Eva Feillet
email: eva.feillet@cea.fr

Gregoire Petit
email: gregoire.petit@cea.fr

Adrian Popescu
email: adrian.popescu@cea.fr

Marina Reyboz
email: marina.reyboz@cea.fr

Céline Hudelot
email: celine.hudelot@centralesupelec.fr

Grégoire Petit

AdvisIL -A Class-Incremental Learning Advisor

published or not. The documents may come

Introduction

Practical applications of artificial intelligence often require handling data streams under computing power and memory constraints. This situation is typically encountered in embedded systems and real-time applications of computer vision [START_REF] Demosthenous | Continual learning on the edge with tensorflow lite[END_REF][START_REF] Hayes | Online continual learning for embedded devices[END_REF][START_REF] Young D Kwon | Exploring system performance of continual learning for mobile and embedded sensing applications[END_REF][START_REF] Pellegrini | Continual learning at the edge: Real-time training on smartphone devices[END_REF], which must handle new data over time with limited resources. Continual learning addresses this challenge as it aims to build models that can integrate new knowledge over time while preserving previously acquired knowledge. In the context of classincremental learning (CIL), training a classification model is a sequential process where each step consists in integrating a set of new classes to the model. This process is particularly challenging in the exemplar-free setting (EFCIL), in which the model is updated without having access to examples of past classes. Among the works addressing CIL, many [START_REF] Hou | Learning a unified classifier incrementally via rebalancing[END_REF][START_REF] Sylvestre-Alvise | icarl: Incremental classifier and representation learning[END_REF][START_REF] Smith | Always be dreaming: A new approach for data-free class-incremental learning[END_REF][START_REF] Wu | Striking a balance between stability and plasticity for class-incremental learning[END_REF][START_REF] Zhu | Classincremental learning via dual augmentation[END_REF][START_REF] Zhu | Prototype augmentation and self-supervision for incremental learning[END_REF][START_REF] Zhu | Self-sustaining representation expansion for non-exemplar classincremental learning[END_REF] adapt knowledge distillation [START_REF] Hinton | Distilling the knowledge in a neural network[END_REF] to this task, while others are based either on vanilla fine-tuning [START_REF] Belouadah | Initial classifier weights replay for memoryless class incremental learning[END_REF] or on a transfer learning scheme [START_REF] Belouadah | Deesil: Deep-shallow incremental learning[END_REF][START_REF] Tyler | Lifelong machine learning with deep streaming linear discriminant analysis[END_REF].

A major challenge of CIL is that it is subject to catastrophic forgetting [START_REF] Kemker | Measuring catastrophic forgetting in neural networks[END_REF][START_REF] Mccloskey | Catastrophic interference in connectionist networks: The sequential learning problem[END_REF], namely the tendency of learning algorithms to abruptly forget previously acquired information when confronted with new information. In order to learn reliable neural representations both for past and new classes, CIL algorithms must balance between information retention, i.e. stability, and information acquisition, i.e. plasticity. However, existing comparative studies [START_REF] Belouadah | A comprehensive study of class incremental learning algorithms for visual tasks[END_REF][START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF][START_REF] Prabhu | Gdumb: A simple approach that questions our progress in continual learning[END_REF] showed that when CIL algorithms are tested in different incremental scenarios, no method outperforms all others. In addition to the CIL algorithm itself, the main factors influencing the classification performance are the architecture of the backbone neural network and the characteristics of the CIL scenario i.e., the memory budget, the number of incremental steps, the number of classes in the initial step and the size of the subsequent incremental steps.

The performance variability for two scenarios is illustrated in Figure 1. It shows that the same combination of CIL algorithm and backbone network is not ranked the same from one EFCIL scenario to another. This variability is further highlighted in our experiments (Section 4). Thus, unlike other learning processes (i.e. classical, few-shot...) for which the study of the state of the art on evaluation benchmarks gives good indications for the selection of the model, EFCIL requires a more acute consideration of the learning scenario. These observations raise the following questions: Here, as highlighted in purple, scenario (a) is best handled by the combination of DSLDA and ResNet, while the combination of FeTrIL and ShuffleNet is a better match for scenario (b). As the same combinations of CIL algorithm and backbone network are not ranked the same from one scenario to another, it highlights the need for a recommendation method to select the best combination of CIL algorithm and backbone network depending on the scenario. Note that the scaling heuristic presented in Subsection 3.2 is used to fit neural networks to each memory budget.

1. Since choosing the best CIL algorithm first requires characterizing the CIL scenario, what knowledge of this scenario may be realistically provided by the user?

2. Given a user's CIL scenario, how to select a suitable combination of learning algorithm and backbone network, without benchmarking each possible configuration?

We argue that, regarding (1), the users have little knowledge about their data and can only approximately provide their CIL scenario's characteristics. Based on this assumption, we propose to tackle the selection issue (2) as a recommendation problem. We develop a user-centric method, called AdvisIL, that recommends a combination of an exemplar-free CIL algorithm and a backbone network scaled to the user's needs (Figure 2). Based on a set of pre-computed EFCIL experiments, AdvisIL provides a recommendation as follows:

1. The users specify their incremental learning settings (memory budget, number of steps, number of initial classes and size of the incremental update), 2. The pre-computed experiments with settings closest to the user's settings are selected, 3. The result is the combination of EFCIL algorithm and backbone network that ranks highest in terms of classification performance with respect to the selected experiments. As a result, our recommendation method facilitates the use of CIL approaches since the user only provides the essential information about the incremental process. It prevents the users from benchmarking each CIL algorithm and backbone network, hence saving them time and computation efforts. AdvisIL is assessed by an evaluation protocol which uses four test datasets and eighteen scenarios, allowing us to highlight the relevance of our recommendations in a variety of experimental settings. To allow the use and the enrichment of AdvisIL by the community, and thus the quality of its recommendations, we will share the code and the precomputed experiments on which the method is based.

Related work

CIL algorithms

Various approaches have been proposed to learn a classification problem incrementally while avoiding catastrophic forgetting (see the recent surveys of [START_REF] Belouadah | A comprehensive study of class incremental learning algorithms for visual tasks[END_REF][START_REF] De Lange | A continual learning survey: Defying forgetting in classification tasks[END_REF][START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF]).

The different approaches can be divided into two families, depending on whether they use knowledge distillation or rely on other strategies to reduce forgetting. In our study, algorithms of both types are used, always without keeping past examples in memory.

Approaches based on knowledge distillation. Knowledge distillation, as introduced in the seminal paper of Hinton [START_REF] Hinton | Distilling the knowledge in a neural network[END_REF], is a principle that consists in transferring the knowledge from a large "teacher" model into a smaller "student" model. In the case of incremental learning, it has been first used in the approach named "Learning without Forgetting (LwF)" [START_REF] Li | Learning without forgetting[END_REF] in which, at each learning step, the outputs of the neural network are constrained through regularization to remain close to the outputs obtained in the previous step. Inspired by LwF, iCaRL [START_REF] Sylvestre-Alvise | icarl: Incremental classifier and representation learning[END_REF] relies on a strategy called rehearsal or replay, that consists in keeping in memory a limited number of training examples from past classes. In iCaRL, the neural network is used as a feature extractor and the authors substitute the classical fully-connected output layer by a nearest class mean classifier [START_REF] Mensink | Distance-based image classification: Generalizing to new classes at near-zero cost[END_REF]. Most of the approaches that emerged after iCaRL improve classification performance by modifying the loss function associated to the neural network. The LwM approach [START_REF] Dhar | Learning without memorizing[END_REF] introduces an attention mechanism. The BiC approach [START_REF] Wu | Large scale incremental learning[END_REF] tries to rebalance the classification in favour of past classes by adding a new layer to correct the bias which favours more recent classes. Knowledge distillation was applied to the feature space in LUCIR [START_REF] Hou | Learning a unified classifier incrementally via rebalancing[END_REF], or to neural model weights in Pod-Net [START_REF] Douillard | Podnet: Pooled outputs distillation for smalltasks incremental learning[END_REF]. LUCIR combines a cosine classifier framework [START_REF] Qi | Low-shot learning with imprinted weights[END_REF] and an inter-class separability component [START_REF] Schroff | Facenet: A unified embedding for face recognition and clustering[END_REF]. It inspired the authors of SPB [START_REF] Wu | Striking a balance between stability and plasticity for class-incremental learning[END_REF], who combine an Euclidean-based component to the loss function and reciprocal adaptive weights to ensure a good balance between the stability and plasticity of the incremental process.

Other approaches. The authors of [START_REF] Belouadah | Deesil: Deep-shallow incremental learning[END_REF][START_REF] Belouadah | Initial classifier weights replay for memoryless class incremental learning[END_REF][START_REF] Tyler | Lifelong machine learning with deep streaming linear discriminant analysis[END_REF][START_REF] Petit | Fetril: Feature translation for exemplar-free class-incremental learning[END_REF] are inspired by transfer learning [START_REF] Tan | A survey on deep transfer learning[END_REF] and freeze the feature extractor after the initial step. DSLDA [START_REF] Tyler | Lifelong machine learning with deep streaming linear discriminant analysis[END_REF] adapts linear discriminant analysis [START_REF] Pang | Incremental linear discriminant analysis for classification of data streams[END_REF] for training incrementally the output layer of a deep neural network. DeeSIL [START_REF] Belouadah | Deesil: Deep-shallow incremental learning[END_REF] trains SVM classifiers for each new class against the other classes observed in the same learning step. SIW [START_REF] Belouadah | Initial classifier weights replay for memoryless class incremental learning[END_REF] discards the distillation component, and uses vanilla fine-tuning to simplify the CIL process. It stores the initial classifiers learned for each new class and reuses a normalized version of them in subsequent incremental steps. Recent method FeTrIL [START_REF] Petit | Fetril: Feature translation for exemplar-free class-incremental learning[END_REF] combines a fixed feature extractor and a pseudo-feature generator based on a geometric translation for past classes to improve inter-class separation.

Relevance of architecture choice in CIL

The authors of [START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF] perform experiments with different backbone networks to test CIL algorithms. They observe that, for a given algorithm, the choice of the backbone network has an influence on classification accuracy. This highlights the need to take both aspects into consideration when training CIL models.

In this line of research, recent experiments of [START_REF] Mirzadeh | Wide neural networks forget less catastrophically[END_REF][START_REF] Seyed Iman Mirzadeh | Architecture matters in continual learning[END_REF] explore the influence of network architecture on the performance of incremental learning models. The authors of [START_REF] Mirzadeh | Wide neural networks forget less catastrophically[END_REF] showed that increasing the width of neural networks mitigates forgetting and increases model accuracy. Furthermore, they observed that increasing depth has no or negative effect on the performance of the model. These observations were confirmed by [START_REF] Seyed Iman Mirzadeh | Architecture matters in continual learning[END_REF] where the influence of classical architectural components such as batch normalization is studied. Note that the results reported in these two papers are mostly obtained with overparameterized models and without the use of a CIL algorithm.

For classic supervised learning, methods for finding an architecture ensuring good performances and respecting a memory budget have been developed e.g. Neural Architecture Search (NAS) [START_REF] Elsken | Neural architecture search: A survey[END_REF][START_REF] Tan | MnasNet: Platform-Aware Neural Architecture Search for Mobile[END_REF], pruning [START_REF] Molchanov | Pruning convolutional neural networks for resource efficient inference[END_REF], or compound scaling as proposed for EfficientNets [START_REF] Tan | Efficientnet: Rethinking model scaling for convolutional neural networks[END_REF]. However, these three approaches are not adapted to CIL. NAS for CIL methods [START_REF] Huang | Neural architecture search for class-incremental learning[END_REF][START_REF] Huang | Understanding capacity saturation in incremental learning[END_REF] are generally time-consuming and computationally expensive, as they explore a large space of possible network architectures and require training of candidate models to evaluate an architecture. They are not suitable for the practical case of a model adapting quickly to a dynamic environment, which is encountered in CIL. As in the case of NAS, the problem of data availability arises for pruning. Finally, compound scaling requires the calibration of hyperparameters, a costly and approximate process in the case where the user has access to only a subset of the classes. This motivates us to propose a recommendation method that requires only few pieces of information and no hyperparameter calibration by the user.

Proposed method

In this section, we first describe a CIL process and define the settings of a CIL experiment as a reference configuration. Then, we introduce a heuristic to scale an existing neural architecture so that it fits a given memory budget. In this article, any CIL experiment involves a backbone network scaled with this heuristic. Finally, we introduce our recommendation method AdvisIL, which takes as input the incremental learning settings provided by users and provides them with a combination of EFCIL algorithm and backbone adapted to their needs. This recommendation is based on pre-computed experiments corresponding to a set of reference configurations.

Defining a CIL process

The objective of CIL is to train a model that integrates all classes of a dataset that arrives in a stream. Without loss of generality, we assume that examples of past classes cannot be stored (exemplar-free setting), and that the model relies on a convolutional backbone network b.

We consider a sequential learning process composed of k non-overlapping steps s 1 , s 2 , . . . , s k . A step s i consists in learning from the examples contained in a dataset D i . To each dataset D i is associated a set P i of classes, such that each learning example in D i uses a class belonging to P i . The datasets composing the complete dataset

D = D 1 ∪ D 2 ∪ • • • ∪ D k
satisfy the following constraint: for i, j ∈ {1, 2, . . . , k} with i ̸ = j, P i ∩ P j = ∅. The number of classes of P 1 , which corresponds to the initial step, is denoted α. Following a common assumption in CIL [START_REF] Belouadah | A comprehensive study of class incremental learning algorithms for visual tasks[END_REF][START_REF] Francisco | End-to-end incremental learning[END_REF], the sets P 2 , P 3 , . . . , P k , which correspond to the incremental steps s 2 , s 3 , . . . , s k , have the same number of classes, which we denote β. For our experiments, we express a memory budget m as the maximum number of parameters allowed for the backbone network at the final step s k . Thus, this memory constraint is considered at inference time rather than at training time.

Definition 1 A CIL scenario is a quadruplet (m, k, α, β)
composed of a memory budget m, a number of steps k, a number of initial classes α, and an incremental update size β. It describes the main settings that users may be able to provide to design their incremental learning system.

In this article, the training of an incremental classification model on D, follows a scenario (m, k, α, β), uses an EFCIL algorithm a and relies on a backbone network b, such that the number of parameters of b is less or equal than m. All these parameters form a configuration. Definition 2 A configuration is defined as 7-uplet (a, b, D, m, k, α, β) containing: the name of an algorithm a, the name of a backbone network b, a complete dataset D, the values corresponding to a memory budget m, a number of steps k, a number of initial classes α and an incremental update size β.

The training of this model is performed as follows. At the first step s 1 , the model M 1 is trained on the dataset D 1 that involves α classes. For each of the next steps, the same procedure is applied. For i = 2, 3, . . . , k, at the step s i , the model M i first recovers the weights from the model M i-1 that we obtained in the previous step. It is then trained using the examples of the dataset D i involving β new classes.

The overall classification performance r on D of the final model M k is called the average incremental accuracy and is computed by:

r = 1 k -1 k i=2 q i , (1)
where q i is the accuracy of the model

M i on D 1 ∪ D 2 ∪ • • • ∪ D i ,

Scaling backbone networks for CIL

In any experiment involving a memory budget m, we want to obtain a configuration (Definition 2), where the number of parameters of the backbone network used is less or equal than m. To address this requirement, we introduce a scaling heuristic to fit existing convolutional architectures to a given memory budget m.

We adopt the point of view of users who has a memory budget m and aims at learning incrementally a classification model. They want to avoid any preliminary calculation, so they select an existing backbone network, which however does not necessarily fit their memory budget. Our proposed scaling heuristic is inspired by the works of [START_REF] Mirzadeh | Wide neural networks forget less catastrophically[END_REF][START_REF] Tan | Efficientnet: Rethinking model scaling for convolutional neural networks[END_REF], whose authors raised the following questions:

1. Is it better for the deep architecture to be deeper or wider?

2. Is it better to scale only by width (resp. depth) or by both at once?

We ran preliminary experiments, described in the supplementary material, with neural networks smaller than those presented in [START_REF] Mirzadeh | Wide neural networks forget less catastrophically[END_REF][START_REF] Seyed Iman Mirzadeh | Architecture matters in continual learning[END_REF], and obtain similar results. For a given memory budget, scaling with the unique objective of maximizing the total number of parameters is not optimal in terms of accuracy. We observed that when we reduce unidimensionally the network, the accuracy is better preserved when decreasing the depth rather than the width. Thus, our scaling heuristic consists in reducing the network depth to maximize the network width. Let L be the architecture of a convolutional backbone network b where its memory footprint m L corresponds here to its number of parameters. The scaling heuristic method is:

ψ : (L, m L) → (L ′ , w, d) (2)
where d ∈]0, 1] (resp. w ∈ R * +) is a depth (resp. width) coefficient applied to L that allows to obtain the backbone architecture L ′ respecting the memory constraint. The backbone network L ′ with m L ′ parameters is obtained by uniformly multiplying the number of layers of L by d, and the number of convolution filters by w.

The depth coefficient d is chosen first in order to make the network as shallow as possible while preserving the structure of the original network. The width coefficient w is then chosen to maximize the number of convolution filters while respecting the memory budget constraint, i.e., m L ′ ≤ m.

In our experiments, we use this heuristic to fit existing architectures to various memory budgets, regardless of whether the initial architecture is already within budget or over budget. We performed numerous experiments with respect to a large set of reference configurations and using the heuristic to scale existing convolutional architectures (Section 4.1).

Recommending algorithms-backbone combinations

C = {(a, b, D i , m, k, α, β) | a∈A, b∈B, D i ∈J , (m, k, α, β)∈S}.
The user provides a scenario u = (m * , k * , α * , β *). We aim at recommending to the user a pair (a, b) ∈ A × B composed by an algorithm a and a backbone network b, using our set of reference configurations. The process consists of two steps. First, a reference scenario which is closest to the user-defined one is Second, the best algorithmbackbone pair which has the best performance on the selected reference scenario is recommended.

Step 1. To compare the user's scenario u to the scenarios in S, which were used for generating the set C, we normalize on [0, 1] any value of memory budget, number of steps, number of initial classes and incremental step size. The procedure is the same for all the parameters. We give it in the case of a memory budget m. We obtain its normalized value by the application m → mmax-m mmax-mmin , where m max = max(max 1≤i≤n m i , m *) and m min = min(min

1≤i≤n m i , m *).
The normalized value of m is denoted by m. Similarly, we obtain k, α and β, which are the normalized values corresponding to a number of step k, a number of initial classes α and an incremental step size β, respectively. For any scenario v = (m, k, α, β) ∈ S, we measure the distance between it and the user's scenario u by:

d(u,v) = (m -m *) 2 + (k -k *) 2 + (α -α *) 2 + (β -β *) 2 (3)
We denote by v = (m, k, α, β) the scenario in S whose distance is the smallest to the user's scenario u. This scenario v will be used in the next step to obtain a suited pair of algorithm and backbone network.

Step 2. In this step, we rely on the reference configurations in C whose scenario is v. For each dataset D i ∈ J , we construct the ranking of all pairs (a, b) ∈ A × B according to their classification performance on that dataset with the scenario v. For i = 1, 2, . . . , l, the ranking is defined by a partially-ordered set Rank i = (A × B, ⪯) with the following order relation. For a, a ′ ∈ A and b, b ′ ∈ B, we have:

(a, b) ⪯ (a ′ , b ′) iff r ≥ r ′ , (4)
where r and r ′ are the classification performances of the experiments which use the reference configurations (a, b, D i , m, k, α, β) and (a ′ , b ′ , D i , m, k, α, β) of C, respectively, and are computed using Equation 1. To the ranking Rank i of the dataset D i , we associate a function that gives the position of a pair (a, b) in it. For i = 1, 2, . . . , l, this function is:

g i : A × B → {1, 2, . . . , card(A × B)}.
Finally, for a pair (a, b), we can aggregate all its positions in the rankings associated to the l datasets by:

Agg : A × B →{l, l + 1, . . . , l • card(A × B)} : (a, b) → l i=1 g i (a, b). (5)
The recommendation provided to the user is the pair(s) of algorithm and backbone network with the lowest overall position computed by the function Agg.

Experiments 4.1. Generating the reference configurations

We describe the CIL algorithms, backbone networks, datasets and scenarios used to generate the set of reference configurations.

EFCIL algorithms. In our experiments, we use a representative panel of the algorithms presented in Section 2: LUCIR [START_REF] Hou | Learning a unified classifier incrementally via rebalancing[END_REF], SPB [START_REF] Wu | Striking a balance between stability and plasticity for class-incremental learning[END_REF], SIW [START_REF] Belouadah | Initial classifier weights replay for memoryless class incremental learning[END_REF], DeeSIL [START_REF] Belouadah | Deesil: Deep-shallow incremental learning[END_REF], DSLDA [START_REF] Tyler | Lifelong machine learning with deep streaming linear discriminant analysis[END_REF] and FeTrIL. We remind that LUCIR, SPB and SIW update the backbone network at each incremental step, and thus focus on the plasticity of representations. In contrast, DeeSIL, DSLDA and FeTrIL use a representation which is fixed after the initial step, and thus favour stability. We implement all algorithms using PyTorch [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF] (see the supplementary material for implementation details).

Backbone networks. In our experiments, we use: ResNet18 [START_REF] He | Deep residual learning for image recognition[END_REF], MobileNetv2 [START_REF] Sandler | Mobilenetv2: Inverted residuals and linear bottlenecks[END_REF] and ShuffleNetv2 [START_REF] Ma | Shufflenet v2: Practical guidelines for efficient cnn architecture design[END_REF]. ResNet18 is widely used in the CIL literature. MobileNetv2 and ShuffleNetv2 are designed for high accuracy while considering computational efficiency for embedded applications. These backbone networks are scaled to fit various memory budgets using Equation 2.

Datasets for reference configurations. We consider five datasets which are sampled from ImageNet [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF] and denoted by INFood, INFauna, INFlora, INRand 0 and INRand 1 . The first three datasets are thematic, and were obtained by sampling leaf ImageNet classes which belong to the "food", "fauna", and "flora" sub-hierarchies, respectively. The two other datasets were obtained by randomly sampling classes from ImageNet. Each dataset contains 100 classes, with 340 images per class for training, and 60 images for testing. Each sampled class is only used in one dataset. Since we have performed many experiments to test the method, the datasets are designed in such a way that the total execution time remains tractable.

CIL scenarios. The memory budget m is defined as the number of parameters of the final model (that contains 100 classes here) and is taken in {1.5M, 3M, 6M}. The chosen budgets reflect the computational constraints of embedded devices, for which CIL is particularly useful [START_REF] Hayes | Online continual learning for embedded devices[END_REF]. The other parameters of the scenarios are summarized in the first row of Table 1. Following [START_REF] Sylvestre-Alvise | icarl: Incremental classifier and representation learning[END_REF], half of the scenarios have an even split of classes among all states. The other half starts with a higher number of classes in the initial step and evenly splits the remaining classes among subsequent steps, as proposed in [START_REF] Hou | Learning a unified classifier incrementally via rebalancing[END_REF]. In this way, we cover the two types of scenarios most frequently used in literature.

These settings allow us to form a set 1620 reference configurations, where each one is a combination of an algorithm, a backbone network, a dataset and a scenario presented here. For each reference configuration, we build the corresponding neural network and train it. Finally, we measure the classification performance of the resulting model.

Evaluation settings

To evaluate our recommendation method, we apply Ad-visIL to four test datasets and eighteen scenarios.

Test datasets We ran experiments on four test datasets denoted by INRand 2 , FOOD100, INAT100 and LAND100. INRand 2 is obtained by randomly sampling 100-classes of ImageNet [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF]. The three other test datasets FOOD100, INAT100 and LAND100 contain 100 classes sampled from FOOD101 [START_REF] Bossard | Food-101mining discriminative components with random forests[END_REF], iNaturalist [START_REF] Van Horn | The inaturalist species classification and detection dataset[END_REF] and Google Landmarks v1 [START_REF] Noh | Large-scale image retrieval with attentive deep local features[END_REF], respectively. These three datasets are thematic and fine-grained since they were designed for the classification of images of food, natural concepts and tourist points of interest, respectively.

Test scenarios. The memory budgets are the same three as those used for generating reference configurations. We consider six new distributions of classes across steps, whose settings are presented in the "Test" row of Table 1.

The same algorithms and backbone networks as in Subsection 4.1 are used. We run experiments for each combination of algorithm, backbone network, test dataset and test scenario. This corresponds to 1296 test configurations.

Evaluation protocol

As in the case of reference configurations, in our evaluation, model performance is measured in terms of average incremental accuracy (Equation 1). We assess the recommendations provided by AdvisIL as follows. Given a test dataset and a test scenario, we compare the average incremental accuracy of the models trained according to: i) AdvisIL's recommended pair (a,b). The model built with this pair is called the recommended model. ii) Oracle pair: an upper-bound for AdvisIL which selects by brute force the best-performing pair of algorithm and backbone network for each test configuration. It is not usable in practice since it assumes the access to whole stream of data from the beginning. In addition, the extensive computations it requires are costly in terms of time and computational power. iii) Baseline pairs, which are three fixed combinations: b 1 : (FeTrIL, ResNet), b 2 : (DSLDA, ShuffleNet) and b 3 : (SPB, MobileNet) whose corresponding models are called baseline models. These pairs were selected according to their aggregated rank on reference datasets (Equation 5), i.e. that they have the highest rank according to their accuracy on all reference experiments. In practice, we present in Table 2 the performance gap between these baseline models and the recommended model. These gaps are denoted ∆ b1 , ∆ b2 , and ∆ b3 .

Main results

Settings Incr. acc. Incr. acc. difference The difference between the classification performance of the oracle pair and AdvisIL's recommendation is showed (∆ Oracle). Similarly, the performance gaps between the three baseline recommendations (∆ b1 , ∆ b2 , ∆ b3) and Ad-visIL's recommendation are showed.

AdvisIL ∆ O ∆ b1 ∆ b2 ∆ b3 CIL setting (k, α, β) (50, 2, 2) 24.42
AdvisIL performances on test scenarios. Our results are presented in Table 2 and Table 3. In Table 2, we compare the performance of models built according to AdvisIL's recommendation to the performance of models built according to the oracle pair and to the three baseline pairs. In Table 3 the performance of the models built according to Ad-visIL and according to the baseline recommendations are compared for all test scenarios.

On average, across all four test datasets and eighteen test scenarios, the recommended model outperforms the best fixed model by 1.29% (Table 2). The accuracy of the recommended models is below the oracle, with an average gap of 1.04%. The gap between the average classification performance of the recommended model and of that of the oracle is stable across scenarios, regardless of the number of steps and class distribution among the steps, and regardless of the memory budget. It is also stable across test datasets. Therefore, the recommendations are relevant whatever the scenario and dataset. Results per scenario are presented in Table 3, where AdvisIL recommends the best available (a, b) combination for 15 out of the 18 test scenarios. The perfor- mance improvement obtained by AdvisIL is explained by the fact that its recommendations follow the trends observed in the experiments corresponding to the reference configurations, whereas no fixed combination of algorithm and backbone network outperforms all others in all scenarios. This was pointed out in Figure 1 where it can be seen that the same combinations of CIL algorithm and backbone network is not ranked the same from one scenario to another.

Combination (a, b) Mem. budget m CIL setting (k, α, β) avg 2, 2) (25, 4, 4) (5, 20, 20) (13, 40, 5) (11, 50, 5) (6
In practice, the recommended model is either built with FeTrIL or DSLDA (Table 3), two algorithms that do not use distillation. These algorithms are recommended because they are often the best-performing algorithms in the experiments corresponding to our set of reference configurations (see appendix for more details). Our results, obtained in the case of several neural architectures and for small memory budgets, confirm previous findings regarding the competitiveness of transfer-learning-based algorithms in EFCIL, which are reported in the comparative studies of [START_REF] Belouadah | A comprehensive study of class incremental learning algorithms for visual tasks[END_REF][START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF]. Regarding the recommended backbone networks, Table 3 shows that it is relevant to use a different backbone network depending on the memory budget. ResNet and ShuffleNet appear as the best choices for 1.5M parameters, ShuffleNet and MobileNet for 3.0M parameters, and Mo-bileNet for 6.0M parameters. This highlights the relevance of considering different backbone networks in AdvisIL.

Ablation study

AdvisIL recommends an algorithm-backbone combination based on pre-computed experiments on several reference datasets. In what follows, we study the individual contribution of the different components of the method: choice of the backbone network, choice of the algorithm and choice of the number of available reference datasets. Using a single backbone network. We present results with a fixed backbone network and different algorithms in the left part of Table 4. Each column corresponds to the average classification performance of models trained according to AdvisIL recommendations when the set of reference configurations is reduced to consider a single type of backbone network. The results indicate that AdvisIL's recommendations are better when we use multiple backbone networks rather than just one.

Using a single CIL algorithm. Similarly, we present in the right part of Table 4 results obtained when only a single algorithm is available. Each column corresponds to the average classification performance obtained with AdvisIL recommendations when the set of reference configurations is reduced to consider a single algorithm and multiple backbone networks. When we reduce the set of configurations to DSLDA or FeTrIL, the performance drop is rather low, because these two algorithms have similar performance, and tend to perform much better than the others tested, so that they are often recommended by AdvisIL. On the contrary, when using only SPB, the third best-performing algorithm, performance drops significantly.

Using fewer reference datasets. AdvisIL's recommen-dation are computed by ranking the classification performance of candidate algorithm-backbone pairs on the reference datasets. Here, we measure how using less reference datasets impacts the relevance of the recommendations. Results obtained by using only one (∆ #1), two (∆ #2), three (∆ #3) and four (∆ #4) out of five reference datasets are presented in Table 5. They are averaged over all possible combinations of reference datasets. Using less reference datasets is damageable to recommendation relevance, with up to 1.88% loss in the averaged classification performance when using only one reference dataset. Interestingly, when using only two reference datasets, AdvisIL already surpasses the baselines presented in Table 2. The impact of the ablation fades when the number of reference datasets grows, becomes negligible when four of them are used. Overall, the results of Table 4 show that both the choice of an algorithm and the choice of a backbone network contribute to the relevance of AdvisIL's recommendations. The results from Table 5 show that AdvisIL needs few reference datasets to provide relevant recommendations. More ablation results are provided in the supplementary material.

Discussion and Conclusion

In this article, we introduced a recommendation method named AdvisIL, which facilitates the choice of a suited pair of CIL algorithm and backbone network for a user-defined incremental learning scenario. AdvisIL requires little information from the user and provides a recommendation by leveraging trends observed on pre-computed experiments from a set of reference configurations. Our evaluation indicates that AdvisIL is effective, as it often provides a relevant recommendation. Recommendations are relevant because they are made by selecting reference experiments whose scenarios are close to the user's scenario. On average, the resulting models outperform by at least 1.29% the models that do not tailor the recommendation to the user's scenario. Beyond performance gain, AdvisIL avoids the users to perform cumbersome preliminary computations to design their incremental learning application.

In what follows, we discuss how AdvisIL may be improved and give some perspectives. The set of reference configurations could be enriched with recent algorithms [START_REF] Vinay | Efficient feature transformations for discriminative and generative continual learning[END_REF][START_REF] Zhu | Classincremental learning via dual augmentation[END_REF][START_REF] Zhu | Prototype augmentation and self-supervision for incremental learning[END_REF][START_REF] Zhu | Classincremental learning via dual augmentation[END_REF], other backbone networks, such as SqueezeNet [START_REF] Forrest N Iandola | Squeezenet: Alexnetlevel accuracy with 50x fewer parameters and¡ 0.5 mb model size[END_REF], MobileVit [START_REF] Mehta | Mobilevit: light-weight, general-purpose, and mobile-friendly vision transformer[END_REF] or EfficientNet [START_REF] Tan | Efficientnet: Rethinking model scaling for convolutional neural networks[END_REF], and more scenarios could further increase the relevance of Ad-visIL in real-life applications [START_REF] Hayes | Online continual learning for embedded devices[END_REF]. We designed AdvisIL in order to facilitate the integration of new components and contributions. The full code, the raw data used, and the set of reference configurations will be published to facilitate take-up in the community. A binding to Avalanche [START_REF] Lomonaco | Avalanche: an end-to-end library for continual learning[END_REF] will also be developed to easily integrate contributions of other researchers to its improvement.

In this article, we have done many experiments corresponding to a set of reference configurations in order to exhaustively test all possible combinations of CIL algorithm and backbone network. This entailed a consequent computation effort. We may generate the reference configurations more efficiently, taking inspiration from hyperparameter search approaches, e.g. [START_REF] Wu | Hyperparameter optimization for machine learning models based on bayesian optimization[END_REF]. Regarding the recommendation process, we could take into account the similarity between the user's dataset and the datasets used to build the set of reference configurations [START_REF] Achille | Task2vec: Task embedding for meta-learning[END_REF]. From a practical point of view, we note that this similarity can only be computed using the first batch of the user's dataset as it is the only one we may have access to.

We focused on memory constraints and expressed them as the number of parameters of the neural networks. It may be possible to take other constraints into account, such as the training complexity (the maximum number of computations for each incremental step) and inference time. Regarding the training with CIL algorithms, we note that finetuning-based methods [START_REF] Belouadah | Initial classifier weights replay for memoryless class incremental learning[END_REF][START_REF] Hou | Learning a unified classifier incrementally via rebalancing[END_REF][START_REF] Wu | Striking a balance between stability and plasticity for class-incremental learning[END_REF] have significantly higher computational requirements compared to some transferbased methods [START_REF] Belouadah | Deesil: Deep-shallow incremental learning[END_REF][START_REF] Tyler | Lifelong machine learning with deep streaming linear discriminant analysis[END_REF]. Fine-tuning-based methods retrain the full model in each incremental state, while the transferbased methods retrain only the classification layer. Among the fine-tuning-based methods, some of them [START_REF] Hou | Learning a unified classifier incrementally via rebalancing[END_REF][START_REF] Wu | Striking a balance between stability and plasticity for class-incremental learning[END_REF] rely on knowledge distillation, which requires keeping in memory two models, namely the current version of the model which is being trained, and the previous version of the model which is used for constraining the training at this step. Regarding the inference time constraint, given a model size, the inference time varies depending on the structure of the deep architecture [START_REF] Canziani | An analysis of deep neural network models for practical applications[END_REF]. If we extend our recommendation method by taking into account training and inference times, the recommended pair of CIL algorithm and backbone network may be selected according to the modified variant of the NetScore [START_REF] Wong | Netscore: towards universal metrics for large-scale performance analysis of deep neural networks for practical on-device edge usage[END_REF] introduced in [START_REF] Hayes | Online continual learning for embedded devices[END_REF]. This score mixes accuracy, total number of parameters and the number of seconds required to run the experiment.

Figure 1 :

 1 Figure 1: Classification performance in percent for various combinations of CIL algorithm and backbone network, averaged over five reference datasets containing 100 classes each in total, see Subsection 4.1. Scenario (a) has a memory budget of 1.5M parameters and consists of 20 steps with 5 classes each. Scenario (b) has a memory budget of 3.0M parameters, and consists of 4 steps with 25 classes each. Here, as highlighted in purple, scenario (a) is best handled by the combination of DSLDA and ResNet, while the combination of FeTrIL and ShuffleNet is a better match for scenario (b).As the same combinations of CIL algorithm and backbone network are not ranked the same from one scenario to another, it highlights the need for a recommendation method to select the best combination of CIL algorithm and backbone network depending on the scenario. Note that the scaling heuristic presented in Subsection 3.2 is used to fit neural networks to each memory budget.

Figure 2 :

 2 Figure 2: AdvisIL takes as inputs a set of pre-computed reference configurations and a user's scenario and returns a suited CIL algorithm -backbone network combination.The working process of AdvisIL is illustrated in Figure2and explained below. Let A be a set of EFCIL algorithms, B a set of backbone networks, S a set that contains CIL scenarios, where each one is represented as a quadruplet (m, k, α, β) (Definition 1), and J = {D 1 , D 2 , . . . , D l } a set that contains l complete datasets. We generate a set of reference configurations (Definition 2) as follows:

Table 1 :

 1 Settings for evaluating AdvisIL (k: number of steps, α: number of initial classes, β: incremental update size).

	Settings (k, α, β)	Even splits (α =		Larger initial step (α > β)
	Reference	(4, 25, 25) (10, 10, 10) (20, 5, 5)	(5, 40, 15) (7, 40, 10) (11, 40, 6)
	Test	(5, 20, 20)	(25, 4, 4)	(50, 2, 2)	(6, 50, 10) (11, 50, 5) (13, 40, 5)

Table 2 :

 2 Classification performance of models built with AdvisIL's recommendations on four test datasets and six test scenarios. Results are grouped either by user-defined (k, α, β), a memory budget m, or by test dataset. The last row corresponds to the average on all test configurations.

					-1.49	1.01	0.81	9.72
			(25, 4, 4)	35.07	-0.63	0.30	4.35	13.44
			(5, 20, 20)	55.74	-0.65	0.97	3.16	7.46
			(13, 40, 5)	62.56	-0.73	2.33	0.06	12.17
			(11, 50, 5)	64.40	-1.26	2.02	0.22	9.98
			(6, 50, 10)	64.12	-1.56	1.12	0.55	6.64
	Budget	m	1.5M 3.0M 6.0M	45.94 51.85 54.86	-1.46 -0.79 -0.92	0.37 2.32 1.18	2.76 0.52 1.30	6.96 10.27 12.47
	Test	dataset	INRand 2 INAT100 FOOD100	52.02 50.18 28.03	-0.73 -1.22 -1.39	1.20 1.57 1.99	1.71 1.66 0.34	12.51 10.03 5.22
			LAND100	74.52	-0.89	0.40	2.89	11.85
			Avg	50.88	-1.04	1.29	1.52	9.90

Table 3 :

 3 Classification performance for the three baseline models and for the recommended model. Performance is averaged over the four test datasets. For each scenario (m, k, α, β), the best result is in bold and the combination of algorithm (either DSLDA (DS) or FeTrIL (FT)) and backbone (MobileNet (Mob) , ResNet (Res) or Shufflenet (Shu)) recommended by AdvisIL is provided.

Table 5 :

 5 Classification performance of AdvisIL and of its variants which use smaller number of reference datasets. Results are averaged over all possible combinations of reference datasets, and over all tested scenarios.

Acknowledgements. This work was supported by the European Commission under European Horizon 2020 Programme, grant number 951911 -AI4Media. It was made possible by the use of the FactoryIA supercomputer, financially supported by the Ile-de-France Regional Council.