Structural evolution of nanoparticles under realistic conditions observed with Bragg coherent X-ray imaging

To cite this version:

HAL Id: cea-04066378
https://cea.hal.science/cea-04066378
Submitted on 28 Aug 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract
The advent of the world’s first coherent hard X-ray sources represents an unprecedented opportunity to conduct in situ and operando studies on the structure of nanoparticles in reactive liquid or gas environments in synchrotrons. In this talk, I will illustrate how Bragg coherent X-ray imaging [1] allows to image in three dimensions (3D) and at the nanoscale the strain and defect dynamics inside nanoparticles as well as their refaceting during catalytic reactions [2–5]. I will also highlight the potential of machine learning to predict characteristic structural features in nanocrystals just from their 3D Bragg coherent diffraction patterns [6].

References