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ABSTRACT N

Boron nitride nanotubes (BNNTS) have experienced considerable gr@vth i ars
due to their unique intrinsic properties, in particular for the fabrication of polymggna p S.
Dispersion of pure BNNTSs in nanocomposites is often difficult due to &vmpaﬂbility
with most polymer matrices. An approach involving the creation of @ groups on their

surface could improve their dispersion. While some harsh oxidatio s have been reported
so far, a mild oxidation of BNNTS using air as the oxidan@ here. This new catalytic
reaction leads to slightly oxidized BNNTSs, which we ctertzed by SEM, XPS, FTIR and

re
TGA. Polycarbonate nanocomposites were then fabricat pristine and oxidized BNNTSs as

nanofillers. The measured thermal condugfivity @ linearly with the mildly oxidized

BNNTSs content. It reached a five-fold incre .19 W/m.K at 15% vol. content which is

significantly improved over nanoc

electrically insulating charactei remained u

&

hcated with severely oxidized BNNTSs, while the

ged.
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1. INTRODUCTION N

Boron nitride-based nanomaterials are continuously drawing interesbfrom ‘ ific
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community [1,2]. They are used in a variety of applications and especially i

_
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dissipation is of primary consideration [3,4]. Among these boron nitride-bas omaterials, two
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w N

nanostructures have attracted particular attention for applications asWganofillers in polymer

_
N
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nanocomposites: boron nitride nanosheets (BNNS, 2D) and boron n otubes (BNNTs, 1D).

_
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Although BNNS have been of great interest in the developmen ly conductive polymer
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nanocomposites [5-7], this paper focuses specifically on BAN gh recent development [8,9],
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BNNTSs are now emerging as very promising 1D nanof or Weat dissipation applications [10—
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satisfactory due to insufficj ta ng interactions with the polymer matrices. This often leads

w W
O ©

E NN
- O

to poor dispersion re% formation of BNNTSs bundles in the polymer matrix. Although
BNNTSs are practi

N
N

emmcally inert ant quite resistant to oxidation [15], several approaches

N
Aw

involving chemiC onalization of the nanotubes have been developed to improve their

A
ou

dispersion [N&21] gt shduld be mentioned that much effort has also been devoted to the

NN
[o BN

N
O

functiogalizati§n of boron nitride nanosheets (BNNS), the 2D counterpart of BNNTSs [22-25]. The

(6,48
- O

fi ep\Of BNNT functionalization is commonly based on the oxidation of the nanotubes to

(S 8,1
w N

acti e surface, followed by various reactions with molecules of interest. Different

(S NS, S,
o Ul A

fun@lionalization routes using hydroxylated BNNTs have been reported to be effective in
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providing greater solubility or dispersion of the nanotubes through stabilizing interacti%

30].

One of the main difficulties of the reported oxidation processes is to reagh’a Sgicie

of oxidation on the surface of the nanotubes to ensure a good density of hyd roups, without

being too harsh to avoid over-oxidation. Indeed, Liao et al. [31] showed tRat overfoxidation related

to severe reaction conditions leads to the nanostructure destruction end-caps, sharpened

ends, thinned sidewalls and shortened lengths), resulting in a fo remarkable properties.

Since the intrinsic chemical reactivity of BNNTSs is quitedow, few oxidation routes have

been successfully tested so far, especially under harsh hions? Such severe oxidation protocols

include the use of nitric acid [27,30,32], pgrchlasic 6], concentrated sodium hydroxide

solution [28,33], excess bromine in water [ or rogen peroxide under pressure [38,39].

A fine control of the nanotube oxi whMat difficult due to these harsh conditions. It

should also be noted that gas-phase oxidati BNNTSs exists [40—43].

Among various oxidati agns used in organic chemistry, a catalytic free-radical

reaction based on N-Hydr

of organic molecules& nes, alcohols or aldehydes [44-46]. This oxidation reaction is
Y

known to give be

ide (NHPI) has been widely developed for the air oxidation

ion and selectivity than conventional autoxidations [47]. A main

advantage of thi lies on the use of air as the final oxidant of the reaction. To the best of

our knowle thigicatalytic system has never been used for oxidizing inorganic compounds. In
most cgses, thy oxidation reaction of BNNTSs occurs through a concerted mechanism [27,34].

H er, SOme recent reports revealed that BNNTSs could undergo surface activation through free-

radi actions [48,49]. Shin et al. [48] predicted via theoretical study and experimentally

verifled the functionalization of pristine BNNTSs using chemically reduced nanotubes with sodium

Page 4 of 23
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naphthalide followed by reactions with free radicals. Lin et al. [49] used thermally labile ides
to covalently functionalize BNNTSs. Upon heating, the peroxides decompose to gene jcals
[

that are capable of reacting with the BNNTSs.

In this article, it is demonstrated that such a catalytic system based&l efficiently

catalyses the air oxidation of BNNT and affords a straightforward route t@ghe fat@yication of mildly

oxidized BNNTSs. %

The advantages of using mild over harsh oxidatio diti and the effects of such
oxidation protocols on thermal properties of polymer n osites are also highlighted. The
BNNTSs were used as nanofillers dispersed in a pol on atrix. Contrary to what had been

reported with nanotubes oxidized accordi

the Us otocols [37], the moderately oxidized

BNNTSs behave like raw BNNTSs, i.e. they a ong increase of the thermal conductivity

(500% increase at 15 vol%) while mairg arked electrically insulating character.
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2. EXPERIMENTAL SECTION N

2.1 Materials ®

N-hydroxyphthalimide (NHPI, 97%), manganese(ll) acetate (Mn(O 2,9%'0% (1
acetate (Co(OAC)2, 99.9%), acetic acid (AcOH, glacial), sodium m aOH) and

tetrahydrofuran (THF, 99.9%) were purchased from Sigma-Aldrich g\lS sed as received.

Nitric acid (HNOs, 69.5%) was purchased from Carlo Erba (Gegna ﬁ ron nitride nanotubes

(BNNTSs) were purchased from BNNano (USA) as Nanobar, = 90%, diameter ~ 250-

300 nm / length ~ 20 um) and used as received without ification treatment. Polycarbonate

(PC, grade Makrolon LED2045) was purchased frg veSH(Germany).
2.2. Experiments

2.2.1. Oxidation of BNNT

BNNTs were oxidized BNNT-OH through a catalytic reaction based on NHPI and

)

were firstly dispersed in m\ of glacial acetic acid for 30 min in an ultrasonic bath.

transition metals such as manga obalt. In atypical experiment, 200 mg of pristine BNNTS

Simultaneously, 260%0 %) of NHPI, 7 mg (0.5 mol%) of Mn(OAc)2 and 7 mg (0.5 mol%)

of Co(OAcC)2 wegeYdispeed in 50 mL of glacial acetic acid for 30 min. Once fully dispersed, the
BNNTSs solujsggand W NHP1 + Mn(OAc). + Co(OAC).] solution in glacial acetic acid were put
together and nder“a reflux heating set at 100 °C with magnetic stirring and controlled air
bubbli action mixture was left under these conditions for 64 h. The resulting hydroxylated

BRNTs (BRNNT-OH|[NHPI]) were finally vacuum-filtered and washed four times with 200 mL of

Page 6 of 23
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1
2
3 deionized water to remove catalysts and residual NHPI. The purified BNNT-OH|[NHPW
4
5 . :
6 was then dried in an oven set at 80°C for several hours before any further experiment
7 o
8 For comparison purposes, pristine BNNTSs were also treated with concenjgate acid
9
centratyll sodium

(HNOz 69.5%) for 3 h in an ultrasonic bath (BNNT-OH|[HNOs]) and K
hydroxide aqueous solution (NaOH 10 M) for 20 h at 100 °C (BNNT-O@ .
2.2.2. Nanocomposite preparation

PC-BNNT and PC-BNNT-OH nanocomposites w nth¥zed through the solution

N m a3
O VWoONO UTNWN=- O

;; mixing technique. Briefly, PC was firstly dissolved in T stirring at room temperature) and
Z simultaneously, BNNTs or BNNT-OH were dispergsggin T t a concentration of 1 mg/mL (10
%2 min stirring at room temperature followed trasonic bath). Then, the BNNTs/THF
ig or BNNT-OH/THF solution was incorporate PC/THF solution and stirred for 30 min.
g? Finally, the excess of THF was reMmgQve g a rotary evaporator. The resulting dry
g nanocomposite flakes were le e night undgr a fume hood for an additional drying.

gg PC-BNNT and PC-B@nocomposim flakes were then used to produce bulk
g; samples (disk-shaped, dia% m, thickness = 1.2 mm). The disk-shaped samples were
4313 obtained by hot press% omposite flakes under a uniaxial hot press set at 270 °C (Carver
3; 30T 4128, Carver SAY Prior to molding, the nanocomposite flakes were dried in an oven
f: set at 120 °C foQ. Then, the nanocomposite flakes were put inside a pressing die and
46

47 preheated 2@ 2707C. Finally, a 5 min pressing at 270 °C of the nanocomposite flakes
E% resulteq in th@ desired disk-shaped sample. The pressing die was then cooled down to room
51

teghperatyre. Different nanofiller weight fractions (wt%) were investigated in this study. For

co n purposes, they were also converted into volume fractions (vol%) using the following

forrpula:

o U1 Ul Ul Ul U1yl Ul Ul
O VvVooNOoOuUhWwWN
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wt%
volt = 13 N
wt% + (p ) * (1 — wt%)
m

where ps is the density of the filler (psnnt = 2.3 g cm™) and pm is the density @F the 8
matrix (pec =12 g cm). o
2.3. Characterizations < )
The morphology of BNNTs and BNNT-OH was observed us -emission - scanning
electron microscope (FE-SEM, LEO 1530 VP Gemini, Zeiss@ Diameters and lengths of
BNNTs and BNNT-OH were measured using the digital processing software ImageJ. The

dispersion of BNNTs and BNNT-OH inside the polyCa te’/matrix was also studied by FE-

SEM coupled with energy dispersive X-ra DX, XFlash Detector 5030, Bruker,

Germany) on bulk nanocomposites fracture efore any observation, all samples were
metalized by platinum sputtering.

Infrared spectra of BNNTs and BNN samples were obtained with a Fourier transform

infrared (FTIR) apparatus used ssion mode (Vertex 70, Bruker Optics, Germany). In a
typical analysis, a spatula 4 of BNNTs or BNNT-OH powder was mixed with KBr

grinded crystals and isk- edhder a uniaxial hydraulic press. All KBr samples were dried in

an oven set at 80 ° FTIR analysis to avoid water contamination.

X-ray phP"g spectra of BNNTs and BNNT-OH were obtained with a X-ray

photoelectr ecthoscOMp(XPS) apparatus (Versaprobe-11, Physical Electronics, USA).

using a STA 449 from Netzsch, Germany. Two measurements were carried out

aterial. A heating rate of 5 °C/min up to 600 °C was applied under air atmosphere.

Page 8 of 23
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o
capacity based on the rule of mixtures. Through-plane (L) and in-plane (//) th =Sivity
4

al
measurements were performed using a laser flash apparatus at 25 °C ( 447 NycroFfash,

Netzsch, Germany). For in-plane measurements, the disk-shaped sampleg were Yut/into ~1.2 mm-
e

wide strips using a diamond-coated wire saw, rotated 90° and placedg
Bulk density was measured in a 1 cm? cell with a He gas displ en ometry system at 25
°C (Accupyc Il 1340 from Micromeritics, USA). The av@ was calculated from 25

measurements.

re sample holder.

Electrical resistivity was measured using a esiSYity measurement system mounted

with a UR-SS probe (Hiresta-UX, MCP-H i Chemical Analytech, Japan).

carried out in & bnal benchtop setup, with a flow-regulated air bubbler placed in the

solution, as layghl in fiure 1.

QC)

Y.y
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air

NHPI (20mol%)
Mn(OAc), (0.5mol%)
Co(OAc), (0.5mol%)

H,0 <

HO —8v

HO

+ 02 Acetic acid, 100°C
64h

| S
<,

‘ +—H,0

lee]

Air flow regulator

-
At
-
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BNNTs + NHPI + Mn(OAc), +
in acetic acid at 100°C

Figure 1. Schematic view of the catalytic air oxidation proccggof B S

After reaction, the BNNT-OH were filtered, wied, and then analyzed by a set of

characterization techniques. High-resolution SEM of e nanotubes were compared before
and after the oxidation reaction. They are ed | ure 2. Although the BNNTSs appeared

slightly modified after the reaction wj

difficult, however it appears tTSBNNT-OH (figure 2(b)) were slightly shorter than pristine

BNNTs (figure 2(a)). In contrd -OH obtained after HNO3z or NaOH based reactions

underwent significant deg tio as shown in figure 2(c-d). These degradations are typical of

severe oxidation prw

diameter in BN NO3] and BNNT-OH|[NaOH] samples), sharpened ends and tearing or

d include thinned sidewalls (drastic reduction of the nanotube

breakage of ubeSqQgure 2(c)) [31]. SEM images of oxidized BNNTS are shown in figure S1.
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# &\«f g < : = ; .
Figure 2. SEM images of (a) prlstln ' , INT- OH|[NHPI] (©) BNNT OH|[HN03] and
(d) BNNT-OH|[NaOH]. Insets show typsal higimagnification images of individual BNNTSs.

Oxidized BNNTs wergRggalyzed by FTIR. The full-scale FTIR spectra of pristine and

oxidized BNNTs are displayeq g 3(a). An inset of the 2800-4000 cm™ region is also

um of pristine BNNT is similar to previous reports in the
Borption bands are observed at 811 and 1380 cm™ which are

B-N-B bending and the in-plane B-N stretching vibrations

appear§nce of Apeak at 3435 cm?, which can be ascribed to the vibration frequency of the hydroxyl

ar, : NNT-OH|[NHPI] sample exhibits the highest relative absorbance intensity

com to BNNT-OH|[HNO3] and BNNT-OH|[NaOH] (figure 3(b)).

11
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The comparative XPS analysis of the pristine and oxidized BNNT reveals a M

significant modification of the spectrum as displayed in figure 3(c-f). The peak arou eV

[
was attributed to the B-N bond [39]. In pristine BNNTSs (figure 3(c)), the B1s pggk is etric

with respect to its center located at 190.3 eV and well fitted with a single ssian porent.
On the contrary, for oxidized BNNTs (figure 3(d-f)), the Bls peak arsyasyrmmetric with

shoulders at higher binding energies. After peak deconvolution, the n second Gaussian

component centered at 191.3 eV in BNNT-OH|[NHPI] and B - NOz] samples can be

assigned to the B-O bond [38,39,54] thus confirming sur oxidation of BNNTS.
Interestingly, the B1s peak in the BNNT-OH|[NaOH] sagiple e 3(f)) display less asymmetry,
suggesting a lower hydroxyl density after function lon.

TGA experiments were also carrie %he presence of -OH groups after the

to the elimination of the hydrox

-OH groups at the surface NNTs after oxidation. However, it should be noted that the mass

loss is slightly differ% on the oxidation process employed. The most important mass
loss (about 0.77% ined with the BNNT-OH|[NHPI] sample, which is consistent with both

FTIR and XP, ar ation results.

Page 12 of 23
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high-performance and heagrgSistajt thermoplastic polymer with very good mechanical properties
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and dimensional statN at high temperatures. PC nanocomposites with various nanofiller
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loadings were <\® through the solution mixing technique. The thermal conductivity

AN
(S8

measuremen posites prepared with pristine and oxidized BNNTSs are plotted in figure

RN
No

4(@). A K ment realized without BNNTSs confirmed the expected thermal conductivity

[S TN
O O

of PC .23 W/m.K [56]. The reference material was chosen as the pure PC loaded with

u@d BNNTs (black data points in figure 4(a)). The thermal conductivity of the PC-BNNTSs

meosites was found to increase linearly with the BNNT content with a maximum through-
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plane value 1. = 0.87 W/m.K and in-plane value A, = 1.08 W/m.K at 15% vol. cont@&, This

corresponds to more than a four-fold increase compared to the pristine polymer, s that

o
BNNTs are very efficient nanofillers for increasing the heat dissipation capacit th mer.
NT-Op|

Regarding oxidized BNNTSs, the thermal conductivity values measured on PC [HNO3]
and PC-BNNT-OH|[NaOH] nanocomposites are clearly worsened. ThgSe Tesyltsyobtained with
o)

pristine BNNTs and BNNTSs treated under harsh conditions (B O3] and BNNT-

OH|[NaOH]) are fully consistent with the recent report of Zangieh et al. J37]. In this study, the

authors found similar results on the thermal conductivity on ocdMposites filled with pristine

BNNTs and BNNTSs oxidized with excess bromine in wakdr, w s equally considered as a harsh
oxidizer. Interestingly, the BNNTSs treated with our col I9¥ed on the NHPI catalytic oxidation

did not alter the thermal conductivity of t

nano osite (blue data points in figure 4(a)),

they even slightly improved the in-plane ther ctivity with a value of Ay = 1.19 W/mK at

15% vol. content. At high filler loadi the In-plane thermal conductivity of PC-BNNT-

OH|[NHPI] was clearly hig an the one of PC-BNNTSs (figure 4(b)), suggesting a better
phonon diffusion throughout thd @ ocomposite. The difference between through-plane and

in-plane thermal conductj regults observed in figure 4(a-b) can be ascribed to a partial

alignment of the BN er ularly to the pressing direction during the disk-shaping process,

favoring a phonon

fracture surf f
in figure 83@9 E

within fe PC fatrix compared to pristine BNNTSs which tend to form large agglomerates (figure

rt in the in-plane direction [57-59]. SEM images and EDX mappings of

C and PC nanocomposites filled with BNNT-OH fillers are presented

mapping images suggest a better dispersion of hydroxylated BNNTs

S{(a)). Hywever, no significant difference was observed regarding the quality of the filler/matrix

inter in the different samples with BNNT-OH as nanofillers (figure S3(b)). The lower thermal
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conductivity recorded for nanocomposites using BNNTSs oxidized under harsh condition%

NaOH, Br2/H20) can thus be ascribed to the creation of large defects inside the BNN ture

[
(figure 4(c)), as observed in figure 2 and figure S1. As surface hydroxylation impjes th
ificant

of several B-N bonds, the damaging of the h-BN lattice certainly induces sj ss of the

nanomaterial properties, thus amplifying the phonon-defect scattering w, regul®’in a decrease

of the overall thermal conductivity. The results obtained with ted under mild

conditions (BNNT-OH|[NHPI]), suggest a controlled oxidatigg rate, wph less defects (figure

4(d)). The phonon-defect scattering is therefore minimize the [W¥ermal conductivity of the

nanocomposite not significantly altered. Electrical resigilvity Iso measured on the different
nanocomposites. No significant change was obsery, ith ect to the pure PC (figure 4(e)). It

is consistent with the expected propertie

N t are wide band gap insulators. This
confirms the high potential of these nanofiller: cate nanocomposites being both thermally

conductive and electrically insulating.
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4. CONCLUSION N

In summary, three oxidation routes of pristine BNNTs have been t@ted [ two

severe oxidation protocols (concentrated HNO3 and concentrated NaOH) and a
reaction. To our knowledge, the catalytic air oxidation of BNNTS is report ein for the first

time. All the oxidized BNNTs were characterized by a set of tedgniqueg demonstrating

unambiguously the presence of hydroxyl groups on their surfac trast to the severely

matrix. Though severely oxidized BNNTSs resulted in t radation of the thermal conductivity

of PC nanocomposites compared to the pristj xidized BNNTs allowed a five-fold

improvement of the thermal conductivity a vol®eontent. Functionalization of the mildly

oxidized BNNT prepared accordin d pfotocol appears as a promising way to further

increase the dispersion within the matrix, ut damaging the integrity of the nanotubes, and

thus to enhance the performance € nanocomposites.

&
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Supporting Information

o
Figure S1: High-resolution SEM images of pristine BNNTs and BNNT-OH. \
Figure S2: TGA curves of pristine and oxidized BNNTSs. &
Figure S3(a): SEM images and EDX mappings of fracture surface fgocomposites for
assessment of BNNTSs dispersion.

Figure S3(b): SEM images of fracture surfaces of PC com®sites for assessment of

filler/matrix interface quality. Q
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