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PROPOSAL-CONTRASTIVE PRETRAINING FOR OBJECT DETECTION FROM FEWER DATA

The use of pretrained deep neural networks represents an attractive way to achieve strong results with few data available. When specialized in dense problems such as object detection, learning local rather than global information in images has proven to be more efficient. However, for unsupervised pretraining, the popular contrastive learning requires a large batch size and, therefore, a lot of resources.

To address this problem, we are interested in transformer-based object detectors that have recently gained traction in the community with good performance and with the particularity of generating many diverse object proposals. In this work, we present Proposal Selection Contrast (ProSeCo), a novel unsupervised overall pretraining approach that leverages this property. ProSeCo uses the large number of object proposals generated by the detector for contrastive learning, which allows the use of a smaller batch size, combined with object-level features to learn local information in the images. To improve the effectiveness of the contrastive loss, we introduce the object location information in the selection of positive examples to take into account multiple overlapping object proposals. When reusing pretrained backbone, we advocate for consistency in learning local information between the backbone and the detection head. We show that our method outperforms state of the art in unsupervised pretraining for object detection on standard and novel benchmarks in learning with fewer data.

INTRODUCTION

In recent years, we have seen a surge in research on unsupervised pretraining. For some popular tasks such as Image Classification or Object detection, initializing with a pretrained backbone helps train big architectures more efficiently (Chen et al., 2020b;[START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF][START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF]. While gathering data is not difficult in most cases, its labeling is always time-consuming and costly. Pretraining leverages huge amounts of unlabeled data and helps achieve better performance with fewer data and fewer iterations, when finetuning the pretrained models afterwards.

The design of pretraining tasks for dense problems such as Object Detection has to take into account the fine-grained information in the image. Furthermore, complex object detectors contain different specific parts that can be either pretrained independently [START_REF] Xiao | Region similarity representation learning[END_REF][START_REF] Xie | Propagate yourself: Exploring pixel-level consistency for unsupervised visual representation learning[END_REF]Wang et al., 2021a;[START_REF] Olivier | Efficient visual pretraining with contrastive detection[END_REF]Dai et al., 2021b;[START_REF] Bar | DETReg: Unsupervised pretraining with region priors for object detection[END_REF] or jointly [START_REF] Wei | Aligning pretraining for detection via object-level contrastive learning[END_REF]. The different pretraining possibilities for Object Detection in the literature are illustrated in Figure 1. A pretraining of the backbone tailored to dense tasks has been the subject of many recent efforts [START_REF] Xiao | Region similarity representation learning[END_REF][START_REF] Xie | Propagate yourself: Exploring pixel-level consistency for unsupervised visual representation learning[END_REF]Wang et al., 2021a;[START_REF] Olivier | Efficient visual pretraining with contrastive detection[END_REF]) (Backbone Pretraining), but few have been interested in incorporating the detection-specific components of the architectures during pretraining (Dai et al., 2021b;[START_REF] Bar | DETReg: Unsupervised pretraining with region priors for object detection[END_REF][START_REF] Wei | Aligning pretraining for detection via object-level contrastive learning[END_REF] (Overall Pretraining). Among them, SoCo [START_REF] Wei | Aligning pretraining for detection via object-level contrastive learning[END_REF] focuses on convolutional architectures and pretrains the whole detector, i.e. the backbone along with the detection heads (approach e. in Figure 1), whereas UP-DETR (Dai et al., 2021b) and DETReg [START_REF] Bar | DETReg: Unsupervised pretraining with region priors for object detection[END_REF] pretrain only the transformers [START_REF] Vaswani | Attention is all you need[END_REF] in transformer-based object detectors [START_REF] Carion | End-to-end object detection with transformers[END_REF][START_REF] Zhu | Deformable DETR: Deformable transformers for end-to-end object detection[END_REF] and keep the backbone fixed (approach c. in Figure 1). Due to the numerous parameters that must be learned and the huge number of iterations needed because of random initialization, pretraining the entire detection model is expensive (Figure 1, e.). On the other hand, pretraining only the detection-specific parts with a fixed backbone leads to fewer parameters and allows leveraging strong pretrained backbones already available. However, fully relying on aligning embeddings given by the fixed backbone during pretraining and those given by the detection head, as done in DETReg or UP-DETR, introduces a discrepancy in the information contained in the features (Figure 1, c.). Indeed, while the pretrained backbone has been trained to learn image-level features, the object detector must understand objectlevel information in the image. Aligning inconsistent features hinders the pretraining quality.

In this work, we propose Proposal Selection Contrast (ProSeCo), an unsupervised pretraining method using transformer-based detectors with a fixed pretrained backbone. ProSeCo makes use of two models. The first one aims to alleviate the discrepancy in the features by maintaining a copy of the whole detection model. This model is referred to as a teacher in charge of the object proposals embeddings, and is updated through an Exponential Moving Average (EMA) of another student network making the object predictions and using a similar architecture. This latter network is trained by a contrastive learning approach leveraging the high number of object proposals that can be obtained from the detectors. This methodology, in addition to the absence of batch normalization in the architectures, reduces the need for a large batch size. We further adapt the contrastive loss commonly used in pretraining to take into account the locations of the object proposals in the image, which is crucial in object detection. In addition, the localization task is independently learned through region proposals generated by Selective Search [START_REF] Jasper Rr Uijlings | Selective search for object recognition[END_REF]. Our contributions are summarized as:

• We propose Proposal Selection Contrast (ProSeCo), a contrastive learning method tailored for pretraining transformer-based object detectors. • We introduce the information of the localization of object proposals for the selection of positive examples in the contrastive loss to improve its efficiency for pretraining. • We show that our proposed ProSeCo outperforms previous pretraining methods for transformer-based object detectors on standard benchmarks as well as novel benchmarks.

RELATED WORK

Supervised Object Detection with transformer-based architectures Object Detection is an important and extensively researched problem in computer vision [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF][START_REF] Girshick | Fast r-cnn[END_REF][START_REF] Shaoqing Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF][START_REF] Redmon | You only look once: Unified, real-time object detection[END_REF][START_REF] Liu | Ssd: Single shot multibox detector[END_REF][START_REF] Lin | Feature pyramid networks for object detection[END_REF][START_REF] Zhi Tian | Fcos: Fully convolutional one-stage object detection[END_REF]. It essentially combines object localization and classification tasks. Recently, a novel detector based on an encoder-decoder architecture using transformers [START_REF] Vaswani | Attention is all you need[END_REF] has been proposed in [START_REF] Carion | End-to-end object detection with transformers[END_REF]. The training complexity of this architecture was subsequently improved in Deformable DETR (Def. DETR) [START_REF] Zhu | Deformable DETR: Deformable transformers for end-to-end object detection[END_REF], by changing the attention operations into deformable attention, resulting in a faster convergence speed. Several other follow-up works (Dai et al., 2021a;[START_REF] Meng | Conditional DETR for fast training convergence[END_REF]Wang et al., 2021b;Liu et al., 2022a;[START_REF] Yang | Querydet: Cascaded sparse query for accelerating high-resolution small object detection[END_REF][START_REF] Li | Dn-DETR: Accelerate DETR training by introducing query denoising[END_REF] have also focused on increasing the training efficiency of DETR. Transformer-based architectures now represent a strong alternative to traditional convolutional object detectors, reaching better performance for a similar training cost. Furthermore, recent work have shown strong results of transformer-based detectors in a data-scarce setting [START_REF] Bar | DETReg: Unsupervised pretraining with region priors for object detection[END_REF][START_REF] Bouniot | Towards fewannotation learning for object detection: Are transformer-based models more efficient?[END_REF], compared to convolutional architectures [START_REF] Liu | Unbiased teacher for semi-supervised object detection[END_REF][START_REF] Liu | Unbiased teacher v2: Semi-supervised object detection for anchor-free and anchor-based detectors[END_REF], which we also observe and discuss in Appendix H.

Self-supervised and unsupervised pretraining backbone architectures Recent advances in self-supervised pretraining [START_REF] Grill | Bootstrap your own latent-a new approach to self-supervised learning[END_REF][START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF]Chen et al., 2020b;2021;[START_REF] Zheng | Ressl: Relational self-supervised learning with weak augmentation[END_REF][START_REF] Denize | Similarity contrastive estimation for self-supervised soft contrastive learning[END_REF] have achieved strong results for obtaining general representations that transfer well to image classification [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF]. Early works proposed pretext tasks [START_REF] Alexey | Discriminative unsupervised feature learning with exemplar convolutional neural networks[END_REF][START_REF] Noroozi | Unsupervised learning of visual representations by solving jigsaw puzzles[END_REF][START_REF] Komodakis | Unsupervised representation learning by predicting image rotations[END_REF], which are now outperformed by Contrastive Learning [START_REF] Van Den Oord | Representation learning with contrastive predictive coding[END_REF][START_REF] Wu | Unsupervised feature learning via nonparametric instance discrimination[END_REF][START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF]Chen et al., 2020a;[START_REF] Misra | Self-supervised learning of pretext-invariant representations[END_REF][START_REF] Grill | Bootstrap your own latent-a new approach to self-supervised learning[END_REF][START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF]Chen et al., 2020b;2021;[START_REF] Denize | Similarity contrastive estimation for self-supervised soft contrastive learning[END_REF]. This paradigm relies on instance discrimination using a pair of positive views from the same input contrasted with all other instances in the batch, called negatives. However, the InfoNCE objective function [START_REF] Van Den Oord | Representation learning with contrastive predictive coding[END_REF] widely used for contrastive learning and its recent improved version, SCE [START_REF] Denize | Similarity contrastive estimation for self-supervised soft contrastive learning[END_REF], both require a large amount of negative instances to be effective [START_REF] Wang | Understanding contrastive representation learning through alignment and uniformity on the hypersphere[END_REF]. The improvements observed using a general self-supervised pretraining are less significant for more complex, dense downstream tasks [START_REF] He | Rethinking imagenet pre-training[END_REF]Reed et al., 2022).

To address this issue, recent approaches have started investigating pretraining approaches tailored for these tasks by imposing local consistency, either at the pixel or region-level: they respectively propose to match in the representation space the features corresponding to the same location in the input space [START_REF] Pedro | Unsupervised learning of dense visual representations[END_REF][START_REF] Xie | Propagate yourself: Exploring pixel-level consistency for unsupervised visual representation learning[END_REF]Wang et al., 2021a), or apply local consistency between features from regions in the image [START_REF] Roh | Spatially consistent representation learning[END_REF][START_REF] Yang | Instance localization for self-supervised detection pretraining[END_REF][START_REF] Xiao | Region similarity representation learning[END_REF].

Unsupervised Pretraining for the overall detection model Few approaches in the literature have tackled the problem of pretraining the detection-specific parts of the architecture, along with the backbone [START_REF] Wei | Aligning pretraining for detection via object-level contrastive learning[END_REF], or independently (Dai et al., 2021b;[START_REF] Bar | DETReg: Unsupervised pretraining with region priors for object detection[END_REF]. SoCo [START_REF] Wei | Aligning pretraining for detection via object-level contrastive learning[END_REF] proposes a pretraining strategy for convolutional detectors inspired by BYOL [START_REF] Grill | Bootstrap your own latent-a new approach to self-supervised learning[END_REF]. Object locations are generated using Selective Search [START_REF] Jasper Rr Uijlings | Selective search for object recognition[END_REF], and then objectlevel features are extracted and contrasted with each other using a teacher-student strategy. The small amount of object proposals and object features generated requires using a large batch size for the contrastive loss to be effective. Pretraining the backbone along with the detection modules this way makes the method difficult and costly to train due to the high amount of parameters to learn.

For transformer-based architectures, UP-DETR (Dai et al., 2021b) and DETReg [START_REF] Bar | DETReg: Unsupervised pretraining with region priors for object detection[END_REF] use a fixed pretrained backbone to extract features respectively from random patch, or from object locations given by Selective Search [START_REF] Jasper Rr Uijlings | Selective search for object recognition[END_REF], then pretrain the detector by localizing and reconstructing the features of the patch extracted from the input images. However, since the features to reconstruct are obtained by a backbone which was trained to encode image-level information, there is a discrepancy in the information between the features to match.

Our proposed ProSeCo is designed specifically for transformer-based detectors, and use a fixed backbone pretrained for local information. In this work, we leverage the high amount of object proposals generated by transformer-based detectors as instances for contrastive learning. Target object-level features and localizations are provided by a teacher detection model updated through EMA, inspired by recent advances in self-supervised and semi-supervised learning [START_REF] Liu | Unbiased teacher for semi-supervised object detection[END_REF][START_REF] Grill | Bootstrap your own latent-a new approach to self-supervised learning[END_REF][START_REF] Denize | Similarity contrastive estimation for self-supervised soft contrastive learning[END_REF][START_REF] Wei | Aligning pretraining for detection via object-level contrastive learning[END_REF]. The student detection model is pretrained by computing the contrastive loss between object proposals given by the student and teacher detectors.

The large number of proposals generated by transformer-based detectors alleviates the need for a large batch size for the contrastive loss. The contrastive loss function used is further improved by introducing the location of objects for selecting positive proposals. 

OVERVIEW OF THE APPROACH

We present in this section our proposed unsupervised pretraining approach, illustrated in Figure 2, beginning with the data processing pipeline. Then, we detail the contrastive loss used with the localization-aware positive object proposal selection. The transformer-based detectors are built on a general architecture that consists of a backbone encoder (e.g. a ResNet-50), followed by several transformers encoder and decoder layers, and finally two prediction heads for the bounding boxes coordinates and class logits [START_REF] Carion | End-to-end object detection with transformers[END_REF][START_REF] Zhu | Deformable DETR: Deformable transformers for end-to-end object detection[END_REF].

DATA PROCESSING PIPELINE

Throughout the section, we assume to have sampled a batch of unlabeled images x = {x i } N b i=1 , with x i the i th image and N b the batch size.

For each input image x i , we compute two different views with two asymmetric distributions of augmentations T 1 and T 2 : a weakly augmented view x i ′ = t 1 (x i ), with t 1 ∼ T 1 , and a strongly augmented view obtained from the weakly augmented one

x i ′′ = t 2 (t 1 (x i )), with t 2 ∼ T 2 .
To guide the model into discovering localization of objects in unlabeled images and prevent collapse, we use bounding boxes obtained from the Selective Search algorithm [START_REF] Jasper Rr Uijlings | Selective search for object recognition[END_REF], similarly to previous work [START_REF] Wei | Aligning pretraining for detection via object-level contrastive learning[END_REF][START_REF] Bar | DETReg: Unsupervised pretraining with region priors for object detection[END_REF]. Since Selective Search is deterministic and the generated boxes are not ordered, we compute the boxes for all images offline and, at training time,

randomly sample K boxes b SS i = {b SS (i,j) ∈ R 4 } K j=1
for each image in the batch. Then, the two views and the corresponding boxes sampled are used as input for our method.

PRETRAINING METHOD

As shown in Figure 2, our approach is composed of a student-teacher architecture [START_REF] Grill | Bootstrap your own latent-a new approach to self-supervised learning[END_REF][START_REF] Denize | Similarity contrastive estimation for self-supervised soft contrastive learning[END_REF][START_REF] Wei | Aligning pretraining for detection via object-level contrastive learning[END_REF]. With ProSeCo, we extend the student-teacher pretraining for transformer-based detectors to tackle the discrepancy in information-level when aligning features, and introduce a dual unsupervised bipartite matching presented below.

First, the backbone and the detection heads are respectively initialized from pretrained weights and randomly for both the student and teacher models. The teacher model is updated through an Exponential Moving Average (EMA) of the student's weights at every training iteration. For both models, the classification heads in the detectors are replaced by an MLP, called projector, for obtaining latent representations of the objects.

From the weakly augmented view x i ′ , the teacher model provides object proposals

y i = {y (i,j) } N j=1 = {(z (i,j) , b (i,j) } N j=1
, with z (i,j) the latent embedding and b (i,j) the coordinates of the j th object found. The student model infers predictions ŷi = {ŷ (i,j) } N j=1 = {(ẑ (i,j) , b(i,j) } N j=1 from the corresponding strongly augmented view x i ′′ .

Then, we apply an unsupervised Hungarian algorithm for proposal matching to find from all the permutations of N elements S N , the optimal bipartite matching σprop i between the predictions ŷi of the student and the object proposals y i of the teacher:

σprop i = arg min σ∈S N N j=1 L prop match (y (i,j) , ŷ(i,σ(j)) ).
(1)

Therefore, for each image x i , the j th proposal y (i,j) found by the teacher is associated to the σprop i (j) th prediction of the student ŷ(i,σ prop i (j)) . Our matching cost L prop match for the Hungarian algorithm takes into account both features and bounding box predictions through a linear combination of features similarity L sim (z (i,j) , ẑ(i,σ(j)) ) = 

⟨z (i,j) ,ẑ (i,σ(j)) ⟩ ∥z (i,j) ∥2•∥ẑ (i,σ(j)) ∥2 , the ℓ 1 loss of the box coordinates L coord = ∥b (i,j) -b(i,σi(j)) ∥ 1 ,
L prop match (y (i,j) , ŷ(i,σ(j)) ) = λ sim L sim z (i,j) , ẑ(i,σ(j)) + λ coord L coord b (i,j) , b(i,σ(j)) + λ giou L giou b (i,j) , b(i,σ(j)) .
(2) Similarly, we also use an unsupervised Hungarian algorithm for box matching, to find the optimal bipartite matching σbox i ∈ S N between the predicted boxes bi of the student and the sampled boxes b SS i from Selective Search, using the matching cost L box match :

σbox i = arg min σ∈S N N j=1 L box match (y (i,j) , ŷ(i,σ(j)) ), (3) 
L box match (b SS (i,j) , b(i,σ(j)) ) = λ coord L coord b SS (i,j) , b(i,σ(j)) + λ giou L giou b SS (i,j) , b(i,σ(j)) . (4)
Finally, the global unsupervised loss L u used for training is a combination of a loss function between the object latent embeddings of the teacher and student models, and between the object localization of the student predictions and Selective Search boxes. More formally, it is computed as:

L u (x) = λ contrast L LocSCE (y, ŷ, σprop ) + 1 N b K N b i=1 K j=1 λ coord L coord b SS (i,j) , b(i,σ box i (j)) + K j=1 λ giou L giou b SS (i,j) , b(i,σ box i (j))
.

(5)

In the above equations, we define λ sim , λ coord , λ giou , λ contrast ∈ R as the coefficients for the different losses. For the consistency in the latent embeddings of the objects, we introduce the object locations information in our contrastive loss L LocSCE . This loss is used to contrast the predictions ŷ = {ŷ i } N b i=1 of the student with object proposals y = {y i } N b i=1 found by the teacher, matched according to the proposal matching σprop = {σ prop i } N b i=1 over the batch. We detail the computations behind this loss in the next section. 

LOCALIZATION-AWARE CONTRASTIVE LOSS

Inspired by advances in self-supervised learning, we propose a contrastive objective function [START_REF] Van Den Oord | Representation learning with contrastive predictive coding[END_REF]Chen et al., 2020a;[START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF] between object proposals that also maintains relations [START_REF] Zheng | Ressl: Relational self-supervised learning with weak augmentation[END_REF][START_REF] Denize | Similarity contrastive estimation for self-supervised soft contrastive learning[END_REF] among these proposals. This objective function extends the latest SCE [START_REF] Denize | Similarity contrastive estimation for self-supervised soft contrastive learning[END_REF] for instance discrimination between object proposals and is illustrated in Figure 3. We compute the contrastive loss between all the object latent embeddings from a batch of image. The positive pair of objects in an image x i is given by the proposal matching σ prop i . First, we define the distributions of similarity between objects embeddings :

p ′ (in,jm) = 1 i̸ =n 1 j̸ =m exp(z (i,j) • z (n,m) /τ t ) N b k=1 N l=1 1 i̸ =k 1 j̸ =l exp(z (i,j) • z (k,l) /τ t ) , (6) 
p ′′ (in,jm) = exp(z (i,j) • ẑ(n,m) /τ ) N b k=1 N l=1 exp(z (i,j) • ẑ(k,l) /τ ) . (7) 
The distribution p ′ (in,jm) represents the relations between weakly augmented object embeddings scaled by the temperature τ t , and p ′′ (in,jm) the similarity between the strongly augmented embeddings and the weakly augmented ones, scaled by τ . Then, the target similarity distribution for the objective function is a weighted combination of one-hot label and the teacher's embeddings relations:

w (in,jm) = λ SCE • 1 i=n 1 j=m + (1 -λ SCE ) • p ′ (in,jm) . (8) 
To introduce the localization information in our objective, we compute the pairwise Intersection over Union (IoU) between object proposals of the same image and consider overlapping objects as other positives when computing the target similarity distribution:

w Loc (in,jm) = λ SCE • 1 i=n 1 IoUi(j,m)≥δ + (1 -λ SCE ) • p ′ (in,jm) , (9) 
where IoU i (j, m) corresponds to the IoU between teacher proposals y (i,j) and y (i,m) found in the same image x i , and δ is the IoU threshold to consider the proposal as a positive example. Finally, we use this tailored target similarity distribution in our Localized SCE (LocSCE) loss:

L LocSCE (y, ŷ, σprop ) = - 1 N b N N b i=1 N b n=1 N j=1 N m=1 w Loc (in,jm) log(p ′′ (in,j σprop n (m)) ). (10) 
Note that we do not match the proposals according to σprop in the target similarity, as we compare proposals obtained by the teacher model. We also require the full proposal as input of the loss to compute the pairwise IoU using the box coordinates. Furthermore, we recover the original formulation of SCE when δ = 1. This formulation leads to an effective batch size of N b • N .

This localization-aware contrastive loss function aims to pull together the objects embeddings that overlap subsequently with each others, as they should correspond to the same object in the image.

EXPERIMENTS

In this section, we present a comparative study of the results of our proposed method on standard and novel benchmarks for learning with fewer data, as well as an ablative study on the most relevant parts. First, we introduce the datasets, evaluation and training settings.

IMPLEMENTATION DETAILS

Datasets and evaluation We use ImageNet ILSVRC 2012 (IN) [START_REF] Russakovsky | Imagenet large scale visual recognition challenge[END_REF] for pretraining, MS-COCO (COCO) [START_REF] Lin | Microsoft coco: Common objects in context[END_REF] and Pascal VOC 2007 and 2012 [START_REF] Everingham | The pascal visual object classes (voc) challenge[END_REF] for finetuning. To evaluate the performance in learning with fewer data, following previous work [START_REF] Wei | Aligning pretraining for detection via object-level contrastive learning[END_REF][START_REF] Bar | DETReg: Unsupervised pretraining with region priors for object detection[END_REF], we consider the Mini-COCO benchmarks, where we randomly sample 1%, 5% or 10% of the training data. Similarly, we also introduce the novel Mini-VOC benchmark, in which we randomly sample 5% or 10% of the training data. We also use the Few-Shot Object Detection (FSOD) dataset [START_REF] Fan | Few-shot object detection with attention-rpn and multi-relation detector[END_REF] in the novel FSOD-test and FSOD-train benchmarks. We separate the FSOD test set with 80% of the data randomly sampled for training and the remaining 20% data for testing, by taking care of having at least 1 image for each class in both subsets, and do the same for the FSOD train set. In all benchmarks, the image ids selected for training and testing will be made available for reproducibility. More details in Appendix A.

Pretraining We initialize the backbone with the publicly available pretrained SCRL [START_REF] Roh | Spatially consistent representation learning[END_REF] checkpoint and pretrain ProSeCo for 10 epochs on IN. The hyperparameters are set as follows: the EMA keep rate parameter to 0.999, the IoU threshold δ = 0.5, a batch size of N b = 64 images over 8 A100 GPUs, and the coefficients in the different losses λ sim = λ contrast = 2 which is the same value used for the coefficient governing the class cross-entropy in the supervised loss. The projector is defined as a 2-layer MLP with a hidden layer of 4096 and a last layer of 256, without batch normalization. Following SCE [START_REF] Denize | Similarity contrastive estimation for self-supervised soft contrastive learning[END_REF], we set the temperatures τ = 0.1, τ t = 0.07 and the coefficient λ SCE = 0.5. We sample K = 30 random boxes from the outputs of Selective Search for each image at every iteration. Other training and architecture hyperparameters are defined as in Def. DETR [START_REF] Zhu | Deformable DETR: Deformable transformers for end-to-end object detection[END_REF] with, specifically, the coefficients λ coord = 5 and λ giou = 2, the number of object proposals (queries) N = 300, and the learning rate is set to lr = 2 • 10 -4 . For weak augmentations T 1 , we use a random combination of flip, resize and crop, and for strong augmentations T 2 , we use a random combination of color jittering, grayscale and Gaussian blur. In T 1 , we resize images with the same range of scales as the supervised training protocol on COCO (Large-scale). The exact parameters for the augmentations are detailed in Appendix B, and a discussion about the pretraining cost can be found in Appendix C.

Finetuning protocols For finetuning the pretrained models, we follow the standard supervised learning hyperparameters of Def. DETR [START_REF] Zhu | Deformable DETR: Deformable transformers for end-to-end object detection[END_REF]. In all experiments, we train the models with a batch size of 32 images over 8 A100 GPUs until the validation performance stops increasing, i.e. for Mini-COCO, up to 2000 epochs for 1%, 500 epochs for 5%, 400 epochs for 10%, for Mini-VOC, up to 2000 epochs for both 5% and 10%, up to 100 epochs for both FSOD-test and PASCAL VOC, and up to 50 epochs for FSOD-train. We always decay the learning rates by a factor of 0.1 after about 80% of training. Experiments with more annotated data are discussed in Appendix G. To compare our method to DETReg [START_REF] Bar | DETReg: Unsupervised pretraining with region priors for object detection[END_REF] on our novel benchmarks, we use their publicly available checkpoints from github.

FINETUNING AND TRANSFER LEARNING

We evaluate the transfer learning ability of our pretrained model on several datasets. Tables 1a and1b present the results obtained compared to previous methods in the literature when learning from fewer labeled data. We can see that our method outperforms state-of-the-art results in unsupervised pretraining on all benchmarks and datasets, and obtain even more strong results when training data is scarce. The improvement is even more significant as the overall performance with few training data is low. When using 5% of the COCO training data (i.e. Mini-COCO 5% in Table 1a), corresponding to about 5.9k images, ProSeCo achieves 28.8 mAP, which represents an improvement of +5.2 percentage point (p.p.) over the supervised pretraining baseline and +2 p.p. over both state-of-the-art overall pretraining methods. Results with all the evaluation metrics are presented in Appendix E. 

ABLATION STUDIES

In the following, we provide several ablation studies for our proposed approach. All experiments and results are compared on the Mini-COCO 5% benchmark with the pretrained SwAV backbone unless explicitly stated. Additional ablation on the number of queries can be found in Appendix F.

Pretraining dataset and backbone

In Table 2a, we show the effect of changing the pretraining dataset or the fixed backbone used. We can see that using a backbone more adapted to dense tasks that learned local information (e.g. SCRL) helps the model by having consistent features (+1 p.p.), compared to a backbone pretrained for global features (e.g. SwAV). Furthermore, even with a less adapted backbone, our ProSeCo initialized with the SwAV backbone outperforms DETReg (+1.7 p.p.). Pretraining with DETReg improves when using a more adapted backbone, but ProSeCo still reaches better performance. To compare with IN, we also pretrain ProSeCo on COCO for 120 epochs. We obtain better results when pretraining the model on IN than using COCO thanks to the large number of different images in IN (about 10 times the number of images of COCO, leading to +0.4 p.p.), which is consistent with previous findings [START_REF] Wei | Aligning pretraining for detection via object-level contrastive learning[END_REF].

Localization information in contrastive loss

In Table 2b, we show the effect of the localization information in the contrastive loss SCE. We can see that when introducing multiple positive examples for each image based on the IoU threshold δ (i.e. ∀δ < 1), we achieve better results than with the original SCE loss (i.e. δ = 1). Notably, the best results are achieved with δ = 0.5 (+1.7 p.p.). More experiments with the InfoNCE loss [START_REF] Van Den Oord | Representation learning with contrastive predictive coding[END_REF] can be found in Appendix D.

Hyperparameters Table 3 presents an ablation study on different important hyperparameters of our approach. We experimented first with the same batch size applied in [START_REF] Bar | DETReg: Unsupervised pretraining with region priors for object detection[END_REF] (Abl. Batch), but found that using a smaller batch size (Base) leads to improved results (+0.2 p.p.). We evaluated different image scales as a parameter of the weak data augmentations distribution in Abl. Scale. Mid-scale corresponds to a resizing of the images such that the shortest edge is between 320 and 480 pixels, as used in previous work (Dai et al., 2021b;[START_REF] Bar | DETReg: Unsupervised pretraining with region priors for object detection[END_REF], and Large-scale to a resize between 480 and 800 pixels, used for supervised learning on COCO. Exact values for these parameters can be found in Appendix B. We found that increasing the size of the images during pretraining is important to have more meaningful information in the boxes, and a more precise localization of the boxes (+0.7 p.p.). Following the best results from [START_REF] Denize | Similarity contrastive estimation for self-supervised soft contrastive learning[END_REF], we evaluated the performance for τ t ∈ {0.05, 0.07}. We found that τ t = 0.07 leads to the best performance (+0.3 p.p.). We considered several EMA keep rate parameter values following previous work [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF][START_REF] Wei | Aligning pretraining for detection via object-level contrastive learning[END_REF][START_REF] Denize | Similarity contrastive estimation for self-supervised soft contrastive learning[END_REF], and found that 0.999 achieves the best results (+0.1 p.p.). 

CONCLUSION

In this work, we aim to use large unlabeled datasets for an unsupervised pretraining of the overall detection model to improve performance when having access to fewer labeled data. In this end, we propose Proposal Selection Contrast (ProSeCo), a novel pretraining approach for Object Detection.

Our method leverages the large number of object proposals generated by transformer-based detectors for contrastive learning, reducing the necessity of a large batch size, and introducing the localization information of the objects for the selection of positive examples to contrast. We show from various experiments on standard and novel benchmarks in learning with few training data that ProSeCo outperforms previous pretraining methods. Throughout this work, we advocate for consistency in the level of information encoded in the features when pretraining. Indeed, learning object-level features during pretraining is more important than image-level when applied to a dense downstream task such as Object Detection. Future work could update the backbone during pretraining to further improve the consistency between the backbone and the detection heads.

REPRODUCIBILITY STATEMENT

Throughout this paper, we made sure that the experiments and results are fully reproducible. We explicitly state the exact values of hyperparameters used in Section 4.1, and describe in details the datasets and evaluation protocols in Appendix A. All image ids randomly selected when evaluating with few training data (in Mini-COCO, Mini-VOC, FSOD-test, FSOD-train) will be made available.

A DATASETS AND EVALUATION DETAILS

We use different datasets throughout this work that we present below.

• For pretraining purposes, we use the standard ImageNet ILSVRC 2012 (IN) [START_REF] Russakovsky | Imagenet large scale visual recognition challenge[END_REF] dataset, which contains 1.2M training images separated in 1000 class categories.

• We also use the MS-COCO (COCO) [START_REF] Lin | Microsoft coco: Common objects in context[END_REF] dataset for pretraining, but mainly for finetuning and evaluation purposes. This dataset contains 80 classes of objects and about 118k training images (train2017 subset). Performance is evaluated on the val2017 subset.

• For finetuning, we also use the Pascal VOC 2007 and 2012 (VOC 07-12) [START_REF] Everingham | The pascal visual object classes (voc) challenge[END_REF] datasets. This dataset contains 20 classes of objects, and we use the combination of the trainval subsets from both VOC2007 and VOC2012 for training, corresponding to about 16k training images in total. Performance is evaluated on the test subset from VOC2007.

• For a more complicated dataset, we use the Few-Shot Object Detection dataset [START_REF] Fan | Few-shot object detection with attention-rpn and multi-relation detector[END_REF]. Since the dataset is designed as open-set, i.e. with different classes between training and testing, we separately use the train and test sets for benchmarking. We separate the test set into a training and testing subset, by randomly taking 80% of images for training and the 20% remaining for testing, and do the same for the train set. We make sure that all classes appears at least once in both training and testing subsets. The images selected for training and testing will be made available for reproducibility. This separation leads to about 11k training images and 3k testing images for the test set, and about 42k training images and 10k testing images for the train set.

B AUGMENTATIONS USED

We detail in Table 4 the distributions of augmentations used to create the weak view and the strong view. The Weak Augmentations follow standard supervised training for transformer-based detectors [START_REF] Carion | End-to-end object detection with transformers[END_REF][START_REF] Zhu | Deformable DETR: Deformable transformers for end-to-end object detection[END_REF]. The Strong Augmentations follow typical contrastive learning augmentations (Chen et al., 2020a;[START_REF] Bar | DETReg: Unsupervised pretraining with region priors for object detection[END_REF].

Table 4: The different sets of augmentations used for each branch (weak or strong). Probability indicates the probability of applying the corresponding augmentation.

Weak Augmentations (T 1 ) 

Augmentations

C PRETRAINING COST

We compare the cost of pretraining in terms of memory and hardware used to SoCo [START_REF] Wei | Aligning pretraining for detection via object-level contrastive learning[END_REF] in Table 5 since it is the closest in terms of pretraining pipeline. The information are derived from their paper and official github repository. Even though A100 GPUs are faster than V100 GPUs, we are training much faster which is partly explained by the fact that they learn the backbone along with the detection heads during pretraining, leading to more parameters to learn and more computations. Furthermore, our ProSeCo requires a smaller batch size leading to less memory and thus less GPUs needed.

D USING ANOTHER CONTRASTIVE LOSS

The popular InfoNCE loss [START_REF] Van Den Oord | Representation learning with contrastive predictive coding[END_REF] used for contrastive learning is a similarity based function scaled by the temperature τ that maximizes agreement between the positive pair of instances and push negatives away. However, it suffers from the class collision problem [START_REF] Cai | Are all negatives created equal in contrastive instance discrimination?[END_REF][START_REF] Denize | Similarity contrastive estimation for self-supervised soft contrastive learning[END_REF], where semantically close instances can be used as negatives in the loss computation, which damages the quality of the representation learned. Recent work [START_REF] Zheng | Ressl: Relational self-supervised learning with weak augmentation[END_REF][START_REF] Denize | Similarity contrastive estimation for self-supervised soft contrastive learning[END_REF] have tackled this problem by introducing the relational aspect between instances. In our experimental study, we also considered the InfoNCE loss for ProSeCo. We formulate the loss as follows:

L InfoNCE (z, ẑ, σprop ) = - 1 N b N N b i=1 N j=1 log exp(z (i,j) • ẑ(i,σ prop i (j)) /τ ) N b k=1 N l=1 exp(z (i,j) • ẑ(k,l) /τ ) . (11) 
This formulation leads to an effective batch size of N b • N for the contrastive loss. Similarly to our LocSCE, the localization of the objects can be introduced in the InfoNCE loss function to obtain the LocNCE objective as follows:

L LocNCE (y, ẑ, σprop ) = - 1 N b N N b i=1 N j=1 N m=1 1 IoUi(j,m)≥δ log exp(z (i,j) • ẑ(i,σ prop i (m)) /τ ) N b k=1 N l=1 exp(z (i,j) • ẑ(k,l) /τ ) . (12) 
In Table 6, we compare the two different contrastive objectives for pretraining. We can see that using the InfoNCE loss leads to slightly better results (+0.3 p.p.). However, when using the localization information, SCE benefits much more than InfoNCE (+1.7 p.p. compared to +0.6 p.p.). This might be that the selection of positives from the localization information helps to introduce easy positive examples, and thanks to this, the relational aspect of SCE can focus on the more difficult positives.

In the end, LocSCE achieves stronger results than LocNCE (+0.8 p.p.).

E FULL EVALUATION METRICS

Tables 7 and8 provide the results with full evaluation metrics (mAP, AP 50 and AP 75 in %) on PASCAL VOC, Mini-VOC, FSOD-test and FSOD-train benchmarks. 

F INCREASING THE NUMBER OF QUERIES

In Table 9, we provide an ablation on the number of object proposals (queries) N in Def. DETR, when pretraining with ProSeCo and finetuning afterward. A higher N leads to more parameters in the model and longer computing time, but we can see that the results of Def. DETR are relatively stable w.r.t. to the number of queries. On the other hand, ProSeCo benefits from increasing the number of queries, since it means a higher effective batch size during contrastive learning. However, the default value of N = 300 leads to the best results, both with and without pretraining.

G FINETUNING WITH A LOT OF DATA

In Table 10, we present results when finetuning on the full COCO dataset under the 1× training schedule [START_REF] Wei | Aligning pretraining for detection via object-level contrastive learning[END_REF][START_REF] Li | Dn-DETR: Accelerate DETR training by introducing query denoising[END_REF], i.e. 12 training epochs and decaying the learning rate in the last epoch. The improvements in the large-scale annotated data regime are limited, which can be observed also in previous work (Dai et al., 2021b;[START_REF] Bar | DETReg: Unsupervised pretraining with region priors for object detection[END_REF]. As we can see, our ProSeCo reaches similar results than DETReg [START_REF] Bar | DETReg: Unsupervised pretraining with region priors for object detection[END_REF]. We believe that this limitation comes from the pretrained backbone that stays fixed during pretraining, and from the extensive supervision during fine-tuning. However, as we can see in both Tables 1b and8, we outperform DETReg on our FSOD-train benchmark, which represents a setting with mid-scale annotated data (42k training images).

H PERFORMANCE COMPARISON OF DETECTORS IN THE FEW DATA REGIME

From the results presented in Table 11, we can see that Def. DETR, a recent state-of-the-art detection model based on transformers, achieves consistently better performance than the most popular twostage method in when learning with limited labels. These differences in performance are all the more impressive since the two methods have a similar number of parameters. These results motivated our choice of transformer-based architectures for our pretraining method. 

Figure 1 :

 1 Figure 1: Illustration of the different pretraining possibilities for Object Detection. The pretraining can be either limited to the backbone (left), or overall including the detection heads (right). The few previous overall approaches either suffer from a discrepancy in the features between the backbone, that is trained at the image-level (global), and the detection heads, trained to encode object-level (local) information (c.), or from the cost of training lots of parameters with a large batch size (e.).

Figure 2 :

 2 Figure2: Overview of our proposed ProSeCo for unsupervised pretraining. The method follows a student-teacher architecture, with the teacher updated through an Exponential Moving Average (EMA) of the student. For each input image, K random boxes are computed using the Selective Search algorithm, and two different views are generated through an asymmetric set of weak augmentations T 1 and strong augmentations T 2 . Then, object predictions are obtained from the student model for the strongly augmented view, and object proposals from the teacher model with the weakly augmented view. Finally, the boxes predicted by the student are matched with the boxes sampled from Selective Search to compute the localization losses L coord and L giou , and the full predictions are matched with the object proposals to compute our novel contrastive loss L LocSCE .

  and the generalized IoU loss L giou from Rezatofighi et al. (2019):

Figure 3 :

 3 Figure 3: Illustration of the effect of the localized contrastive loss used. Predictions of the student and teacher models are contrasted with each other to leverage the large number of object proposals obtained from transformer-based detectors. To introduce the object locations information, overlapping proposals (in green) in each weak view, according to an IoU threshold δ, are also considered as positive along with the matched proposal. Proposals that neither match nor overlap the matched proposal, are considered as negative (in red) in the contrastive loss.
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Table 1 :

 1 Performance (mAP in %) of our proposed pretraining approach after finetuning using different percentage of training data (with the corresponding number of images reported). We show that our ProSeCo outperforms previous pretraining methods in all benchmarks.

	Method	Detector	Pretrain.	Mini-COCO	
			Dataset	1% (1.2k) 5% (5.9k) 10% (11.8k)
	Supervised	Def. DETR	IN	13.0	23.6	28.6
	SwAV (Caron et al., 2020)	Def. DETR	IN	13.3	24.5	29.5
	SCRL (Roh et al., 2021)	Def. DETR	IN	16.4	26.2	30.6
	DETReg (Bar et al., 2022)	Def. DETR	COCO	15.8	26.7	30.7
	DETReg (Bar et al., 2022)	Def. DETR	IN	15.9	26.1	30.9
	Supervised (Wei et al., 2021) Mask R-CNN IN	-	19.4	24.7
	SoCo * (Wei et al., 2021)	Mask R-CNN IN	-	26.8	31.1
	ProSeCo (Ours)	Def. DETR	IN	18.0	28.8	32.8
			(a)			
	Method	FSOD-test FSOD-train PASCAL VOC	Mini-VOC
		100% (11k) 100% (42k)	100% (16k)	5% (0.8k) 10% (1.6k)
	Supervised	39.3	42.6	59.5	33.9	40.8
	DETReg (Bar et al., 2022)	43.2	43.3	63.5	43.1	48.2
	ProSeCo (Ours)	46.6	47.2	65.1	46.1	51.3
			(b)			

Table 2 :

 2 (a) Comparison after finetuning when using different pretrained backbone and/or pretraining datasets. (b) Comparison of the effect of the localization information using different IoU threshold δ. All performance (mAP in %) are measured on Mini-COCO 5%.

	Pretraining	Dataset mAP	Loss	δ	mAP
	ProSeCo w/ SwAV COCO	27.4	SCE	1.0 26.1
	ProSeCo w/ SwAV IN	27.8	LocSCE (Ours) 0.2 27.0
	DETReg w/ SCRL IN	28.0	LocSCE (Ours) 0.7 27.1
	ProSeCo w/ SCRL IN	28.8	LocSCE (Ours) 0.5 27.8
	(a)			(b)	

Table 3 :

 3 Ablation studies on different hyperparameters for the proposed method. The performance (mAP in %) are measured on Mini-COCO 5%. Green and bold columns names indicate a positive effect on the performance, and red columns a negative effect.

	Ablative Variant	Batch size Images scale Temperature τ t	EMA		mAP
		192 64 Mid Large 0.05	0.07	0.99 0.996 0.999
	Base	✓	✓	✓		✓		26.7
	Abl. Batch	✓	✓	✓		✓		26.5
	Abl. Scale	✓	✓	✓		✓		27.4
	Abl. Temp.	✓	✓		✓	✓		27
	Abl. EMA	✓ ✓	✓ ✓	✓ ✓		✓	✓	26.3 26.8
	Best	✓	✓		✓		✓	27.8

Table 5 :

 5 Comparison of pretraining cost between overall pretraining methods. We compare the number of pretraining epochs on IN, the total batch size, the total number of iterations, the total training time (in hours), the number of iterations per seconds (It. / sec.), and the hardware used (number and type of GPUs). We can see that our pretraining is globally less costly than SoCo.

	Method	IN epochs Batch Size Iterations Time It. / sec.	Hardware
	SoCo	400	2048	240k	140h	0.5	16 V100 32G
	ProSeCo (Ours)	10	64	187k	40h	1.4	8 A100 40G

Table 6 :

 6 Performance (mAP in %) comparison on Mini-COCO 5% of the different contrastive loss and the effect of the localization information on each of them.

	Loss	δ	mAP
	InfoNCE	1.0 26.4
	LocNCE (Ours) 0.5 27.0
	SCE	1.0 26.1
	LocSCE (Ours) 0.2 27.0
	LocSCE (Ours) 0.7 27.1
	LocSCE (Ours) 0.5 27.8

Table 7 :

 7 Performance comparison after finetuning on PASCAL VOC and in the novel Mini-VOC setting. On Mini-VOC, we use different percentage of training data (with the corresponding number of images reported) for finetuning. AP 75 mAP AP 50 AP 75 mAP AP 50 AP 75

		PASCAL VOC			Mini-VOC		
	Method		100% (16k)			5% (0.8k)		10% (1.6k)	
	mAP AP 50 Supervised 59.5 82.6	65.6	33.9	56.9	35.0	40.8	63.7	43.1
	DETReg (Bar et al., 2022) 63.5	83.3	70.3	43.1	63.4	46.1	48.2	68.6	51.9
	ProSeCo (Ours)	65.1	84.7	73.0	46.1	66.1	50.2	51.3	72.7	56.1

Table 8 :

 8 Performance comparison on FSOD-test and FSOD-train

		FSOD-test (11k)	FSOD-train (42k)
	Method	mAP AP 50 AP 75 mAP AP 50 AP 75
	Supervised	39.3	57.7	42.6	42.6	58.1	46.5
	DETReg (Bar et al., 2022) 43.2	59.6	47.8	43.3	57.9	47.3
	ProSeCo (Ours)	46.6	64.5	50.9	47.2	62.4	51.7

Table 9 :

 9 Performance (mAP in %) comparison on Mini-COCO 5% when changing the number of object proposals in Def. DETR.

	Method	N	Performance
		100	23.1
	Supervised	200 300	23.0 23.6
		500	23.3
		100	25.7
	ProSeCo (Ours)	200 300	26.5 27.8
		500	27.2

Table 10 :

 10 Performance (mAP, AP 50 and AP 75 in %) comparison on the full COCO dataset (118k training images) with the 1× training schedule.

	Method	COCO (118k)
		mAP AP 50 AP 75
	Supervised	37.4	55.5	40.5
	DETReg (Bar et al., 2022) 38.9	56.6	42.3
	ProSeCo (Ours)	38.9	56.2	42.4

Table 11 :

 11 Performance (mAP in %) comparison between Faster-RCNN (FRCNN)[START_REF] Shaoqing Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF] with Feature Pyramid Network (FPN)[START_REF] Lin | Feature pyramid networks for object detection[END_REF], a two-stage detector commonly used, FCOS[START_REF] Zhi Tian | Fcos: Fully convolutional one-stage object detection[END_REF], a more recent one-stage method, and Deformable DETR (Def. DETR)[START_REF] Zhu | Deformable DETR: Deformable transformers for end-to-end object detection[END_REF], a state-of-the-art transformer-based object detector, with the same ResNet-50 backbone model. † Results from[START_REF] Liu | Unbiased teacher v2: Semi-supervised object detection for anchor-free and anchor-based detectors[END_REF]. ‡ Results from[START_REF] Bouniot | Towards fewannotation learning for object detection: Are transformer-based models more efficient?[END_REF]. ± 0.03 17.01 ± 0.01 20.98 ± 0.01 FRCNN + FPN † 6.83 ± 0.15 9.05 ± 0.16 18.47 ± 0.22 23.86 ± 0.81 Def. DETR ‡ 8.95 ± 0.51 12.96 ± 0.08 23.59 ± 0.21 28.55 ± 0.08

	Method		Mini-COCO
		0.5% (590)	1% (1.2k)	5% (5.9k)	10% (11.8k)
	FCOS †	5.42 ± 0.01	8.43	
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