (so called digital twin) [2], able to 
simulate accurately IR images from a thermal scene in a tokamak, including multiple reflections and non-uniform 
emissivities. In [3], a first inverse model has been implemented based on a deep-learning neural network trained on a 
simulated dataset, using fast ray tracer and assuming specular surfaces (acting as mirror). The obtained results showed 
that surface temperature can be found with an accuracy better that 5 percent.  The main challenge is on the extension 
of such a method to more plasma scenarios, including complex optical properties of materials (i.e. diffuse, glossy 
surfaces). That is, simulating complex thermal scenes with a high fidelity level requires high computing time. Typically, 
classical Monte Carlo Ray Tracing code (MCRT), able to handle such complexity, requires 12 hours per images with 4-
core CPU. The difficulty is then to get an optimised training dataset aiming at minimizing the number of simulated 
images by selecting the most  representative of tokamak experiments. In this paper, we propose an adaptive sampling 
strategy for constructing optimised training synthetic IR dataset. The section 2 and 3 present the adaptive sampling 
strategy implemented for IR images in tokamak, based on Principal Component Analysis (PCA). In section 4, the 
performances of the proposed method are evaluated by comparing the results obtained from a reference huge 
training dataset (of 5 000 simulated images) and the ones coming from an optimised training dataset after adaptive 
sampling. 
 

2. Adaptive sampling 

The idea and the point of adaptive sampling is, in the first place, to cover the wider range of inputs as possible, while 
limiting the number of samples. The first step is the input parameters' reduction. Indeed, an important number of 
parameters, used as input of IR synthetic diagnostic, are required to describe a complex thermal scene in tokamak. 



Typically, each point of the 3D thermal scene wall should be characterised by 5 to 8 physical parameters: 
temperature and normal emissivity values, parameters of model of angular-dependence of emissivity, parameters of 
Bidirectional Reflectance Distribution Function (BRDF). Since we are dealing with finely meshed geometries to be 
sure to capture all the potential reflections, this would lead to take into account several millions of input parameters 
(i.e. 2 millions of nodes x number of physical parameters). In a first approximation, for the results presented in this 
paper, the number of inputs parameters has been drastically reduced, assuming uniform temperature and material 
properties for all the geometries and PFCs, except the lower divertor. For the lower divertor we use the 
parameterised so-called Eich formulae to mimic the temperature patterns. We end up with 49 input parameters, 
temperature and emissivity (material property in our case of purely specular surfaces) for 22 components, to which 
we add the emissivity and Eich formulae (4 parameters) for the lower divertor. The number of parameters would be 
increased for more complex parametrisation of the tokamak scene. 
The second step is to get a first distribution of input parameters in a given range and equitably distributed. To do that, 
we use the Latin Hypercube Sampling (LHS), which is a statistical method ensuring that all inputs are the furthest apart 
dimension wise. The new method, proposed in this paper, will aim at obtaining a better distribution of input 
parameters in the sense that it will represent a wider variety of outputs, and so improves the accuracy of our inverse 
model based on the optimised training dataset.  
Unlike the usual training set sampling strategies whose goal is to fill homogeneously the input spaces, we propose a 
sampling strategy relying on sampling the space spanned by the outputs [4]. We refer to this space as extracted feature 
space. The latter is computed by applying the PCA [5] algorithm to our entire initialisation set of IR images projected 
into the latent space spanned by the principal components. That is, the PCA extracts a suitable subspace from the 
given set of inputs (IR images in our case) having a smaller (or much smaller) dimension compared to the IR images. 
The projection of those inputs on this subspace maximises the variance of the whole dataset, meaning capturing a 
maximum of information from it. Therefore, a homogeneous fill of the space spanned by the principal components 
corresponds in capturing the maximum variance of all the signals associated to the considered problem. Furthermore, 
by projecting the database into this latent space, we can analyse and extract information from the whole set. For 
instance, we can monitor the impacts of our problem's input parameters on the corresponding outputs (IR images). 
We then fill those extracted feature spaces through our algorithm, referred as the Feature Space Filling (FSF) algorithm 
[6], at locations where we considered, via a metric we set, there is missing information which could help later on our 
inverse model (“improving” the dataset). The number of latent components (dimensions of subspace) can be 

conveniently chosen by considering the cumulative sum of the so-called 
explained variance that represents how much variation in a dataset can 
be attributed to each of the principal components generated by the 
method. 
 

3. Filling strategy 

Figure 1 is a way to represent the spatial distribution of input parameters 
of simulations, and therefore the consequence of this method. We show 
here temperature of outer divertor as a function of emissivity of lower 
divertor.  Classical algorithm (LHS) (orange points) gives uniform 
distribution along each axis, without considering the sensitivity of input 
parameters on the of simulation. On the contrary, PCA analysis (blue 
points) will increase the sampling around the input parameters the most 
sensitive (with higher gradient on the outputs). 

Figure 2 shows a flow chart of filling algorithm proposed. First, 100 
scenarios (one scenario is a set of 49 parameters used as input of our 
digital twin) is picked via the pseudo-random LHS sampling strategy, 
which gives a first dataset of 100 IR simulated images. A first PCA-
based decomposition is then applied on this initial dataset, which 
aims to identify patterns in images based on the correlation between 
parameters. This allows reducing the number of output parameters 
(all pixels from the entire initial dataset) to 12 principal components 
(one vector per image), capturing 94 % of the dataset variance (the 
remaining 6 % can be associated just to noise contributions), 

identifying the most influent parameters. In a first step, PCAs (linear method) has been implemented since it is very 
efficient for compensating Monte Carlo statistical noise. Non-linear method is also considered and will be compared 
later. 

Figure 1: The inputs corresponds to the emissivity 

(range is from 0.05 to 0.5) and surface temperature 

(range is from 600 to 1200) of the lower divertor. 

For classical algorithm (LHS), in orange points) 

,one can see it is equally distributed (orange curves 

along up and right axis).As for the optimised 

method, they tend to cluster at the top right corner 

of the image, meaning the best distribution in terms 

of impact in the output space does not mean 

parameters equidistant in the input spaces. 



The second step consists in increasing this initial dataset to another 200 images. To do that, two preliminary steps are 
needed. Firstly, we compute a so-called global tolerance within these projected initial dataset latent space values, 
which measures how "different" those images are from each other, meaning how much they represent diverse 
physical scenarios. It is used when a potential newcomer is projected in the feature space to establish if it is 
"sufficiently far" from the features of the rest of the samples or not. It can be translated as a scalar giving a one-
dimension minimum distance value, which will be compared with any candidate for each dimension. 
Secondly, this initial training dataset is used to train a neural network, establishing the relation between input 
parameters and principal components. This meta-model tells us where a potentially new computed scenario would be 
projected if we run it through the digital twin, saving us the computing time of a forward model's pass which could be 
very costly. 
When these two steps are performed, the training dataset can be completed in an optimised way. To do that, we test 
number of candidates given by a LHS sampling. In our present case, the number of candidates must around 500, not 
too small to be sure we have enough good candidates per round. After a first slice of the candidates with the global 
tolerance previously computed, which takes us from 500 to about 50 to  150 suitable candidates. It is worth noticing 
that each time a candidate is judged as suitable, the dataset is updated in order to compare the following candidates 
with the latter, a second slice is made taking the 10 suitable samples whose minimum distance dimension wise are the 
biggest. 
After the new samples have been chosen, we update the global tolerance and the meta-model until the loop is over. 
The loop  stops when the predefined number of samples (300 in our case) has been reached.  
The final  step is to evaluate the performances of a NN based inverse model  when trained  on the “optimised” dataset  
and comparing it with  a NN trained  on  a non-optimised (naïve) dataset of 300 images (meaning directly generated 
from a LHS of size 300 and without PCA analysis).  We assess the performance of the NNs on a test set made of 5 000 
images.  

4. Results 

To assess the performances of adaptive sampling on machine learning techniques, we base this on the work performed 
in [3] using supervised deep learning (U-Net) to establish inverse model able to find the surface temperature and 
emissivity maps from an infrared image. These results have been obtained from a fast radiative model, so-called 
Speculos that is a "deterministic" ray tracer able to propagate rays in 3D meshed geometry considering pure specular 
surfaces (i.e., acting as mirror). This allows generating a large database quickly and testing methods feasibility. For this 
purpose, the thermal scene (1 million meshes geometry) is described by 49 parameters.  Emissivities are between 0.05 
and 0.5 for all components, temperatures are between 80 °C and 120 °C for the first wall, higher temperatures from 
300 °C to 500 °C is assumed for components close to the plasma, and the  maximum temperature of divertor 

Figure 2: Workflow diagram of filling strategy: (1) Construction of the initial dataset from which the first meta-model and global tolerance are 

derived  (2) the filling loop to increase the dataset with the resulting updates (3) the optimal database is used to train the deep learning based 

inverse model. 



temperature profile can rise to 1800 °C. We compare two synthetic 
datasets: (1) a “naïve” dataset generated from simple LHS sampling and 
(2) an optimised dataset using adaptive sampling strategy proposed. 
We make three databases of each kind, starting from 100 images and 
reaching 300 images, and for each one of them, we have done 10 
trainings on our deep-learning based inverse model, using 20% of the 
total dataset as our validation set. The performances of neural networks 
trained by the two kinds of dataset are then assessed from a set of 2000 
images. Our criterion to determine the good number of images required 
is based on the ITER specifications (i.e. 10% error for high temperature 
>400°C and 20% for lower temperature) 
The mean relative error from temperature on all geometries except 
divertor is of 8% for optimised method and 13% for naive method, 
whereas on the divertor, it goes from 9% for our method as shown in 
Figure 3, up to 15% for the “naïve“ one. The main problem for this latter 
method which appeared, is that it regularly misses the divertor pattern. 
Figure 4 shows the temperature profile on lower divertor extracted 
from one synthetic image: the true temperature of targets used as input of photonic simulation is compared to 
temperature found from IR image using machine learning. We compare here the temperature predicted by 3 different 
NN trained with naïve dataset of 300 images, with optimised dataset of 250 and 300 images. Predicted temperatures 
are also compared to the apparent temperature (or blackbody temperature assuming emissivity equal to 1 without 
any correction. The NN trained with naïve dataset does not allow finding the temperature profile. It is shown that 250 
images for training dataset is not sufficient, even after optimization. In this case, the predicted temperature error is 
equivalent to the BB temperature. However, very good results have been obtained with NN trained with optimised 
dataset of 300 images with an error lower than 5%. 
 

5. Conclusion and outlooks 

IR inverse thermography using simulated data coupled to machine learning techniques is a promising approach but 
the challenge is to get reliable and unbiased training data set of simulated images while keeping reasonable 
computing time. Adaptive sampling method based on PCA analysis gives encouraging results to downsize the 
training data set from 15 000 to 300 images with similar performances, which translates into a time saving (with CPU 
ray tracer on 4-core), of (15000-300)*30min = 300 days.  These first results have been obtained for idealistic cases 
assuming pure specular surface and uniform temperature except for divertor. 
The next step will be to extend the method on real condition of tokamak with complex thermal scenes (especially 
including real surface properties and local hot spots). The adaptive sampling is an important method to deal with the 
very large number of potential thermal scene in tokamaks.  Such a methodallows us to keep highly accurate 
simulations from methods greedy in computing time, such as ray tracer methods (Monte Carlo type), but also for any 
heavy physical codes, keeping the goal of generate quickly training datasets specific for NN. In our case, it enables  
high accuracy in terms of NN predictions for the estimation of surface temperature from infrared images. 
 
 

Figure 4: Left: Temperature profile on lower divertor. Black curve is the apparent temperature or so-called blackbody temperature assuming 

emissivity equal to 1. Blue curve is the real surface temperature. Green curve the temperature predicted by NN trained with naïve dataset. 

Magenta and red curves the temperature predicted by NN trained with optimized dataset of 250 and 300 images respectively. Right: Simulated IR 

images assuming pure specular surface. 

Figure 3: Testing set mean relative error  percentage 

on the lower divertor estimation per temperature range 

after an adaptive sampling. Error being higher for 

lower temperatures since it is when we face more 

reflections, and therefore more difficulty to 

approximate. 
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