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Abstract: The solution of the eigenvalue problem in bounded domains with planar and cylindrical
stratification is a necessary preliminary task for the construction of modal solutions to canonical problems
with discontinuities. The computation of the complex eigenvalue spectrum must be very accurate since
losing or misplacing one of the thereto linked modes will have an important impact on the field solution.
The approach followed in a number of previous works is to construct the corresponding transcendental
equation and locate its roots in the complex plane using the Newton–Raphson method or Cauchy-
integral-based techniques. Nevertheless, this approach is cumbersome, and its numerical stability
decreases dramatically with the number of layers. An alternative, approach consists in the numerical
evaluation of the matrix eigenvalues for the weak formulation for the respective 1D Sturm–Liouville
problem using linear algebra tools. An arbitrary number of layers can thus be easily and robustly treated,
with continuous material gradients being a limiting case. Although this approach is often used in high
frequency studies involving wave propagation, this is the first time that has been used for the induction
problem arising in an eddy current inspection situation. The developed method is implemented in
Matlab and is used to deal with the following problems: magnetic material with a hole, a magnetic
cylinder, and a magnetic ring. In all the conducted tests, the results are obtained in a very short time,
without missing a single eigenvalue.

Keywords: nondestructive testing; eddy current testing; eigenvalues and eigenfunctions; complex roots

1. Introduction

Heng to the increase in computer processing power, mathematical models have be-
come an integral part of the comprehensively conducted eddy current testing. Such models
are utilized at each test stage, starting from the designing of eddy current probes, through
the selection of optimal test parameters and carrying out simulations, to the interpreta-
tion of the obtained results and their implementation directly in the measuring device.
Several eddy current problems have been solved with the application of extremely fast
and effective analytical models. A significant reduction in computing time is obtained
through abandoning the modeling of the infinite domain, which has made possible to
replace infinite integrals and series with a finite number of terms. This procedure is compu-
tationally efficient and errors are easily controlled by simply adjusting the location of the
truncation boundaries or by modifying the number of terms in the eigenfunction expansion.
A truncated domain, however, implies a description of the field by discrete eigenfunction
expansions and eigenvalues.

In canonical geometries eigenvalues are computed as roots of expressions involving
trigonometric or Bessel functions. In the case of modeling objects with large geometric
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dimensions, such as a plate [1–5] or half-space [6,7], the region under consideration con-
sists exclusively of conductive material. In this case, the eigenvalues are real numbers,
and their calculation is relatively easy. What poses a real challenge is the determination
of complex eigenvalues when the region under consideration consists of several sub-
regions (containing conductive material or air). Such a situation occurs when modeling
disks [8–11], tubes [12–16], rods [17,18], materials with a defect [19–24], and wherever there
are edges [25–29] or discontinuities [30–32] (Figure 1). Determination of the eigenvalues
then boils down to finding complex roots of the appropriate complex function.
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Figure 1. The eddy current probe with samples for testing holes, slots, and edge effects.

Because of the oscillating nature of eigenfunctions, and overflow errors caused by
local maxima of very large values, both complex plane search methods and the procedures
available in numerical packages (such as fsolve in Matlab or FindRoot in Mathematica)
are often not fully efficient at precisely determining all eigenvalues. At the same time,
attempts to develop a reliable algorithm based on iterative methods, such as the Newton–
Raphson method, have been unsuccessful so far, even with the employment of a very
small step. More promising seems to be the approach based on Cauchy’s argument prin-
ciple [33–40] the solution domain is divided into small parts where the roots are found
with contour integration. Unfortunately, this is a time-consuming method that requires
carrying out numerous integrations, and the roots located too close to the contour edge are
omitted anyway.

The lack of a fast and reliable method for finding complex eigenvalues significantly
hinders the creation of new analytical models, and consequently restricts the development
of eddy current modeling. What is particularly notable is the lack of a universal root-finding
algorithm. Therefore, each new eddy current problem requires introducing necessary
modifications to the applied solution. In an attempt to meet these requirements, this paper
proposes a completely different and much more efficient approach, wherein the same
algorithm is used for each configuration. Starting from the Helmholtz equation for the
magnetic vector potential, we treat a general Sturm–Liouville problem and apply linear
algebra theory to transform the problem of finding the complex roots to that of finding the
eigenvalues of a matrix.

The developed solution can be used for a wide class of eddy current problem, in
particular for those related to the detection of flaws and discontinuities in tested objects. Its
speed and efficiency have been verified with the use of other root-finding algorithms, with
very good results. The proposed algorithm turns out to be the only one in the entire set of
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tests that does not omit a single eigenvalue, while performing the calculations in a very
short time.

2. Theory

The solution to eddy current problems can be derived from the Helmholtz equation
for the magnetic vector potential A, which for constant or piecewise constant magnetic
permeability µr and harmonic excitation of frequency f takes the form:

∇2A + k2A = 0, (1)

where k2 = −j ω µ0 µr σ, with ω = 2πf denoting the angular frequency and σ the conductiv-
ity. This equation can be solved either as three scalar Helmholtz equations in the Cartesian
coordinate system or it can be further scalarized by using the second-order vector potential
defined by

A = ∇×W. (2)

In all cases, the resulting equations are independent scalar Helmholtz equations of
the form:

∇2U(x, y, z) + k2U(x, y, z) = 0. (3)

The solution to (3) using separation of variables is generally possible for constant k and
simple geometries involving infinite planes and cylindrical configurations (layered or not).
When either k is a continuous function of a coordinate variable or the geometry involves
edges or discontinuities, a possible solution is the use of the truncated region eigenfunction
expansion (TREE) method [26]. The method involves the truncation of the solution domain
in a suitable direction depending on the problem geometry. The diffusive nature of an eddy
current problem implies that the truncation can be done without introducing significant
errors, provided that the truncation boundaries are sufficiently far such that the field is
small. The most significant advantage of the approach is the ability to match interface
conditions across several boundaries simultaneously and, hence, to obtain solutions for
new configurations by adopting traditional canonical structures.

The air-core coil positioned over the conductive material with a hole of radius c is
shown in a cylindrical coordinate system (Figure 2). After application of the method
of separation of variables we end up with the following differential equation for the
r-dependence of the magnetic vector potential in magnetic truncated domains with a
conductivity that varies with r [41].

∂2 A
∂r2 +

1
r

∂A
∂r
− A

r2 − k2(r)A + µr
∂(1/µr)

∂r
· 1

r
∂(rA)

∂r
= 0, (4)

where k2(r) = j ω µ0 µr σ(r).
For a truncated domain, assuming a Dirichlet boundary condition at r = h, constant

conductivity, and constant magnetic permeability, the eigenvalues um can be obtained from
the roots of the Bessel function of the first kind:

J1(umh) = 0. (5)

The eigenvalues of (4) in the general case of a varying k2 and µr can be found by
applying Sturm–Liouville theory. The Sturm–Liouville problem consists in finding eigen-
values and eigenfunctions for the following general differential equation, which is the
r-dependence of U in the method of separation of variables:

− ∂

∂r

(
P(r)

∂X(r)
∂r

)
+ R(r)X(r) = λW(r)X(r). (6)
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The generalized eigenvalues problem transforms into a matrix eigenvalues calcula-
tion [42]:

AX = λBX, (7)

where

Amn =

h∫
0

[
P(r)

dϕm(r)
dr

dϕn(r)
dr

+ R(r)ϕm(r)ϕn(r)
]

dr, (8)

Bmn =

h∫
0

W(r)ϕm(r)ϕn(r)dr, (9)

and it has been assumed that a solution to (3) has the form:

Xm(r) = ∑
n

Vmn ϕn(r). (10)

The basic functions φn(r) are the solutions of a simpler differential equation and satisfy
the boundary conditions at r = 0, h. In our case, from (5).

3. Solution

The application of the developed solution for the computation of complex eigenvalues
is presented for three canonical eddy current problems. Material with a hole, the conductive
cylinder, and the magnetic ring are considered as axisymmetric problems and examined in
a cylindrical coordinate system. In the case of conductive material with a hole (Figure 2),
(4) can be written as:

− ∂2 A
∂r2 −

1
r

∂A
∂r

+
A
r2 + k2(r)A− µr

∂(1/µr)

∂r
· 1

r
∂(rA)

∂r
= λA, (11)

then converted to the form:

− ∂

∂r

[
1
r

∂(rA)

∂r

]
+ k2(r)A− µr

∂(1/µr)

∂r
· 1

r
∂(rA)

∂r
= λA, (12)
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and finally written as:

− µrr
∂

∂r

[
1
µr

1
r

∂(rA)

∂r

]
+

k2(r)
µrr

(rA) = λ(rA). (13)

We deduce the following coefficients by comparing (13) to (6):

W(r) =
1

µrr
, (14)

P(r) =
1

µrr
, (15)

R(r) =
k2(r)
µrr

, (16)

X(r) = rA. (17)

Taking into account the Dirichlet boundary conditions, at r = 0, h the basic functions
are φn(r) = r J1(un r), with un given by (5). The coefficient k2(r) has the form:

k2(r) =

{
0 0 ≤ r ≤ c

jωµ0µrσ c ≤ r ≤ h,
(18)

and the matrices (8) and (9) take the analytical form:

Amn = 1
µr
(u2

m + k2) h2

2 J2
0 (umh)I

− 1
µr

k2


c

u2
m−u2

n
[un J0(unc)J1(umc)− um J0(umc)J1(unc)] m 6= n

c2

2
[

J2
1 (umc)− J0(umc)J1(umc)

]
m = n,

(19)

Bmn =


0 m 6= n

1
µr

h2

2 J2
0 (umh)I m = n.

(20)

Thus, if we solve the matrix eigenvalues problem of (7) with the matrices defined
as Amn and Bmn, we have found the sought complex eigenvalues and the corresponding
eigenfunctions in the form of eigenvectors. Such a computation is supported by every
mathematical software package.

The region containing material with a hole (Figure 2) consists of two sub-regions: air
(0 ≤ r ≤ c) and conductor (c ≤ r ≤ h). Through changing the order of the sub-regions, i.e.,
the conductor (0≤ r≤ c) and air (c≤ r≤ h), a conductive cylinder with radius c is obtained.
In practical applications, this type of configuration is often used for modeling tested objects,
such as rods, disks, pucks or coins (Figure 3). By adopting a procedure analogous to that
used for the material with a hole, a solution for a conductive cylinder is obtained.

k2(r) =

{
jωµ0µrσ 0 ≤ r ≤ c

0 c ≤ r ≤ h,
(21)

Amn = 1
µr

u2
m

h2

2 J2
0 (umh)I

+ 1
µr

k2


c

u2
m−u2

n
[un J0(unc)J1(umc)− um J0(umc)J1(unc)] m 6= n

c2

2
[

J2
1 (umc)− J0(umc)J1(umc)

]
m = n,

(22)
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Bmn =


0 m 6= n

1
µr

h2

2 J2
0 (umh)I m = n.

(23)
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The proposed method can be used for any number of sub-regions. In the case of the
conductive ring (Figure 4), the solution domain contains three sub-regions: air (0 ≤ r ≤ c1),
conductive material (c1 ≤ r ≤ c2), and air (c2 ≤ r ≤ h). This geometry may describe,
for example, the eddy current nondestructive inspection of a tube. The solution can be
written as:

k2(r) =


0 0 ≤ r ≤ c1

jωµ0µrσ c1 ≤ r ≤ c2

0 c2 ≤ r ≤ h,

(24)

Amn = u2
m

h2

2 J0(umh) + ( 1
µr
− I)umun [G(c2)mn

−G(c1)mn] +
k2

µr
[F(c2)mn − F(c1)mn],

(25)

Bmn =
h2

2
J2
0 (umh) + (

1
µr
− I)[F(c2)mn − F(c1)mn], (26)

where

G(x)mn =


x

u2
m−u2

n
[um J0(umx)J1(umx)− un J0(umx)J1(unx)] m 6= n

x2

2
[

J2
0 (umx)− J2

1 (umx)
]

m = n,
(27)

F(x)mn =


x

u2
m−u2

n
[un J0(unx)J1(umx)− um J0(umx)J1(unx)] m 6= n

x2

2
[

J2
1 (umx)− J0(umx)J2(umx)

]
m = n.

(28)
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4. Results and Discussion

The developed solution is named the Sturm–Liouville global function (SLGF) method
and is implemented in Matlab. Matrix eigenvalues calculations (7) are make using the
command [V,D] = eigs(A,B,‘sr’), with V representing the eigenvectors and D the set of
eigenvalues (a matrix whose diagonal elements are equal to the eigenvalues squared).
Since accuracy in the numerical computation is higher for the first eigenvalues, for NS
eigenvalues, we use matrices with dimensions 4NS × 4NS. The eigenvalues determined
in this way are verified with the multilevel computation of complex eigenvalues (MCCE)
method [39], the Newton–Raphson method and the fsolve() procedure available in Matlab.
The calculations consist in finding the Ns = 50 first eigenvalues for the sets of input data
(Table 1) that correspond to different values of the parameters used in eddy current testing.
The examination of whether a given complex number is a correctly calculated eigenvalue is
carried out with the employment of Cauchy’s argument principle, based on the integration
of a precisely determined contour. The number of incorrect eigenvalues (missing or false)
obtained by each of the methods is presented in Table 2. The times taken to obtain results on
a computer with an Intel Core i5 processor and 6 GB of RAM memory, are also compared.

Table 1. Input data sets used in the calculations.

Tests f [kHz] µr σ [MS/m] c [mm] Problem

1 1 1 60 4 hole
2 100 1 60 4 hole
3 10 50 60 4 hole
4 1 50 1 4 hole
5 10 10 30 8 hole
6 10 1 30 8 hole
7 10 1 60 15 disk
8 1 10 1 10 disk
9 200 1 30 15 disk
10 10 1 1 5 disk
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Table 2. Time for computation and number of incorrect eigenvalues.

Tests
Incorrect Eigenvalues Time [s]

SLGF MCCE Newton Fsolve SLGF MCCE Newton Fsolve

1 0 0 0 0 0.6 1.0 0.4 2.3
2 0 2 3 3 0.7 7.5 17.7 9.8
3 0 3 3 3 0.6 2.0 13.1 1.1
4 0 0 0 0 0.6 1.1 0.4 1.4
5 0 6 6 6 0.6 2.1 12.6 0.9
6 0 0 0 0 0.7 1 7.2 1.1
7 0 6 1 6 0.6 5.4 12.9 5.0
8 0 0 1 0 1.0 2.1 0.2 1.7
9 0 12 12 12 2.0 2.1 11.5 1.7

10 0 0 0 0 0.6 1.1 1.2 6.4

The SLGF method presented in this paper is the only one that makes it possible to
find all eigenvalues in each test. The results are obtained in a very short time, which
usually does not exceed 1 s. Such high efficiency is ensured due to the transformation of the
problem under consideration into the matrix eigenvalues calculation in the form presented
in (7). In this way, a significant independence of the calculation process from the values of
input parameters is achieved. As for the other methods, the effectiveness of determining
eigenvalues depends primarily on the value of the coefficient k2 = j ω µ0 µr σ. As the value
of k increases, numerical errors may appear. This is a direct result of the property of the
function that ensures the continuity of the magnetic field for r = c, and which is used to
find eigenvalues. These properties may cause numerous limitations, e.g., difficulties in the
determining of eigenvalues for high frequencies (tests 2 and 9).

The great strength of the SLGF method lies in a simple numerical implementation that
contains only two full matrices (A and B). Unlike in the case of other solutions, no sets
of initial points or integration operations are used there. What is more, there is no need
to create procedures for filtering the resulting set of values, that is, removing either zero
roots, or multiple, false or negative sign roots. It is worth noting that, in the developed
solution, no algorithm for splitting the domain of the solution is employed to determine
the eigenvalues. Such algorithms are utilized in methods based on Cauchy’s argument
principle, where the domain within which the searched roots are located is split into parts
in the form of contours. This division is usually quite complicated because each contour
should contain a few roots at the most. In addition, the roots that are located too close to
the contour edge are missed. Together with the increase in coefficient k, the densification of
roots increases (the difference in the values of successive roots is smaller and smaller), so
the precise determination of contours becomes more and more difficult (tests 2, 3, 5, 9).

In the case of calculating the changes in the impedance of the air-core coil over
conductive material with a hole (Figure 2) with the employment of analytical models,
finding a set of eigenvalues is by far the most time-consuming process. The calculation
of the change in the impedance of such a coil using the TREE method takes about 1 s
(tests 1–6), of which 0.6–0.7 s is taken by the process of finding all eigenvalues (Table 2).
With the finite element method (FEM), it takes about 10 s to obtain the change in coil
impedance. However, the highest reduction in the length of time needed to obtain results,
in comparison with the FEM method, can be achieved during calculations performed for
many iterations, when precomputations are used in the analytical models, and thus the
eigenvalues are determined only once throughout the calculation cycle [43].

5. Conclusions

A novel method for computing complex eigenvalues in eddy current problems is
presented. It has been applied to the simulation of the air-core coil described above:
conductive cylinder, material with a hole and magnetic ring. What is characteristic of the
developed solution is simple numerical implementation and versatility. When dealing with
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other eddy current problems, it is enough to find a new form of matrix A, B and coefficient
k, without the necessity to modify the very method. The presented approach can be used
for both magnetic and non-magnetic materials containing flaws, discontinuities, and edges.
The conducted tests show that the SLGF method is the only one that does not omit any
eigenvalue, making it possible to obtain results in a very short time. The changes in the
coil impedance calculated on the basis of the determined eigenvalues show an excellent
agreement in comparison with the results obtained with the FEM method.

In future work, it is planned to adapt the SLGF method for other eddy current prob-
lems, in particular testing of materials consisting of many sub-regions, thermal barrier
coatings (TBC), and media with piecewise magnetic permeability. The presented approach
will also be utilized for 3D simulations of problems to which the analytical solution has not
been worked out yet.
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