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Abstract

The resolution of the incompressible Navier-Stokes equations is tricky, and it is well known that one
of the major issue is to approach the space:

H1(Ω) ∩H(div 0; Ω) :=
{
v ∈ H1(Ω) : divv = 0

}
.

The non-conforming Crouzeix-Raviart �nite element are convenient since they induce local mass conser-
vation. Moreover they are such that the stability constant of the Fortin operator is equal to 1. This
implies that they can easily handle anisotropic mesh [1, 2]. However spurious velocities may appear and
damage the approximation.

We propose a scheme here that allows to reduce the spurious velocities. It is based on a new discreti-
sation for the gradient of pressure based on the symmetric MPFA scheme (�nite volume MultiPoint Flux
Approximation) [3, 4, 5].

1 Motivation

The TrioCFD code is a computational fluid dynamics (CFD) simulation software developed at the CEA. It is
open source, object-oriented and massively parallel. It is dedicated to the numerical simulation of turbulent
flows for scientific and industrial applications, particularly in the nuclear field. Let Ω, the domain of study, be
an open connected bounded domain of Rd, d = 2, 3, with a polygonal (d = 2) or Lipschitz polyhedral (d = 3)
boundary ∂ Ω with constant physical properties. Let T > 0 be a simulation time. The TrioCFD code solves
the incompressible Navier-Stokes equations which read: Find (u(x, t), p(x, t)) such that ∀(x, t) ∈ Ω× (0, T ), ∂ tu− ν∆ u + (u · grad )u + grad p = f ,

div u = 0,
u(x, 0) = u0(x).

(1)

We consider here Dirichlet boundary conditions for the velocity u and we impose a normalization condition
for the pressure p:

u = 0 on ∂ Ω,

∫
Ω

p = 0.

The vector field u represents the velocity of the fluid and the scalar field p represents its pressure divided by
the fluid density which is supposed to be constant. The first equation of (1) corresponds to the momentum
balance equation and the second one corresponds to the mass conservation. The constant parameter ν > 0 is
the kinematic viscosity of the fluid. The vector field f represents the body force divided by the fluid density.
We first consider the steady Stokes problem which reads:

Find (u, p) such that ∀x ∈ Ω :

{
−ν∆u + grad p = f ,

div u = 0.
(2)
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Before stating the variational formulation of Problem (2), we provide some definition and reminders. Let
us set L2(Ω) = (L2(Ω))d, H1

0(Ω) = (H1
0 (Ω))d, H−1(Ω) = (H−1(Ω))d its dual space and L2

zmv(Ω) = {q ∈
L2(Ω) |

∫
Ω
q = 0}. We recall that H(div ; Ω) = {v ∈ L2(Ω) |div v ∈ L2(Ω)}. Let us first recall Poincaré-

Steklov inequality:
∃CPS > 0 | ∀v ∈ H1

0 (Ω), ‖v‖L2(Ω) ≤ CPS‖grad v‖L2(Ω). (3)

Thanks to this result, in H1
0 (Ω), the semi-norm is equivalent to the natural norm, so that the scalar product

reads (v, w)H1
0 (Ω) = (grad v,gradw)L2(Ω) and the norm is ‖v‖H1

0 (Ω) = ‖grad v‖L2(Ω). Let v, w ∈ H1
0(Ω), we

denote by (vi)
d
i=1 (resp. (wi)

d
i=1) the components of v (resp. w), and we set Grad v = (∂ jvi)

d
i,j=1 ∈ L2(Ω),

where L2(Ω) = [L2(Ω)]d×d. We have:

(Grad v,Grad w)L2(Ω) = (v,w)H1
0(Ω) =

d∑
i=1

(vi, wi)H1
0 (Ω) and ‖v‖H1

0(Ω) = ‖Grad v‖L2(Ω).

Let us set V =
{
v ∈ H1

0(Ω) |div v = 0
}
. The space V is a closed subset of H1

0(Ω). We denote by V⊥ the
orthogonal of V in H1

0(Ω). We recall that [6, cor. I.2.4] :

Proposition 1 The operator div : H1
0(Ω)→ L2(Ω) is an isomorphism of V⊥ onto L2

zmv(Ω). We call Cdiv

the constant such that:

∀p ∈ L2
zmv(Ω), ∃!v ∈ V⊥ |div v = p and ‖v‖H1

0(Ω) ≤ Cdiv ‖p‖L2(Ω). (4)

Let us set :

aν :

{
H1

0(Ω)×H1
0(Ω) → R

(u′,v) 7→ ν (u′,v)H1
0(Ω)

and b :

{
H1

0(Ω)× L2
zmv(Ω) → R

(v, q) 7→ (div v, q)L2(Ω)
. (5)

Classically, the variational formulation of Problem (2) reads:

Find (u, p) ∈ H1
0(Ω)× L2

zmv(Ω) |
{
aν(u,v)H1

0(Ω) − b(v, p) = 〈f ,v〉 ∀v ∈ H1
0(Ω),

b(u, q) = 0 ∀q ∈ L2
zmv(Ω).

(6)

This saddle point problem is well-posed. Indeed, the bilinear form aν(·, ·) is continuous and coercive. More-
over, the bilinear form b(·, ·) is continuous and due to Proposition 1, it satisfies the following inf-sup condition:

∀q ∈ L2
zmv(Ω)\{0}, ∃vq ∈ H1

0(Ω)\{0} | b(vq, q)

‖vq‖H1
0(Ω) ‖q‖L2(Ω)

≥ Cdiv . (7)

In TrioCFD code, the spatial discretization of Problem (2) is based on first order nonconforming Crouzeix-
Raviart finite element method.
The outline of this article is as follows: in section 2, we provide some notations for the discretization. Next,
in section 3, we recall the first order nonconforming finite element method, that we call the P1

nc−P 0 scheme.
Then in section 4, we describe the spatial discretization of TrioCFD code for simplicial meshes. We call this
discretization the P1

nc− (P 0 +P 1) scheme. This discretization is very precise in 2D. It is also precise in 3D,
except when the source term is a strong gradient. In order to obtain the same accuracy in 3D than in 2D,
one must increase the number of degrees of freedom of the discrete pressure space, which leads to a more
expensive numerical scheme. Our aim is to develop a new numerical scheme that would be precise both in
2D and 3D, but at a lower cost. We present such a scheme in section 5 and numerical illustration in section
6 and 7.

2 Discrete notations

We call (O, (xd′)
d
d′=1) the Cartesian coordinates system, of orthonormal basis (ed′)

d
d′=1. Consider (Th)h a

simplicial triangulation sequence of Ω. For a triangulation Th, we use the following index sets:

• IK denotes the index set of the elements, such that Th :=
⋃
`∈IK

K` is the set of elements.

• IF denotes the index set of the facets1, such that Fh :=
⋃
f∈IF

Ff is the set of facets.

1The term facet stands for face (resp. edge) when d = 3 (resp. d = 2).
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Let IF = IiF ∪ IbF , where ∀f ∈ IiF , Ff ∈ Ω and ∀f ∈ IbF , Ff ∈ ∂ Ω.

• IS denotes the index set of the vertices, such that (Sj)j∈IS is the set of vertices.

Let IS = IiS ∪ IbS , where ∀j ∈ IiS , Sj ∈ Ω and ∀j ∈ IbS , Sj ∈ ∂ Ω.

We also define the following index subsets:

• ∀` ∈ IK , IF,` = {f ∈ IF |Ff ∈ K`}, IS,` = {j ∈ IS |Sj ∈ K`}.

• ∀j ∈ IS , IK,j = {` ∈ IK |Sj ∈ K`}, NK,j := card(IK,j).

• ∀j ∈ IS , IS,j = {k ∈ IS |SkSi ∈ Fh}, NS,j := card(IS,j).

Notice that in 2D, NK,j = NS,j .
For all f ∈ IF , Mf denotes the barycentre of Ff , and by nf a unit normal (outward oriented if Ff ∈ ∂ Ω).
For all j ∈ IS , for all ` ∈ IK,j , λj,` denotes the barycentric coordinate of Sj in K`; Fj,` denotes the face
opposite to vertex Sj in element K`. We call Sj,` the outward normal vector of Fj,` and of norm |Sj,`| = |Fj,`|.
Let introduce spaces of piecewise regular elements:
We set PhH1 =

{
v ∈ L2(Ω) ; ∀` ∈ IK , v|K`

∈ H1(K`)
}
, endowed with the scalar product :

(v, w)h :=
∑
`∈IK

(grad v,gradw)L2(K`) ‖v‖2h =
∑
`∈IK

‖grad v‖2L2(K`).

We set PhH1 = [PhH1]d, endowed with the scalar product :

(v,w)h :=
∑
`∈IK

(Grad v,Grad w)L2(K`) ‖v‖2h =
∑
`∈IK

‖Grad v‖2L2(K`).

Let f ∈ IiF such that Ff = ∂ KL ∩ ∂ KR and let nf the unit normal that is outward KL oriented.
The jump (resp. average) of a function v ∈ PhH1 across the facet Ff , in nf direction, is defined as follows:
[v]Ff

:= v|KL
− v|KR

(resp. {v}Ff
:= 1

2 (v|KL
+ v|KR

) ). For f ∈ IbF , we set: [v]Ff
:= v|Ff

and {v}Ff
:= v|Ff

.
We set PhH(div ) =

{
v ∈ L2(Ω) ; ∀` ∈ IK , v|K`

∈ H(div ; K`)
}
, and we define the operator divh such that:

∀v ∈ PhH(div ), ∀q ∈ L2(Ω), (divh v, q) =
∑
`∈IK

(div v, q)L2(K`).

For all D ⊂ Rd, and k ∈ N∗, we call P k(D) the set of order k polynomials on D, Pk(D) = (P k(D))d, and we
consider the space of the broken polynomials:

P kdisc(Th) =
{
q ∈ L2(Ω); ∀` ∈ IK , q|K`

∈ P k(K`)
}
, Pk

disc(Th) := (P kdisc(Th))d.

We let P 0(Th) be the space of piecewise constant functions on Th.

∀k ∈ N, Qk,h := P k(Th ) ∩ L2
zmv(Ω) (8)

We will now describe three numerical scheme to solve (2) for which the components of the velocity is discretized
with the first order nonconforming Crouzeix-Raviart finite element method [7, §5, Example 4]. For simplicity,
we suppose now that f ∈ L2(Ω).

3 The P1
nc − P 0 scheme

The first order nonconforming finite element method was introduced by Crouzeix and Raviart in the seminal
paper [7] to solve Stokes Problem (2). We call it the P1

nc − P 0 scheme. Let us consider Xh (resp. X0,h), the
space of nonconforming approximation of H1(Ω) (resp. H1

0 (Ω)) of order 1:

Xh =

{
vh ∈ P 1

disc(Th) ; ∀f ∈ IiF ,
∫
Ff

[vh] = 0

}
. (9)

X0,h =

{
vh ∈ Xh ; ∀f ∈ IbF ,

∫
Ff

[vh] = 0

}
. (10)
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Proposition 2 The broken norm vh → ‖vh‖h is a norm over X0,h.

The following discrete Poincaré–Steklov inequality holds [8, Lemma 36.6] : there exists a constant CncPS > 0
such that

∀vh ∈ X0,h, ‖vh‖L2(Ω) ≤ CncPS ‖vh‖h. (11)

The constant CncPS is independent of the triangulation Th and it is proportional to the diameter of Ω.
We can endow X0,h with the basis (ψf )f∈IiF such that: ∀` ∈ IK ,

ψf |K`
=

{
1− dλi,` if f ∈ IF,`,

0 otherwise,

where Si is the vertex opposite to Ff in K`. We then have ψf |Ff
= 1, so that [ψf ]Ff

= 0 if f ∈ IiF (i.e.

Ff ∈ Ω), and ∀f ′ 6= f ,
∫
Ff′

ψf = 0. We have: X0,h = vect
(

(ψf )f∈IiF

)
.

The Crouzeix-Raviart interpolation operator πh for scalar functions is defined by:

πh :


H1(Ω) → Xh

v 7→
∑
f∈IF

πfv ψf , where πfv =
1

|Ff |

∫
Ff

v.

Notice that ∀f ∈ IF ,
∫
Ff
πhv =

∫
Ff
v. Moreover, the Crouzeix-Raviart interpolation operator preserves the

constants, so that πhvΩ = vΩ where vΩ =
∫

Ω
v/|Ω|.

The space of nonconforming approximation H1
0(Ω) of order 1 is X0,h = (X0,h)d. For a vector v ∈ H1(Ω)

of components (vd′)
d
d′=1, the Crouzeix-Raviart interpolation operator is such that: Πhv = (πhvd′)

d
d′=1. We

recall the following result:

Proposition 3 The Crouzeix-Raviart interpolation operator Πh can play the role of the Fortin operator:

∀v ∈ H1(Ω) ‖Πhv‖h ≤ ‖Grad v‖L2(Ω), (12)

∀v ∈ H1(Ω) (divh Πhv, qh) = (div v, qh)L2(Ω), ∀q ∈ Qh. (13)

Moreover, for all v ∈ P1(Ω), Πhv = v.

Notice that the stability constant of the bound on ‖Πhv‖h is equal to 1 [1, Lemma 2] : it is independent of
the mesh.
Let us set Qh = Q0,h. We now define the following bilinear forms :

aν,h :

{
X0,h ×X0,h → R

(u′h,vh) 7→ ν (u′h,vh)h
and bh :

{
X0,h ×Qh → R

(vh, qh) 7→ −(divh vh, qh)
. (14)

We suppose here that f ∈ L2(Ω). The discretization of variational formulation (6) reads:

Find (uh, ph) ∈ X0,h ×Qh |
{
aν,h(uh,vh)h + bh(vh, p) = (f ,vh)L2(Ω) ∀vh ∈ X0,h,

bh(uh, qh) = 0 ∀qh ∈ Qh.
(15)

This saddle point problem is well-posed. Indeed, the bilinear form aν,h(·, ·) is continuous and coercive.
Moreover, the bilinear form bh(·, ·) is continuous and due to Proposition 1 and Lemma 3, it satisfies the
following discrete inf-sup condition:

∀qh ∈ Qh\{0}, ∃vh, q ∈ X0,h\{0} |
bh(vh, qh)

‖vh‖h ‖qh‖L2(Ω)
≥ Cdiv . (16)

Suppose that it exists φ ∈ H1(Ω)∩L2
zmv(Ω) such that f = gradφ. In that case, the solution to Problem (2)

is (u, p) = (0, φ). By integrating by parts, we have:

∀vh ∈ X0,h, (f ,vh)L2(Ω) = −(divh vh, φ) +
∑
f∈IiF

∫
Ff

[vh · nf ]φ.

The term with the jump acts as a numerical source, which numerical influence is proportional to 1/ν. Hence,
we cannot obtain exactly uh = 0. There are different strategies to cure this well-known problem:

• Using a polynomial approximation of higher degree [9].

• Increasing the space of the discrete pressures [10, 11].

• Projecting the test-function on a discrete subspace of H(div ; Ω) [12].

We propose in the next section to give details on the second strategy.
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4 The P1
nc − (P 0 + P 1) scheme

In his thesis [10], Heib proposed to use the following space discrete pressures space (cf. (8)):

Q̃h = Q0,h ⊕Q1,h. (17)

For any q̃h ∈ Q̃h, we write: q̃h = q0,h + q1,h, where q0,h ∈ Q0,h and q1,h ∈ Q1,h.
Let us consider the following bilinear form:

b̃h :

{
X× Q̃h → R
(vh, q̃h) 7→ −(divh vh, q0,h) + (vh,grad q1,h)L2(Ω)

. (18)

The discretization of Problem (6) with P1
nc − (P 0 + P 1) finite elements reads:

Find (uh, ph) ∈ X0,h × Q̃h |

{
aν,h(uh,vh)h + b̃h(vh, ph) = (f ,vh)L2(Ω) ∀vh ∈ X0,h,

b̃h(uh, q̃h) = 0 ∀q̃h ∈ Q̃h.
(19)

We will need the following Hypothesis [13, Hyp. 4.1] :

Hypothesis 1 We suppose that the triangulation Th is such that the boundary ∂ Ω contains at most one edge
in dimension d = 2 and at most two faces in dimension d = 3, of the same element K`, ` ∈ IK .

Under Hypothesis (1), one can prove that the bilinear form b̃h(·, ·) is continuous that it satisfies the following
discrete inf-sup condition [10, §4.2] :

∀q̃h ∈ Q̃h\{0}, ∃vh ∈ X0,h\{0} |
b̃h(vh,q̃h , q̃h)

‖vh,q̃h‖h ‖q̃h‖L2(Ω)
≥ C̃div , (20)

where the constant C̃div is independent of the mesh size. Compared to P1
nc−P 0 scheme, the P1

nc−(P 1 +P 0)
scheme gives a better approximation of the velocity in the sense that the discrete mass conservation equation
is strengthened. Indeed, one can show, for d = 2 that [11, Theorem 4.3.2] :

Property 1 Let vh ∈ Vh := {wh ∈ Xh | ∀qh ∈ Q̃h, b̃h(wh, qh) = 0}.
Then for d = 2, we have: for all q2,h ∈ Q2,h, b̃h(wh, q2,h) = (grad q2,h,vh)L2(Ω) = 0.

The proof of Property 1 relies on a quadrature formula which uses the degrees of freedom of the discrete
pressure. As this formula cannot be extended in 3D, this property does not hold. To recover Property 1 in
3D, we must introduce P 2 discrete pressure degrees of freedom, located on the edges of the mesh, as detailed
in [11]. This increases the number of unknowns by the number of cells, which leads to an expensive linear
system. Hence, we look for a numerical scheme which could be as precise in 3D than in 2D, but at a lower
cost. In the next section, we propose a new strategy, which relies on the multi-points flux approximation to
discretize the pressure gradient term in (2).

5 The P1
nc − P 0

Mps scheme

Here, we use the symmetric MPFA scheme (where MPFA stands for multi-points flux approximation) to
discretize the pressure gradient term in (2), in the case of a simplicial mesh. The discrete pressure space
remains Qh = Q0,h. We call this new scheme the P1

nc − P 0
Mps scheme.

Let us consider the 2D case. To design the scheme, as it has been initially done in [4, 14], we start by
splitting the triangles into three quadrangles, connecting the barycentre of the triangle to the midpoint of
each edges. Considering some qh ∈ Qh, we will calculate an affine approximation of Qh on each quadrangles.
To do so,we need to add temporary auxiliary unknowns located on the third of the edges.
Let us introduce some notations.

Let j ∈ IS . We define the macro-elementMj such thatMj :=
⋂

`∈IK,j

K`. Let renumber the vertices so

that: S0 = Sj , IS,0 = {1, · · · , NS,0} and for all i ∈ IS,0, SiSi+1 ∈ Fh (setting SNS,0+1 = SNS,0
). For i ∈ IS,0

we denote by:

• Ki the triangle of vertices S0SiSi+1, and we call its barycentre Gi.
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• Fi the edge such that Fi = S0Si, and we call Mi its midpoint.

• Fi,0 the edge opposite to S0 in Ki.

• F̃i the half-edges defined by S0 and the midpoint of Fi.

• Qi the quadrangle of vertices S0MiGiMi+1 (Fig. 2-(a) for S0 ∈ Ω and 3-(a) for S0 ∈ ∂ Ω).

For i, j ∈ IS,0, we denote by Si,j the normal vector outgoing of Kj at Fi and of norm |Fi|. For i ∈ IS,0, we
call S0,i the normal vector outgoing of Ki at Fi,0. On Figure 1-(a), we represent M0 in case S0 ∈ Ω and
NS,0 = 6. On Figure 1-(b), we represent the triangle K1 with the vectors (Sj,1)2

j=0 and its barycentre G1.

S0

S1S2

S3

S4

S5

S6

F1,0

F2,0

F3,0
F4,0

F5,0

F6,0
F1

F2

F3

F4

F5

F6

K1

K2

K3
K4

K5

K6

(a) Macro-element M0 = S1 S2 S3 S4 S5 S6.

S0

S1S2

M2 M1

G1

S1,1

S2,1

S0,1

(b) Triangle K1 = S0 S1 S2.

Figure 1: Notations in case NS,0 = 6 and j ∈ IiS .

S0

S1S2

S3

S4

S5

S6

Q1

Q2

Q3 Q4

Q5

Q6

(a) Quadrangles (Qi)
NS,0

i=1 .

S0

S1S2

S3

S4

S5

S6

q1

q2

q3

q4

q5

q6
q̃1

q̃2

q̃3 q̃4

q̃5̃

q6

(b) Discrete pressures (qi,q̃i)
NS,0

i=1 .

Figure 2: MPFA Scheme for j ∈ IiS and NS,0 = 6.

S0

S2S3

S4

S1

Q2

Q3 Q1

F̃4

F̃1

(a) Quadrangles (Qi)
NS,0

i=1 .

S0

S2S3

S4

S1

q2

q3

q1
q̃2

q̃3

q̃4

q̃1

(b) Discrete pressures (qi,q̃i)
NS,0

i=1 .

Figure 3: MPFA Scheme for j ∈ IbS and NS,0 = 4
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Let qh ∈ Qh. We set qh|K`
:= q`.

Consider S0 ∈ Ω (Fig. 2). Let us build a piecewise affine approximation of qh on each quadrangle (Qi)
NS,0

i=1

(see Fig. 2-(a)). We call this approximation q̃h. We first introduce auxiliary discrete pressure values (q̃i)
NS,0

i=1

on the thirds of the inner edges ofM0 (see Fig. 2-(b)). For all j ∈ IS,i, we define Gi(qh) := grad q̃h|Qi
, using

an integration by part as it is done in [4, Sect. 3] and [5, Sect. 1.1.1] :

|Qi|Gi =

∫
Qi

Gi(qh) =

∫
∂Qi

q̃hn∂Qi = q̃i
Si,i
d

+ q̃i+1
Si+1,i

d
+ qi(−

Si,i
d
− Si+1,i

d
).

Hence, noticing that |Qi| = |Ti|
d+1 , we have:

Gi(qh) =
1

|Qi|

(
(q̃i − qi)

Si,i
d

+ (q̃i+1 − qi)
Si+1,i

d

)
=
d+ 1

d |Ti|
( q̃i Si,i + q̃i+1 Si+1,i + qi S0,i ) . (21)

In order to preserve the flux across the inner edges ofM0, we write that:

∀i ∈ IS,0, Gi(qh) · Si+1,i + Gi+1(qh) · Si+1,i+1 = 0. (22)

These NS,0 equations with NS,0 unknowns (the auxiliary discrete pressure values (q̃i)
NS,0

i=1 ) lead to a well posed
linear system. Thus, we can evaluate the auxiliary discrete pressure values (q̃i)

NS,0

i=1 with the data (qi)
NS,0

i=1 .
Therefore, we can explicitly express the pressure gradients (Gi(qh))

NS,0

i=1 (21).
Consider now S0 ∈ ∂ Ω (see Fig. 3). According to [15, proof of Prop. IV.3.7], if f ∈ H1(Ω), the solution
(u, p) to Problem (2) is such that:

grad p · n|∂Ω = f · n|∂Ω, (23)

where n|∂Ω is the unit outward normal vector at ∂Ω.
In our numerical experiments, we explicit the auxiliary discrete pressure values located on ∂ Ω (ie q̃1 and

q̃4 on Fig. 3-(b)) by imposing that for all i ∈ IS,0 such that Fi ∈ ∂ Ω:∫
F̃i

Gi(qh) · n|F̃i
=

∫
F̃i

f · n|F̃i
. (24)

Again, the auxiliary discrete pressure values solve a well posed linear system. They can be written with the
data (qi)

NS,0

i=1 and we can explicitly express Gi(qh).

For i ∈ IS , we let (Qi,j)j ∈ IS,i be the set of quadrangles built around Si, and we call Qh the mesh
of all the quadrangles Qh := ( (Qi,j)j∈IS,i

)i∈IS . Let qh ∈ Qh. Let i ∈ IS . In the macro-element Mi, we
call Gi,j(qh) the local reconstructed gradient of qh. We now define the MPFA gradient reconstruction as the
operator Gh:

Gh :

{
Qh → P0(Qh)
qh 7→ Gh(qh)

| ∀i ∈ IS , ∀j ∈ IS,i, Gh(qh)|Qi,j
= Gi,j(qh|Mi

). (25)

If the data f is of low regularity, one can enhance the space of discrete pressures, adding the auxiliary un-
knowns on the boundary as degrees of freedom.

Proposition 4 With triangles, and p ∈ C2(Ω), the fluxes of the symmetric MPFA scheme are consistently
approximated. Also by choosing the auxiliary pressures unknowns at the thirds of the edges, the gradient is
approximated exactly for affine functions. Also, the symmetric MPFA scheme is consistent, coercive and
convergent.

The proof of this proposition can be found in [4, Prop. 2, Prop. 3 ] and [16, Theorem 3.2].

Let us express our discrete Stokes problem. Let gh(·, ·) be the following bilinear form:

gh :

{
Xh ×Qh → R

(vh, qh) 7→ (Gh(qh),vh)L2(Ω)
. (26)

The discretization of (2) using the MPFA scheme to discretize the pressure gradient reads:

Find (u, p) ∈ X0,h ×Qh |
{
aν,h(uh,vh) + gh(vh, ph) = (f ,vh)L2(Ω) ∀vh ∈ Xh

bh(uh, qh) = 0 ∀qh ∈ Qh
, (27)

where the bilinear forms aν,h(·, ·) and bh(·, ·) are defined by (14). Notice that the linear system related to
variational formulation (27) is not symmetric.
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6 Numerical Results on the Stokes Problem

In this section, we give some 2D numerical results which compare the P1
nc − P 0

Mps scheme to the P1
nc − P 0

and P1
nc − (P 0 + P 1) schemes.

Consider Problem (6) with prescribed solution such that: (u, p) = (0, ϕ).
When ϕ is some affine function, then both P1

nc − (P 0 + P 1) and P1
nc − P 0

Mps schemes give exactly uh = 0.
When ϕ is some quadratic function, then P1

nc − (P 0 +P 1) scheme gives exactly uh = 0, as a consequence of
Property 1.
In what follows, we set Ω = (0, 1)2. We denote the L2(Ω) errors estimates of the discrete velocity and pressure
by:

εX0 (uh) :=


‖uh‖L2(Ω) if u = 0

‖uh − u‖L2(Ω)

‖u‖L2(Ω)
otherwise

and εX0 (ph) :=
‖ph − p‖L2(Ω)

‖p‖L2(Ω)
,

where: X = CR (resp. X = Trio and X = Mps) refers to the solution computed with the P1
nc − P 0 (resp.

P1
nc − (P 0 + P 1) and P1

nc − P 0
Mps) scheme.

We first consider Problem (6) with prescribed solution (u, p) = (0, sin(2πx) sin(2πy) ). On Fig. 4 (resp. 5),
we plot εX0 (uh) (resp. εX0 (ph)) against the meshstep h in the logarithmic scale, for ν = 1 and ν = 10−3.

We notice that εX0 (uh) ∝ ν−1 for the three schemes. Concerning the P1
nc−P 0

Mps scheme, we first remark
that εMps

0 (uh) gives intermediate results between εCR0 (uh) and εTrio0 (uh) (see Fig. 4). Second, we notice that
εMps

0 (ph) ≈ εTrio0 (ph). Finally, we notice that the P1
nc − P 0

Mps scheme returns a convergence rate of order 3

for εMps
0 (uh) and 2 for εMps

0 (ph).

10−2 10−1

10−8

10−6

10−4

10−2

100

1
3

1
2

1
4

h

ε 0
(u
h
)

εCR0 (uh), ν = 1

εTrio0 (uh), ν = 1

εMps
0 (uh), ν = 1

εCR0 (uh), ν = 10−3

εTrio0 (uh), ν = 10−3

εMps
0 (uh), ν = 10−3

Figure 4: εX0 (uh) for (u, p) = (0, sin(2πx) sin(2πy) )
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10−2 10−1
10−4

10−3

10−2

10−1

100

1
2

1
1

1
2

h

ε 0
(p
h
)

εCR0 (ph), ν = 1

εTrio0 (ph), ν = 1

εMps
0 (ph), ν = 1

εCR0 (ph), ν = 10−3

εTrio0 (ph), ν = 10−3

εMps
0 (ph), ν = 10−3

Figure 5: ε0(ph) for (u, p) = (0, sin(2πx) sin(2πy) )

We notice that, compared to the P 1
NC − P 0 scheme, the errors are greatly reduced by P1

nc − (P 0 + P 1)
and P1

nc − P 0
Mps schemes. These schemes allow to attenuate the amplitude of spurious velocities and hence

provide a better simulation. This is illustrated by the resolution of (2) with (u, p) defined by (28). In this
case, as u is not an affine function, the three schemes return a convergence rate of order 2 for εMps

0 (uh) and
1 for εMps

0 (ph). The errors resulted for h = 0.1 and h = 0.0125 are plotted against viscosity in Figures 6 and
7. In these plots, we see that the P1

nc − P 0
Mps scheme gives intermediate results. Also, we notice that the

spurious velocities errors become overriding when:

• ν ≤ 100 with h = 0.1 and ν ≤ 10−3 with h = 0.0125 for the P 1
NC − P 0.

• ν ≤ 10−2 with h = 0.1 and ν ≤ 10−3 with h = 0.0125 for the P1
nc − P 0

Mps.

• ν ≤ 10−3 with h = 0.1 and ν ≤ 10−5 with h = 0.0125 for the P1
nc − (P 0 + P 1).

The tipping viscosity point, where the spurious velocities errors become dominant, depends on the velocity
error generated by the gradient approximation and therefore the mesh size. As these schemes converge with
different orders when u = 0, it can be seen that decreasing the mesh size reduces the viscosity at which this
point is reached more or less depending on the order.

(u, p) =

(
(cos(2πx)− 1) sin(2πy)
−(cos(2πy)− 1) sin(2πx)

, sin(2πx) sin(2πy)

)
(28)

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100
10−4

10−3

10−2

10−1

100

101

102

103

1

-1

ν

ε 0
(u
h
)

εCR0 (uh), h = 0.1

εTrio0 (uh), h = 0.1

εMps
0 (uh), h = 0.1

εCR0 (uh), h = 0.0125

εTrio0 (uh), h = 0.0125

εMps
0 (uh), h = 0.0125

Figure 6: ε0(uh) for u and p sinusoidal functions against viscosity with different mesh sizes
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10−7 10−6 10−5 10−4 10−3 10−2 10−1 100
10−4

10−3

10−2

10−1

100

1

1

ν

ε 0
(p
h
)

εCR0 (ph), h = 0.1

εTrio0 (ph), h = 0.1

εMps
0 (ph), h = 0.1

εCR0 (ph), h = 0.0125

εTrio0 (ph), h = 0.0125

εMps
0 (ph), h = 0.0125

Figure 7: ε0(ph) for u and p sinusoidal functions against viscosity with different mesh sizes

We are also interested in the sensitivity to the mesh deformation. Indeed, nowadays, mesh refinement
techniques based on a posteriori error estimators or industrial constraints can generate anisotropic meshes.
In this subsection, we show that the three schemes have the same behaviour with respect to the regularity of
the mesh. To illustrate this property, we propose to use the Kershaw meshes presented in the benchmark [17]
( see Fig. 8) with (u, p) in (28). As the mesh is composed of quadrilaterals, we cut them with along one of
the diagonal, which allows us to remain within reasonable convergence assumptions. The mesh is represented
in Fig. 8 and we plot the results in Fig 9 and 10. We can see that the schemes have a convergence rate of
order 2 for εX0 (uh) and 1 for εX0 (ph).

Figure 8: Kershaw mesh.
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103 104
10−3

10−2

10−1

100

NK (number of cells)

ε 0
(u
h
)

εCR0 (uh)

εTrio0 (uh)

εMps
0 (uh)

Figure 9: ε0(uh) for u and p sinusoidal functions against viscosity with different kershaw meshes and ν = 1.

103 104
10−1

100

101

NK (number of cells)

ε 0
(p
h
)

εCR0 (ph)

εTrio0 (ph)

εMps
0 (ph)

Figure 10: ε0(ph) for u and p sinusoidal functions against viscosity with different kershaw meshes and ν = 1.

7 Numerical Results on the Navier-Stokes Problem

We choose the convection scheme initially presented in [18, Eq. 2.8]. This choice is motivated by the result
of the Benchmark [19] where the scheme presents good convergence and stability results without increasing
the stencil of the scheme. To resolve efficiently the Navier-Stokes equations, we use a prediction correction
time-scheme [20] [21], which consists in calculating a predicted velocity (with non-zero divergence), then
solving the pressure at the next time and correcting the velocity to ensure divergence-free flow. With this
approach, the velocity and pressure resolutions are decoupled.

As the approach is not classical, it is interesting to check the convergence of the scheme on Navier-Stokes.
This leads to study the Green-Taylor vortex solution which is a well-known analytical solution to (1).

Let first introduce the space-discretization of the Navier-Stokes equations (1) :{
M∂tU + νKU + L(U) +GP = F

DU = 0
(29)

where U , P contains the velocity and pressure unknowns and F is the right hand side. The matrices M
and K are respectively the mass and stiffness matrices. Also, the matrices G and D represent the gradient
and divergence operators. Finally, the matrix L(U) is associated with the convection term and ∂tU is the
time derivative of U .

We first present the prediction-correction time scheme :
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1. Prediction :
M
U∗ − Un

δt
+ νKU∗ + L(Un)Un +GPn = Fn and DU∗ 6= 0 (30)

2. Pressure solver:
δt(DM̃−1G)δP = DU∗ (31)

with δP = Pn+1 − Pn

3. Correction:
Un+1 = U∗ + δtM̃−1GδP (32)

with M̃ = M + δt νK. The CFL of the global system is then:

δt < Ch (33)

Remark 1 In Equation (31), we can approximate M̃ 'M . This leads to a linear system which is faster to
solve but less accurate.

Remark 2 As we did in section 6, to determine the auxiliary pressures on the boundary of the MPFA scheme,
we impose a condition for the pressure gradient at the edge. On each half-edge F̃i related to the vertex S0 and
edge Fi ∈ ∂Ω: ∫

F̃i

Gi · n|F̃i
=

∫
F̃i

(
f + (un+1

h − unh)/δt+ (unh · grad )unh
)
· n|F̃i

. (34)

Let Ω = (0, 1)2. We prescribe the solution to Equation (1) with f = 0, to be:
ux = − cos

(
2π(x+ 1

2 )
)

sin
(
2π(y + 1

2 )
)
exp(−8π2t)

uy = sin
(
2π(x+ 1

2 )
)

cos
(
2π(y + 1

2 )
)
exp(−8π2t)

p = − 1
4 cos(4π(x+ 1

4 )) + cos(4π(y + 1
2 )) exp(−16π2t)

(35)

We set tmax = 0.01 the final time of the simulation. The time step is chosen with respect to the CFL
(33) with C = 1

2 . The errors in velocity and pressure at the final time are plotted in Figures 11 12 against
the mesh step. We can see that the three schemes converge with order 2 for εMps

0 (uh) and 1 for εMps
0 (ph) as

expected.

10−2 10−1
10−4

10−3

10−2

10−1

1

2

h

ε 0
(u
h
)

εCR0 (uh)

εTrio0 (uh)

εMps
0 (uh)

Figure 11: ε0(uh) for (u, p) ∈ (35).
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101

1
1
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ε 0
(p
h
)

εCR0 (ph)

εTrio0 (ph)

εMps
0 (ph)

Figure 12: ε0(ph) for (u, p) ∈ (35).

8 Conclusion and perspectives

The purpose of this work is to present a new discretisation for the gradient of pressure. This scheme presents
similar result to P1

nc− (P 0 +P 1) discretization. However, some points have been left out of the scope of this
work and deserve further investigation:

• On the boundary, the continuity of the gradient flows can not be applied. We need boundary conditions
to complete the system of elimination of the auxiliary unknowns (22). If the problem has, for the
pressure:

- Dirichlet boundary condition: we can evaluate the value of the auxiliary unknowns on the bound-
ary.

- Neumann boundary condition: we can evaluate the value of normal component of the pressure
gradient on the boundary.

Otherwise, we can keep the auxiliary unknowns and complete the problem with other equations.

• The section 3 shows that our scheme provides a benefit to the classic P1
NC − P 0 discretisation but

P1
nc − (P 0 + P 1) has an additional superconvergence case. This property disappears in 3D, unless we

add pressure degree of freedom on edges which turns out to be costly in computer memory. In that case,
the MPFA scheme and P1

nc − (P 0 + P 1) give comparable results but with a duality between scheme
stencil and memory footprint. A study will be carried out to compare the efficiency of the two schemes.

• The scheme seems numerically stable but the inf-sup condition has still not been proven.

• The scheme is currently in development in the CEA thermohydraulic code TrioCFD and its implemen-
tation will allow to realise more test.

• The FECC scheme is an other gradient discretization scheme, which has similar properties to the MPFA
scheme and can handle more general meshes [22]. The same approach can be used to develop a new
scheme on polyhedral meshes for the Navier-Stokes problem.
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