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Abstract

For specialized and dense downstream tasks such as ob-
ject detection, labeling data requires expertise and can be
very expensive, making few-shot and semi-supervised mod-
els much more attractive alternatives. While in the few-shot
setup we observe that transformer-based object detectors
perform better than convolution-based two-stage models for
a similar amount of parameters, they are not as effective
when used with recent approaches in the semi-supervised
setting. In this paper, we propose a semi-supervised method
tailored for the current state-of-the-art object detector De-
formable DETR in the few-annotation learning setup using
a student-teacher architecture, which avoids relying on a
sensitive post-processing of the pseudo-labels generated by
the teacher model. We evaluate our method on the semi-
supervised object detection benchmarks COCO and Pas-
cal VOC, and it outperforms previous methods, especially
when annotations are scarce. We believe that our contribu-
tions open new possibilities to adapt similar object detec-
tion methods in this setup as well.

1. Introduction
Deep learning methods are highly successful when

trained on a huge amount of labeled data. While gather-
ing data is not difficult in most cases, its labeling is always
time-consuming and costly. For instance, labeling medical
images requires having access to expert knowledge, while
annotating images for dense tasks, like object detection
and segmentation in autonomous driving, requires going
through a tedious process of drawing polygons or bound-
ing boxes around the objects of interest. A more attrac-
tive alternative to this process is considered in our work: to
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Figure 1. Comparison of mean final performance (mAP in %)
between Faster R-CNN (FRCNN) [26] and Deformable DETR
(Def. DETR) [39] in the Few-Shot and Few-Annotation Learning
settings, using only 1% of labeled data on COCO (about 1180 im-
ages). See Section 4.1 for experimental details. In the fully su-
pervised case, Def. DETR achieves better results than FRCNN.
However, in the semi-supervised case implemented in Unbiased
Teacher (UBT) [23], Def. DETR cannot converge.

guide the learning using only a handful of labeled exam-
ples, while simultaneously leveraging a large amount of un-
labeled data. This corresponds to a particular case of semi-
supervised learning (SSL) called few-annotation learning
(FAL) hereafter.

For the task of Object Detection (OD), methods in the lit-
erature that tackle this setting [15, 30, 23, 35, 37, 31] have
all considered object detectors based on traditional convo-
lutional networks [26] with a set of specific post-processing
heuristics required for them to work [14, 36]. More recent
object detectors are based on an encoder-decoder architec-
ture using transformers [34] that allows for end-to-end OD
without depending on this hand-crafted pipeline [5, 39].
However, they have not yet been tested in the SSL context.
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The starting point of this paper is the observation that
current state-of-the-art transformer-based architecture [39]
performs much better than traditional object detectors in
a data-scarce fully supervised learning setting, also called
Few-Shot Learning (FSL), for an equal number of parame-
ters. However, when plugging it into a state-of-the-art Semi-
Supervised Object Detection (SSOD) method [23], we ob-
serve that the model fails to converge, meaning that when
used as is (Figure 1), applying SSL methods from literature
to transformer-based object detectors does not guarantee
good results. Thus, we propose a novel SSL method tailored
for transformer-based architectures in order to take advan-
tage of the effectiveness of transformers in FSL, and upscale
these methods for FAL. Our proposed method achieves
state-of-the-art in several FAL benchmarks.

More precisely, our contributions are summarized as:
1) After showcasing the strong performance of transformer-
based detectors using few labeled data, we propose Momen-
tum Teaching DETR (MT-DETR), an approach for SSOD
that leverages the specificities of transformer-based ar-
chitectures and outperforms previous semi-supervised ap-
proaches in FAL settings. 2) Contrary to convolution-based
OD methods, our approach does not rely on heuristics and
post-processing for constructing pseudo-labels. Thus, it
eliminates sensitive hyperparameters.

2. Related Work

2.1. Fully Supervised Object Detection

Object Detection is a significant and widely studied
problem in computer vision [11, 10, 26, 25, 22, 19, 33]. Es-
sentially, it combines the tasks of object localization and
classification. It is a dense task that requires a precise un-
derstanding of the image, the objects and their context. The
most popular OD models have been based on fully con-
volutional neural networks [11, 26, 25]. These methods
can be separated into two-stage [11, 10, 26, 19] or one-
stage [25, 22, 33] detectors. The former methods make pre-
dictions of boxes and their class labels based on region pro-
posals, e.g. from a Region Proposal Network (RPN) [26],
while the latter make predictions w.r.t. to anchors [20] or a
grid of possible object centers [25, 38, 33]. Their perfor-
mance depends heavily on hand-designed heuristics, with
the most prominent example being the Non-Maximal Sup-
pression (NMS) post-processing, widely used in state-of-
the-art OD methods [14, 3]. More recently, a novel detector
based on an encoder-decoder architecture using transform-
ers [34] has been proposed [5]. This allows end-to-end de-
tection with a simpler pipeline and eliminates the need for
the above-mentioned heuristics. The training complexity of
this architecture was subsequently improved in Deformable
DETR (Def. DETR) [39], by changing the attention opera-
tions into deformable attention, which leads to an improved

convergence speed. In this work, we found that Def. DETR
is a stronger baseline for FSL than the more popular Faster-
RCNN [26] widely used in previous work, which motivated
us to focus on transformer-based OD architecture.

2.2. Semi-supervised Learning

The goal of semi-supervised learning is to take advan-
tage of unlabeled data along with labeled data during train-
ing. In the more specific case of FAL, it allows reducing the
need of a large amount of labeled data by leveraging the use
of unlabeled data.

Image Classification The problem of SSL in computer
vision was historically tackled first for the image classifica-
tion task, with significant progress made using deep neural
networks [28, 32, 24, 2, 29]. A popular type of approach
in this field uses pseudo-labeling [17, 2, 1, 29], by gen-
erating pseudo-labels from class predictions for unlabeled
data, either offline [17] or online [2, 29], and then train-
ing on a mix of ground truth and pseudo-labels. Another
similar branch of methods is using consistency regulariza-
tion [28, 32, 16, 7] to match the predicted class distributions
of the online version of the model called student, to the pre-
dicted distributions of a different version of the model called
teacher, both seeing two different augmented views of the
inputs. Following recent trends [29, 7], our work takes in-
spiration from both groups of methods adapted to OD, by
training a student model to match the predicted probability
distributions of proposals made by a teacher model.

Object Detection Methods in the literature are mainly
relying on pseudo-labels provided by a teacher model after
applying strong data augmentations on unlabeled data [15,
30, 23, 35, 37, 31]. The use of geometric transformations
in these strong augmentations is particularly important for
OD [30], due to the localization task intrinsic to the prob-
lem. The most recent and best performing ones [23, 35, 31]
are also updating the teacher through Exponential Moving
Average (EMA) [18] of the student’s weights to continu-
ously improve the teacher and, thus, the pseudo-labels given
to the student. Although the use of EMA has improved the
performance of the models, we propose in our work to sta-
bilize the teacher, by applying an updating strategy through-
out training, inspired by recent advances in self-supervised
learning [12, 6]. Pseudo-labels are obtained, either by using
a hard labeling [15, 30, 23, 35, 37] approach, which consists
in applying an argmax to the predictions, or a soft label-
ing [31] approach, by fully using the predicted distribution.
All the previous methods are relying on NMS and thresh-
olding the confidence scores, i.e. the softmax of the pre-
dictions, given by the teacher model. However, the above-
mentioned post-processing steps are sensitive to hyperpa-
rameters and introduce a bias into the model incentivizing it
to be highly confident in its predictions, which may be sub-
optimal, particularly when few labeled data are available.



Method Params. COCO VOC07

0.5% (590) 1% (1180) 5% (5900) 10% (11800) 5% (250) 10% (500)

FRCNN + FPN† 42M 6.83± 0.15 9.05± 0.16 18.47± 0.22 23.86± 0.81 18.47± 0.39 25.23± 0.22
Def. DETR 40M 8.95± 0.51 12.96± 0.08 23.59± 0.21 28.55± 0.08 22.87± 0.38 29.03± 0.46
∆ +2.12 +3.91 +5.12 +4.69 +4.40 +3.80

Table 1. Performance (mAP in %) comparison between Faster-RCNN (FRCNN) [26] with Feature Pyramid Network (FPN) [19], a two-
stage detector commonly used in SSOD methods, and Deformable DETR (Def. DETR) [39], a state-of-the-art transformer-based object
detector, with the same ResNet-50 backbone model. The performances are reported for different percentages (and the corresponding
number of images) of COCO and VOC07 labeled training data. See Section 4.1 for more details on the experiments. Def. DETR performs
better than FRCNN + FPN with fewer labeled data for a similar amount of parameters. †: Results from [23] if available, from our
reproduction otherwise.

Therefore, we aim to remove all these post-processing steps
in this work. Furthermore, SSOD methods in the literature
have been exclusively built and evaluated using two-stage
OD architectures, and we found that they do not work as is
for the more recent detection models based on transformers.

In this paper, we investigate SSOD through the lens of
FAL, and we focus our experiments in this setting, in con-
trast to previous work that address FAL with only a limited
number of experiments.

3. A semi-supervised learning approach for
transformer-based object detection

In this section, we first motivate our main idea to use
a recent state-of-the-art transformer-based OD method in
an SSL context by providing several results on both FSL
and FAL settings. Then, we present Momentum Teaching
DETR (MT-DETR), our transformer-based SSOD method
more adapted to FAL and illustrated in Figure 2. More
specifically, we describe the construction of the pseudo-
labels for unlabeled data, and the update scheduling for the
teacher model.

3.1. How do object detectors handle data scarcity ?

From the results presented in Table 1, we can see that
Deformable DETR (Def. DETR) [39], a recent state-of-the-
art detection model based on transformers, achieves consis-
tently better performance than the most popular two-stage
method in FSL. We refer the reader to Section 4.1 for all the
implementation details.

These results motivated us to implement Def. DETR in
a state-of-the-art SSOD method to see how it performs in
FAL settings. We opted for the recent Unbiased Teacher
(UBT) [23], as its strong results in FAL were easily repro-
ducible with the provided code. Surprisingly, we observed
that with Def. DETR detector, the model does not converge
in all the FAL settings tested: 1% of COCO as labeled
data (i.e. about 1180 labeled images), 5% and 10% of VOC
07 (i.e. 250 and 500 labeled images respectively). Even

though it passes by an early best (about 17% mAP on 1%
of COCO) at the beginning of training, the model collapses
soon after. This diverging behavior is not satisfying in prac-
tice, even more so that the same method used with a Faster-
RCNN [26] architecture converges (it achieves about 20%
final mAP on 1% of COCO) in similar settings (c.f . Fig-
ure 1). All of this shows that current state-of-the-art SSOD
methods are not adapted to more recent transformer-based
architectures.

Inspired by these results, we propose an SSL method tai-
lored for transformer-based OD called Momentum Teaching
DETR (MT-DETR).

3.2. Overview of our approach

As shown in Figure 2, our approach is composed of a
student-teacher architecture, which is common for semi-
supervised learning [32, 29]. Both student and teacher mod-
els are initialized from a fully supervised model trained
on the few labeled data available. Then, during the semi-
supervised training, the method takes as inputs a batch of
labeled images Bl = {(xl

i, y
l
i)}N

l

i=1 and a batch of unlabeled
images Bu = {xu

i }N
u

i=1. We define xl
i and xu

i as the ith la-
beled and unlabeled image respectively, yli = {yl(i,j)}

ki
j=1 =

{(cl(i,j), b
l
(i,j))}

ki
j=1 ∈ {{1, 2, . . . , C} × R4}ki

j=1 as the cor-
responding ki ground truth class labels and box coordinates,
and finally, N l and Nu are respectively the labeled and un-
labeled batch sizes. The student model is updated by a
weighted combination of a supervised loss Ls and an unsu-
pervised loss Lu with weight λu ∈ R:

L(Bl,Bu) = 1

N l
Ls(Bl) +

λu

Nu
Lu(Bu). (1)

Below, we first describe the supervised branch, which com-
putes the supervised loss using the batch of labeled data Bl.
Then, we detail the unsupervised branch, which computes
the unsupervised loss with the batch of unlabeled data Bu.

Supervised branch To compute the supervised loss,
the supervised branch follows the supervised learning
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Figure 2. Overview of our Momentum Teaching DETR (MT-DETR) approach for SSOD. The method follows a student-teacher architec-
ture, with the teacher updated through an Exponential Moving Average (EMA) of the student. The keep rate parameter for the EMA fol-
lows a cosine scheduling. In the supervised branch (in dotted and green), the supervised loss Ls is computed with the predictions of the stu-
dent on the labeled images. In the unsupervised branch (in straight and red), the raw, i.e. unprocessed, outputs of the teacher model for the
weakly augmented unlabeled images are used as soft pseudo-labels without applying any heuristic like NMS or confidence thresholding.
After finding the best corresponding detection proposals with bipartite matching, the student model learns from the strongly augmented
images to match the distribution of class probabilities and the bounding boxes in these pseudo-labels through the unsupervised loss Lu.

of Def. DETR [39], which is an improved version of
DETR [5]. For each image xl

i, the student model infers
N predictions ŷli = {ŷl(i,j)}

N
j=1 = {(ĉl(i,j), b̂

l
(i,j))}

N
j=1

of boxes b̂l(i,j) and their associated predicted labels log-
its ĉl(i,j) ∈ RC+1, with the (C + 1)th logit represent-
ing the no object (∅) class. Then, the Hungarian algo-
rithm finds from all the permutations of N elements SN ,
the optimal bipartite matching σ̂l

i between the predictions
ŷli of the student model and the ground truth labels yli:
σ̂l
i = argminσ∈SN

∑N
j Lmatch(y

l
(i,j), ŷ

l
(i,σ(j))). Thus, for

each labeled image xl
i, the jth ground truth yl(i,j) is associ-

ated to σ̂l
i(j). Similarly to the loss used in object detectors,

the matching cost Lmatch used in the Hungarian algorithm
takes into account both class and bounding box predictions
through a linear combination of the Focal loss [20] Lfocal,
the ℓ1 loss of the box coordinates, and the generalized IoU
loss [27] Lgiou, respectively. These loss functions are then
used to compute the supervised loss Ls as well:

Lmatch(y
l
(i,j), ŷ

l
(i,σ(j))) = 1{ĉl

(i,σ(j))
̸=∅}

[
λclassLfocal

(
cl(i,j), ĉ

l
(i,σ(j))

)
+ λℓ1∥bl(i,j) − b̂l(i,σ(j))∥1

+ λgiouLgiou

(
bl(i,j), b̂

l
(i,σ(j))

)]
,

(2)

Ls(Bl) =
N l∑
i=1

N∑
j=1

[
λclassLfocal

(
cl(i,j), ĉ

l
(i,σ̂l

i(j))

)
+ 1{ĉl

(i,σ̂l
i
(j))

̸=∅}λℓ1∥bl(i,j) − b̂l(i,σ̂l
i(j))
∥1

+ 1{ĉl
(i,σ̂l

i
(j))

̸=∅}λgiouLgiou

(
bl(i,j), b̂

l
(i,σ̂l

i(j))

)]
.

(3)

In the above equations, we define λclass, λℓ1 , λgiou ∈ R as
the coefficients in the matching cost and 1X the indicator
function, such that ∀x,1X (x) = 1 iff x ∈ X .

Unsupervised branch Our main contribution is the
unsupervised loss for transformer-based OD. In the un-
supervised branch, we produce two different views for
each unlabeled image xu

i : a weakly augmented view xu
i
′

and a strongly augmented view xu
i
′′1. Then, the teacher

model provides soft pseudo-labels yui = {yu(i,j)}
N
j=1 =

{(cu(i,j), b
u
(i,j))}

N
j=1, with cu(i,j) the predicted logits, for

each weakly augmented unlabeled image xu
i
′, and the

student model infers predictions ŷui = {ŷu(i,j)}
N
j=1 =

{(ĉu(i,j), b̂
u
(i,j))}

N
j=1 from the corresponding strongly aug-

mented unlabeled view xu
i
′′.

We apply the same Hungarian algorithm with the same
matching cost Lmatch to obtain the best permutation σ̂u

i =

argminσ∈SN

∑N
j Lmatch(y

u
(i,j), ŷ

u
(i,σ(j))), that matches the

predictions of the student with the closest pseudo-label. In
1The weak and strong augmentations are described in Section 4.1.



the unsupervised loss Lu, we follow the consistency regu-
larization paradigm [4, 7, 6]. We train the student network
to match the probability distributions of the classes pre-
dicted by the student with the soft pseudo-labels proposed
by the teacher. We learn to match these distributions by
minimizing the cross-entropy between the two class distri-
bution outputs normalized by a softmax function. We de-
fine respectively:

ps(i,j)
(k) = softmax(cu(i,j))

(k) =
exp(cu(i,j)

(k))∑C+1
n=1 exp(cu(i,j)

(n))
,

(4)
and pt(i,j)

(k)
= softmax(ĉu(i,j))

(k), the student and teacher
class distribution outputs, where c(k) is the kth element of
c,∀c ∈ RC+1. Then the cross-entropy loss is defined as:

LCE(c
u
(i,j), ĉ

u
(i,j)) = −

C+1∑
k=1

ps(i,j)
(k) log pt(i,j)

(k)
, (5)

and finally, we compute the unsupervised loss Lu as:

Lu(Bu) =
Nu∑
i=1

N∑
j=1

[
λclassLCE

(
cu(i,j), ĉ

u
(i,σ̂u

i (j))

)
+ 1{ĉu

(i,σ̂u
i
(j))

̸=∅}λℓ1∥bu(i,j) − b̂u(i,σ̂u
i (j))
∥1

+ 1{ĉu
(i,σ̂u

i
(j))

̸=∅}λgiouLgiou

(
bu(i,j), b̂

u
(i,σ̂u

i (j))

)]
.

(6)

For FAL, we have little information from the labeled
data. Therefore, the quality of the pseudo-labels and their
contained information play an important part in the training.

3.3. Construction of the pseudo-labels

As mentioned above, the unsupervised loss Lu takes into
account the class predictions through a cross-entropy be-
tween the outputs of the student model and the matched
outputs of the teacher model. We use the softmax of the
outputs of the teacher model as soft pseudo-labels for the
cross-entropy, as opposed to hard pseudo-labels obtained
after taking the argmax.

Following the DETR philosophy [5], we give to the stu-
dents the raw soft pseudo-labels obtained from the teacher,
i.e. we remove all handmade heuristics to process the
teacher outputs, namely, the NMS and confidence thresh-
olding. Both of these post-processing steps are sensitive
to hyperparameters and restrict the diversity in the pseudo-
labels. By introducing a bias to keep the most confident
proposals, they have the unwanted effect of encouraging the
models to always be highly confident in their predictions.
In the case of FAL, where we have access to only a few la-
beled examples for each class, the model might not be con-
fident for some classes, leading them to be discarded early

by the post-processing. Relying on the model’s confidence
in certain predictions can be tricky. Using the full distribu-
tions makes the model less prone to focus on being highly
confident in their predictions, and forces the model to take
into account the relations between classes. Furthermore, the
Hungarian algorithm used in transformer-based OD meth-
ods leverages the diversity of proposals given by the model
and benefits from the fact that the model is not overconfi-
dent on a single class thanks to the matching loss. Indeed,
the bipartite matching can favor proposals with better lo-
calizations even if the model is less confident in its class
predictions, making the use of raw soft pseudo-labels more
suitabled for transformer-based detectors.

To obtain strong and insightful pseudo-labels helping the
student, the teacher must be updated throughout training.
We describe the update process in the following section.

3.4. Updating the Teacher model

To avoid a poor supervision from the teacher, its weights
θt are updated by an Exponential Moving Average (EMA)
from the student’s weights θs using a keep rate α ∈ [0, 1]:

θt ← αθt + (1− α)θs. (7)

For α = 1, the teacher is constant and for α = 0 its weights
are equal to the student’s. Therefore, there is a trade-off be-
tween a too high and too low keep rate parameter. Inspired
by the Self-supervised learning literature [12, 6], we update
α following a cosine scheduling from αstart to αend:

α ≜ αend − (αend − αstart) · (cos(πk/K) + 1)/2, (8)

with k the current epoch and K the maximum number of
epochs. This scheduling stabilizes the teacher model, espe-
cially in the last training iterations, to make it converge at
the end of training.

4. Experimental Results
In this section, we present a comparative study of the re-

sults of our method to the state-of-the-art on FAL bench-
marks, as well as an ablative study on the most relevant
parts. Before that, we detail the datasets, the evaluation and
training settings used for the different experiments.

4.1. Datasets, evaluation and training details

Datasets and evaluation protocol To evaluate our pro-
posed method, we use the MS-COCO (COCO) [21] and
Pascal VOC (VOC) [9] datasets which are standard for ob-
ject detection, following the settings of existing works [15,
30, 23, 35, 37, 31]. COCO is a dataset with 80 classes, and
VOC contains 20 classes. We are specifically interested in
two Few Annotation Learning (FAL) settings:
On FAL-COCO, we randomly sample 0.5, 1, 5 or 10% (re-
spectively about 590, 1180, 5900 and 11800 images) of the



Augmentations Probability Parameters Supervised branch Unsupervised branch

Weak Strong

Horizontal Flip 0.5 – ✓ ✓ ✓

Resize 1.0 short edge ∈ range(480,801,32) ✓ ✓ ✓

Color Jitter 0.8 (brightness, contrast, saturation, hue)
✓ ✓= (0.4, 0.4, 0.4, 0.1)

Grayscale 0.2 – ✓ ✓

Gaussian Blur 0.5 σ ∈ [0.1, 2.0] ✓ ✓

CutOut
0.7 scale ∈ [0.05, 0.2], ratio ∈ [0.3, 3.3] ✓ ✓
0.5 scale ∈ [0.02, 0.2], ratio ∈ [0.1, 6] ✓ ✓
0.3 scale ∈ [0.02, 0.2], ratio ∈ [0.05, 8] ✓ ✓

Rotate 0.3 degrees ∈ [−30, 30] ✓

Shear 0.3 shearx ∈ [−30, 30], sheary ∈ [−30, 30] ✓

Rescale + Pad 0.5 translatex ∈ [0, 0.25], translatey ∈ [0, 0.25]
✓+ Translation scalex ∈ [0.25, 0.75], scaley ∈ [0.25, 0.75]

Table 2. The different sets of augmentations used during SSL for each branch. The Horizontal Flip and Resize augmentations follow
standard supervised training [5, 39]. The Color Jitter, Grayscale, Gaussian Blur and CutOut augmentations follow Unbiased Teacher [23]
training, and the geometric augmentations (Rotate, Shear, Rescale, Pad and Translation) follow Soft Teacher [35] training.

Method OD Arch. COCO

0.5% (590) 1% (1180) 5% (5900) 10% (11800)

STAC [30] FRCNN + FPN 9.78± 0.53 13.97± 0.35 24.38± 0.12 28.64± 0.21
Instant-Teaching [37] FRCNN + FPN – 18.05± 0.15 26.75± 0.05 30.40± 0.05
Humble Teacher [31] FRCNN + FPN – 16.96± 0.38 27.70± 0.15 31.61± 0.28
Unbiased Teacher [23] FRCNN + FPN 16.94± 0.23 20.75± 0.12 28.27± 0.11 31.50± 0.10
Soft Teacher [35] FRCNN + FPN – 20.46± 0.39 30.74± 0.08 34.04± 0.14

MT-DETR (Ours) Def. DETR 17.84± 0.54 (+8.89) 22.03± 0.17 (+9.07) 31.00± 0.11 (+7.41) 34.52± 0.07 (+5.97)

Table 3. Performance (mAP in %) of our proposed approach on FAL-COCO, using different percentage of labeled data (with the corre-
sponding number of images reported) and 100% of the dataset as unlabeled data. For our method, we also indicate the improvements (in
green and in p.p.) w.r.t. the FSL baseline (c.f . Table 1).

training set (train2017) used as the labeled set and use the
full training set for the unlabeled set (about 118k images).
Performance is evaluated on val2017.
On FAL-VOC 07-12, we restrict the labeled training set
(VOC07 trainval) to a random sample of 5 or 10% (respec-
tively 250 and 500 labeled images), and use the full VOC12
trainval (about 11k images) as unlabeled training set. We
introduce this novel setting to evaluate our approach in a
FAL setting on VOC. We also compare the results with pre-
vious SSOD methods using the full VOC07 trainval labeled
training set (5k labeled images) and VOC12 trainval as un-

labeled training set. Performance is evaluated on VOC07
test set.

In all settings, performance is reported and compared us-
ing the AP50:95 (mAP, in %) evaluation metric using the of-
ficial COCO and VOC evaluation codes, respectively.

Training For a fair comparison, a fully supervised
ResNet-50 [13] pretrained on ImageNet [8] is used
as a backbone for all the methods. For fine-tuning
Def. DETR [39] on the few labeled data, we train the model
with a batch size of 32 images on 8 GPUs until the val-
idation performance stops increasing, i.e. for COCO, up
to 2000 epochs for 1%, 500 epochs for 5%, 400 epochs



Method OD Arch. VOC 07-12

5% (250) 10% (500) 100% (5000)

STAC [30] FRCNN + FPN – – 44.64
Instant-Teaching [37] FRCNN + FPN – – 50.00
Humble Teacher [31] FRCNN + FPN – – 53.04
Unbiased Teacher [github] FRCNN + FPN – – 54.48
Unbiased Teacher∗ FRCNN + FPN 35.98± 0.71 40.34± 0.95 54.61

MT-DETR (Ours) Def. DETR 36.95± 0.53 (+14.08) 43.15± 1.10 (+14.12) 56.2

Table 4. Performance (mAP in %) of our proposed approach on VOC with fully labeled VOC07 and unlabeled VOC12 to compare with
previous work, and in the novel FAL-VOC 07-12 settings. Different percentage of VOC07 are used as labeled data (5%, 10% or 100%,
with the corresponding number of images reported), and the full VOC12 dataset is used as unlabeled data. For our method, we also indicate
the improvements (in green and in p.p.) w.r.t. the FSL baseline (c.f . Table 1). ∗ indicates our implementation of Unbiased Teacher [23] in
this novel setting to compare with our approach. [github] : updated results after publication [23] taken from their official code released3.

for 10%, and for Pascal VOC, up to 2000 epochs for both
5% and 10%. For semi-supervised learning, we train MT-
DETR for 50 (respectively, 250) epochs of the unlabeled
data on COCO (respectively, Pascal VOC) with a batch size
of 48 labeled images and 48 unlabeled images (respectively,
24 and 24) on 8 GPUs. All experiments with less than
100% of labeled data are reproduced on 3 different random
subsets2. The training hyperparameters, are defined as in
Def. DETR [39]. The coefficients for the losses are set as
λclass = 2, λℓ1 = 5, λgiou = 2, and λu = 4. Following
the training schedule of Def. DETR, we always decay the
learning rates by a factor of 0.1 after about 80% of training.
The keep rate parameter α follows a cosine scheduling from
αstart = 0.9996 to αend = 1, with the value of αstart chosen
according to previous work [23].
When using Unbiased Teacher [23], we follow the official
implementation3 and the hyperparameters provided.

Augmentations For strong and weak data augmenta-
tions, we follow the common data augmentations used in
previous works [30, 23, 35]. We apply a random resiz-
ing and random horizontal flip for weak augmentations.
We randomly add color jittering, grayscale, Gaussian blur,
CutOut patches for strong augmentations and also randomly
add rescaling, translation with padding, shearing and rotat-
ing as geometric transformations [30] in strong augmenta-
tions. In the supervised branch, images are also randomly
augmented using weak and strong augmentations without
any geometric transformations following Soft Teacher [35]
practices. It helps the student model to be augmentation-
agnostic, to better predict pseudo-labels coming from non-
augmented images in the unsupervised branch. We remove
the CutOut augmentation in the supervised branch in the
most difficult settings of FAL-COCO 0.5% and 1%, since

2 See our official repository.
3 Official UBT repository.

it can cover the only labeled small boxes available and is
counterproductive. All the parameters for the different aug-
mentations can be found in Table 2.

4.2. Results of FAL on COCO and Pascal VOC

Tables 3 and 4 present the results (mAP in %) obtained
by our method compared to previous methods in the lit-
erature on the FAL-COCO and FAL-VOC 07-12 bench-
marks. As can be seen in both tables, our approach is
the only one to consider a transformer-based OD architec-
ture (Def. DETR), as opposed to the commonly used two-
stage architecture (FRCNN + FPN). When we implemented
Def. DETR into Unbiased Teacher [23] (UBT), we found
that the model cannot converge in FAL settings (c.f . Fig-
ure 1).

First, we can see from both tables that our method al-
ways improve performance over the corresponding fully su-
pervised FSL baseline (c.f . Table 1). With our method, we
outperform state-of-the-art results on all labeled fractions of
the dataset, and obtain even more strong results specifically
when the annotations are scarce: globally about +1 perfor-
mance point (p.p.) when using 1k or less labeled images,
which is even more significant when the overall perfor-
mance is low. For FAL-COCO with 1% of labeled images,
our method achieves a mean of 22.03 mAP, which is about
1.2 p.p., or 6% of improvement over the state-of-the-art,
UBT. Notably, on FAL-VOC with 10% of labeled images,
we obtain mean performance of 43.15 mAP, corresponding
to 2.81 p.p. or 7% of improvement over UBT. We note that
our method also outperform the state-of-the-art when using
more labeled data, such as with the 100% labeled VOC07
setting, where we improve of about 1.5 p.p. over UBT.



Ablative Variant EMA Scheduling Initialization NMS Confidence Thresholding mAP (in %)
Cosine Constant After FT From scratch ø 0.5 0.7 0.9

Best ✓ ✓ ✓ 22.25

Abl. Sched. ✓ ✓ ✓ 21.48

Abl. Init. ✓ ✓ ✓ 16.51

Abl. NMS ✓ ✓ ✓ ✓ 19.85

Abl. Thresh.
✓ ✓ ✓ 10.26
✓ ✓ ✓ 17.34
✓ ✓ ✓ 12.37

Table 5. Ablation studies of the different parts of our method. Green and bold columns names indicate a positive effect on the performance
and red columns a negative effect. The use of cosine scheduling, an initialization after fine-tuning (FT) and raw soft pseudo labels
corresponds to the best combination found.

4.3. Ablation studies

In Table 5, we present an ablation study on the main parts
of our approach. We review each ablation below.

EMA scheduling The effect of the EMA scheduling is
compared between the Best and Abl. Sched. rows. We can
see that using a cosine scheduling to gradually reduce the
EMA keep rate parameter α leads to an improvement of
about 0.7 p.p., as opposed to using a constant value for α as
done in other SSL approaches [23, 35, 31].

Initialization In this ablation, we study the effect of end-
to-end semi-supervised learning [35] in the row Abl. Init.
which consists in starting the semi-supervised training from
scratch compared to an initialization after Fine-Tuning (FT)
in the row Best, in which we initialize both student and
teacher models from the weights of the fine-tuned model on
the few labeled data. As can be seen in Table 5 and contrary
to Soft Teacher [35], starting the semi-supervised training
from fine-tuned weights is much more effective (about 5.7
p.p. better) than starting from randomly initialized weights,
since the teacher model will give useful pseudo-labels to the
student from the start of training.

NMS The importance of removing NMS to avoid filter-
ing interesting pseudo-labels and introducing bias is show-
cased between the rows Best and Abl. NMS. We can see
that, contrary to the common practice when using other de-
tectors [23, 35, 31], the introduction of NMS leads to a per-
formance drop of about 2.5 p.p. This is why we used raw
pseudo labels, i.e. without any post-processing.

Confidence Thresholding The effect of introducing a
threshold to filter out the pseudo-labels given by the teacher
with poor confidence is shown in the rows Best and Abl.
Thresh.. We test the results using several common values in
the literature (0.5, 0.7 and 0.9) [29, 23, 35]. A value of 0.7
seems to give the best final results (17.34 mAP) between
the thresholding variants, but we can see that choosing the

best threshold to apply is extremely sensitive. Similarly to
Humble Teacher [31], we also found that removing the con-
fidence threshold to use all the soft pseudo-labels, which
corresponds to the column with ø, leads to stronger results
(22.24 mAP), less sensitivity and fewer hyperparameters.

5. Conclusion
In this work, we experimented in different data scarce

settings with the state-of-the-art transformer-based object
detector Def. DETR [39] and showed that it performs much
better than the most popular two-stage detector Faster-
RCNN [26] with FPN [19]. Surprisingly, we found that Un-
biased Teacher [23], a state-of-the-art SSOD method, did
not converge when applied with Def. DETR.

To address this issue, we propose Momentum Teaching
DETR (MT-DETR), an SSL approach tailored for OD based
on transformers, in order to leverage their good results with
few labeled data. Our method is based on a student-teacher
architecture and, contrary to common practice, discards all
previously used handcrafted heuristics to process pseudo-
labels generated by the teacher. These processing steps are
sensitive to hyperparameters, and introduce biases with the
unwanted effect of forcing the models to be overconfident
in their predictions. We show that our proposed MT-DETR
outperforms state-of-the-art methods, especially in FAL set-
tings. Future works could push the data scarcity in OD even
further to consider very few labeled examples for each class,
and better understand how to match the performance of SSL
methods for image classification in this setting [29].
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Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9650–9660, 2021.

[7] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad
Norouzi, and Geoffrey E Hinton. Big self-supervised mod-
els are strong semi-supervised learners. Advances in neural
information processing systems, 33:22243–22255, 2020.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[9] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International journal of computer
vision, 88(2):303–338, 2010.

[10] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015.

[11] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
580–587, 2014.

[12] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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