
HAL Id: cea-04060492
https://cea.hal.science/cea-04060492

Submitted on 6 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Equivalence of denotational and operational semantics
for interaction languages

Erwan Mahe, Christophe Gaston, Pascale Le Gall

To cite this version:
Erwan Mahe, Christophe Gaston, Pascale Le Gall. Equivalence of denotational and operational se-
mantics for interaction languages. Lecture Notes in Computer Science, 2022, Theoretical Aspects of
Software Engineering, 13299, pp.113-130. �10.1007/978-3-031-10363-6_8�. �cea-04060492�

https://cea.hal.science/cea-04060492
https://hal.archives-ouvertes.fr

Equivalence of Denotational and Operational
Semantics for Interaction Languages

Erwan Mahe1 , Christophe Gaston1 , and Pascale Le Gall2

1 Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
2 Université Paris-Saclay, CentraleSupélec, F-91192, Gif-sur-Yvette, France

Abstract. Message Sequence Charts (MSC) and Sequence Diagrams
(SD) are graphical models representing the behaviours of distributed
and concurrent systems via the scheduling of discrete emission and re-
ception events. So as to exploit them in formal methods, a mathematical
semantics is required. In the literature, different kinds of semantics are
proposed: denotational semantics, well suited to reason about algebraic
properties and operational semantics, well suited to establish verification
algorithms. We define an algebraic language to specify so-called interac-
tions, similar to the MSC and SD models. It is equipped with a denota-
tional semantics associating sets of traces (sequences of observed events)
to interactions. We then define a structural operational semantics in the
style of process algebras and prove the equivalence of the two semantics.

Keywords: interactions, sequence diagrams, distributed & concurrent
systems, formal language, denotational semantics, operational semantics

1 Introduction

Modelling asynchronous communications between concurrent processes is
possible under a variety of formalisms, such as process algebras [22], Petri Nets
[4], series-parallel languages [11], distributed automata [1], or formalisms derived
from Message Sequence Charts (MSC) [16]. MSCs are graphical models repre-
senting information exchanges between sub-systems. Various offshoots of MSCs,
including UML Sequence Diagrams (UML-SD) [18], have been proposed and we
call languages from that family "Interaction Languages" (IL). Interactions are
interesting due to their graphical nature and ease of understanding. IL make it
possible to describe scenarios using intuitions that are very easy to share: a) a
vertical line per sub-system, called a lifeline, which from top to bottom describes
the succession of events as perceived by the sub-system, b) exchanges of mes-
sages inducing causality relations between the lifelines, c) high-level operators
such as parallel composition to structure simple scenarios.

So as to use interactions in formal methods, they have to be fitted with for-
mal semantics. A major hurdle in defining those lies in the treatment of weak
sequencing. Weak sequencing allows events taking place on different lifelines to
occur in any order while strictly ordering those that take place on the same
lifeline. The survey [17] provides an overview of solutions found in the literature.

http://orcid.org/0000-0002-5322-4337
http://orcid.org/0000-0001-6865-5108
http://orcid.org/0000-0002-8955-6835

2 E. Mahe, C. Gaston, P. Le Gall

The most direct ones consist in defining semantics by translation: interactions
are translated into models of other formalisms provided with formal semantics.
Typical examples are Petri Nets [3], automata [10] or process algebra [8]. The
main advantage of such approaches is that those formalisms are equipped with
tools such as Model-Checker or Model-Based Testing tools. However, a notable
drawback is that the target formalisms are defined on concepts (states, transi-
tions, places...) that are quite different from the ones handled in ILs. Then it
is difficult to know whether or not the objects resulting from the translation
preserve the meaning associated to the original interaction. For example, in [8],
the authors propose to translate UML-SD into Communicating Sequential Pro-
cesses (CSP) [6]. UML-SD operators such as weak sequencing are encoded in a
non-trivial manner, using sequence, parallel composition etc. as CSP does not
introduce any similar operator, and as the translation is not presented exhaus-
tively, it is not clear if the asynchronous nature of executions of UML-SD is fully
reflected. Other approaches treat IL by equipping them with direct mathemati-
cal semantics, either denotational or operational. Denotational semantics either
rely on partial order sets [23,15] or on algebraic operators [9]. Operational se-
mantics [16] are given in the form of production rules similar to process algebra.
Denotational semantics, based on sets of accepted execution traces, are close to
intuition. They are well adapted to reason on and prove various properties about
interactions. Operational semantics are closer to executable semantics and are
well suited to prove the correctness of algorithms realizing formal analysis.

In this paper we set the basis of a framework to deal with interactions via two
kinds of semantics (denotational and operational). While in [15,14] we formu-
lated semantics for interactions by identifying the positions of communication
actions using the Dewey notation, we now abstract away positions, to define
a denotational semantics in an algebraic style as in [9] and an operational se-
mantics in the style of Plotkin. Those new formulations enables us to prove the
equivalence of the semantics (with an automated Coq proof available in [13]).
To our knowledge, there are no similar equivalence results in the literature. In
particular, in [15], there were only some tooled experiments hinting towards their
equivalence. Our IL extends the one in [15] with additional loop mechanisms.
Our denotational semantics can be seen as an extension of the one in [9] with
repetition operators in the form of variants of the algebraic Kleene closure. We
define a structural operational semantics in the fashion of process algebras [2].
It adopts some of the ideas introduced in [16,21] but is closer to usual structural
operational semantics than the one in [16,21] which includes maps between sent
and received messages or negative application rule conditions.

This paper is organized as follows: Section 2 introduces the concepts of in-
teractions and traces. Section 3 presents the syntax of our IL and defines a trace
semantics in denotational-style. In Section 4 a structural operational semantics
is defined in the style of process calculi and we demonstrate its equivalence to
the former in Section 5. Finally, in Sections 6 and 7 we discuss some related
works and we conclude. A formalisation using Coq of the main demonstrations
is available in [13].

Equivalence of denotational and operational semantics for interactions 3

2 Basic interactions & intuition of their meaning

Interactions describe the behavior of distributed and concurrent systems
based on their internal and external communications. They are defined over
a signature Ω = (L,M) where L is a set of lifelines and M is a set of messages.

2.1 Preliminaries

The executions of systems are characterized by sequences of events called
communication actions (actions for short) which are of two kinds: either the
emission of a message m ∈ M from a lifeline l ∈ L, denoted by l!m, or the
reception of m ∈ M by l ∈ L, denoted by l?m. AΩ denotes the set of actions
over Ω. For any such action a, θ(a) denotes the lifeline on which a occurs.

Sequences of actions, called traces, are words in A∗Ω , with "." denoting the
concatenation operation and ε being the empty trace. We denote by TΩ = A∗Ω the
set of traces. Thus, for any two traces t1 and t2, t1.t2 is the trace composed of the
sequence of actions of t1 followed by the sequence of actions of t2. We introduce
operators to compose (sets of) traces, modeling different notions of scheduling:
the strict sequencing (;), the interleaving (||) and the weak sequencing (××).

The set t1; t2 of strict sequencing of traces t1 and t2 is defined as {t1.t2}.
By choosing ";" for denoting the extension of "." to sets of traces, we adopt the
same notation as in [9] for the strict sequencing operator.

Interleaving allows elements of distinct traces to be reordered w.r.t. one an-
other while preserving the order that is specific to each trace. The set t1||t2 of
interleavings of traces t1 and t2 is defined by:

ε||t2 = {t2} t1||ε = {t1}
(a1.t1)||(a2.t2) = {a1.t | t ∈ t1||(a2.t2)} ∪ {a2.t | t ∈ (a1.t1)||t2}

By contrast, weak sequencing only allows such permutations when actions
do not occur on the same lifeline. We define a predicate t××l meaning that the
trace t contains an action on the lifeline l (we say t has conflicts w.r.t. l):

ε××l = ⊥ and (a.t)××l = (θ(a) = l) ∨ (t××l)

By overloading ××, the set t1××t2 of weak sequencing of t1 and t2 is defined by:

ε××t2 = {t2} t1×
×ε = {t1}

(a1.t1)×
×(a2.t2) = {a1.t | t ∈ t1××(a2.t2)} ∪ {a2.t | t ∈ (a1.t1)×

×t2, ¬(a1.t1××θ(a2))}

When defining t′1×
×t′2, the order of the actions in each trace is preserved and

actions in t′2 can only precede those in t′1 that do not occur on the same lifeline.
This explains the two subsets constituting (a1.t1)×

×(a2.t2): the first one contains
all traces whose first action is a1 and tail belongs to t1××(a2.t2) and the second
one is empty if lifeline of a2 occurs in a1.t1 (i.e. ¬(a1.t1××θ(a2))), and contains
all traces whose first action is a2 and tail belongs to (a1.t1)×

×t2 otherwise.
The previous binary operators (";", "××" and "||") defined on traces are canon-

ically extended to sets of traces as follows: with � ∈ {; ,××, ||}, T1�T2 is the union

4 E. Mahe, C. Gaston, P. Le Gall

of all the sets t1 � t2 with t1 ∈ T1 and t2 ∈ T2. The use of the strict sequencing
(";"), weak sequencing ("××") and interleaving ("||") operators will be illustrated
with Fig.1 in Section 2.2.

2.2 Basic interactions

An example of interaction is given in the left of Fig.1. Lifelines l1, l2 and l3 are
drawn as vertical lines. Emission and reception actions are drawn as horizontal
arrows carrying the transmitted messages m1, m2, m3 and m4 and which re-
spectively exit the emitting lifeline or point towards the receiving lifeline. When
a direct emission-reception causality occurs, we draw both actions as a single
arrow from the emitter towards the receiver.

=

(
({l1!m1}; {l3?m1})
××({l1!m2}; {l2?m2})

)
∪
(
({l1!m3}; {l2?m3})

||{l1!m4}

)

=

(
{l1!m1.l3?m1}
××{l1!m2.l2?m2}

)
∪
(
{l1!m3.l2?m3}
||{l1!m4}

)

=


l1!m1.l3?m1.l1!m2.l2?m2,
l1!m1.l1!m2.l3?m1.l2?m2,
l1!m1.l1!m2.l2?m2.l3?m1

l1!m3.l2?m3.l1!m4,
l1!m3.l1!m4.l2?m3,
l1!m4.l1!m3.l2?m3


Fig. 1: Example of a basic interaction & its trace semantics

The top to bottom direction relates to time passing. An action (arrow) drawn
above another one generally occurs beforehand. This scheduling of actions cor-
responds to the weak sequencing operator. By contrast, strict sequencing may
be used to enforce precedence relations between actions occurring on different
lifelines. These two scheduling operators will be respectively denoted by the key-
words seq and strict. Other keywords (alt, par, loop) will be also used for denot-
ing other scheduling mechanisms. In Fig.1, the arrow carrying m1 and specifying
its passing between l1 and l3 is modelled by the interaction strict(l1!m1, l3?m1).
Using the strict operator here obliges l3?m1 to occur after l1!m1, which reflects
the causality of the passing of message m1 between l1 and l3. The fact that this
arrow stands above that carrying m2 can be modelled using the weak sequencing
operator: seq(strict(l1!m1, l3?m1), strict(l1!m2, l2?m2)). Using seq here instead
of strict allows for instance l2?m2 to occur before l3?m1 even though the latter
is drawn above. However l1!m2 cannot occur before l1!m1 because they both
occur on l1. Note that, in contrast to strict, the seq operator has no graphical
representation in diagrams, as it corresponds to the default scheduling operator.

Parallel and alternative compositions can also be used. On Fig.1, the passing
of m3 and the emission of m4 are scheduled using parallel composition. In the
diagram representation this corresponds to the box labelled with "par", modelled

Equivalence of denotational and operational semantics for interactions 5

by the term par(strict(l1!m3, l2?m3), l1!m4). Actions scheduled with par can
occur in any order w.r.t. one another. Here, l1!m4 can occur before l1!m3, after
l2?m3 or in between those two actions. Alternative composition is an exclusive
non-deterministic choice between behaviors. Like par, alt is drawn as a box
labelled with "alt". The global term describing the left of Fig.1 is given by:

alt(seq(strict(l1!m1, l3?m1), strict(l1!m2, l2?m2)), par(strict(l1!m3, l2?m3), l1!m4))

2.3 Repetition operators on sets of traces

Scheduling operators define compositions of traces obtained from enabling
or forbidding the reordering of actions according to some scheduling policy. All
three are associative (in addition, || is commutative) and admit {ε} as a neutral
element. We define (Kleene) closures of those operators to specify repetitions3:

Definition 1 (Kleene closures). For any � ∈ {; , ××, ||} and any T ∈ P(TΩ),
the Kleene closure T �∗ of T is defined by: T �∗ =

⋃
j∈N T

�j with T �0 = {ε} and
T �j = T � T �(j−1) for j > 0.

{
l1!m1.l2!m2,
l2?m1

}××∗
=


ε,
l1!m1.l2!m2,
l2?m1,

l1!m1.l2!m2.l1!m1.l2!m2,
l1!m1.l1!m1.l2!m2.l2!m2,
l1!m1.l2!m2.l2?m1,
l2?m1.l2?m1,
l2?m1.l1!m1.l2!m2,
l1!m1.l2?m1.l2!m2,

· · ·


Fig. 2: Example illustrating the weak Kleene closure

The three Kleene closures ;∗, ××∗ and ||∗ are respectively called, strict, weak
and interleaving Kleene closures. Within the K-closure T �∗ we can find traces
obtained from the repetition (using � as a scheduler) of any number of traces of T .
In the example from Fig.2 we consider a set T containing two traces l1!m1.l2!m2

and l2?m1. The first 3 powersets of T (i.e. T ×
×0 ∪ T ×

×1 ∪ T ×
×2) are displayed, the

rest of the weak K-closure of T (i.e. T ×
×∗) is represented by the · · · .

We have the property T �T �∗ = T �∗, analogous to the one defining replication
!P (i.e. !P = P |!P) in the family of process calculi (e.g. see [19]), expressing
an unbounded number of copies of P along the parallel composition "|". For
� ∈ {; , ××, ||} whenever a.t ∈ T1 � T2 (with a and t any action and trace and T1
and T2 any sets of traces), it may be so that action a is taken from a trace a.t′
that belongs to either T1 or T2. Definition 2 introduces restricted versions of the
scheduling operators so as to impose action a to be taken from T1.
3 For a set E, P(E) is the set of all subsets of E.

6 E. Mahe, C. Gaston, P. Le Gall

Definition 2 (Restricted scheduling operators). For any � ∈ {; , ××, ||},
we define the operator �� such that for any sets of traces T1 and T2 we have:

T1��T2 = { t ∈ T1 � T2 | (t = a.t′)⇒ (∃ t1 ∈ TΩ , s.t. (a.t1 ∈ T1) ∧ (t′ ∈ {t1} � T2)) }

As an example, given T1 = {l1!m.l1?m} and T2 = {l2!m}, we have:

T1×
×T2 =

 l1!m.l1?m.l2!m,
l1!m.l2!m.l1?m,
l2!m.l1!m.l1?m

 and T1×
×�T2 =

{
l1!m.l1?m.l2!m,
l1!m.l2!m.l1?m

}

We now define Head-First closures (abbr. HF-closure) of scheduling opera-
tors.

Definition 3 (Head-first closures). For any � ∈ {; , ××, ||}, we define the
Head-First closure of � as ��∗ i.e. the Kleene closure of the restricted �� operator.

In the following we will show that HF-closure and K-closure are equivalent
for ; and || but that this is not the case for ××.

Lemma 1. For any � ∈ {; , ||}, T ∈ P(TΩ), t in TΩ and a ∈ AΩ we have:

(a.t ∈ T �∗)⇒ (∃ t′ ∈ TΩ s.t. (a.t′ ∈ T) ∧ (t ∈ {t′} � T �∗))

Proof. By induction on j given a.t ∈ T �j . For ||, we use its commutativity.

Lemma 2 (Equivalence of HF & K closures for ; & ||). For any set of
traces T , we have T ;�∗ = T ;∗ and T ||

�∗ = T ||∗.

Proof. By induction on a member trace t.

Let us detail a counter example showing that the weak K-closure ××∗ and
the weak HF-closure ××�∗ are not equivalent. Given T = {l1!m1.l2?m1, l2!m2},
let us consider the powerset T ×

×2 of T . By definition, {l2!m2}××{l1!m1.l2?m1} ⊂
T
××2. Here we can choose to take l1!m1 as a first action and therefore t =

l1!m1.l2!m2.l2?m1 ∈ T
××2. However, t 6∈ T××�T = T

××�2 and more generally, for
any j smaller or greater that 2, t 6∈ T ×

×�j . Hence, T ×
×∗ 6⊆ T ×

×�∗.

3 Syntax & denotational semantics

As noted earlier in Section 2.2, interactions terms are defined inductively.
Basic building blocks include the empty interaction ∅ which specifies the empty
behavior ε (observation of no action) and any atomic action a of AΩ , which
specifies the single-element trace a. More complex behavior can then be specified
inductively using the binary constructors strict, seq, par and alt and the unary
constructors loopS (strict loop), loopH (head loop up to ××), loopW (weak loop)
and loopP (parallel loop).

Equivalence of denotational and operational semantics for interactions 7

Definition 4 (Interaction Language). We denote by IΩ the set of terms in-
ductively defined by the set of operation symbols F = F0 ∪ F1 ∪ F2 s.t.:

– symbols or arity 0 (constants) are F0 = {∅} ∪ AΩ
– symbols of arity 1 are F1 = {loopS , loopH , loopW , loopP }
– symbols of arity 2 are F2 = {strict, seq, par, alt}

In Definition 4 we define our Interaction Language (IL) as a set of terms IΩ
inductively defined from the set of symbols F with arity in N. The set P(TΩ)
of sets of traces admits the structure of a F-algebra using operators introduced
in section 2. The denotational semantics of interactions is then defined in Defi-
nition 5 using the initial homomorphism associated to this F-algebra.

Definition 5 (Denotational semantics). A = (P(TΩ), {fA | f ∈ F}) is the
F-algebra defined by the following interpretations of the operation symbols in F :

∅A = {ε}
aA = {a}

strictA = ;
seqA = ××

parA = ||
altA = ∪

loopAS = ;∗

loopAH =
××�∗

loopAW =
××∗

loopAP = ||∗

The denotational semantics σd of IΩ is the unique F-homomorphism σd : IΩ →
P(TΩ) between the free term F-algebra4 TF and A.

The semantics of constants ∅ and a ∈ AΩ are sets containing a single ele-
ment being respectively {ε} and {a}. The strict, seq, par and alt symbols are
respectively associated to the ;, ××, || and union ∪ operators on sets of traces. The
use of the strict sequencing (";"), weak sequencing ("××") and interleaving ("||")
operators is illustrated on the right of Fig.1 so as to compute the semantics of
the interaction example given on the left of Fig.1. For instance, from the second
line to the third line, using distinct colours to better visualise the differences
between scheduling operators, weak sequencing {l1!m1.l3?m1}××{l1!m2.l2?m2}
allows l1!m2 to be reordered before l3?m1 but not before l1!m1 while interleav-
ing {l1!m3.l2?m3}||{l1!m4} allows l1!m4 to be placed anywhere w.r.t. l1!m3 and
l2?m3. The resulting set of traces is given on the bottom right.

From a system designer perspective, using loopS , loopH , loopW or loopP is
motivated by different goals:

– With loopS(i), each instance of a repeatable behavior must be executed
entirely before any other can start. We can use loopS to specify some critical
repeatable behavior of which there can only exist one instance at a time.

– With loopP (i), all existing instances can be executed concurrently w.r.t. one
another, and, at any given moment, new instances can be created. loopP can
therefore be used to specify protocols in which any number of new sessions
can be created and run in parallel.

4 The free term F-algebra is defined by interpreting symbols of F as constructors of
new terms: for f ∈ F of arity j, for t1, . . . tj ∈ IΩ , f(t1, . . . tj) is interpreted as itself.

8 E. Mahe, C. Gaston, P. Le Gall

4 A structural operational semantics

Now we present our structural operational semantics. It relies on the defini-
tion (by structural induction) of two predicates: "i ↓" (the termination predicate)
indicates that the interaction i accepts the empty trace and "i a−→ i′" (the execu-
tion relation) indicates that traces a.t such that t is accepted by i′ are accepted
by i. The relation → allows the determination, for any interaction i, of which
actions a can be immediately executed, and, of potential follow-up interactions
i′ which express continuations t of traces a.t accepted by i. Defining an execution
relation → is a staple of process calculus [2]. We will pay particular attention to
the weak sequencing operator in Section 4.2 before defining → in Section 4.3.

4.1 Termination

By reasoning on the structure of an interaction term i, we can determine
whether or not the empty trace ε belongs to its semantics. When this holds, we
say that i terminates and use the notation i ↓ as in [2,16].

Definition 6 (Termination). The predicate ↓⊂ IΩ is such that for any i1 and
i2 from IΩ, any f ∈ {strict, seq, par} and any k ∈ {S,H,W,P} we have:

∅ ↓
i1 ↓

alt(i1, i2) ↓
i2 ↓

alt(i1, i2) ↓
i1 ↓ i2 ↓
f(i1, i2) ↓ loopk(i1) ↓

All rules of Definition 6 are evident. The empty interaction ∅ only accepts ε,
and thus terminates. An interaction with a loop at its root terminates because
it is possible to repeat zero times its content. As alt(i1, i2) specifies a choice,
it terminates iff either i1 or i2 terminates. An interaction of the form f(i1, i2),
with f being a scheduling constructor, terminates iff both i1 and i2 terminate.
The rules are consistent with the denotational semantics:

Lemma 3 (Termination w.r.t. σd). For any i ∈ IΩ, (i ↓)⇔ (ε ∈ σd(i))

Proof. By induction on the term structure of interactions.

In summary, i ↓means that imay terminate immediately, but because of non-
determinism, depending on the nature of i, i may allow arbitrary long traces.

4.2 Dealing with weak-sequencing using evasion & pruning

Weak sequencing only allows interleavings between actions that occur on
different lifelines. As a result, within an interaction of the form i = seq(i1, i2),
some actions that can be executed in i2 (i.e. such that i2

a−→ i′2) may also be
executed in seq(i1, i2), i.e. such that seq(i1, i2)

a−→ i′. In other words, given
a trace a.t ∈ σd(i), action a might correspond to an action expressed by i2.
This is however conditioned by the ability of i1 to express traces that have no
conflict w.r.t. a so that a may be placed in front of what is expressed by i1 when
recomposing a.t.

Equivalence of denotational and operational semantics for interactions 9

We define the evasion predicate as a weaker notion than the termination
predicate ↓. The evasion predicate "↓×

×
" can be described as a form of local

termination. For a lifeline l, we say that i evades l, denoted by i ↓×
×
l if i accepts

at least one trace that does not contain actions occurring on l.

Definition 7 (Evasion). The predicate ↓××⊂ IΩ × L is such that for i1 and i2
in IΩ, l ∈ L, a ∈ AΩ, f ∈ {strict, seq, par} and k ∈ {S,H,W,P} we have:

∅ ↓×× l
θ(a) 6= l

a ↓×× l

i1 ↓×
×
l

alt(i1, i2) ↓×
×
l

i2 ↓×
×
l

alt(i1, i2) ↓×
×
l

i1 ↓×
×
l i2 ↓×

×
l

f(i1, i2) ↓×
×
l loopk(i1) ↓×

×
l

The empty interaction ∅ evades any lifeline as ε contains no action. An
interaction reduced to a single action a evades l iff a does not occur on l. As for
termination, an interaction with a loop at its root evades any lifeline because it
accepts ε. Choice and scheduling operators are also handled in the same manner
as for the termination predicate. Moreover, we consider the collision predicate
6 ↓×
×
by considering dual structural rules w.r.t. those defining the evasion predicate

↓×
×
so that we have: i 6 ↓×

×
l iff ¬(i ↓×

×
l)).

Lemma 4 (Evasion w.r.t. σd).
For any l ∈ L and i ∈ IΩ,(i ↓×

×
l)⇔ (∃ t ∈ σd(i),¬(t××l))

Proof. By induction on the term structure of interaction.

Let us remark that, for any i ∈ IΩ , if i ↓ then ∀ l ∈ L, i ↓×
×
l. Indeed, ε

has no conflict w.r.t. any l. The opposite does not hold: it suffices to consider
i = alt(l1!m, l2!m) and observe that ∀ l ∈ {l1, l2}, i ↓×

×
l holds while i ↓ does not.

ë

ë

Í

altÍ

strictë

l1!m1Í l2?m1ë

seqÍ

strictÍ

l3!m2Í l1?m2Í

loopSÍ

strictë

l1!m3Í l2?m3ë

Fig. 3: Illustration of the evasion predicate (here w.r.t. lifeline l2)

The application of the evasion predicate (w.r.t. lifeline l2) is illustrated on
Fig.3. On the right is represented the syntactic structure of an interaction i, and,

10 E. Mahe, C. Gaston, P. Le Gall

on the left, the corresponding drawing as a sequence diagram. On the syntax
tree, the nodes are decorated with symbols Í (resp. ë) to signify that the sub-
interaction underneath that node evades (resp. collides with) l2. Starting from
the leaves we can decorate all nodes and conclude once the root is reached. By
taking the right branch of the alternative and by choosing not to instantiate the
loop, we can see that i accepts some traces that have no conflict w.r.t. lifeline
l2 (in our case, only the trace l3!m2.l1?m2). As a result the interaction i verifies
i ↓×

×
l2. On the diagram representation, evasion can be illustrated by drawing a

line over l2 the lifeline of interest. This line can be decomposed into several areas
that are colored either in green or in red. The coloration depends on whether
the sub-interaction corresponding to the operand evades or collides with l2.

Provided that i1 ↓×
×
θ(a), an action a that is executable in i2 i.e. s.t. i2

a−→ i′2
is also executable in i = seq(i1, i2). However, this is not enough to define a rule
seq(i1, i2)

a−→ i′ compatible with the semantics σd. i′ must specify continuations
t s.t. a.t ∈ σd(i). Continuation traces t are built from traces t1 ∈ σd(i1) and t2
such that ¬(t1××θ(a)) and a.t2 ∈ σd(i2). By defining i′1 as the interaction which
expresses exactly traces t1 s.t. ¬(t1××θ(a)) we may produce a rule seq(i1, i2)

a−→
seq(i′1, i

′
2). The computation of i′1 is called pruning and is defined as an inductive

relation ××−→ s.t. i××l−→ i′ indicates that the pruning of i ∈ IΩ w.r.t. l ∈ L yields
i′ ∈ IΩ . Pruning is defined so that σd(i′) ⊆ σd(i) is the maximum subset of σd(i)
that contains no trace conflicting with l (see Lemma 6).

Definition 8 (Pruning). The pruning relation ××−→ ⊂ IΩ × L × IΩ is s.t. for
any l ∈ L, any f ∈ {strict, seq, par} and any k ∈ {S,H,W,P}:

∅××l−→ ∅
θ(a) 6= l

a××
l−→ a

i1××
l−→ i′1 i2××

l−→ i′2

f(i1, i2)××
l−→ f(i′1, i

′
2)

i1××
l−→ i′1 i2××

l−→ i′2

alt(i1, i2)××
l−→ alt(i′1, i

′
2)

i1××
l−→ i′1

i2 6 ↓×
×
l

alt(i1, i2)××
l−→ i′1

i2××
l−→ i′2

i1 6 ↓×
×
l

alt(i1, i2)××
l−→ i′2

i1××
l−→ i′1

loopk(i1)××
l−→ loopk(i

′
1)

i1 6 ↓×
×
l

loopk(i1)××
l−→ ∅

Evasion and pruning are intertwined notions. Indeed, as per Lemma 5 evasion
is equivalent to the existence and unicity of a pruned interaction.

Lemma 5 (Conditional existence & unicity for pruning).
For any i ∈ IΩ and any l ∈ L, (i ↓×× l)⇔ (∃! i′ ∈ IΩ s.t. i××l−→ i′)

Proof. By induction on the term structure of interactions.

Let us comment on the rules defining the pruning relation. We have ∅××l−→ ∅
because the semantics of ∅ being {ε}, there are no conflicts w.r.t. l. Any action
a ∈ AΩ is prunable iff θ(a) 6= l. In such a case, a needs not be eliminated and thus
a××

l−→ a. For i = alt(i1, i2) to be prunable we must have either or both of i1 ↓×
×
l

Equivalence of denotational and operational semantics for interactions 11

or i2 ↓×
×
l. If both branches evade l they can be pruned and kept as alternatives

in the new interaction term. If only a single one does, we only keep the pruned
version of this single branch. For any scheduling constructor f , if i = f(i1, i2),
in order to have i ↓×

×
l we must have both i1 ↓×

×
l and i2 ↓×

×
l. In that case the

unique interaction i′ such that i××l−→ i′ is defined as the scheduling, using f , of
the pruned versions of i1 and i2. For loops i = loopk(i1) with k ∈ {S,H,W,P},
we distinguish two cases: (a) if i1 6↓×

×
l then any execution of i1 will yield a trace

conflicting l and repetitions should be forbidden; (b) if i1 ↓×
×
l repetitions are

kept, given that i1 can be pruned as i1××
l−→ i′1. This being the modification which

preserves a maximum amount of traces, we have loopk(i1)××
l−→ loopk(i

′
1).

alt

strict

l1!m1 l2?m1

seq

strict

l3!m2 l1?m2

loopS

strict

l1!m3 l2?m3

∅

before pruning pruning w.r.t l3 after pruning

Fig. 4: Illustration of pruning

We have seen that the interaction i of Fig.3 satisfies i ↓×
×
l2. Therefore

Lemma 5 implies the existence of a unique i′ s.t. i××l2−→ i′. Fig.4 illustrates the com-
putation of i′. The blue lines represent the modifications in the syntax of i that
occur during its pruning into i′. On Fig.3 we decorated sub-interactions of i with
ë whenever they did not evade l2. During pruning, those sub-interactions must
be eliminated given that the resulting term must not express actions occurring
on l2. Hence, on Fig.4, we have crossed in blue the problematic sub-interactions.
The root node is an alt. Let us note i = alt(i1, i2). On Fig.3 we have seen that
we have i1 6 ↓×

×
l2 and i2 ↓×

×
l2. Therefore we have i×× l2−→ i′2 with i′2 being such

that i2××
l2−→ i′2. This selection of the right branch of the alt is illustrated on Fig.4

by the curved arrow which "replaces" the alt by the seq on its bottom right.
There remains to determine i′2 s.t. i2××

l2−→ i′2. At the root of i2 we have a seq. Let
us note i2 = seq(iA, iB). As per Fig.3 we have both iA ↓×

×
l2 and iB ↓×

×
l2 and

therefore i′2 = seq(i′A, i
′
B) such that iA××

l2−→ i′A and iB××
l2−→ i′B . Underneath iA, no

actions occur on l2 and hence i′A = iA. At the root of iB we have a loopS . Let
us note iB = loopS(iC). As per Fig.3 we have iC 6 ↓×

×
l2 and therefore i′B = ∅

which is illustrated on Fig.4 by the ← ∅ in blue, which "replaces" the loopS by
∅. Finally there remain i′ = seq(iA,∅), which is drawn on the right of Fig.4.

12 E. Mahe, C. Gaston, P. Le Gall

Lemma 6 states that given i××l−→ i′, the pruned interaction i′ exactly specifies
all the executions of i that do not involve l.

Lemma 6 (Pruning w.r.t. σd). For any l ∈ L and any i and i′ from IΩ:
(i××

l−→ i′)⇒ (σd(i
′) = {t ∈ σd(i) | ¬(t××l)})

Proof. By induction on the term structure of interactions.

4.3 Execution relation & operational semantics

A structural operational semantic in the style of Plotkin [20] allows deter-
mining traces t = a1. · · · .an through the assertion of a succession of predicates
of the form ij

aj−→ ij+1 representing the evolution of the system. By expressing
action aj , the system goes from being modelled by ij to being modelled by ij+1.

Definition 9 (Execution relation).
The execution relation →⊂ IΩ × AΩ × IΩ is s.t.:

a
a−→ ∅

i1
a−→ i′1

alt(i1, i2)
a−→ i′1

i2
a−→ i′2

alt(i1, i2)
a−→ i′2

i1
a−→ i′1

par(i1, i2)
a−→ par(i′1, i2)

i2
a−→ i′2

par(i1, i2)
a−→ par(i1, i

′
2)

i1
a−→ i′1

strict(i1, i2)
a−→ strict(i′1, i2)

i2
a−→ i′2 i1 ↓

strict(i1, i2)
a−→ i′2

i1
a−→ i′1

seq(i1, i2)
a−→ seq(i′1, i2)

i1××
θ(a)−−→ i′1 i2

a−→ i′2

seq(i1, i2)
a−→ seq(i′1, i

′
2)

i1
a−→ i′1

loopS(i1)
a−→ strict(i′1, loopS(i1))

i1
a−→ i′1

loopH(i1)
a−→ seq(i′1, loopH(i1))

i1
a−→ i′1 loopW (i1)××

θ(a)−−→ i′

loopW (i1)
a−→ seq(i′, seq(i′1, loopW (i1)))

i1
a−→ i′1

loopP (i1)
a−→ par(i′1, loopP (i1))

Many of the rules are directly similar to those in use for process algebras. In
an interaction reduced to an action a, a may be executed with ∅ as remaining
interaction. If within i = alt(i1, i2), action a can be executed in either i1 or i2
with either i1

a−→ i′1 or i2
a−→ i′2 then it may be executed in i and the resulting

interaction is either i′1 or i′2. For i = par(i1, i2), if we have either i1
a−→ i′1 or

i2
a−→ i′2 then a may be executed in i and the resulting interaction naturally is

either par(i′1, i2) or par(i1, i′2). Executing actions on the left of either a strict or a
seq follows the same rule as in the case of a par because no precedence relations
are enforced on the left-hand side. However, an action a may be executed on
the right of i = strict(i1, i2) only if i1 terminates. Indeed, in that case i1 may

Equivalence of denotational and operational semantics for interactions 13

express the empty trace ε as per Lemma 3 and nothing prevents a to be the first
action to be executed. The resulting interaction is then i′2 given that we force
i1 to express ε. Likewise, within i = seq(i1, i2) there is a condition for executing
an action a on the right. This condition is that i1 ↓×

×
θ(a), which, as per Lemma

5 is implied by the condition i1××
θ(a)−−→ i′1. Finally, we obtain i a−→ seq(i′1, i

′
2) given

that i2
a−→ i′2 and that the pruning of i1 up θ(a) yields i′1.

Let us look at rules for loop operators loopS , loopH and loopP which look
the same, i.e. loopk(i)

a−→ f(i′, loopk(i)) under the condition i
a−→ i′ and using the

notation (k, �, f) ∈ {(S, ; , strict), (H,××, seq), (P, ||, par)}.
Any t ∈ σd(f(i

′, loopk(i))) verifies t ∈ {t1} � σd(loopk(i)) for a certain
t1 ∈ σd(i

′). If action a comes from the first iteration of the loop i.e. a.t ∈
{a.t1}��σd(loopk(i)) ⊂ σd(i)��σd(loopk(i)), it coincides with using the restricted
operator �� as a scheduler. It turns out that loopH is explicitly associated to ××�∗

and thus the formulation of its rule is self-evident. In the case of loopS and
loopP it is the fact that the HF and K-closures of ; and || are equivalent (as per
Lemma 2) which enables their respective rules to be formulated in this manner.

The rule for loopW allows for the first action to be taken from a later iteration
of the loop. Let us consider i = loopW (i1) and a.t ∈ σd(i). The rule is formulated

such that t ∈ σd(seq(i′, seq(i′1, i))) with i××
θ(a)−−→ i′ and i1

a−→ i′1. Given that i is a

loop, it is always prunable (Lemma 5) so there exists i′ s.t. i××
θ(a)−−→ i′. The fact that

t ∈ σd(seq(i′, seq(i′1, i))) translates into having t ∈ σd(i′)××σd(i′1)×
×σd(i). Then, if

a is taken from the first iteration of the loop, then, given that ε ∈ σd(i′) (Lemma
6) we have t ∈ {ε}××{t′1}×

×σd(i) with t1 = a.t′1 ∈ σd(i1). If a is taken from the
second iteration of the loop, let us consider t1 ∈ σd(i1) the first iteration and t2 =
a.t′2 ∈ σd(i1) the second one (from which a is taken and hence t′2 ∈ σd(i′1)). We
have t ∈ {t1}××{t′2}×

×σd(i) and the condition ¬(t1××θ(a)). This condition implies,
as per Lemma 6 that {t1} ⊂ σd(i

′). The reasoning is the same when a is taken
from later instances. Let us consider a.t ∈ {t1}×× · · · ××{tn−1}××{t′n}×

×σd(i). We
then have {t1}×× · · · ××{tn−1} ⊂ σd(i

′) because i′ is either a loop (and therefore
absorbing) or ∅ (all the tj are then ε). Hence the rule indeed allows a to be
taken from any iteration.

The predicates ↓ and → ground the operational semantics σo given below:

Definition 10 (Operational semantics). σo : IΩ → P(TΩ) is s.t.:
i ↓

ε ∈ σo(i)
t ∈ σo(i′) i

a−→ i′

a.t ∈ σo(i)

4.4 Illustrative example

On Fig.5 we illustrate both the operational semantics and an example show-
casing the difference between loopH and loopW . Execution trees are drawn
with the help of the HIBOU tool described in [14]. We consider repetitions of
i = alt(strict(l1!m1, l2?m1), l2!m2). On the first row, we illustrate the construc-
tion of a trace accepted by seq(i, i) where i is repeated twice using weak sequenc-
ing. Here, the second occurrence of action l1!m1 (at the bottom) is immediately

14 E. Mahe, C. Gaston, P. Le Gall

se
q(
i,
i)

l1!m1−−−→ l2!m2−−−→ l2?m1−−−→

lo
op
H
(i
)

l1!m1−−−→

lo
op
W
(i
)

l1!m1−−−→ l2!m2−−−→ l2?m1−−−→

Fig. 5: Illustration of the operational semantics & of the counter-example from Sec.2.3

executable because, with pruning, we can force the choice of the right branch of
the first alternative which evades l1. At the end, the trace t = l1!m1.l2!m2.l2?m1

is expressed by seq(i, i). Now, if we consider loopH(i), we get what is illustrated
on the second row of Fig.5. We can manage to execute the first action l1!m1 but
from that point, the second action of t which is l2!m2 is not executable. Indeed,
the presence of l2?m1 at the top of the diagram prevents it to be executed. As
loopH is associated to the weak HF-closure ××�∗ and not to the K-closure ××∗, it
is therefore expected that t could not be accepted by loopH(i) in this example.
However, on the third row of Fig.5, loopW (i) can recognize t. The addition of the
pruned version of the loop allows one to delay the determination of the instance
as part of which the initial l1!m1 is executed.

Equivalence of denotational and operational semantics for interactions 15

5 Proving the equivalence of both semantics

In the following we prove the equivalence of σo and σd. A formalisation of
the proofs using Coq is available in [13].

Let us at first prove that for any interaction i we have σo(i) ⊆ σd(i). The
first step to do so is to characterize the execution relation "→" w.r.t. σd:

Lemma 7 (Property 1 of → w.r.t. σd). For any a ∈ AΩ, t ∈ TΩ and i and
i′ from IΩ,

(
(i

a−→ i′) ∧ (t ∈ σd(i′))
)
⇒ (a.t ∈ σd(i))

Proof. By induction on cases that make i a−→ i′ possible.

Lemma 7 and Lemma 3 state that the σd semantics accepts the same two
construction rules (that for the empty trace ε and that for non empty traces of
the form a.t) as those that define σo inductively. As a result any trace that is
accepted according to σo is also be accepted according to σd:

Theorem 1 (Inclusion of σo in σd). For any i ∈ IΩ we have σo(i) ⊆ σd(i)

Proof. By induction on a member trace t.

Let us now prove the reciprocate, i.e. that for any interaction i, σd(i) ⊆ σo(i).
We provide, with Lemma 8, a second characterization of "→" w.r.t. σd.

Lemma 8 (Property 2 of → w.r.t. σd). For any a ∈ AΩ, t ∈ TΩ and i ∈ IΩ,
(a.t ∈ σd(i))⇒

(
∃ i′ ∈ IΩ , (i

a−→ i′) ∧ (t ∈ σd(i′))
)

Proof. By induction on the term structure of interactions.

Thanks to Lemma 8 and Lemma 3 we conclude with Theorem 2:

Theorem 2 (Inclusion of σd in σo). For any i ∈ IΩ we have σd(i) ⊆ σo(i)

Proof. By induction on a member trace t.

We have therefore proven both inclusion and can conclude that the opera-
tional semantics σo is indeed equivalent to the denotational-style semantics σd.

6 Related works

Unlike some other works (e.g. [9]), we do not have a dedicated construction for
the passing of a message from a lifeline to another. We formulate this in the form
strict(a!m, b?m), expressing that the emission of messagem on lifeline a precedes
its reception on b. In [17] a survey of formal semantics associated to UML-SDs is
proposed. It is notable that UML-SDs are described semi-formally in the norm
[18]. This allows for a rich language with operators such as assert or negate [5]
which are not covered in our IL. However a full formalisation proves difficult, as
explained in [17,5]. Most formal approaches rely on translations towards other
formalisms [3] or consist in denotational semantics [23] that are most often based

16 E. Mahe, C. Gaston, P. Le Gall

on partial order sets. The extent to which UML-SDs are formalised may vary
[17]: some works formalize loops [12], others do not [9], and some only allow
finitely many iterations [23]. In all cases where there are loops, only one loop
operator is proposed and may correspond to either loopH or loopW .

Our denotational semantics is inspired from [9]. We have completed their
definitions dealing with loop operators. [16] introduces an operational semantics
for MSC using a termination predicate and an execution relation. Similarities
between [16] and our work include the use of pruning which, in [16], relates to
a "permission relation". In [16], loops are not handled and there is no strict
constructor: direct causal relations between actions occurring on different life-
lines (e.g. emission-reception of a message) are handled by maps, updated during
executions. Moreover, rules involve negative conditions such as i 6 a−→ expressing
that it is not possible to find an interaction i′ verifying i

a−→ i′. This way of
doing reduces the set of rules to be considered, but does not give clear access to
reasoning about the rule system itself, in particular reasoning about semantics
equivalence. In [21], a loop construction for weak sequencing composition is con-
sidered in addition to the constructions discussed in [16]. Rules in [21] include
two rules similar to our rules for loopH and loopW so that the semantics includes
the two ways of dealing with composition according to the weak sequencing ××.

Earlier works of ours [15,14] focused on the static analysis of traces against
interactions. We have proposed an algorithmicised semantics allowing us, given
an interaction i and an action a, to compute the follow-up interaction i′ whose
traces are licit extensions of a with respect to i. This previous semantics was
defined in a functional style by identifying the actions likely to start a trace
by means of their position in the interaction term. The use of positions makes
the semantics less readable and understandable than a structural operational se-
mantics à la process algebra, and hampers reasoning about the semantics. Novel
contributions in this paper w.r.t. [15,14] consist in the distinction of loopW &
loopH , the formulation of a denotational semantics in an algebraic style rather
than using precedence relations, the formulation of a structural operational se-
mantics and primarily, a proof of equivalence between both semantics.

7 Conclusion & further work

In this paper we define an IL including weak and strict sequencing, paral-
lel and alternative composition as well as four distinct loop operators to spec-
ify different kinds of repetition. We formulate the semantics of this IL: (1) in
denotational-style, making use of composition & algebraic operators and (2) in
operational-style by reconstructing accepted traces via the succession of atomic
executions. The equivalence of both formulations is proven (Coq proof in [13]).
We currently investigate how to enrich our language with some form of value
passing i.e. instead of exchanging abstract messages we may interpret them con-
cretely or symbolically with typed data. This last point is notably addressed in
some process calculi frameworks [7].

Equivalence of denotational and operational semantics for interactions 17

References

1. Akshay, S., Bollig, B., Gastin, P., Mukund, M., Narayan Kumar, K.: Distributed
timed automata with independently evolving clocks. In: van Breugel, F., Chechik,
M. (eds.) 19th Conf. on Concurrency Theory (CONCUR). pp. 82–97. Springer
Berlin Heidelberg, Berlin, Heidelberg (2008)

2. Baeten, J.: Process algebra with explicit termination. Computing science reports,
Technische Universiteit Eindhoven (2000)

3. Eichner, C., Fleischhack, H., Meyer, R., Schrimpf, U., Stehno, C.: Compositional
semantics for uml 2.0 sequence diagrams using petri nets. In: Prinz, A., Reed, R.,
Reed, J. (eds.) SDL 2005: Model Driven. pp. 133–148. Springer Berlin Heidelberg,
Berlin, Heidelberg (2005)

4. Haddad, S., Khmelnitsky, I.: Dynamic recursive petri nets. In: Janicki, R., Sidorova,
N., Chatain, T. (eds.) Application and Theory of Petri Nets and Concurrency. pp.
345–366. Springer International Publishing, Cham (2020)

5. Harel, D., Maoz, S.: Assert and negate revisited: Modal semantics for UML se-
quence diagrams. Software and Systems Modeling 7(2), 237–252 (2008)

6. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
7. Ingólfsdóttir, A., Lin, H.: A symbolic approach to value-passing processes.

In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra,
pp. 427–478. Elsevier Science, Amsterdam (2001). https://doi.org/10.1016/B978-
044482830-9/50025-4

8. Jacobs, J., Simpson, A.C.: On a process algebraic representation of sequence
diagrams. In: Canal, C., Idani, A. (eds.) Software Engineering and Formal
Methods - SEFM 2014 Collocated Workshops: HOFM, SAFOME, OpenCert,
MoKMaSD, WS-FMDS, Grenoble, France, September 1-2, 2014, Revised Se-
lected Papers. Lecture Notes in Computer Science, vol. 8938, pp. 71–85.
Springer (2014). https://doi.org/10.1007/978-3-319-15201-1_5, https://doi.org/
10.1007/978-3-319-15201-1_5

9. Knapp, A., Mossakowski, T.: UML Interactions Meet State Machines - An In-
stitutional Approach. In: 7th Conf. on Algebra and Coalgebra in Computer Sci-
ence (CALCO). Leibniz International Proceedings in Informatics (LIPIcs), vol. 72
(2017)

10. Knapp, A., Wuttke, J.: Model checking of uml 2.0 interactions. In: Kühne, T. (ed.)
Models in Software Engineering. pp. 42–51. Springer Berlin Heidelberg, Berlin,
Heidelberg (2007)

11. Lodaya, K., Weil, P.: Series-parallel languages and the bounded-
width property. Theor. Comput. Sci. 237(1–2), 347–380 (Apr 2000).
https://doi.org/10.1016/S0304-3975(00)00031-1

12. Lu, L., Kim, D.K.: Required behavior of sequence diagrams: Semantics
and conformance. ACM Trans. Softw. Eng. Methodol. 23(2) (Apr 2014).
https://doi.org/10.1145/2523108

13. Mahe, E.: Coq proof for the equivalence of the semantics. erwanm974.github.io/
coq_hibou_label_semantics_equivalence/, accessed: 2021-10-14

14. Mahe, E., Bannour, B., Gaston, C., Lapitre, A., Le Gall, P.: A small-
step approach to multi-trace checking against interactions. In: Proceedings
of the 36th Annual ACM Symposium on Applied Computing. p. 1815–1822.
SAC ’21, Association for Computing Machinery, New York, NY, USA (2021).
https://doi.org/10.1145/3412841.3442054

https://doi.org/10.1016/B978-044482830-9/50025-4
https://doi.org/10.1016/B978-044482830-9/50025-4
https://doi.org/10.1007/978-3-319-15201-1_5
https://doi.org/10.1007/978-3-319-15201-1_5
https://doi.org/10.1007/978-3-319-15201-1_5
https://doi.org/10.1016/S0304-3975(00)00031-1
https://doi.org/10.1145/2523108
erwanm974.github.io/coq_hibou_label_semantics_equivalence/
erwanm974.github.io/coq_hibou_label_semantics_equivalence/
https://doi.org/10.1145/3412841.3442054

18 E. Mahe, C. Gaston, P. Le Gall

15. Mahe, E., Gaston, C., Le Gall, P.: Revisiting semantics of interactions for trace
validity analysis. In: Wehrheim, H., Cabot, J. (eds.) Fundamental Approaches
to Software Engineering. pp. 482–501. Springer International Publishing, Cham
(2020)

16. Mauw, S., Reniers, M.A.: Operational semantics for msc’96. Computer Networks
31(17), 1785–1799 (1999). https://doi.org/10.1016/S1389-1286(99)00060-2

17. Micskei, Z., Waeselynck, H.: The many meanings of uml 2 sequence diagrams: a
survey. Software & Systems Modeling 10(4), 489–514 (2011)

18. OMG: Unified Modeling Language v2.5.1. omg.org/spec/UML/2.5.1/PDF (12
2017)

19. Parrow, J.: An introduction to the π-calculus. In: Bergstra, J.A., Ponse, A., Smolka,
S.A. (eds.) Handbook of Process Algebra, pp. 479–543. North-Holland / Elsevier
(2001)

20. Plotkin, G.: A structural approach to operational semantics. The Jour-
nal of Logic and Algebraic Programming 60-61, 17–139 (07 2004).
https://doi.org/10.1016/j.jlap.2004.05.001

21. Reniers, M.: Message sequence chart : syntax and semantics. Ph.D. thesis, Math-
ematics and Computer Science (1999). https://doi.org/10.6100/IR524323

22. Rensink, A., Wehrheim, H.: Weak sequential composition in process algebras.
In: Jonsson, B., Parrow, J. (eds.) 5th Conf. on Concurrency Theory (CON-
CUR). pp. 226–241. Lecture Notes in Computer Science, Springer (1994).
https://doi.org/10.1007/BFb0015012

23. Störrle, H.: Semantics of interactions in uml 2.0. In: IEEE Symposium on Human
Centric Computing Languages and Environments, 2003. Proceedings. 2003. pp.
129–136 (10 2003). https://doi.org/10.1109/HCC.2003.1260216

https://doi.org/10.1016/S1389-1286(99)00060-2
omg.org/spec/UML/2.5.1/PDF
https://doi.org/10.1016/j.jlap.2004.05.001
https://doi.org/10.6100/IR524323
https://doi.org/10.1007/BFb0015012
https://doi.org/10.1109/HCC.2003.1260216

	Equivalence of Denotational and Operational Semantics for Interaction Languages

