

Radionuclide measurements by mass spectrometry and radiometric techniques: differences and complementarities

Hélène Isnard, Valérie Lourenco

► To cite this version:

Hélène Isnard, Valérie Lourenco. Radionuclide measurements by mass spectrometry and radiometric techniques: differences and complementarities. Workshop on the Use of Mass Spectrometry in Radionuclide Metrology, Feb 2023, WEBINAR, France. cea-04037053

HAL Id: cea-04037053 https://cea.hal.science/cea-04037053

Submitted on 20 Mar 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Radionuclide measurements by mass spectrometry and radiometric techniques: differences and complementarities

ISNARD Hélène

Laboratoire de développement Analytique Nucléaire Isotopique et Elémentaire (LANIE)

LOURENÇO Valérie

DE LA RECHERCHE À L'INDUSTRIE

Laboratoire National Henri Becquerel (LNHB-MA)

Direction des Energies, CEA Saclay, ISAS/DRMP/SPC/LANIE CEA, List, Laboratoire National Henri Becquerel (LNE-LNHB)

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

14-16 Février 2023

CEA Saclay: LANIE and LNHB

High precision isotopic and elemental

analysis by Mass Spectrometry

- Fuel samples, Irradiated target,

Safeguard samples ...

Mass Spectrometer instruments in glove

boxes

- 2 TIMS, 2 ICPMS MC, 1 ICPMS Q

Separative techniques for purification

and coupling with MS

Commissariat à l'énergie atomique et aux énergies alternatives

Triple to Double Coincidence Ratio (TDCR)

Primary technique based on Liq. Scintillation
Counting + a physical model of light emission

4πβ-γ coincidence method

- Primary technique coupling LSC and HPGe or Nal γ **counter** (no model needed)

Other primary techniques

H. Isnard, V. Lourenço

Determination of half-life

* **Metro**logy for **R**adioactive **W**aste **M**anagement (EMRP)

EURAME

Supplementary

comparisons

3

Other collaborations

RN	Goal	Purpose	Ref
¹⁴⁷ Nd	Absolute gamma-ray emission intensities (neutron flux dosimeter)	Purification from ¹⁴⁷ Pm	[5]

2022-2025

Metr () POEM

Development and characterisation of 2 reference materials

[1] Cassette P., Chartier F., Isnard H., ..., Bé M.M., Lepy M.C., Tartes I. Applied Radiation and Isotopes 68, 122-130 (2010)
[2] Bé M.M., Isnard H., Cassette, P., Lourenço V., Nonell A., Chartier .. et al. Radiochimica Acta 104, 131-139 (2015)
[3] Garcia-Torano E., Bé M.M., Bobin C., Lourenço V., Isnard H., Chartier F...et al. Applied Radiation and isotopes, 140, 157-162 (2018)
[4] Gueguen F., Isnard H., Kossert K., Nonell A., Chartier F.. et al. Journal of Radioanalytical and Nuclear Chemistry, 302, 289-295 (2020)
[5] Kellett M., Bobin C., Isnard H., Lépy M.C., Lourenço V, Vio L. ... et al. Applied Radiation and Isotopes 166, 109349 (2020)

Requirements to perform precise mass spectrometric and radiometric measurements

Purification step(s) to isolate the element of interest

- Spectral and non spectral interferences by mass spectrometry
- Active radionuclides for radiometric measurements

- Use of Isotope Dilution: Choice of spike
- <u>Multicollector Mass spectrometer</u>: TIMS or ICPMS MC (complementarities between the two techniques)

Link between mass and activity

Illustration on the determination of ¹⁵¹Sm half life

Ceca Separation step: case of ¹⁵¹Sm

- Sample: Irradiated powder of a ¹⁴⁹Sm₂O₃ (95.1%) target irradiated in a french nuclear power plant
 - 5.8 mg of Sm₂O₃ powder was irradiated and dissolved in nitric media in French installation
 - After irradiation around 400 μg of ¹⁵¹Sm were present

	Sm	Mass (µg)	Eu	Mass (µg)	Gd	Mass (µg)
	¹⁴⁴ Sm	1.4				
	¹⁴⁷ Sm	4.7				
	¹⁴⁸ Sm	61				
	¹⁴⁹ Sm	907	-			
	¹⁵⁰ Sm	3238				
\square	¹⁵¹ Sm	402	¹⁵¹ Eu	10		
	¹⁵² Sm	296	¹⁵² Eu	0.3	¹⁵² Gd	0.2
			¹⁵³ Eu	70		
C	¹⁵⁴ Sm	14	¹⁵⁴ Eu	16	¹⁵⁴ Gd	5
			¹⁵⁵ Eu	5	¹⁵⁵ Gd	3
					¹⁵⁶ Gd	2
					¹⁵⁷ Gd	0.1

Level of purification different for Mass Spectrometry and radiometry

Addition of Ho used as a carrier element (no interferences)

Ceal Separation step: case of ¹⁵¹Sm

Separation by **High Performance Liquid Chromatography** (HPLC)

Use of HMBA acid (hydroxy methylbutyric acid) Coupling with Q ICP-MS

Commissariat à l'énergie atomique et aux énergies alternatives

Cea Mass Spectrometric measurements: Isotope Dilution

Choice of the Spike

Use of NIST SRM 3147a: uncertainty 0.15 % at k=1

Table 1: Comparison of the recommended and measured isotopic ratios for the NIST SRM 3147 certified natural samarium solution.

	IUPAC	u(x) in % $(k = 1)$	This work $u(x)$ ($k = 1$)
¹⁴⁴ Sm/ ¹⁵⁰ Sm	0.416(5)	1.2%	0.4194(4)
¹⁴⁷ Sm/ ¹⁵⁰ Sm	2.031(13)	0.6%	2.037(4)
¹⁴⁸ Sm/ ¹⁵⁰ Sm	1.523(7)	0.5%	1.526(1)
149 Sm/150 Sm	1.873(5)	0.3%	1.874(1)
¹⁵² Sm/ ¹⁵⁰ Sm	3.625(11)	0.3%	3.614(2)
¹⁵⁴ Sm/ ¹⁵⁰ Sm	3.083(20)	0.7%	3.068(3)

Commissariat à l'énergie atomique et aux énergies alternatives

cea

Mass Spectrometric measurements: Isotope Dilution metrologic approach

8/10

Table 6: Final results for the activity concentration A, as reported by the participants. The stated uncertainties u are combined standard uncertainties (k = 1).

Participant	A in kBq g ⁻¹	<i>u</i> in kBq g ⁻¹	Measurement method	
РТВ	79.41	0.59	CIEMAT/NIST	
PTB	79.04	0.56	TDCR	
PTB	79.22	0.41	Final result	
LNE-LNHB	77.87	0.41	TDCR and final result	
IRMM	78.5	0.4	CIEMAT/NIST	
IRMM	78.86	0.40	TDCR	
IRMM	78.7	0.4	Final result	
POLATOM	79.51	0.48	TDCR and final result	
CMI	77.9	0.93	TDCR and final result	
SMU	80.247	0.376	TDCR and final result	

Table 7: ¹⁵¹Sm half-life and uncertainty from the literature and this work.

Reference	T _{1/2} (a)	Uncertainty (a)	
Flynn et al. [19] (1965)	87	9	
Reynolds et al. [20] (1968	93	8.6	
Ming He et al. [21] (2009)	96.6	2.4	4-fold
<u> This work (2015)</u>	94.6	0.6	Reduction !

Measurements by liquid scintillation counting (**TDCR**, CIEMAT/NIST)

Publication of a **new value for the half-life of ¹⁵¹Sm** with a significantly **reduced uncertainty (0.6%)**

Resulted in a **new recommended value** for the **half-life of** ¹⁵¹Sm with a 10-fold **reduced uncertainty (0.6%)** compared to the previous one (6.7 %)

Thanks for your attention

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

MERCI