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Abstract. In this paper, we consider the framework of multi-task rep-
resentation (MTR) learning where the goal is to use source tasks to
learn a representation that reduces the sample complexity of solving a
target task. We start by reviewing recent advances in MTR theory and
show that they can provide novel insights for popular meta-learning al-
gorithms when analyzed within this framework. In particular, we high-
light a fundamental difference between gradient-based and metric-based
algorithms in practice and put forward a theoretical analysis to explain
it. Finally, we use the derived insights to improve the performance of
meta-learning methods via a new spectral-based regularization term and
confirm its efficiency through experimental studies on few-shot classifi-
cation benchmarks. To the best of our knowledge, this is the first con-
tribution that puts the most recent learning bounds of MTR theory into
practice for the task of few-shot classification.

Keywords: Few-shot learning, meta-learning, multi-task learning.

1 Introduction

Even though many machine learning methods now enjoy a solid theoretical jus-
tification, some more recent advances in the field are still in their preliminary
state which requires the hypotheses put forward by the theoretical studies to be
implemented and verified in practice. One such notable example is the success of
meta-learning, also called learning to learn (LTL), methods where the goal is to
produce a model on data coming from a set of (meta-train) source tasks to use it
as a starting point for learning successfully a new previously unseen (meta-test)
target task. The success of many meta-learning approaches is directly related to
their capacity of learning a good representation [41] from a set of tasks making
it closely related to multi-task representation learning (MTR). For this latter,
several theoretical studies [2,5,32,38,58] provided probabilistic learning bounds
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that require the amount of data in the meta-train source task and the number of
meta-train tasks to tend to infinity for it to be efficient. While capturing the un-
derlying general intuition, these bounds do not suggest that all the source data
is useful in such learning setup due to the additive relationship between the two
terms mentioned above and thus, for instance, cannot explain the empirical suc-
cess of MTR in few-shot classification (FSC) task. To tackle this drawback, two
very recent studies [15,50] aimed at finding deterministic assumptions that lead
to faster learning rates allowing MTR algorithms to benefit from all the source
data. Contrary to probabilistic bounds that have been used to derive novel learn-
ing strategies for meta-learning algorithms [2,58], there has been no attempt to
verify the validity of the assumptions leading to the fastest known learning rates
in practice or to enforce them through an appropriate optimization procedure.

In this paper, we aim to use the recent advances in MTR theory [15,50] to ex-
plore the inner workings of these popular meta-learning methods. Our rationale
for such an approach stems from a recent work [52] proving that the optimiza-
tion problem behind the majority of meta-learning algorithms can be written
as an MTR problem. Thus, we believe that looking at meta-learning algorithms
through the recent MTR theory lens, could provide us a better understanding
for the capacity to work well in the few-shot regime. In particular, we take a
closer look at two families of meta-learning algorithms, notably: gradient-based
algorithms [6, 10, 28, 31, 35–37,41, 42] including Maml [16] and metric-based al-
gorithms [1, 24, 30, 46–48, 51] with its most prominent example given by Pro-
toNet [47].
Our main contributions are then two-fold:
1. We empirically show that tracking the validity of assumptions on optimal

predictors used in [15, 50] reveals a striking difference between the behavior
of gradient-based and metric-based methods in how they learn their optimal
feature representations. We provide elements of theoretical analysis that ex-
plain this behavior and explain the implications of it in practice. Our work is
thus complementary to Wang et al. [52] and connects MTR, FSC and Meta-
Learning from both theoretical and empirical points of view.

2. Following the most recent advances in the MTR field that leads to faster
learning rates, we show that theoretical assumptions mentioned above can
be forced through simple yet effective learning constraints which improve
performance of the considered algorithms for FSC baselines: gradient- and
metric-based methods using episodic training, as well as non-episodic algo-
rithm such as Multi-Task Learning (MTL [52]).

The rest of the paper is organized as follows. We introduce the MTR problem
and the considered meta-learning algorithms in Section 2. In Section 3, we in-
vestigate and explain how they behave in practice. We further show that one
can force meta-learning algorithms to satisfy such assumptions through adding
an appropriate spectral regularization term to their objective function. In Sec-
tion 4, we provide an experimental evaluation of several state-of-the-art meta-
learning and MTR methods. We conclude and outline the future research per-
spectives in Section 5.
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2 Preliminary Knowledge

2.1 Multi-Task Representation Learning Setup

Given a set of T source tasks observed through finite size samples of size n1

grouped into matrices Xt = (xt,1, . . . ,xt,n1
) ∈ Rn1×d and vectors of outputs yt =

(yt,1, . . . , yt,n1
) ∈ Rn1 , ∀t ∈ [[T ]] := {1, . . . , T} generated by their respective

distributions µt, the goal of MTR is to learn a shared representation ϕ belonging
to a certain class of functions Φ := {ϕ | ϕ : X→ V, X ⊆ Rd, V ⊆ Rk}, generally
represented as (deep) neural networks, and linear predictors wt ∈ Rk, ∀t ∈ [[T ]]
grouped in a matrix W ∈ RT×k. More formally, this is done by solving the
following optimization problem:

ϕ̂,Ŵ= argmin
ϕ∈Φ,W∈RT×k

1

Tn1

T∑

t=1

n1∑

i=1

ℓ(yt,i, ⟨wt, ϕ(xt,i)⟩), (1)

where ℓ : Y×Y→ R+, with Y ⊆ R, is a loss function. Once such a representation
is learned, we want to apply it to a new previously unseen target task observed
through a pair (XT+1 ∈ Rn2×d, yT+1 ∈ Rn2) containing n2 samples generated
by the distribution µT+1. We expect that a linear classifier w learned on top of
the obtained representation leads to a low true risk over the whole distribution
µT+1. For this, we first use ϕ̂ to solve the following problem:

ŵT+1 = argmin
w∈Rk

1

n2

n2∑

i=1

ℓ(yT+1,i, ⟨w, ϕ̂(xT+1,i)⟩). (2)

Then, we define the true target risk of the learned linear classifier ŵT+1 as:
L(ϕ̂, ŵT+1) = E(x,y)∼µT+1

[ℓ(y, ⟨ŵT+1, ϕ̂(x)⟩)] and want it to be as close as pos-
sible to the ideal true risk L(ϕ∗,w∗

T+1) where w∗
T+1 and ϕ∗ satisfy:

∀t ∈ [[T + 1]] and (x, y) ∼ µt, y = ⟨w∗
t , ϕ

∗(x)⟩+ ε, ε ∼ N (0, σ2). (3)

Equivalently, most of the works found in the literature seek to upper-bound the
excess risk defined as ER(ϕ̂, ŵT+1) := L(ϕ̂, ŵT+1)− L(ϕ∗,w∗

T+1).

2.2 Learning Bounds and Assumptions

First studies in the context of MTR relied on the probabilistic assumption [2,
5, 32, 38, 58] stating that meta-train and meta-test tasks distributions are all
sampled i.i.d. from the same random distribution. A natural improvement to
this bound was then proposed by [15] and [50] that obtained the bounds on the
excess risk behaving as

ER(ϕ̂, ŵT+1) ≤ O

(
C(Φ)

n1T
+

k

n2

)
, (4)

where C(Φ) is a measure of the complexity of Φ. Both these results show that all
the source and target samples are useful in minimizing the excess risk. Thus, in
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the FSC regime where target data is scarce, all source data helps to learn well.
From a set of assumptions made by the authors in both of these works, we note
the following two:

Assumption 1: Diversity of the source tasks The matrix of optimal
predictors W∗ should cover all the directions in Rk evenly. More formally, this
can be stated as κ(W∗) := σ1(W

∗)
σk(W∗) = O(1),

where σi(·) denotes the ith singular value of W∗. As pointed out by the
authors, such an assumption can be seen as a measure of diversity between the
source tasks that are expected to be complementary to each other to provide a
useful representation for a previously unseen target task. In the following, we
will refer to κ(W) as the condition number for matrix W.

Assumption 2: Consistency of the classification margin The norm of
the optimal predictors w∗ should not increase with the number of tasks seen dur-
ing meta-training4. This assumption says that the classification margin of linear
predictors should remain constant thus avoiding over- or under-specialization to
the seen tasks.

An intuition behind these assumptions and a detailed review can be found
in the Appendix. While being highly insightful, the authors did not provide any
experimental evidence suggesting that verifying these assumptions in practice
helps to learn more efficiently in the considered learning setting.

2.3 Meta-Learning Algorithms

Meta-learning algorithms considered below learn an optimal representation se-
quentially via the so-called episodic training strategy introduced by [51], instead
of jointly minimizing the training error on a set of source tasks as done in MTR.
Episodic training mimics the training process at the task scale with each task
data being decomposed into a training set (support set S) and a testing set
(query set Q). Recently, [8] showed that the episodic training setup used in meta-
learning leads to a generalization bounds of O( 1√

T
). This bound is independent

of the task sample size n1, which could explain the success of this training strat-
egy for FSC in the asymptotic limit. However, unlike the results obtained by [15]
studied in this paper, the lack of dependence on n1 makes such a result unin-
sightful in practice as we are in a finite-sample size setting. This bound does not
give information on other parameters to leverage when the task number cannot
increase. We now present two major families of meta-learning approaches below.
Metric-based methods These methods learn an embedding space in which
feature vectors can be compared using a similarity function (usually a L2 distance
or cosine similarity) [1,24,30,46–48,51]. They typically use a form of contrastive
loss as their objective function, similarly to Neighborhood Component Analysis
(NCA) [18] or Triplet Loss [21]. In this paper, we focus our analysis on the pop-
ular Prototypical Networks [47] (ProtoNet) that computes prototypes as the
mean vector of support points belonging to the same class: ci = 1

|Si|
∑

s∈Si
ϕ(s),

4 While not stated separately, this assumption is used in [15] to derive the final result
on p.5 after the discussion of Assumption 4.3.
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with Si the subset of support points belonging to class i. ProtoNet minimizes
the negative log-probability of the true class i computed as the softmax over dis-
tances to prototypes ci:

Lproto(S,Q, ϕ) := Eq∼Q

[
− log

exp(−d(ϕ(q), ci))∑
j exp (−d(ϕ(q), cj))

]
(5)

with d being a distance function used to measure similarity between points in
the embedding space.
Gradient-based methods These methods learn through end-to-end or two-
step optimization [6, 10, 28, 31, 35–37, 41, 42] where given a new task, the goal
is to learn a model from the task’s training data specifically adapted for this
task. Maml [16] updates its parameters θ using an end-to-end optimization
process to find the best initialization such that a new task can be learned quickly,
i.e. with few examples. More formally, given the loss ℓt for each task t ∈ [[T ]],
Maml minimizes the expected task loss after an inner loop or adaptation phase,
computed by a few steps of gradient descent initialized at the model’s current
parameters:

LMaml(θ) := Et∼η[ℓt(θ − α∇ℓt(θ))], (6)

with η the distribution of the meta-training tasks and α the learning rate for
the adaptation phase. For simplicity, we take a single step of gradient update in
this equation.

In what follows, we establish our theoretical analysis for the popular methods
ProtoNet and Maml. We add their improved variations respectively called
Infinite Mixture Prototypes [1] (IMP) and Meta-Curvature [37] (MC) in the
experiments to validate our findings.

3 Understanding Meta-learning Algorithms through
MTR Theory

3.1 Link between MTR and Meta-learning

Recently, [52] has shown that meta-learning algorithms that only optimize the
last layer in the inner-loop, solve the same underlying optimization procedure
as multi-task learning. In particular, their contributions have the following im-
plications:

1. For Metric-based algorithms, the majority of methods can be seen as MTR
problems. This is true, in particular, for ProtoNet and IMP algorithms
considered in this work.

2. In the case of Gradient-based algorithms, such methods as ANIL [41] and
MetaOptNet [28] that do not update the embeddings during the inner-loop,
can be also seen as multi-task learning. However, Maml and MC in princi-
pal do update the embeddings even though there exists strong evidence sug-
gesting that the changes in the weights during their inner-loop are mainly
affecting the last layer [41]. Consequently, we follow [52] and use this as-
sumption to analyze Maml and MC in MTR framework as well.
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Fig. 1: Evolution of κ(WN ), ∥WN∥F and κ(W) (in log scale) during the training
of ProtoNet (red, left axes) and Maml (blue, right axes) on miniImageNet
(mini, solid lines) and tieredImageNet (tiered, dashed lines) with 5-way 1-shot
episodes.

3. In practice, [52] showed that the mismatch between the multi-task and the
actual episodic training setup leads to a negligible difference.

In the following section, we start by empirically verifying that the behavior of
meta-learning methods reveals very distinct features when looked at through the
prism of the considered MTR theoretical assumptions.

3.2 What happens in practice?

To verify whether theoretical results from MTR setting are also insightful for
episodic training used by popular meta-learning algorithms, we first investigate
the natural behavior of Maml and ProtoNet when solving FSC tasks on the
popular miniImageNet [42] and tieredImageNet [43] datasets. The full experi-
mental setup is detailed in Section 4.1 and in the Appendix. Additional exper-
iments for Omniglot [27] benchmark dataset portraying the same behavior are
also postponed to the Appendix.

To verify Assumption 1 from MTR theory, we want to compute singular
values of W during the meta-training stage and to follow their evolution. In
practice, as T is typically quite large, we propose a more computationally efficient
solution that is to calculate the condition number only for the last batch of N
predictors (with N ≪ T ) grouped in the matrix WN ∈ RN×k that capture the
latest dynamics in the learning process. We further note that σi(WNW⊤

N ) =
σ2
i (WN ), ∀i ∈ [[N ]] implying that we can calculate the SVD of WNW⊤

N (or
W⊤

NWN for k ≤ N) and retrieve the singular values from it afterwards. We now
want to verify whether wt cover all directions in the embedding space and track
the evolution of the ratio of singular values κ(WN ) during training. For the first
assumption to be satisfied, we expect κ(WN ) to decrease gradually during the
training thus improving the generalization capacity of the learned predictors and
preparing them for the target task. To verify the second assumption, the norm
of the linear predictors should not increase with the number of tasks seen during
training, i.e., ∥w∥2 = O(1) or, equivalently, ∥W∥2F = O(T ) and ∥WN∥F = O(1).

For gradient-based methods, linear predictors are directly the weights of the
last layer of the model. Indeed, for each task, the model learns a batch of linear
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predictors and we can directly take the weights for WN . Meanwhile, metric-
based methods do not use linear predictors but compute a similarity between
features. In the case of ProtoNet, the similarity is computed with respect to
class prototypes that are mean features of the instances of each class. For the
Euclidean distance, this is equivalent to a linear model with the prototype of a
class acting as the linear predictor of this class [47]. This means that we can
apply our analysis directly to the prototypes computed by ProtoNet. In this
case, the matrix W∗ will be the matrix of the optimal prototypes and we can
then take the prototypes computed for each task as our matrix WN .

From Fig. 7, we can see that for Maml (blue), both ∥WN∥F (left) and
κ(WN ) (middle) increase with the number of tasks seen during training, whereas
ProtoNet (red) naturally learns prototypes with a good coverage of the em-
bedding space, and minimizes their norm. Since we compute the singular val-
ues of the last N predictors in κ(WN ), we can only compare the overall behav-
ior throughout training between methods. For the sake of completeness, we also
compute κ(W) (right) at different stages in the training. To do so, we fix the
encoder ϕT learned after T episodes and recalculate the linear predictors of the
T past training episodes with this fixed encoder. We can see that κ(W) of Pro-
toNet also decreases during training and reach a lower final value than κ(W)
of Maml. This confirms that the dynamics of κ(WN ) and κ(W) are similar
whereas the values κ(WN ) between methods should not be directly compared.
The behavior of κ(W) also validate our finding that ProtoNet learns to cover
the embedding space with prototypes. This behavior is rather peculiar as nei-
ther of the two methods explicitly controls the theoretical quantities of interest,
and still, ProtoNet manages to do it implicitly.

3.3 The case of Meta-Learning algorithms

The differences observed above for the two methods call for a deeper analysis of
their behavior.
ProtoNet We start by first explaining why ProtoNet learns prototypes
that cover the embedding space efficiently. This result is given by the following
theorem (cf. Appendix for the proof):

Theorem 1. (Normalized ProtoNet)
If ∀i ∥ci∥ = 1, then ∀ϕ̂ ∈ argminϕ Lproto(S,Q, ϕ), the matrix of the optimal
prototypes W∗ is well-conditioned, i.e. κ(W∗) = O(1).

This theorem explains the empirical behavior of ProtoNet in FSC task: the
minimization of its objective function naturally minimizes the condition number
when the norm of the prototypes is low.

In particular, it implies that norm minimization seems to initiate the mini-
mization of the condition number seen afterwards due to the contrastive nature
of the loss function minimized by ProtoNet. We confirm this latter implication
through experiments in Section 4 showing that norm minimization is enough for
considered metric-based methods to obtain the well-behaved condition number
and that minimizing both seems redundant.
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Maml Unfortunately, the analysis of Maml in the most general case is no-
toriously harder, as even expressing its loss function and gradients in the case of
an overparametrized linear regression model with only 2 parameters requires us-
ing a symbolic toolbox for derivations [3]. To this end, we resort to the linear re-
gression model considered in this latter paper and defined as follows. We assume
for all t ∈ [[T ]] that the task parameters θt are normally distributed with θt ∼
N (0d, Id), the inputs xt ∼ N (0d, Id) and the output yt ∼ N (⟨θt,xt⟩, 1). For
each t, we consider the following learning model and its associated square loss:

ŷt = ⟨wt,xt⟩, ℓt = Ep(xt,yt|θt)(yt − ⟨wt,xt⟩)2. (7)

We can now state the following result.

Proposition 1. Let ∀t ∈ [[T ]], θt ∼ N (0d, Id), xt ∼ N (0d, Id) and yt ∼
N (⟨θt,xt⟩, 1). Consider the learning model from Eq. (7), let Θi := [θi,θi+1]

T ,
and denote by Ŵi

2 the matrix of last two predictors learned by Maml at itera-
tion i starting from ŵ0 = 0d. Then, we have that:

∀i, κ(Ŵi+1
2 ) ≥ κ(Ŵi

2), if σmin(Θi) = 0. (8)

This proposition provides an explanation of why Maml may tend to increase
the ratio of singular values during the iterations. Indeed, the condition when this
happens indicates that the optimal predictors forming matrix Θi are linearly
dependent implying that its smallest singular values becomes equal to 0. While
this is not expected to be the case for all iterations, we note, however, that in
FSC task the draws from the dataset are in general not i.i.d. and thus may
correspond to co-linear optimal predictors. In every such case, the condition
number is expected to remain non-decreasing, as illustrated in Fig. 7 (left) where
for Maml, contrary to ProtoNet, κ(WN ) exhibits plateaus but also intervals
where it is increasing.

This highlights a major difference between the two approaches: Maml does
not specifically seek to diversify the learned predictors, while ProtoNet does.
Proposition 1 gives a hint to the essential difference between the methods studied.
On the one hand, ProtoNet constructs its classifiers directly from the data
of the current task and they are independent of the other tasks. On the other
hand, for Maml, the weights of the classifiers are reused between tasks and
only slightly adapted to be specific to each task. This limits the generalization
capabilities of the linear predictors learned by Maml since they are based on
predictors from previous tasks.

3.4 Enforcing the assumptions

Why should we force the assumptions ? From the results obtain by [15],
and with the same assumptions, we can easily make appear κ(W∗) to obtain a
more explicit bound:
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Proposition 2. If ∀t ∈ [[T ]], ∥w∗
t ∥ = O(1) and κ(W∗) = O(1), and wT+1

follows a distribution ν such that ∥Ew∼ν [ww⊤]∥ ≤ O
(
1
k

)
, then

ER(ϕ̂, ŵT+1) ≤ O

(
C(Φ)

n1T
· κ(W∗) +

k

n2

)
. (9)

Proposition 2 suggests that the terms ∥w∗
t ∥ and κ(W∗) underlying the as-

sumptions directly impact the tightness of the established bound on the excess
risk. The full proof can be found in the Appendix.
Can we force the assumptions ? According to the previous result, satisfying
the assumptions from MTR theory is expected to come in hand with better
performance. However all the terms involved refer to optimal predictors, that we
cannot act upon. Thus, we aim to answer the following question:

Given W∗ such that κ(W∗) ≫ 1, can we learn Ŵ with κ(Ŵ) ≈ 1 while
solving the underlying classification problems equally well?

While obtaining such a result for any distribution seems to be very hard in
the considered learning setup, we provide a constructive proof for the existence of
a distribution for which the answer to the above-mentioned question is positive
in the case of two tasks. The latter restriction comes out of the necessity to
analytically calculate the singular values of W but we expect our example to
generalize to more general setups and a larger number of tasks as well.
Proposition 3. Let T = 2, X ⊆ Rd be the input space and Y = {−1, 1} be the
output space. Then, there exist distributions µ1 and µ2 over X× Y, representa-
tions ϕ̂ ̸= ϕ∗ and matrices of predictors Ŵ ̸= W∗ that satisfy the data generat-
ing model (Eq. (3)) with κ(Ŵ) ≈ 1 and κ(W∗)≫ 1.
See Appendix for full proof and illustration. The established results show that
even when W∗ does not satisfy Assumptions 1-2 in the ϕ∗ space, it may still be
possible to learn ϕ̂ such that the optimal predictors do satisfy them.
How to force the assumptions ? This can be done either by considering
the constrained problem (Eq. (14)) or by using a more common strategy that
consists in adding κ(W) and ∥W∥2F as regularization terms (Eq. (11)):

ϕ̂,Ŵ = argmin
ϕ,W

1

Tn1

T∑

t=1

n1∑

i=1

ℓ(yt,i, ⟨wt, ϕ(xt,i)⟩) s.t. κ(W) = O(1), ∥wt∥ = 1 ,

(10)

ϕ̂,Ŵ = argmin
ϕ,W

1

Tn1

T∑

t=1

n1∑

i=1

ℓ(yt,i, ⟨wt, ϕ(xt,i)⟩) + λ1κ(W) + λ2∥W∥2F . (11)

To the best of our knowledge, such regularization terms based on insights
from the advances in MTR theory have never been used in the literature before.
We refer the reader to the Appendix for more details about them.

3.5 Positioning with respect to Previous Work

Understanding meta-learning While a complete theory for meta-learning
is still lacking, several recent works aim to shed light on phenomena commonly
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observed in meta-learning by evaluating different intuitive heuristics. For in-
stance, [41] investigate whether Maml works well due to rapid learning with
significant changes in the representations when deployed on target task, or due
to feature reuse where the learned representation remains almost intact. In [19],
the authors explain the success of meta-learning approaches by their capabil-
ity to either cluster classes more tightly in feature space (task-specific adapta-
tion approach), or to search for meta-parameters that lie close in weight space
to many task-specific minima (full fine-tuning approach). Finally, the effect of
the number of shots on the FSC accuracy was studied in [7] for ProtoNet .
More recently, [56] studied the impact of the permutation of labels when train-
ing Maml. Our paper investigates a new aspect of meta-learning that has never
been studied before and, unlike [41], [7], [19] and [56], provides a more complete
experimental evaluation with the two different approaches of meta-learning.
Normalization Multiple methods in the literature introduce a normalization
of their features either to measure cosine similarity instead of Euclidean distance
[9,17,39] or because of the noticed improvement in their performance [49,52,54].
In this work, we proved in Section 3.3 above that for ProtoNet prototypes nor-
malization is enough to achieve a good coverage of the embedding space, and we
empirically show in Section 4.2 below that it leads to better performance. Since
we only normalize the prototypes and not all the features, we do not measure
cosine similarity. Moreover, with our Theorem 1, we give explanations through
MTR theory regarding the link between the coverage of the representation space
and performance.
Common regularization strategies In general, we note that regularization
in meta-learning (i) is applied to either the weights of the whole neural net-
work [4, 58], or (ii) the predictions [19, 22] or (iii) is introduced via a prior hy-
pothesis biased regularized empirical risk minimization [12–14,26,38]. Contrary
to the first group of methods and weight decay approach [25], we do not regu-
larize the whole weight matrix learned by the neural network but the linear pre-
dictors of its last layer. While weight decay is used to avoid overfitting by pe-
nalizing large magnitudes of weights, our goal is to keep the classification mar-
gin unchanged during the training to avoid over-/under-specialization to source
tasks. Similarly, spectral normalization proposed by [33] does not affect the con-
dition number κ. Second, we regularize the singular values of the matrix of lin-
ear predictors obtained in the last batch of tasks instead of the predictions used
by the methods of the second group (e.g., using the theoretic-information quan-
tities in [22]). Finally, the works of the last group are related to the online set-
ting with convex loss functions only and do not specifically target the spectral
properties of the learned predictors.

4 Impact of enforcing theoretical assumptions

4.1 Experimental Setup

We consider on three benchmark datasets for FSC, namely: 1) Omniglot [27]
consisting of 1,623 classes with 20 images/class of size 28 × 28; 2) miniIma-
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Fig. 2: Evolution of κ(WN ) (left), ∥WN∥F (middle) and κ(W) (right) on 5-way
1-shot episodes from miniImageNet, for ProtoNet (top), Maml (bottom) and
their regularized or normalized counterparts.

geNet [42] consisting of 100 classes with 600 images of size 84 × 84/class; 3)
tieredImageNet [43] consisting of 779,165 images divided into 608 classes.

For each dataset, we follow a common experimental protocol used in [9, 16]
and use a four-layer convolution backbone with 64 filters (C64) as done by [9].
We also provide experiments with the ResNet-12 architecture (R12) [28] and we
follow the recent practice to initialize the models with the weights pretrained
on the entire meta-training set [40, 45, 57]. For ProtoNet, we use the released
code of [57] with a temperature of 1 instead of tuning it for all settings to be
fair with other settings and methods. For Maml, we follow the exact implemen-
tation details from [56] since the code was not available. We measure the per-
formance using the top-1 accuracy with 95% confidence intervals, reproduce the
experiments with 4 different random seeds and average the results over 2400 test
tasks. For all FSC experiments, unless explicitly stated, we use the regulariza-
tion parameters λ1 = λ2 = 1 in the regularized problem (Eq. (11)). We refer the
reader to the Appendix for all the hyperparameters used.5

4.2 Metric-based Methods

Theorem 1 tells us that with normalized class prototypes that act as linear pre-
dictors, ProtoNet naturally decreases the condition number of their matrix.
Furthermore, since the prototypes are directly the image features, adding a reg-
ularization term on the norm of the prototypes makes the model collapse to the
trivial solution which maps all images to 0. To this end, we choose to ensure the
theoretical assumptions for metric-based methods (ProtoNet and IMP) only
with prototype normalization, by using the normalized prototypes w̃ = w

∥w∥ . Ac-

5 Code for the experiments is available at https://github.com/CEA-LIST/MetaMTReg.

https://github.com/CEA-LIST/MetaMTReg
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Fig. 3: Accuracy gap (in p.p.) when adding the normalization of prototypes for
ProtoNet (red) and IMP (green), and both spectral and norm regularization
for Maml (blue) and MC (purple) enforcing the theoretical assumptions on
Omniglot (left), miniImagenet (middle) and tieredImagenet (right) datasets.

cording to Theorem 1, the normalization of the prototypes makes the problem
similar to the constrained problem given in Eq. (14).

As can be seen in Fig. 6, the normalization of the prototypes has the intended
effect on the condition number of the matrix of predictors. Indeed, κ(WN ) (left)
stay constant and low during training, and we achieve a much lower κ(W) (right)
than without normalization. From Fig. 3, we note that normalizing the proto-
types from the very beginning of the training process has an overall positive ef-
fect on the obtained performance, and this gain is statistically significant in most
of the cases according to the Wilcoxon signed-rank test (p < 0.05) [11,55].

In Table 1a, we compare the performance obtained against state-of-the-art
algorithms behaving similarly to Instance Embedding algorithms [57] such as
ProtoNet, depending on the architecture used. Even with a ResNet-12 ar-
chitecture, the proposed normalization still improves the performance to reach
competitive results with the state-of-the-art. On the miniImageNet 5-way 5-
shot benchmark, our normalized ProtoNet achieves 80.95%, better than DSN
(78.83%), CTM (78.63%) and SimpleShot (80.02%). We refer the reader to the
Appendix for more detailed training curves.

4.3 Gradient-based Methods

Gradient-based methods learn a batch of linear predictors for each task, and we
can directly take them as WN to compute its SVD. In the following experiments,
we consider the regularized problem of Eq. (11) for Maml as well as Meta-
Curvature (MC). As expected, the dynamics of ∥WN∥F and κ(WN ) during
the training of the regularized methods remain bounded and the effect of the
regularization is confirmed with the lower value of κ(W) achieved (cf. Fig. 6).

The impact of our regularization on the results is quantified in Fig. 3 where
a statistically significant accuracy gain is achieved in most cases, according to
the Wilcoxon signed-rank test (p < 0.05) [11, 55]. In Table 1a, we compare the
performance obtained to state-of-the-art gradient-based algorithms. We can see
that our proposed regularization is globally improving the results, even with a
bigger architecture such as ResNet-12 and with an additional pretraining. On the
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miniImageNet 5-way tieredImageNet 5-way

Model Arch. 1-shot 5-shot 1-shot 5-shot

Gradient-based algorithms

Maml [16] C64 48.70 ± 1.84 63.11 ± 0.92 - -
Anil [41] C64 48.0 ± 0.7 62.2 ± 0.5 - -
Meta-SGD [31] C64 50.47 ± 1.87 64.03 ± 0.94 - -
TADAM [36] R12 58.50 ± 0.30 76.70 ± 0.30 - -
MC [37] R12 61.22 ± 0.10 75.92 ± 0.17 66.20 ± 0.10 82.21 ± 0.08
MetaOptNet [28] R12 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53
MATE [10] R12 62.08 ± 0.64 78.64 ± 0.46 - -

Maml (Ours) C64 47.93 ± 0.83 64.47 ± 0.69 50.08 ± 0.91 67.5 ± 0.79
Maml + reg. (Ours) C64 49.15 ± 0.85 66.43 ± 0.69 51.5 ± 0.9 70.16 ± 0.76
MC (Ours) C64 49.28 ± 0.83 63.74 ± 0.69 55.16 ± 0.94 71.95 ± 0.77
MC + reg. (Ours) C64 49.64 ± 0.83 65.67 ± 0.70 55.85 ± 0.94 73.34 ± 0.76
Maml (Ours) R12 63.52 ± 0.20 81.24 ± 0.14 63.96 ± 0.23 81.79 ± 0.16
Maml + reg. (Ours) R12 64.04 ± 0.22 82.45 ± 0.14 64.32 ± 0.23 81.28 ± 0.11

Metric-based algorithms

ProtoNet [47] C64 46.61 ± 0.78 65.77 ± 0.70 – –
IMP [1] C64 49.6 ± 0.8 68.1 ± 0.8 – –
SimpleShot [54] C64 49.69 ± 0.19 66.92 ± 0.17 51.02 ± 0.20 68.98 ± 0.18
Relation Nets [48] C64 50.44 ± 0.82 65.32 ± 0.70 – –
SimpleShot [54] R18 62.85 ± 0.20 80.02 ± 0.14 69.09 ± 0.22 84.58 ± 0.16
CTM [30] R18 62.05 ± 0.55 78.63 ± 0.06 64.78 ± 0.11 81.05 ± 0.52
DSN [46] R12 62.64 ± 0.66 78.83 ± 0.45 66.22 ± 0.75 82.79 ± 0.48

ProtoNet (Ours) C64 49.53 ± 0.41 65.1 ± 0.35 51.95 ± 0.45 71.61 ± 0.38
ProtoNet+ norm. (Ours) C64 50.29 ± 0.41 67.13 ± 0.34 54.05 ± 0.45 71.84 ± 0.38
IMP (Ours) C64 48.85 ± 0.81 66.43 ± 0.71 52.16 ± 0.89 71.79 ± 0.75
IMP + norm. (Ours) C64 50.69 ± 0.8 67.29 ± 0.68 53.46 ± 0.89 72.38 ± 0.75
ProtoNet (Ours) R12 59.25 ± 0.20 77.92 ± 0.14 41.39 ± 0.21 83.06 ± 0.16
ProtoNet+ norm. (Ours) R12 62.69 ± 0.20 80.95 ± 0.14 68.44 ± 0.23 84.20 ± 0.16

(a)

miniImageNet 5-way tieredImageNet 5-way

Model Arch. 1-shot 5-shot 1-shot 5-shot

MTL R12 55.73 ± 0.18 76.27 ± 0.13 62.49 ± 0.21 81.31 ± 0.15
MTL + norm. R12 59.49 ± 0.18 77.3 ± 0.13 66.66 ± 0.21 83.59 ± 0.14
MTL + reg. (Ours) R12 61.12 ± 0.19 76.62 ± 0.13 66.28 ± 0.22 81.68 ± 0.15

(b)

Table 1: Performance comparison on FSC benchmarks. (a) FSC models. (b)
MTL models [52]. For a given architecture, bold values are the highest accuracy
and underlined values are near-highest accuracies (less than 1-point lower).

miniImageNet 5-way 5-shot benchmark, with our regularization Maml achieves
82.45%, better than TADAM (76.70%), MetaOptNet (78.63%) and MATE with
MetaOptNet (78.64%). We include in the Appendix ablative studies on the effect
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of each term in our regularization scheme for gradient-based methods, and more
detailed training curves.

4.4 Multi-Task learning Methods

We implement our regularization on a recent Multi-Task Learning (MTL) method
[52], following the same experimental protocol. The objective is to empirically
validate our analysis on a method using the MTR framework. As mentioned in
Sec. 3.5, the authors introduce feature normalization in their method, speculating
that it improves coverage of the representation space [53]. Using their code, we
reproduce their experiments on three different settings compared in Table 1b: the
vanilla MTL, the MTL with feature normalization, and MTL with our proposed
regularization on the condition number and the norm of the linear predictors. We
use λ1 = 1 in all the settings, and λ2 = 1 in the 1-shot setting and λ2 = 0.01 in
the 5-shot settings. We include in the Appendix an ablative study on the effect
of each term of the regularization. Our regularization, as well as the normaliza-
tion, globally improve the performance over the non-normalized models. Notably,
our regularization is the most effective when there is the less data which is well-
aligned with the MTR theory in few-shot setting. We can also note that in most of
the cases, the normalized models and the regularized ones achieve similar results,
hinting that they may have a similar effect. All of these results show that our
analysis and our proposed regularization are also valid in the MTL framework.

5 Conclusion

In this paper, we studied the validity of the theoretical assumptions made in re-
cent papers of Multi-Task Representation Learning theory when applied to pop-
ular metric- and gradient-based meta-learning algorithms. We found a striking
difference in their behavior and provided both theoretical and experimental ar-
guments explaining that metric-based methods satisfy the considered assump-
tions, while gradient-based don’t. We further used this as a starting point to im-
plement a regularization strategy ensuring these assumptions and observed that
it leads to faster learning and better generalization.

While this paper proposes an initial approach to bridging the gap between
theory and practice for Meta-Learning, some questions remain open on the inner
workings of these algorithms. In particular, being able to take better advantage of
the particularities of the training tasks during meta-training could help improve
the effectiveness of these approaches. The similarity between the source and test
tasks was not taken into account in this work, which is an additional assumption
in the theory of [15]. We provide a preliminary study using different datasets be-
tween the meta-training and meta-testing in the Appendix to foster future work
on this topic. Self-supervised meta-learning and multiple target tasks prediction
are also important future perspectives for the application of meta-learning.
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Table 2: Overview of main theoretical contributions related to MTR learning
with their assumptions, considered classes of representations and the obtained
bounds on the excess risk. Here Õ(·) hides logarithmic factors.
Paper Assumptions Φ Bound

[32] A1. ∀t ∈ [[T + 1]], µt ∼ η – O
(

1√
n1

+ 1√
T

)

[15]

A2.0. ∀t, ∥w∗
t ∥ = Θ(1)

A2.1. ∀t, x̄ is ρ2-subgaussian

A2.2. ∀t ∈ [[T ]], ∃c > 0 : Σt ⪰ cΣT+1 A2.1-2.4, linear, k ≪ d O
(

kd
cn1T

+ k
n2

)
A2.3. σ1(W

∗)
σk(W

∗) = O(1) A2.3-2.5, general, k ≪ d O
(

C(Φ)
n1T

+ k
n2

)
A2.4. w∗

T+1 ∼ µw : ||Ew∼µw [wwT ]|| ≤ O( 1
k
) A2.1,2.5,2.6, linear + ℓ2 regul., k ≫ d σR̄Õ

(√
Tr(Σ)

√
n1T

+

√
||Σ||2√
n2

)
A2.5. ∀t, pt = p,Σt = Σ A2.1,2.5,2.6,2.7, two-layer NN (ReLUs+ ℓ2 regul.) σR̄Õ

(√
Tr(Σ)

√
n1T

+

√
||Σ||2√
n2

)
A2.6. Point-wise+unif. cov. convergence

A2.7. Teacher network

[50]

A3.1. ∀t, x ∼ µXt is ρ2-subgaussian

A1-4, linear, k ≪ d Õ
(

kd
n1T

+ k
n2

)A3.2. σ1(W
∗)

σk(W
∗) = O(1) and ∀t, ∥wt∥ = Θ(1)

A3.3. Ŵ learned using the Method of Moments

A3.4. w∗
T+1 is learned using Linear Regression

A Appendix

The supplementary material is organized as follows. Section A.1 provides an
additional review on Multi-task Representation Learning Theory. Section A.2
provides the full proofs of the theoretical results discussed in the paper. Sec-
tion A.3 gives more details behind the proposed regularization terms. Section A.4
describes the full experimental setup with all the hyperparameters used. Sec-
tion A.5 gives the detailed results used to derive Figure 3 in the paper. Sec-
tion A.6 provides more experiments showing that further enforcing the condition
number assumption for ProtoNet is unfavorable. In Section A.7, we study the
effect of each term in the proposed regularization. Section A.8 provides a pre-
liminary analysis in the out-of-domain setting.

A.1 Review of Multi-task Representation Learning Theory

We formulate the main results of the three main theoretical analyses of Multi-
task Representation (MTR) Learning Theory provided in [15, 32, 50] in Table 2
to give additional details for Sections 2.2 and 4.4 of our paper.

One may note that all the assumptions presented in this table can be roughly
categorized into two groups. First one consists of the assumptions related to
the data generating process (A1, A2.1, A2.4-7 and A3.1), technical assumptions
required for the manipulated empirical quantities to be well-defined (A2.6) and
assumptions specifying the learning setting (A3.3-4). We put them together as
they are not directly linked to the quantities that we optimize over in order to
solve the meta-learning problem. The second group of assumptions include A2.2
and A3.2: both defined as a measure of diversity between source tasks’ predictors
that are expected to cover all the directions of Rk evenly. These assumptions is
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of primary interest as it involves the matrix of predictors optimized in Eq. 1 as
thus one can attempt to force it in order for Ŵ to have the desired properties.

Finally, we note that assumption A2.2 related to the covariance dominance
can be seen as being at the intersection between the two groups. On the one
hand, this assumption is related to the population covariance and thus is related
to the data generating process that is supposed to be fixed. On the other hand,
we can think about a pre-processing step that precedes the meta-train step of
the algorithm and transforms the source and target tasks’ data so that their
sample covariance matrices satisfy A2.2. While presenting a potentially interest-
ing research direction, it is not clear how this can be done in practice especially
under a constraint of the largest value of c required to minimize the bound. [15]
circumvent this problem by adding A2.5, stating that the task data marginal
distributions are similar.

An intuition behind the main assumptions studied in this paper (Assumption
1 and 2 in this paper, and A2.0, A2.3, A3.2 in Table 2) can be seen in Figure 4.
When the assumptions do not hold, the linear predictors can be biased towards
a single part of the space and over-specialized to the tasks. The representation
learned will not generalize well to unseen tasks. If the assumptions are respected,
the linear predictors are complementary and will not under- or over-specialize to
the tasks seen. The representation learned can more easily adapt to the target
tasks and achieve better generalization.

Violated assumptions Satisfied assumptions

𝜅(𝐖) ≫ 1

𝜎𝑚𝑖𝑛𝜎𝑚𝑎𝑥

Source tasks

Target tasks

𝐖 = [𝐰1, 𝐰2, 𝐰3]

𝐰1

𝐰2

𝐰3

𝐰1

𝐰𝟐

𝐰3

𝜅(𝐖) ≈ 1

𝜎𝑚𝑖𝑛𝜎𝑚𝑎𝑥

Source tasks

𝐖 = [𝐰1, 𝐰2, 𝐰3]

𝟏/||𝐰3||

𝟏/||𝐰3||

Target tasks

Fig. 4: Illustration of the intuition behind the assumptions derived from the
MTR learning theory. (left) Lack of diversity and increasing norm of the linear
predictors restrict them from being useful on the target task. (right) When the
assumptions are satisfied, the linear predictors cover the embedding space evenly
and their norm remains roughly constant on source tasks making them useful
for a previously unseen task.

A.2 Full proofs

Proof of Theorem 1
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Proof. We start by recalling the prototypical loss Lproto used during training of
Prototypical Networks for a single episode with support set S and query set Q:

Lproto(S,Q, ϕ) = E(q,i)∼Q

[
− log

exp(−d(ϕ(q), ci))∑
j exp (−d(ϕ(q), cj))

]

= E(q,i)∼Q [d(ϕ(q), ci)]︸ ︷︷ ︸
(1)

+ Eq∼Q log

n∑

j=1

exp (−d(ϕ(q), cj))
︸ ︷︷ ︸

(2)

with ci = 1
k

∑
s∈Si

ϕ(s) the prototype for class i, Si ⊆ S being the subset
containing instances of S labeled with class i.
For ProtoNet, we consider the Euclidean distance between the representation
of a query example ϕ(q) and the prototype of a class i ci:

−d(ϕ(q), ci) = −∥ϕ(q)− ci∥22
= −ϕ(q)⊤ϕ(q) + 2c⊤i ϕ(q)− c⊤i ci.

Then, with respect to class i, the first term is constant and do not affect the
softmax probabilities. The remaining terms are:

−d(ϕ(q), ci) = 2c⊤i ϕ(q)− ∥ci∥22
=

2

|Si|
∑

s∈Si

ϕ(s)⊤ϕ(q)− ∥ci∥22.

We can rewrite the first term in Lproto as

E(q,i)∼Q [d(ϕ(q), ci)]

= −E(q,i)∼Q

[
2

|Si|
∑

s∈Si

ϕ(s)⊤ϕ(q)− ∥ci∥22

]

= −E(q,i)∼Q

[
2

|Si|
∑

s∈Si

ϕ(s)⊤ϕ(q)

]

+ E(q,i)∼Q

[
∥ci∥22

]
,

and the second term as

Eq∼Q


log

n∑

j=1

exp (−d(ϕ(q), cj))




= Eq∼Q


log

n∑

j=1

exp (
2

|Sj |
∑

s∈Sj

ϕ(s)⊤ϕ(q)− ∥cj∥22)



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= Eq∼Q


log

n∑

j=1

exp (2c⊤j ϕ(q)− ∥cj∥22)




= Eq∼Q


log


n

n∑

j=1

1

n

[
exp (2c⊤j ϕ(q)− ∥cj∥22)

]





= Eq∼Q


log

n∑

j=1

1

n

[
exp (2c⊤j ϕ(q)− ∥cj∥22)

]
+ log n


 .

By dropping the constant part in the loss, we obtain:

Lproto(S,Q, ϕ) = −E(q,i)∼Q

[
2

|Si|
∑

s∈Si

ϕ(s)⊤ϕ(q)

]

+ Eq∼Q


log

n∑

j=1

1

n

[
exp (2c⊤j ϕ(q))

]

 .

Let us note Sd the hypersphere of dimension d, andM(Sd) the set of all possible
Borel probability measures on Sd. ∀µ ∈ M(Sd), u ∈ Sd, we further define the
continuous and Borel measurable function:

Uµ(u) :=

∫

Sd

exp(2u⊤v)dµ(v).

Then, we can write the second term as

Eq∼Q

[
logEc∼C◦ϕ−1

[
exp (2ϕ(c)⊤ϕ(q))

]]

= Eq∼Q

[
logUC◦ϕ−1(ϕ(q))

]
,

where C is the distribution of prototypes of S, i.e. each data point in C is
the mean of all the points in S that share the same label, and C ◦ ϕ−1 is the
probability measure of prototypes, i.e. the pushforward measure of C via ϕ.

We now consider the following problem:

min
µ∈M(Sd)

∫

Sd

logUµ(u)dµ(u). (12)

The unique minimizer of Eq. 12 is the uniform distribution on Sd, as shown
in [53]. This means that learning with Lproto leads to prototypes uniformly dis-
tributed in the embedding space. By considering W∗ the matrix of the optimal
prototypes for each task then W∗ is well-conditioned, i.e. κ(W∗) = O(1).
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Proof of Proposition 1

Proof. We follow [3] and note that in the considered setup the gradient of the
loss for each task is given by

∂ℓt(ŵ − α∇ℓt(θ))
∂ŵ

∝ (1− α)2(ŵt − θt)

so that the meta-training update for a single gradient step becomes:

ŵt ← ŵt−1 − β(1− α)2(ŵt−1 − θt),

where β is the meta-training update learning rate. Starting at ŵ0 = 0d, we have
that

ŵ1 = cθ1,

ŵ2 = c((c− 1)θ1 + θ2),

. . .

ŵn = c

n∑

i=1

θi(c− 1)n−i,

where c := β(1− α)2. We can now define matrices Ŵi
2 as follows:

Ŵ1
2 =


 cθ1,

c((c− 1)θ1 + θ2)


 ,

Ŵ2
2 =


 c((c− 1)θ1 + θ2),

c((c− 1)2θ1 + (c− 1)θ2 + θ3)


 ,

. . .

Ŵn
2 =


c

∑n
i=1 θi(c− 1)n−i,

c
∑n+1

i=1 θi(c− 1)n−i


 .

We can note that for all i > 1:

Ŵi+1
2 = (c− 1)Ŵi

2 + cΘi.

Now, we can write:

κ(Ŵi+1
2 ) =

σ1(Ŵ
i+1
2 )

σ2(Ŵ
i+1
2 )

=
σ1((c− 1)Ŵi

2 + cΘi)

σ2((c− 1)Ŵi
2 + cΘi)

≥ σ1((c− 1)Ŵi
2)− σ2(cΘi)

σ2((c− 1)Ŵi
2 + cΘi)

≥ σ1((c− 1)Ŵi
2)− σ2(cΘi)

σ2((c− 1)Ŵi
2) + σ2(cΘi)
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≥ κ(Ŵi
2).

where the second and third lines follow from the inequalities for singular values
σ1(A+B) ≤ σ1(A) + σ2(B) and σi(A+B) ≥ σi(A)− σmin(B) and the desired
result is obtained by setting σmin(θi) = 0.

Proof of Proposition 2
Proof. Du et al. [15] assume that σk(W

∗) ≳ T
k (Assumption 4.3 in their work).

However, since we also have ∥w∗
t ∥ = O(1), it is equivalent to σ1(W

∗)
σk(W∗) = O(1).

We have σ1(W
∗) ≳ σk(W

∗) ≳ T
k and then σ1(W

∗)
T ·σk(W∗) = 1

T · κ(W∗) ≳ 1
k·σk(W∗)

which we use in their proof of Theorem 5.1 instead of 1
T ≳ 1

k·σk(W∗) to obtain
the desired result.

Proof of Proposition 3
Proof. Let us define two uniform distributions µ1 and µ2 parametrized by a
scalar ε > 0 satisfying the data generating process from Eq. 3:

1. µ1 is uniform over {1− kε, k, 1, . . .︸︷︷︸
d−3

} × {1} ∪ {1 + kε, k,−1, . . .︸︷︷︸
d−3

} × {−1};

2. µ2 is uniform over {1+kε, k, k−1
ε , . . .︸︷︷︸

d−3

}×{1}∪{−1+kε, k, 1+k
ε , . . .︸︷︷︸

d−3

}×{−1}.

where last d − 3 coordinates of the generated instances are arbitrary numbers.
We now define the optimal representation and two optimal predictors for each
distribution as the solution to the MTR problem over the two data generating
distributions and Φ = {ϕ| ϕ(x) = ΦTx, Φ ∈ Rd×2}:

ϕ∗,W∗ = argmin
ϕ∈Φ,W∈R2×2

2∑

i=1

E
(x,y)∼µi

ℓ(y, ⟨wi, ϕ(x)⟩), (13)

One solution to this problem can be given as follows:

Φ∗ =


1 0 0 . . . 0

0 1 0 . . . 0




T

, W∗ =


1 ε

1 −ε


 ,

where Φ∗ projects the data generated by µi to a two-dimensional space by dis-
carding its d− 2 last dimensions and the linear predictors satisfy the data gen-
erating process from Eq. 3 with ε = 0. One can verify that in this case W∗ have
singular values equal to

√
2 and

√
2ε, and κ(W∗) = 1

ε . When ε → 0, the opti-
mal predictors make the ratio arbitrary large thus violating Assumption 1.

Let us now consider a different problem where we want to solve Eq. 13 with
constraints that force linear predictors to satisfy both assumptions:

ϕ̂,Ŵ = argmin
ϕ∈Φ,W∈R2×2

2∑

i=1

E
(x,y)∼µi

ℓ(y, ⟨wi, ϕ(x)⟩),

s.t. κ(W) ≈ 1 and ∀i, ∥wi∥ ≈ 1.

(14)
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w∗1

κ(W∗) ε→0−−→ +∞

w∗2

κ(W∗) ε→0−−→ +∞

Source task 1 in Φ∗ space Source task 2 in Φ∗ space

ŵ1

κ( ̂W) ε→0−−→ 1

ŵ2

κ( ̂W) ε→0−−→ 1

Source task 1 in Φ̂ space Source task 2 in Φ̂ space

Fig. 5: Visualization of the distributions used in the constructive example for
the proof of Proposition 3, with ϵ = 0.02. In this example, κ(Ŵ) is closer to
1 than κ(W∗). It shows that we can search for a representation ϕ̂ such that
optimal predictors in this space are fulfilling the assumptions, while solving the
underlying problem equally well.

Its solution is different and is given by

Φ̂ =


0 1 0 . . . 0

0 0 1 . . . 0




T

, Ŵ =


0 1

1 −ε


 .

Similarly to Φ∗, Φ̂ projects to a two-dimensional space by discarding the first and
last d− 3 dimensions of the data generated by µi. The learned predictors in this
case also satisfy Eq. 3 with ε = 0, but contrary to W∗, κ(Ŵ) =

√
2+ε2+ε

√
ε2+4

2+ε2−ε
√
ε2+4

tends to 1 when ε → 0. The construction used in this proof is illustrated in
Figure 5
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A.3 More Details on the regularization terms

By adding ∥W∥2F in the loss, we force the model to have a low norm on the
weights. Since it cannot be put to 0 or below, the model will keep the norm
relatively constant instead of increasing it. The second regularizer term is a softer
way to apply the constraint on the norm rather than considering normalized
weights as in Eq. 14.

According to Theorem 7.1 from [29], subgradients of singular values function
are well-defined for absolutely symmetric functions. In our case, we are comput-
ing in practice the squared singular values σ2(W) and we retrieve the singular
values by taking the square root, as explained in Section 3.2 of the paper. This
means that effectively, we are computing κ(W) = max(|σ(W)|)/min(|σ(W)|),
which is an absolutely symmetric function. Consequently, subgradients of the
spectral regularization term κ(W) are well-defined and can be optimized effi-
ciently when used in the objective function.

A.4 Detailed Experimental Setup

We consider the few-shot image classification problem on three benchmark datasets,
namely:

1. Omniglot [27] is a dataset of 20 instances of 1623 characters from 50 differ-
ent alphabets. Each image was hand-drawn by different people. The images
are resized to 28 × 28 pixels and the classes are augmented with rotations
by multiples of 90 degrees.

2. miniImageNet [42] is a dataset made from randomly chosen classes and
images taken from the ILSVRC-12 dataset [44]. The dataset consists of 100
classes and 600 images for each class. The images are resized to 84×84 pixels
and normalized.

3. tieredImageNet [43] is also a subset of ILSVRC-12 dataset. However, un-
like miniImageNet, training classes are semantically unrelated to testing
classes. The dataset consists of 779, 165 images divided into 608 classes. Here
again, the images are resized to 84× 84 pixels and normalized.

For each dataset, we follow a common experimental protocol used in [9,16] and
use a four-layer convolution backbone (Conv-4) with 64 filters as done by [9]
optimized with Adam [23] and a learning rate of 0.001. On miniImageNet and
tieredImageNet, models are trained on 60000 5-way 1-shot or 5-shot episodes
and on 30000 20-way 1-shot or 5-shot episodes for Omniglot. We use a batch
size of 4 and evaluate on the validation set every 1000 episodes. We keep the
best performing model on the validation set to evaluate on the test set. We
measure the performance using the top-1 accuracy with 95% confidence intervals,
reproduce the experiments with 4 different random seeds using a single NVIDIA
V100 GPU, and average the results over 2400 test tasks. The seeds used for all
experiments are 1, 10, 100 and 1000. For Maml and MC, we use an inner learning
rate of 0.01 for miniImageNet and tieredImageNet, and 0.1 for Omniglot. During
training, we perform 5 inner gradient step and 10 step during testing. For all
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FSC experiments, unless explicitly stated, we use the regularization parameters
λ1 = λ2 = 1.

We also provide experiments with the ResNet-12 architecture [28]. In this
case, we follow the recent practice and initialize the models with the weights
pretrained on the entire meta-training set [40, 45, 57]. Like in their protocol,
this initialization is updated by meta-training with ProtoNet or Maml on
at most 20000 episodes, grouping every 100 episodes into an epoch. Then, the
best performing model on the validation set, evaluated every epoch, is kept and
the performance on 10000 test tasks is measured. For all experiments with the
ResNet-12 architecture, the SGD optimizer with a weight decay of 0.0005 and
momentum of 0.9 and a batch of episodes of size 1 are used. For ProtoNet,
following the protocol of Ye et al. [57], an initial learning rate of 0.0002, decayed
by a factor 0.5 every 40 epochs, is used. For Maml, following Ye et Chao [56], the
initial learning rate is set to 0.001, decayed by a factor 0.1 every 20 epochs. The
number of inner loop updates are respectively set to 15 and 20 with a step size
of 0.05 and 0.1 for 1-shot and 5-shot episodes on the miniImageNet dataset, and
respectively 20 and 15 with a step size of 0.001 and 0.05 on the tieredImageNet
dataset.

A.5 Detailed performance comparisons

The plots showing the behavior of ProtoNet and Maml on Omniglot are
shown in Figure 7. The detailed training curves of the regularized and normal-
ized versions of ProtoNet, IMP, Maml and MC can be found in Figure 6.
The performance gap (difference of accuracy in p.p.) throughout training for
all methods is shown in Figure 8. Table 3 provides the detailed performance of
our reproduced methods with and without our regularization or normalization
and Figure 8 shows the performance gap throughout training for all methods on
miniImageNet. From them, we note that the gap in performance due to our reg-
ularization is globally positive throughout the whole training, which shows the
increased generalization capabilities from enforcing the assumptions. There is
also generally a high gap at the beginning of training suggesting faster learning.
The best performance with the proposed regularization is achieved after train-
ing on a significantly reduced amount of training data. These results are also
summarized in Table 1 of our paper and discussions about them can be found
in Section 4.2 and 4.3.

A.6 Further enforcing a low condition number on Metric-based
methods

To guide the model into learning an encoder with the lowest condition number,
we consider adding κ(WN ) as a regularization term when training a normalized
ProtoNet. In addition to the normalization of the prototypes, this should
further enforce the assumption on the condition number. Unfortunately, this
latter strategy hinders the convergence of the network and leads to numerical
instabilities. It is most likely explained by prototypes being computed from image
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Fig. 6: Evolution of κ(WN ) (left), ∥WN∥F (middle) and the accuracy (right) on
5-way 1-shot episodes from miniImageNet, for ProtoNet, IMP, Maml, MC
(from top to bottom respectively.) and their regularized or normalized counter-
parts. All results are averaged over 4 different random seeds. The shaded areas
show 95% confidence intervals.

features which suffer from rapid changes across batches, making the smallest
singular value σN (WN ) close to 0. Consequently, we propose to replace the
condition number as a regularization term by the negative entropy of the vector
of singular values as follows:

Hσ(WN ) :=

N∑

i=1

softmax(σ(WN ))i · log softmax(σ(WN ))i,

where softmax(·)i is the ith output of the softmax function. Since uniform dis-
tribution has the highest entropy, regularizing with κ(WN ) or Hσ(WN ) leads
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Fig. 7: Evolution of κ(WN ), ∥WN∥F and κ(W) (in log scale) during the training
of ProtoNet (red, left axes) and Maml (blue, right axes) on Omniglot with
5-way 1-shot episodes.

to a better coverage of Rk by ensuring a nearly identical importance regardless
of the direction.
We obtain the following regularized optimization problem:

ϕ̂,Ŵ = argmin
ϕ∈Φ,W∈RT×k

1

Tn1

T∑

t=1

n1∑

i=1

ℓ(yt,i, ⟨w̃t, ϕ(xt,i)⟩) + λ1Hσ(W), (15)

where w̃ = w
∥w∥ are the normalized prototypes.

In Table 4, we report the performance of ProtoNet without normalization,
with normalization and with both normalization and regularization on the en-
tropy. Finally, we can see that further enforcing a regularization on the singu-
lar values through the entropy does not help the training since ProtoNet nat-
urally learns to minimize the singular values of the prototypes. In Table 5, we
show that reducing the strength of the regularization with the entropy can help
improve the performance.

A.7 Ablation studies

In this Section, we present a study on the effect of each term in the proposed
regularization for Maml and MTL. In Table 7, we compare the performance
of Maml without regularization (λ1 = λ2 = 0), with a regularization on the
condition number κ(WN ) (λ1 = 1 and λ2 = 0), on the norm of the linear
predictors (λ1 = 0 and λ2 = 1), and with both regularization terms (λ1 = λ2 =
1) on Omniglot and miniImageNet. We can see that both regularization terms are
important in the training and that using only a single term can be detrimental
to the performance. Table 6 presents the effect of varying independently either
parameter λ1 or λ2 in the regularization, the other being fixed to 1. From these
results, we can see that performance is much more impacted by the condition
number regularization (parameter λ1) than by the normalization (parameter
λ2). Indeed, varying the regularization weight can lead from the lowest accuracy
(74.64%, for λ1 = 0) to one of the highest accuracies (76.15% for λ1 = 0.2).
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Fig. 8: Performance gap (in p.p.) when applying regularization for gradient-based
and normalization for metric-based methods throughout the training process on
5-way 1-shot and 5-shot episodes on miniImageNet (better viewed in color). Each
data point is averaged over 2400 validation episodes and 4 different seeds and
shaded areas report 95% confidence interval. We can see that the gap is globally
positive throughout training and generally higher at the beginning of training.
The increase in the gap at the end of training is linked to a lower overfitting.
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Fig. 9: Evolution of accuracy of 5-way 1-shot (top, resp. 5-way 5-shot, bottom)
meta-test episodes from CropDisease during meta-training on 5-way 1-shot (top,
resp. 5-way 5-shot, bottom) episodes from miniImageNet, for ProtoNet, IMP,
Maml, MC (from left to right) and their regularized or normalized counterparts
(in red, green, blue and purple, respectively). All results are averaged over 4
different random seeds. The shaded areas show 95% confidence intervals.

A.8 Out-of-Domain Analysis

In the theoretical MTR framework, one additional critical assumption made is
that the task data marginal distributions are similar (see Appendix A.1 and as-
sumption A2.5 for more information), which does not hold in a cross-domain set-
ting, where we evaluate a model on a dataset different from the training dataset.
In this setting, we do not have the same guarantees that our regularization or
normalization schemes will be as effective as in same-domain. To verify this, we
measure out-of-domain performance on the CropDiseases dataset [34] adopted
by [20]. Following their protocol, this dataset is used only for testing purposes.
In this specific experiment, evaluated models are trained on miniImageNet.

On the one hand, for metric-based methods, the improvement in the same-
domain setting does not translate to the cross-domain setting. From Figure 9,
we can see that even though the low condition number in the beginning of
training leads to improved early generalization capabilities of ProtoNet, this
is not the case for IMP. We attribute this discrepancy between ProtoNet and
IMP to a difference in cluster radius parameters of IMP and normalized IMP,
making the encoder less adapted to out-of-domain features. On the other hand,
we found that gradient-based models keep their accuracy gains when evaluated
in cross-domain setting with improved generalization capabilities due to our
regularization. This can be seen on Figure 9, where we achieve an improvement of
about 2 p.p. for both Maml and MCmodels on both 1-shot and 5-shot settings.

These results confirm that minimizing the norm and condition number of
the linear predictors learned improves the generalization capabilities of meta-
learning models. As opposed to metric-based methods which are already implic-
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itly doing so, the addition of the regularization terms for gradient-based meth-
ods leads to a more significant improvement of performance in cross-domain.
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Table 3: Performance of several meta-learning algorithms without and with our
regularization (or normalization in the case of ProtoNet and IMP) to enforce
the theoretical assumptions. All accuracy results (in %) are averaged over 2400
test episodes and 4 different seeds and are reported with 95% confidence inter-
val. Episodes are 20-way classification for Omniglot and 5-way classification for
miniImageNet and tieredImageNet.

Method Dataset Episodes without Reg./Norm. with Reg./Norm.

ProtoNet

Omniglot
1-shot 95.56± 0.10% 95.89± 0.10%

5-shot 98.80± 0.04% 98.80± 0.04%

miniImageNet
1-shot 49.53± 0.41% 50.29± 0.41%

5-shot 65.10± 0.35% 67.13± 0.34%

tieredImageNet
1-shot 51.95± 0.45% 54.05± 0.45%

5-shot 71.61± 0.38% 71.84± 0.38%

IMP

Omniglot
1-shot 95.77± 0.20% 95.85± 0.20%

5-shot 98.77± 0.08% 98.83± 0.07%

miniImageNet
1-shot 48.85± 0.81% 50.69± 0.80%

5-shot 66.43± 0.71% 67.29± 0.68%

tieredImageNet
1-shot 52.16± 0.89% 53.46± 0.89%

5-shot 71.79± 0.75% 72.38± 0.75%

Maml

Omniglot
1-shot 91.72± 0.29% 95.67± 0.20%

5-shot 97.07± 0.14% 98.24± 0.10%

miniImageNet
1-shot 47.93± 0.83% 49.16± 0.85%

5-shot 64.47± 0.69% 66.43± 0.69%

tieredImageNet
1-shot 50.08± 0.91% 51.5± 0.90%

5-shot 67.5± 0.79% 70.16± 0.76%

MC

Omniglot
1-shot 96.56± 0.18% 95.95± 0.20%

5-shot 98.88± 0.08% 98.78± 0.08%

miniImageNet
1-shot 49.28± 0.83% 49.64± 0.83%

5-shot 63.74± 0.69% 65.67± 0.70%

tieredImageNet
1-shot 55.16± 0.94% 55.85± 0.94%

5-shot 71.95± 0.77% 73.34± 0.76%
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Table 4: Performance of ProtoNet with and without our regularization on
the entropy and/or normalization. All accuracy results (in %) are averaged over
2400 test episodes and 4 different random seeds and are reported with 95%
confidence interval. Further enforcing regularization on the singular values can
be detrimental to performance.

Dataset Episodes
without Norm., with Norm., with Norm.,

λ1 = 0 λ1 = 0 λ1 = 1

Omniglot
20-way 1-shot 95.56± 0.10% 95.89± 0.10% 91.90± 0.14%

20-way 5-shot 98.80± 0.04% 98.80± 0.04% 96.40± 0.07%

miniImageNet
5-way 1-shot 49.53± 0.41% 50.29± 0.41% 49.43± 0.40%

5-way 5-shot 65.10± 0.35% 67.13± 0.34% 65.71± 0.35%

tieredImageNet
5-way 1-shot 51.95± 0.45% 54.05± 0.45% 53.54± 0.44%

5-way 5-shot 71.61± 0.38% 71.84± 0.38% 70.30± 0.40%

Table 5: Ablative study on the strength of the regularization with normalized
ProtoNet. All accuracy results (in %) are averaged over 2400 test episodes
and 4 random seeds and are reported with 95% confidence interval.

Dataset Episodes Original λ1 = 0 λ1 = 1 λ1 = 0.1 λ1 = 0.01 λ1 = 0.001 λ1 = 0.0001

miniImageNet
5-way 1-shot 49.53± 0.41% 50.29± 0.41% 49.43± 0.40% 50.19± 0.41% 50.44± 0.42% 50.46± 0.42% 50.45± 0.42%

5-way 5-shot 65.10± 0.35% 67.13± 0.34% 65.71± 0.35% 66.69± 0.36% 66.69± 0.34% 67.2± 0.35% 67.12± 0.35%

Omniglot
20-way 1-shot 95.56± 0.10% 95.89± 0.10% 91.90± 0.14% 94.38± 0.12% 95.60± 0.10% 95.7± 0.10% 95.77± 0.10%

20-way 5-shot 98.80± 0.04% 98.80± 0.04% 96.40± 0.07% 97.93± 0.05% 98.62± 0.04% 98.76± 0.04% 98.91± 0.03%
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Table 6: Performance of MTL [52] when varying either λ1 or λ2, the other being
fixed to 1, on the miniImageNet 5-way 5-shot benchmark. All accuracy results
(in %) are averaged over 2000 test episodes on a single random seed.

λ1 1 0.8 0.6 0.4 0.2 0.1 0.05 0.01 0

Accuracy
75.84 75.85 76.02 76.11 76.15 75.99 75.65 75.08 74.64

(λ2 = 1)

λ2 1 0.8 0.6 0.4 0.2 0.1 0.05 0.01 0

Accuracy
75.84 76.09 75.81 76.28 76.23 76.1 76.25 76.42 76.06

(λ1 = 1)

Table 7: Ablative study of the regularization parameter for Maml, on Om-
niglot (left) with 20-way 1-shot (top values) and 20-way 5-shot (bottom values)
episodes, and miniImageNet (right) with 5-way 1-shot (top values) and 5-way
5-shot (bottom values) episodes. All accuracy results (in %) are averaged over
2400 test episodes and 4 different random seeds and are reported with 95% con-
fidence interval. We can see that in all cases, using both regularization terms is
important.

(a) Omniglot (20-way 1-shot / 5-shot)

λ1 = 0 λ1 = 1

λ2 = 0
91.72± 0.29% 89.86± 0.31%

97.07± 0.14% 72.47± 0.17%

λ2 = 1
92.80± 0.26% 95.67± 0.20%

96.99± 0.14% 98.24± 0.10%

(b) miniImageNet (5-way 1-shot / 5-
shot)

λ1 = 0 λ1 = 1

λ2 = 0
47.93± 0.83% 47.76± 0.84%

64.47± 0.69% 64.44± 0.68%

λ2 = 1
48.27± 0.81% 49.16± 0.85%

64.16± 0.72% 66.43± 0.69%
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