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Abstract
Within the framework of Best-Estimate-Plus-Uncertainty approaches, the assessment

of model parameter uncertainties, associated with numerical simulators, is a key element
in safety analysis. The results (or outputs) of the simulation must be compared and
validated against experimental values, when such data is available. This validation step,
as part of the broader Verification, Validation and Uncertainty Quantification process,
is required to ensure a reliable use of the simulator for modeling and prediction. This
work aims to define quantitative criteria to support this validation for multivariate out-
puts, while taking into account modeling uncertainties (uncertain input parameters) and
experimental uncertainties (measurement uncertainties). For this purpose, different sta-
tistical indicators, based on likelihood or statistical depths, are investigated and extended
to the multidimensional case. First, the properties of the criteria are studied, either ana-
lytically or by simulation, for some specific cases (Gaussian distribution for experimental
uncertainties, identical distributions of experiments and simulations, particular discrepan-
cies). Then, some natural extensions to multivariate outputs are proposed, with guidelines
for practical use depending on the objectives of the validation (strict/hard or average val-
idation). From this, transformed criteria are proposed to make them more comparable
and less sensitive to the dimension of the output. It is shown that these transformations
allow for a fairer and more relevant comparison and interpretation of the different criteria.
Finally, these criteria are applied to a code dedicated to nuclear material behavior simu-
lation. The need to reduce the uncertainty of the model parameters is thus highlighted,
as well as the outputs on which to focus.

Keywords— Uncertainty quantification, Model validation, Statistical criteria, Experimental re-
sults, Likelihood, Depth statistics, Multivariate output.

1 Introduction
For several decades, numerical simulators have become fundamental tools for understanding, modeling
and predicting physical phenomena. Large simulation models (or computer codes) implement com-
plex mathematical models and have been successfully used in risk and safety assessments, in design
optimization, or performance assessment of industrial systems. For nuclear engineering applications,
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physical experiments are often costly, limited or even sometimes impossible, therefore simulation is of
prime interest. Confidence in the simulation result, in the sense of the credibility of the prediction with
respect to phenomenological reality, relies among other things on the fidelity of the physical modeling,
the validity of the mathematical algorithms implemented to build the numerical model, and finally on
the management of the uncertainties of the simulator’s input parameters. These different components
are taken into account in VV&UQ (Verification, Validation and Uncertainty Quantification) processes
[National Research Council, 2012]. More precisely, the verification [Oberkampf and Roy, 2010] aims
to determine whether the numerical model correctly implements the mathematical description and
provides a sufficiently accurate approximation to the theoretical solution of the physical equations.
Then, the validation process [Oberkampf and Roy, 2010] raises the question of whether the numerical
simulator faithfully reproduces the reality that it models, with respect to the model’s intended uses
[ASME, 2009, 2019, Oberkampf and Trucano, 2002].

Moreover, simulation models, even the most representative and faithful to physical reality, of-
ten take a large number of uncertain (or not well known) input parameters. These parameters can
characterize the studied phenomenon or be related to its physical and numerical modeling. Vali-
dation is therefore closely linked to the issue of assessing the uncertainties (also called Uncertainty
Quantification) of simulator’s input parameters. Besides, this UQ step is a key element in safety
analysis for nuclear power plants, and has become of prime importance in the so-called Best-Estimate-
Plus-Uncertainty (BEPU) methodology [Baccou et al., 2020, Wilson, 2013]. UQ aims to quantify
how uncertainties in model input parameters affect simulation results, and more specifically to quan-
tify the resulting uncertainty in the quantities of interest predicted by the simulator and related to
decision-making issues. For this, the UQ process is based on two main steps: the identification of
input uncertainties and their propagation within the simulator. To carry out these steps, most ap-
proaches used in engineering rely on statistical inference and call for Monte-Carlo methods. The most
generic of these consists in drawing a random sample of the probability distribution of the inputs, and
launching the corresponding simulations to obtain a sample for the output(s). This UQ process is in
fact part of a more general framework for dealing with uncertainties in numerical simulations, the key
steps of which are summarized by Figure 1, extracted from Iooss [2019]. The diagram explains the
interconnections between the various steps, which include the V&V processes. This global approach is
now widely adopted in engineering for dealing with uncertainties and deploying the VV&UQ process
[Baccou et al., 2020, De Rocquigny et al., 2008, Ghanem et al., 2017].

Let’s take a brief overview of the main steps. First, the problem is specified: this consists in defin-
ing the system under study (model, simulator or measurement process), identifying uncertain or fixed
input variables, as well as the system response quantities of interest. Step B then aims at quantifying
the input uncertainties. This quantification of input uncertainties can be supported by expert opinion
or available data, or be determined by solving an inverse calibration or assimilation problem. Inverse
methods can also be used to calibrate a model (Step B’, performed simultaneously or not with the
quantification step). This process consists in adjusting a set of input parameters in order to maximize
the agreement of the simulated predictions with corresponding experimental data. Then, at Step C,
the input uncertainties are propagated: the objective is to quantify how input uncertainties affect the
output(s) predicted by the simulator, and more precisely the quantity of interest. Complementary to
Step C, sensitivity analysis aims at studying the impact of each sources of input uncertainties on the
quantities of interest.

Hence, to allow a reliable use, the simulators, including their uncertain inputs, have to undergo a
thorough, rigorous, and extensive V&V process (which appears in Step A’ and B’, respectively). We
focus here on the validation step which is mostly based on comparison with experimental data. More-
over, the term “simulator” will refer in all that follows to the calculation code with its uncertain model
parameters (and thus their associated variation ranges), these uncertainties having been quantified in
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Figure 1: General scheme for the methodology of uncertainty treatment in numerical simulation,
slightly modified from [Iooss, 2019], courtesy of the author Bertrand Iooss (EDF R&D).

step B, and possibly refined in a calibration step. In this framework, the assessment of consistency
between simulations and reality must first take into account two types of uncertainty: that of the
simulator inputs and that of the experimental measurements. Second, the comparison between simu-
lations and experiments under uncertainties raises the question of defining quantifiable validation (or
consistency) indicators. These indicators must make it possible to go beyond a sometimes subjective
and complex graphical analysis, particularly in the case of multivariate or functional outputs. They
must be adaptable to the different types and dimensions of experimental data available. In addition,
it requires a clear definition of the meaning and purpose of the validation, which may differ depending
on the application and the context considered. Should the simulator “encompass” the experiments
(including their uncertainties), or, conversely, should it rather produce simulations that would have
a high probability of being observed experimentally? The second objective will be addressed here, as
explained in the following, but the proposed indicators can be directly adapted for the first objective
(cf. Section 2.1). The objective may also be to compare two simulation models, without necessarily
considering experimental data (one of the simulators would be the reference simulator). It is therefore
necessary to define precisely the problem and the objective of the validation process, and to adapt
the indicators proposed in this work accordingly. Besides, several versions of the indicators will be
proposed in this work but only some of them will be used for the considered application.

1.1 Validation by comparison with experimental results and associ-
ated issues

First, we recall the following definitions proposed by the SAPIUM report [Baccou et al., 2020] on good
practice guidance:
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• “Validation (of input uncertainties): the process involving a comparison between the results of
input uncertainty propagation and experimental data to determine the degree to which input
uncertainties are compatible with an intended use.

• Validation (of simulation model): the process involving a comparison between the results of
a simulation model and the experimental data to determine the degree to which a simulation
model is compatible with an intended use.”

We focus here on the first definition and associated notions. Furthermore, we consider a prob-
abilistic framework where these uncertainties are modeled by fully or partially known probability
distributions [Helton, 1997, Oberkampf et al., 2001]. In practice, information on the distributions
of simulations and experiments usually differs. The former can be based on available data, expert
opinions or bibliographic databases, while the latter are mostly known only through random sam-
pling. More precisely, the uncertain inputs of the simulator are here randomly drawn according to
their (assumed) probabilistic distributions and the corresponding simulator output(s) are computed
(uncertainty propagation based on Monte-Carlo approach).

Among the available literature on validation indicators [Liu et al., 2011], the OECD/NEA SAPIUM
project highlights several drawbacks and shortcomings of usual metrics [Baccou et al., 2020]. For
example, [Oberkampf and Barone, 2006] simply proposes to use regression techniques to quantify
the difference between experimental results whose measurement is assigned a random error and the
simulated response, over a certain validation domain. Other authors address the validation question by
checking whether the experimental data falls within the uncertainty intervals of simulations, regardless
of the position of the experimental value within the interval. So-called calibration indicators are thus
computed. These indicators therefore check that the experiments are plausible with respect to (w.r.t.)
the simulations, and not the reverse. Alternatively, the simulations interval can be divided into sub-
intervals and the uniform location of the experimental data can be assessed using hypothesis tests such
as the χ2-test. Based on the same idea of comparing the probability distribution of the simulations
with that of the experimental data, statistical tests of Goodness-Of-Fit which estimates a discrepancy
(or dissimilarity) measure [Cha, 2007] between both distributions can be used. In the same vein, area
metric indicators [Ferson and Oberkampf, 2009] can be built. However, comparing the two probability
distributions in this way is not necessarily desirable or relevant to the validation objective considered
here. For example, if the uncertainty around the measurement completely encompasses the (much
sharper) distribution of the simulations, a dissimilarity measure would lead to reject the adequacy
of both distributions while the expected conclusion should be that there is an agreement between
the experiments and simulations. Indeed, in this situation, the simulations are consistent with the
available experimental data: the information provided by the latter is probably too imprecise and does
not allow to detect a discordance and/or an inaccurate simulated model.

Moreover, the dissimilarity-measures-based approaches do not provide a ranking of simulations
by order of agreement with the experimental results. This possibility is of particular interest for
identifying a group of highly consistent simulations and, on the contrary, some incompatible simula-
tions. Furthermore, the extension of most of the aforementioned indicators or metrics to multivariate
or functional data, or data of different types, in order to provide a unique aggregated result is not
straightforward.

Finally, as previously indicated, the information on the distributions of simulations and experi-
ments differs in our application context: the first one is sampled and must be estimated, while the
second one is often assumed to be a given parametric analytical model (e.g. Gaussian centered on
the measured value, with a standard deviation given by the accuracy of the measuring equipment).
Validation indicators must therefore be adapted to these differing types of knowledge.
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1.2 Objectives and scope
This work aims to build validation indicators that overcome some of the aforementioned limitations

and that are adapted to the validation issues in our application context. As in Baccou et al. [2020],
a validation indicator is defined as a mathematical operator that compares the quantity of interest
predicted by the simulator with its associated uncertainty (uncertainty coming from the quantified
uncertainties of the simulator inputs) with the same quantity of interest but coming from experimental
data. For this, [Marie et al., 2019] have recently proposed to use a likelihood-based indicator, and
applied it to the validation of sodium fast reactor simulation tools. The work proposed here aims to
go further by studying indicators based on the notions of likelihood but also statistical depth, and to
assess how they can be adapted for validation with multivariate outputs. A key element in this work is
also that it does not consider in a symmetric way the experimental and simulation uncertainties. The
angle chosen here is that the experimental probability distribution constitutes the reference distribu-
tion that defines the admissible simulations, and those too extreme to model reality correctly. From
this, we want to answer the following question: “Is the simulation plausible w.r.t. the information
provided by the experiments?”. The objective is therefore to assess the consistency of the simulated
outputs, individually and conjointly, with the experimental data.

Our aim is to answer these questions within a very precise framework, which now needs to be
more specified. First of all, with regard to the experimental data, we consider that the measured
quantities are the same as those simulated, and that the experimental uncertainties relate only to
these quantities of interest. In other words, any errors in the experimental conditions (also known as
control variables) are not taken into account. It is also assumed that the experiment is repeatable, and
that there is no post-processing of the measured data (and therefore no additional error generated):
the quantities of interest are measured directly. Moreover, as previously mentioned, a probabilistic
modeling is adopted. Inherent issues such as the choice between probabilistic or extra-probabilistic
modeling, the presence or absence of data to quantify the experimental error, or metrological concerns
are beyond the scope of this paper and are not addressed here.

Concerning now the uncertainty of simulated data, we do not take into account the randomness
resulting from rounding errors, numerical resolution schemes, or the use of Monte Carlo-type algo-
rithms. We only consider uncertainties directly imputable to model input parameters. For a given
set of parameters, the simulation result is therefore assumed to be constant and that there is no
point in repeating a simulation point. In practice, even if this is not strictly the case, this simplify-
ing assumption is generally acceptable, the code verification step having already been achieved. The
uncertainties relating to the numerical precision and resolution can then be considered of negligible
influence compared to the uncertainties of the model parameters. The only exception might be the
case of stochastic simulators, used in neutronic simulation for instance. However, this type of uncer-
tainty will be implicitly conveyed in a Monte Carlo approach used to generate the inputs/output(s)
sample of simulations (which is the case here).

1.3 Organization of the paper and notations
The rest of the document is organized as follows. Section 2 proposes some criteria which rely on
the statistical likelihood of simulations. These criteria are first defined for the one-dimensional case
before being extended to the multivariate case. Another type of criteria based on the notion of depth
statistics is studied in Section 3 and adapted to our validation purpose. In particular, transformed
versions are proposed for an easier comparison and analysis of likelihood- and depth-based criteria,
especially regardless of the dimension of the output. Section 4 proposes an application of some of the
criteria to a nuclear test case that simulates the behaviour of a nuclear material under irradiation.

Before that, we introduce a few notations for numerical simulator and experimental results. The
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numerical model is represented by the relation:

M : X −→ Y
X 7−→ M(X) = Ysim,

where X = (X1, . . . , Xl)⊤ and Ysim are respectively the l uncertain inputs and the output. As
part of the probabilistic approach, the l inputs are assumed to be continuous random variables with
known joint probability distributions. Consequently, Ysim is also a random variable defined in a
measurable space Ysim with probability distribution denoted PYsim . It is also assumed to be continuous
with probability density function (PDF) denoted fYsim . This distribution is unknown and in the
framework of a Monte-Carlo approach, only observations (or realizations) of M are available. It is
therefore assumed that we have a sample of size n of inputs and associated outputs

(
X(m), Y

(m)
sim

)
1≤m≤n

where Y
(m)

sim = M(X(m)) for m = 1, . . . , n. The output can be 1-D or multidimensional (vector of d
components), denoted Ysim and Ysim, respectively.

In addition, it is assumed that some experimental results are available, including quantities of in-
terest similar to the outputs computed by the simulator. These experimental data are also uncertain
due to measurement error and are denoted Yexp and Yexp for the 1-D and multivariate cases, respec-
tively. Evolving in measurable space Yexp, their probability distribution denoted PYexp is assumed to
be known, continuous and of PDF fYexp .

2 Criteria based on likelihood of simulations
For a one dimensional output, a graphical comparison can be done by comparing each simulation
ysim with the PDF of the experimental data fYexp . Ideally, it is hoped that a large proportion of
ysim has a high probability of being observed experimentally. From this point of view, considering a
likelihood-based criterion seems relevant to reflect the capability of the simulator to correctly predict
the reality, even if some of its input parameters are not well known.

2.1 Initial formulation for 1-D output
To quantify the likelihood (and compatibility) of each possible simulation ysim w.r.t. the experimental
distribution, Marie et al. [2019] have proposed the following criterion defined on [0, 1]:

C(ysim|PYexp) = Proba
[
fYexp(Yexp) ≤ fYexp(ysim)

]
=
∫

Yexp

1fYexp (y)≤fYexp (ysim)(y)fYexp(y)dy, (1)

where 1A(y) is the indicator function defined by 1A(y) = 1 if y ∈ A or y satisfies A, and 0
otherwise. C(ysim|PYexp) is the estimated probability that Yexp takes a value less likely (i.e. “less
probable”) than ysim. A very low C(ysim|PYexp), e.g. lower than 5%, is a significant presumption that
a simulation result is unlikely to be physically observed. Conversely, C(ysim|PYexp) is one when ysim

corresponds to the most probable experimental value, which translates a high compatibility between
the simulations and the experimental results. This criterion can be generalized to any type of variable
Yexp (and ysim): scalar, vectorial, functional, etc. as long as a probability distribution is defined to
characterize its uncertainty.

Note that C can be more generally used to compare any couple of variables with given probability
distributions. It could otherwise be formulated as C(yexp|PYsim) for assessing the concordance of an
experimental result with the distribution predicted by the simulator. This last formulation differs
from Eq. (1), fYexp being replaced by fYsim . It can be considered in the context of the qualification of
experimental results by simulation (validation of an experimental device by simulation via a digital
twin, for instance).
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2.2 1-D Criterion for a set of simulations and Cα-trimmed regions
As Ysim is a random variable, so is C(Ysim|PYexp). To summarize its distribution into a global quan-
titative indicator of validation, the median value denoted Cmed

Ysim|PYexp
can be considered. Other global

indicators can obviously be derived from the distribution of C(Ysim|PYexp), according to the purpose
and the way of thinking about the validation of the simulator with experiments (see [Marie et al.,
2019]).

For α ∈ [0, 1], we can then define the sets of simulations ysim that have a C(ysim|PYexp) criterion
of at least α. This forms a first nested family of Cα-trimmed regions denoted:

RCα,1
PYexp

= {ysim : C(ysim|PYexp) ≥ α}. (2)

RCαmax,1
PYexp

with αmax the maximal value obtained on the set of simulations therefore defines the set of
more likely simulations. More generally, RCα,1

PYexp
provides a C(•|PYexp)-based order statistic for the

simulations and induces an outlyingness function.
Some RCα,1

PYexp
-based regions might contain all the simulations while others contain none. To avoid

this and further ranking the observed simulations, another trivial solution to define nested regions is
to rank the set of n simulations according to the value of their criterion:

RCα,2
PYexp

= {ỹ
(⌊αn⌋+1)
sim , ỹ

(⌊αn⌋+2)
sim , . . . , ỹ

(n)
sim}, (3)

where ⌊x⌋ denotes the integer part of x and
(
ỹ

(m)
sim

)
m∈{1,...,n}

the ordered values of (ym
sim)m∈{1,...,n} such

that C(ỹ(1)
sim|PYexp) ≤ . . . ≤ C(ỹ(n)

sim|PYexp).

2.3 Analytical computation and distribution for some specific cases
First of all, if we consider the particular case where Ysim and Yexp are identically distributed, it can
be demonstrated that the criterion C(Ysim|PYexp) follows a uniform distribution on [0, 1], (under some
assumptions on the distribution of fYexp(Ysim)). See A.1 for the demonstration and details.

Considering now the case of two Gaussian distributions, we obtain:

C(ysim|PYexp) = 1 − Fχ2
(1)

(ysim − µexp

σexp

)2
 (4)

where µexp and σexp are respectively the mean and standard deviation of Yexp, and Fχ2
(1)

being the
cumulative density function (CDF) of the chi-squared distribution with one degree of freedom. From
this, the CDF of the criterion, denoted FC , can then be expressed as follows:

FC(x) = 1 − Fχ2
(1),(µsim−µexp)2

[
σ2

exp

σ2
sim

× F −1
χ2

(1)
(1 − x)

]
(5)

where µsim and σsim are respectively the mean and standard deviation of Ysim, and Fχ2
(1),(µsim−µexp)2

is the CDF of a non-central chi-squared distribution with non-centrality parameter (µsim − µexp)2

and with one degree of freedom. See A.2 for the demonstration. Eq (5) makes it possible to better
understand (in the Gaussian case) the evolution of the criterion distribution according to a shift
between the means (model bias) or a dilation between the variances (impact of modeling uncertainty
and/or measurement errors).
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2.4 Proposed extensions to multivariate output
In the multivariate case, the output consists of d variables of interest forming a d-dimensional vector
Ysim = (Ysim,1, . . . , Ysim,d)⊤ and Yexp = (Yexp,1, . . . , Yexp,d)⊤, for the simulation and the experiment
respectively. This vector can be composed of a similar physical variable but observed for different
experimental conditions, or of a set of several physical variables of different units and order of magni-
tude. The criterion C(ysim|PYexp) can be naturally extended with the multivariate density of fYexp

and will be given for every observation ysim ∈ Rd by:

Cd(ysim|PYexp) = Proba
[
fYexp(Yexp) ≤ fYexp(ysim)

]
. (6)

This first criterion will thus address this question: is my simulation consistent with the experimental
results on all the variables of interest? It is easy to understand that a single output that deviates
completely from the experiment would seriously degrade the value of the criterion (this simulation
having a very low statistical likelihood w.r.t. the experimental PDF).

If one wishes to further assess whether the results are correctly represented on average, it is worth
considering other criteria. Moreover, since in most cases the components of Yexp can be assumed to
be independent random variables1, we propose to consider the one-dimensional criteria calculated for
each quantity of interest and then to aggregate the information that they provide. This can be done
for example by considering the mean value of the one-dimensional criteria:

Cmean(ysim|PYexp) = 1
d

d∑
i=1

ci (7)

where ci = C(ysim,i|PYexp,i) denotes the one-dimensional criterion computed for the ith component.
Other aggregation functions, not considered here for the sake of brevity, can obviously be considered
depending on the purpose of the validation (min, product or weighted product function, e.g.). As
in the one-dimensional case, global indicators, such as the median value, can then be considered to
summarize the distribution of Cd or Cmean. Nested family of Cd- or Cmean-trimmed regions can also
be defined (in a similar way to Eqs. (2, 3)).

2.5 Distribution of multivariate criteria for some specific cases and
proposed transformations

Considering the reference case where Ysim ∼ Yexp, Cd still follows a uniform distribution as in the
one-dimensional case (Figure 2(a) in blue solid line). If we further assume that the random variables
(Yexp,i)I∈{1,...,D} are independent, we can show that Cmean follows a Bates distribution [Johnson et al.,
1994] defined on interval [0, 1], as a mean of d independent uniform variables. While its mean is con-
stant, E[Cmean(Ysim|PYexp)] = 0.5, its variance depends on dimension d since VAR[Cmean(Ysim|PYexp)] =

1√
12d

. This may not be desirable for a fair comparison of the predictive quality (on average) of two
groups of quantities of interest, that are of different dimension d for instance. Figure 2(b) illustrates
this: the PDF of Cmean are drawn in solid lines for different d from 5 to 40.

In addition, the result obtained in the case of a divergence between Ysim and Yexp is also plotted
on the graphs (Figures 2(a) and 2(b), in dotted lines). More precisely, Ysim still follows a centered
Gaussian distribution but differs from Yexp by the variance over 20% of its components. A dilation
of 100%, i.e. a standard deviation twice as large as that of Yexp, is considered for the probability
distribution of these components. In the case of an average validation objective for a group of outputs,

1Most of the time, the different experimental quantities of interest (temperature, pressure, etc.) are evaluated
using different measuring instruments, the resulting measurement errors are thus independent. This assumption
can also be made for the same physical quantity measured at different points or times for example.
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it would be desirable to have, for the same rate of disturbed components, similar distributions of criteria
(and thus a similar deviation from the reference case) regardless of d. It is clear that Cd does not exhibit
this behavior at all, which is logical and consistent with what this criterion controls (see Section 2.4).
Concerning Cmean, even though the dissimilarity between the PDFs of the perturbed and reference
cases increases less rapidly, it remains dependent on d for the same rate of perturbed components,
which is more problematic for this criterion since it is dedicated to the evaluation of the coherence on
average. One might wrongly think that there is simply a translation (independent of d) between the
PDFs of the perturbed and reference cases but this is not actually the case. This can be explained by
the relatively low percentage of dilated components (here 20%). The higher this percentage, the more
we would see a distribution increasingly different from that of Bates. In fact, it can be shown that
Cmean in the case with dilation no longer follows a Bates distribution, as 20% of the individual ci (those
related to the dilated Ysim components) no longer follow a uniform distribution. More precisely, their
distribution contracts towards 0 as the variance of the Ysim components is greater than that of the
corresponding Yexp components. Note that the associated PDF can be derived analytically from the
CDF given by Equation 20 in A.2. So, only the difference between the means of the two distributions
of Cmean for the reference and dilated cases is independent of d as it only depends on the percentage
of dilated components.

So, to allow a PDF of Cmean less sensitive to d, and independent from it at least in the refer-
ence case (two identical distributions), we propose to consider two transformations of Cmean that
allow a PDF independent of d, at least in the reference case (two identical distributions). The first
one consists in applying the CDF of the Bates distribution (denoted FBates,d) to Cmean, as follows:
C̃Bates

mean = FBates,d(Cmean). The transformed criterion therefore follows a uniform distribution, under
the hypothesis Ysim ∼ Yexp. This can be referred to as the probability integral transform2 (or univer-
sality of the uniform). This transformation paves the way for a simplified interpretation and an easier
comparison to the reference case, whatever the dimension d. Perfectly relevant when Ysim ∼ Yexp,
C̃Bates

mean also remains well suited when most of the individual ci criteria are high (the simulations are
on average very consistent with the experiment for all the outputs of interest). On the other hand, it
can become too penalizing as soon as a significant number of individual criteria are low, in the sense
that it compresses the distribution too much, making comparisons and interpretation difficult. Figure
2(c) illustrates this analysis. Moreover, as for Cd, the PDF of C̃Bates

mean (Ysim|PYexp) for the same rate of
perturbed Ysim components still depends on d, but to a lesser extent. The use of C̃Bates

mean is therefore
not recommended for comparing groups of different and large dimension, especially in the case of large
discrepancies between simulations and experimental results.

To address larger deviations while trying to get rid of the dimension, another solution is to trans-
form Cmean to only make its mean and variance (for the reference case) independent of d, and not its
entire distribution. For this, we propose the following linear transformation:

C̃scal
mean(ysim|PYexp) = 1√

d

d∑
i=1

ci −
√

d − 1
2 . (8)

The distribution of C̃mean under Ysim ∼ Yexp thus obtained is therefore very close for any d, with a
constant mean and variance, respectively E[C̃scal

mean(Ysim|PYexp)] = 1
2 and VAR[C̃scal

mean(Ysim|PYexp)] =
1
12 . Note that the support of the distribution is

[
−

√
d−1
2 ,

√
d+1
2

]
and still depends on d (see Figure 2(d),

in solid lines). Moreover, we can see that the perturbation of 20% of components yields a quite similar
PDF for d = 5 or 10. The divergence with the reference case then increases for higher d (d = 40, e.g.)
but to a much lesser extent than for the other criteria. This behavior has also been observed for other

2It relates to the result that i.i.d. realizations of a random variable from any given continuous distribution
can be converted to i.i.d. realizations of a variable having a standard uniform distribution.
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cases of divergence (e.g. on the mean), not shown here for the sake of brevity. Applicable to broader
discrepancy cases, the criterion C̃scal

mean therefore allows for a fairer comparison regardless of d.

In summary, several likelihood-based criteria have been proposed to deal with multivariate output:
Cd as the natural extension of the 1-D criterion, to be reserved for the fine validation of all the
quantities of interest, Cmean for a validation on average which makes sense in the case of independent
experimental uncertainty, and two transformed versions of Cmean to allow for fair validation (still
on average) and comparison between multidimensional outputs, regardless of their dimension. The
former should be reserved for small divergences between simulations and experimental results, while
the latter could address larger ones. Of course, a selection of the most relevant criteria has been
proposed, but other versions could be considered.

(a) (b)

(c) (d)

Figure 2: Estimated PDF of likelihood-based multivariate criteria for dimensions d = 5 to 40,
and Yexp ∼ Nd(0, Id). The reference case Ysim ∼ Yexp is plotted in solid lines. The case where
Ysim also follows a d-normal distribution but with a different standard deviation on 20% of the
components is plotted in dotted lines. The criteria represented here are Cd (Eq. 6), Cmean (Eq.
7), C̃Bates

mean and C̃scal
mean (Eq. 8).
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3 Criteria based on the statistical depth of simulations
3.1 Brief review and selection of statistical depths
The notion of statistical depth was first introduced by Tukey [Tukey, 1975] as a measure of the
centrality of a point among a data set in Rd, generalizing the notion of median to the multivariate
case. The concept of data depth has then been extended for the ordering of multivariate data, and
different depth functions have been proposed in order to measure how “deep” a point is relative to a
given data cloud. Many depth functions have been proposed for various application areas and have
different characteristics regarding robustness, high dimensional computability, and ability to reflect
asymmetries of the distributions (See Mosler [2013] for a complete review and a relevant classification
of depth functions). Among them, we focus here on some usual distance-based and halfspaced-based
depths:

• Mahalanobis depth is a distance-based depth function given by:

DMah(ysim|PYexp) = (1 + (ysim − µexp)⊤ · Σ−1
exp · (ysim − µexp))−1, (9)

where µexp ∈ Rd and Σexp ∈ Md(R) are the mean vector and covariance matrix of Yexp,
respectively. Σexp is assumed to be nonsingular and consequently invertible.

• Tukey depth is a halfspace-based combinatorial depth which is defined as the minimum prob-
ability mass carried by any closed halfspace containing ysim:

DT uk(ysim|PYexp) = inf {Proba(H) : H is a closed halfspace, ysim ∈ H} . (10)

• Spherical depth is defined to be the probability that the point ysim is contained inside a
random closed hyperball defined by a pair of points sampled from the reference distribution
PYexp . More precisely, the spherical depth is expressed as:

DSph,init(ysim|PYexp) = Proba [ysim ∈ S(Y1, Y2)] (11)

where Y1 and Y2 are two independent random vectors in Rd both following PYexp , and
S(Y1, Y2) designates the unique, closed hypersphere formed by Y1 and Y2. We propose here a
modified version of the spherical depth where a preliminary standardization based on the inverse
square root of the covariance matrix is applied:

DSph(ysim|PYexp) = Proba
[
Σ−1/2

exp ysim ∈ S(Σ−1/2
exp Y1, Σ−1/2

exp Y2)
]

. (12)

In a nutshell, this transformation consists in considering the probability that ysim belongs to
the random closed ellipsoid obtained by deforming the hypersphere with the covariance matrix-
based affine transformation. Consider the case where one component of Yexp, the ith e.g., has a
high measurement uncertainty while other components may be more precise. A simulation ysim
which is physically unlikely according to only one component ysim,j with j ̸= i, will still have a
high spherical depth. This problem is avoided by the standardization proposed in Eq. (12).

Note that the spherical and Tukey depths lie in [0, 0.5] as opposed to [0, 1] for the Mahalanobis
depth. Similarly as for the likelihood-based criteria in Section 2.2, global indicators, such as the median
value, can be calculated to summarize the distribution of any depth-based criterion D(Ysim|PYexp).
Nested family of Dα-trimmed regions can be defined in a similar way.

It is noteworthy that a connection can be made between the likelihood-based criterion C(ysim|PYexp)
defined by Eq. (1) and the family of “Type D depths” defined by Zuo and Serfling [2000]. For a given
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point z and a probability measure PX, the authors define them as the minimum probability mass of
PX carried by a set containing the point z and belonging to a given class of closed subsets in Rd.
Such kind of depth can be interpreted as the “tailedness” of z w.r.t. PX. A direct link can therefore
be made with criterion Cd(ysim|PYexp) for z = ysim and PX = PYexp by considering for the closed
subsets, the subsets of points with a PDF smaller than that of ysim.

3.2 Analytical distribution for some specific cases and proposed
transformations

Considering the specific case where Yexp follows a multivariate Gaussian distribution Nd(µexp, Σexp),
we obtain for the Tukey depth:

DT uk(ysim|PYexp) = 1 − Φ
[∥∥∥Σ−1/2

Yexp
(ysim − µexp)

∥∥∥] ,

where Φ denotes the CDF of the standard normal distribution (demonstration given by B). In addition,
if we assume the same probability distribution for the two variables Ysim ∼ Yexp, we obtain the
following PDF for the Mahalanobis and Tukey depths:

fMah,Ysim∼Yexp(x) = 1
x2 fχ2

(d)
( 1
x

− 1) ∀x ∈ [0, 1], (13)

fT uk,Ysim∼Yexp(x) = 1
fN (0,1)

[
Φ−1

N (0,1)(1 − x)
] · fχ(d)

[
Φ−1

N (0,1)(1 − x)
]

∀x ∈ ]0, 0.5], (14)

where fN (0,1), fχ2
(d)

and fχ(d) respectively denote the PDFs of the standard normal, chi-squared and
chi distribution with d degrees of freedom (for the latter two). Demonstrations are provided in B.2
and B.3 for Mahalanobis and Tukey depths, respectively. Note that for d = 1 (only), the Tukey depth
follows a uniform distribution.

Figures 3(a) and 3(b) illustrate these PDFs for different d from 5 to 40 (in solid lines). The
perturbed case (defined as in Figure 2) is also represented. Similar plots can be obtained by intensive
simulation for spherical depth (not given here for sake of brevity). As previously for likelihood-based
criterion Cd, the PDFs of the depth criteria have the disadvantage of having a very different shape
depending on d, even when Ysim ∼ Yexp.

To mitigate this dependence when Ysim ∼ Yexp, the criteria can be first transformed by using
their CDFs under the reference case:

D̃CDF
• (ysim|PYexp) = FD•,Ysim∼Yexp (D•(ysim|PYexp)), (15)

where FD•,Ysim∼Yexp is the CDF of depth criterion D• when Ysim ∼ Yexp. This CDF can be com-
puted analytically for Mahalanobis and Tukey depths when Yexp follows a multivariate Gaussian
distribution (cf. formulas given by Eq. (24) Eq. (25) in B.2 and B.3, respectively), or otherwise by
intensive simulation. Note that under the assumption of a Gaussian distribution for Yexp, the trans-
formed Tukey depth given by Eq. (15) is actually equivalent to the criterion Cd defined by Eq. (6).
Demonstration is given in C. This result is true for any given simulation vector ysim ∈ Rd and any
dimension d. Unfortunately, the D̃CDF

• transformation does not alleviate the impact of d when Ysim
follows a perturbed distribution with the same percentage of perturbed components, as illustrated for
Mahalanobis depth by Figure 3(c). As soon as d increases, the PDF of D̃CDF

• compresses rapidly
around very low values of the criterion. This also raises a problem of numerical accuracy on high-
dimensional data and with very large deviations. This behavior, also observed for the other CDF-based
transformed depths, is understandable as depth is a measure of centrality. So the more the simulation
deviates on a large number of components, the less central the simulation becomes. For this reason,
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it is questionable whether the depth criteria should be modified to remove their d-dependence and
cope with larger dissimilarities. At least, such modifications should be reserved for comparison (of
two groups of variables for example or the predictions of two simulators) rather than for validation
stricto sensu. To this end, we have considered several more or less successful modifications. One of
them, relevant enough for the Mahalanobis depth, is given by:

D̃scal
Mah(ysim|PYexp) = d + 1

2 DMah(ysim|PYexp). (16)

This transformation is motivated by the analysis of the PDF of DMah under the reference case and
the approximation of its moments. The corrective factor d+1

2 has been chosen so that the mean value
tends towards 0.5 with d, when Ysim ∼ Yexp. As illustrated by Figure 3(d), the mean value of D̃scal

Mah

is thus less sensitive to d for the reference case, as well as for the case with dilation.

Several validation criteria from depth measures have been proposed for the validation of a simulator
with multidimensional outputs, some of which have been adapted (spherical depth). They allow for a
joint validation of all the outputs by assessing whether, for a given simulation, all the predicted values
are central to the experimental distribution. They can naturally be used on the one-dimensional
case. These depth-based criteria are geometric in nature and differ from the likelihood criteria. But
it is clear that these two approaches will be very close when Yexp follows a unimodal distribution,
and in particular a Gaussian distribution. We notably show in this case the equivalence between Cd

and some transformation of Tukey depth. In the more general case, we have also established relevant
connections between the likelihood-based criterion Cd and family of “Type D depths”. Moreover, some
transformations of the depth-based criteria have been proposed for a fairer validation and comparison
regardless of the dimension of the output. However, both the original and the transformed depth-
based criteria assess strict validation of all predicted outputs: they will quickly become null when d
increases in the case of significant deviations of the simulation from the experimental results, even on
a small number of components.

4 Application to the simulation of the behavior of a nu-
clear material under irradiation conditions

To illustrate the practical application and value of some of the indicators previously proposed, we
consider here a simulator of the behaviour of a material in irradiation conditions. This simulator
models the various physical phenomena occurring in the nuclear material and provides output quan-
tities characteristic of its evolution. For reasons of industrial confidentiality, the simulator (which will
be referred to as MNuclMat) and the modeled phenomena are not detailed. The MNuclMat model
depends on several modeling parameters, some of which cannot be determined experimentally. We
consider here about ten uncertain conceptual parameters without prior information on their proba-
bility distribution. Only a variation range and a uniform distribution over this range are assumed for
each input parameter.

To validate the MNuclMat simulator in steady state conditions and within a BEPU approach
(i.e. including its uncertain parameters), an experimental database of about 40 experimental objects
is considered. Post irradiation examinations performed at CEA give 3 types of physical quantities
measured. The results of these quantities are not available for all the experimental objects. More
precisely, we have a total of 94 variables of interest consisting of 40, 41, and 13 measures of type 1,
2, and 3 respectively. In addition, a measurement uncertainty is associated with each observed value:
independent truncated normal distributions with known mean and standard deviation are assumed for
each observed variable. The three corresponding random vectors are noted Yi with i = 1 . . . 3 and Yi,j
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(a) (b)

(c) (d)

Figure 3: Estimated PDF of depth-based criteria for dimensions from d = 5 to 40, and Yexp ∼
Nd(0, Id). The reference case Ysim ∼ Yexp is plotted in solid lines. The case where Ysim
also follows a d-normal distribution but with a different standard deviation on 20% of the
components is plotted in dotted lines. The criteria represented here are DMah (Eq. 9), DT uk

(Eq. 10), D̃CDF
Mah (Eq. 15) and D̃scal

Mah (Eq. 16).

corresponds to the jth variable of group i. On the other hand, a sample of n = 200 simulations of the
MNuclMat simulator is available: the uncertain inputs are randomly drawn using a Latin hypercube
design (Loh [1996], Park [1994]), and for every tuple of inputs, the 94 variables of interest listed above
are computed by the simulator. No observed or predicted values are provided here, and all plotted
values will be normalized, again for confidentiality.

The objective of the validation process of the MNuclMat simulator (MNuclMat code + uncertain
inputs) is two-fold. Firstly, it is necessary to evaluate whether improving the knowledge and reduc-
ing the uncertainty of the inputs is required. The faithful modeling of the phenomenology by the
calculation code (only) is already acquired, and it is rather a question of determining whether the
uncertainty on the modeling parameters is acceptable to well represent the experimental results, or if
on the contrary, a better characterization (and/or reduction) of their uncertainty is necessary. This
reduction could be done via a calibration of the parameters (deterministic or Bayesian Kennedy and
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O’Hagan [2001]). Secondly, we also wish to rank the 3 groups of variables of interest (Y1, Y2 and
Y3) according to whether they are well represented or not by the simulator, and perhaps identify the
group on which to focus the calibration efforts.

4.1 Graphical analysis
Before applying validation criteria, a graphical comparison between the distribution of simulations and
experimental results is made. An illustration is given by Figure 4. We observe very variable results
depending on the predicted output, even within the same group. Simulations are sometimes central
to the experimental PDF (cases (b,d,f,h)), with a slight or small bias (cases (d) and (i) respectively),
centered on the observed values but too spread out and with a very high proportion of values outside
the experimental PDF (case (a)), or even completely out of line with the experimental results (very
large bias, like plots (c,e,g)). This preliminary analysis highlights the complexity and the need to
summarize all these very different results as best as possible.

4.2 Computation of one-dimensional criteria
The different validation criteria proposed in Sections 2 and 3 are first applied on the MNuclMat use-
case for each one-dimensional variable of interest alone. Results are given in D by Figures 6, 7 and
8 for criterion C and transformed depth-based criteria D̃CDF

Mah and D̃CDF
Sph , respectively. All these

criteria have the property of following a uniform distribution if Ysim ∼ Yexp, which facilitates their
comparison. Note that D̃CDF

T uk is not shown because the results are almost identical to C: the criteria
are equivalent in the case of an experimental Gaussian distribution and the presence here of truncated
Gaussians for some variables does not result in a significant difference.

For a given output, all 1D-criteria give similar results, which is explained by the fact that the
experimental distributions here are unimodal and mostly Gaussian. The observed differences (as
for Y1,10, Y1,11, and Y1,12, e.g.) are explained by the truncation at 0 of the experimental Gaussian
distribution, which has a greater impact on the criterion C. The obtained results also confirm the
great variability between outputs. Most of the Y2 outputs are relatively well fitted (except for Y2,5),
while the simulated Y1 outputs appear inconsistent with the experimental values. The results are
more heterogeneous for the Y3 outputs with some simulations physically very likely (Y3,5 or Y3,7) and
others much less so (Y3,9 and Y3,12).

4.3 Computation of multidimensional criteria
The different multidimensional criteria are now applied to each group of outputs {Yi}i=1...3, as well
as to the whole set. The empirical mean of C and depth-based criteria are given by Tables 1 and 2,
respectively. The variation range of criteria is recalled, as it can depend on d. In this case (i.e. for
C̃scal

mean and D̃scal
Mah), the criteria are calculated only for the three groups for an analysis of their relative

value. In addition, the distributions of C-based criteria are shown as boxplots on Figure 5.
First of all, regarding the criteria on the group composed of all outputs, Cmean has a mean value

below 0.5 (0.37 exactly): the simulator on average gives predictions that are not very consistent with
experimental results. A significant proportion of outputs takes values that are physically unlikely. This
naturally results in zero values for all other criteria that control the strict validation of all outputs.
The MNuclMat simulator used with no informative prior uncertainty on the modeling parameters does
not yield reliable predictions. The validity of the MNuclMat calculation code being already established,
this means that a better quantification (or refinement) of the uncertainties on the modeling parameters
is required.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Comparison of the distributions of MNuclMat simulations and experimental results,
for some variables of each of the three groups (Y1, Y2 and Y3). A kernel density estimator is
also plotted (in black solid line), for the n = 200-size random sample of MNuclMat simulations.
The measured experimental values (resp. the associated PDF) are indicated by a red dotted
(resp. solid) line.

If we now look at the different group of outputs individually, we can observe that only the Y2
group is faithfully predicted with a Cmean equal to 0.61 (higher than 0.5 which is the mean value
obtained if Ysim ∼ Yexp), and CDF-transformed depths D̃CDF

Mah and D̃CDF
T uk close to one. The latter

values illustrate the interest of these transformations, the original depths being close to zero due to
the very large dimension d. Concerning the two other groups, Y3 and Y1, results are far less good
with a Cmean much lower than 0.5 and depths close to zero. Even if better results are obtained for
Y3 with Cmean, this does not allow to conclude on the ranking between Y3 and Y1 because of the
penalizing impact of the dimension (dimension of Y1 being much higher than Y3). To mitigate this
impact, one can turn to the CDF-transformed criteria. Unfortunately, their near-zero values do not
allow a robust conclusion. Criteria C̃scal

mean and D̃scal
Mah then offer a relevant alternative. Their analysis

clearly reveals that the Y1 group is the most discordant with the experimental results, regardless of
its larger dimension. This is confirmed by the boxplot of C̃scal

mean given by Figure 5.
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In conclusion, efforts to reduce uncertainty (e.g. through calibration) should be focused first and
foremost on the Y1 group.

Cd Cmean C̃Bates
mean C̃scal

mean

[0, 1] [0, 1] [0, 1]
[

1−
√

d
2 , 1+

√
d

2

]
Y1, d = 40 0 0.13 0 -1.85
Y2, d = 41 0.99 0.61 0.99 1.23
Y3, d = 13 0 0.36 0.04 -0.01
{Y1, Y2, Y3}, d = 94 0 0.37 0

Table 1: Empirical mean of multidimensional likelihood-based criteria computed on the n =
200-size sample of MNuclMat simulations. Results are given for each group of outputs and for
the whole set (last line). The theoretical interval of possible variation for each criterion is also
recalled (under the name of the criterion).

DMah D̃CDF
Mah D̃scal

Mah DT uk D̃CDF
T uk Dsph D̃CDF

sph

[0, 1] [0, 1]
[
0, d+1

2

]
[0, 0.5] [0, 1] [0, 0.5] [0, 1]

Y1, d = 40 0 0 0.02 0 0 0 0
Y2, d = 41 0.05 0.99 1.02 0 0.99 0.44 0.68
Y3, d = 13 0.02 0 0.16 0 0 0 0
{Y1, Y2, Y3}, d = 94 0 0 0 0 0 0

Table 2: Empirical mean of multidimensional depth-based criteria computed on the n = 200-
size sample of MNuclMat simulations. Results are given for each group of outputs and for the
whole set (last line). The theoretical interval of possible variation for each criterion is also
recalled (under the name of the criterion).

5 Conclusions and prospects
In support to the Best-Estimate-Plus-Uncertainty (BEPU) methodology or more generally to the
Verification, Validation and Uncertainty Quantification (VVUQ) approach, this paper has addressed
the problem of a quantified validation of simulation tools, with uncertain input parameters, and
from the comparison with available experimental results. The objective is therefore to assess the
consistency of the simulated outputs, individually and conjointly, with the experimental data. To
meet this objective, we have proposed and investigated different statistical indicators, based on the
concepts of likelihood and depth statistics. We have extended them to the multidimensional case
(i.e. when there are several scalar experimental results, and corresponding simulated outputs). The
proposed indicators (or criteria) can be applied to the result (output(s)) of a single simulation or
to a random sample of simulations. In the latter case, each criterion is itself a random variable, as
a function of the random output of the simulator. It thus yields a global BEPU validation of the
simulator, as well as a ranking of simulations according to their consistency with experiments.

For each proposed criterion, its probability distribution was first studied analytically or by simula-
tion, for some specific cases: Gaussian experimental distribution, identical probability distribution of
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Figure 5: Boxplot of the multidimensional likelihood-based criteria Cmean, C̃scal
mean and C̃Bates

mean for
the 3 different groups of outputs, computed on the sample of MNuclMat simulations. Empirical
mean and median are indicated by a cross and a horizontal line, respectively.

experiments and simulations (reference case), or for a specific divergence between both distributions.
Then, some natural extensions to a multivariate output were proposed. Their behavior was analyzed,
in particular as a function of the dimension of the output variable, and recommendations for their use
were formulated with regard to the objectives of the validation (strict or average validation).

From there, transformed criteria were proposed either to “homogenize” the criteria by ensuring
that they all follow a uniform distribution in the reference case, or to mitigate in a more general case
the impact of the output dimension. These transformations (or standardization in a nutshell) allows
a fairer comparison of the different criteria, independently of the dimension, and w.r.t. the reference
case. Some of them should be reserved for small divergences between simulations and experimental
results, while others, which have only a relative interpretation, could address and compare larger
divergences.

Finally, the validation criteria were applied to a test case with a simulator modeling the behaviour
of a nuclear material. This simulator is based on a validated release of the MNuclMat code, and on
a set around ten uncertain model parameters. As they cannot be directly measured, only variation
ranges of these parameters are first assumed. The objective here was to evaluate the accuracy of the
simulator and more precisely the relevance of the assumed non-informative uncertainty on the model
parameters. For this, we relied on an experimental database composed of 94 variables of interest,
grouped into 3 types. On the simulation side, a sample of n = 200 simulations was available: each
simulation corresponds to a random draw of the input model parameters and leads to a prediction of
the 94 variables of interest. For any given output variable (among the 94), the different unidimen-
sional criteria gave similar results. By contrast, a large variability was observed between the outputs:
most of the outputs of one group are relatively well fitted, while the simulated outputs of the other
two groups are much more inconsistent with the experimental values. The multidimensional criteria
applied to the whole set of outputs showed that the simulator used with non-informative prior un-
certainty as currently defined, is not validated. As the validity of the MNuclMat calculation code has
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been established, it is the uncertainty of the model parameters that must be better characterized and
more precisely reduced. The transformed criteria then offered a relevant alternative to compare the
3 output groups with each other, independently of their dimensions. It was clearly revealed that the
first group of variables is the most discordant with the experimental results.

Efforts to reduce model uncertainties should therefore focus primarily on improving the modeling
and prediction of the the first group of outputs. To this end, a Bayesian calibration of the model
parameters is currently ongoing and should allow a more accurate representation of the outputs. In
addition, to better understand the role played by the model parameters in the faithful representation
of reality, it would be interesting to perform a sensitivity analysis of the validation criteria themselves.
The objective would be to identify the influential (and non-influential) parameters on the criteria and
especially on the occurrence of a low value (target sensitivity analysis, see [Marrel and Chabridon,
2021]). For this purpose, HSIC dependence measures ([Gretton et al., 2005]) seem to be very relevant
because they allow to capture a large spectrum of dependencies. They are well adapted to the size of
the sample (n = 200) and conditional versions have recently been proposed by [Marrel and Chabridon,
2021]. This sensitivity analysis could be carried out for each group of outputs or for the whole. In
addition, the marginal distributions of the main influential parameters, a priori and conditional on
low values of the criteria, could also be compared and interpreted.

As far as the validation criteria themselves are concerned, their extension to the case of functional
outputs (temporal or spatial outputs, for example) is currently being studied. This extension could
be based either on functional dimension reduction for likelihood-based criteria, or on functional depth
statistics, such as the band-depth measure of [López-Pintado and Romo, 2009] or the h-mode depth
([Cuevas et al., 2007]).
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A Demonstrations of formulas for the likelihood-based
criteria

A.1 Analytical distribution of criterion C(Ysim|PYexp
) when Ysim ∼ Yexp

In the general case when Ysim ∼ Yexp, we can prove that C(Ysim|PYexp) follows a uniform distribution
U[0,1]. Let denote fY the probability density function (PDF) of both Yexp and Ysim, and FC the CDF
of C(Ysim|PYexp). More generally, FW will denote the CDF of any variable W . We have ∀x ∈ [0, 1] :

FC(x) = Proba
[
C(Ysim|PYexp) ≤ x

]
= Proba [Proba [fY (Yexp) ≤ fY (Ysim) | Ysim] ≤ x]

= Proba
[
E
[
1fY (Yexp)≤fY (Ysim) | Ysim

]
≤ x

]
= Proba [E [1W ≤W ′ | Ysim] ≤ x] where W = fY (Yexp) and W ′ = fY (Ysim)
= Proba

[
E
[
1W ≤W ′ | W ′] ≤ x

]
= Proba

[
Proba

[
W ≤ W ′ | Ysim

]
≤ x

]
= Proba

[
FW (W ′) ≤ x

]
. (17)

W and W ′ are i.i.d. with cumulative density function (CDF) FW and therefore FW (W ′) ∼ U[0,1],
provided FW is continuous and strictly increasing. The first condition is verified as Y and therefore
fY (Y ) are continuous variables. For the second condition, if we denote fY,min (resp. fY,max) the
minimal (resp. maximal) value of fY on its support3, we first use the fact that FW is strictly increasing
on [fY,min; fY,max] since fY (Y ) is continuous and from the intermediate value theorem. Secondly, W
as well as W ′ are defined on [fY,min; fY,max], by definition.

Hence Eq. (17) becomes FC(x) = Proba [FW (W ′) ≤ x] = x. It follows that C(Ysim|PYexp) ∼ U[0,1],
when Ysim ∼ Yexp ∼ Y and if fY (Y ) has a continuous and strictly increasing CDF.

A.2 Analytical expression of one-dimensional criterion for the Gaus-
sian case

If Yexp is normally distributed with Yexp ∼ N (µexp, σ2
exp), we have:

C(ysim|PYexp) = Proba
[
(fYexp(Yexp) ≤ fYexp(ysim)

]
= Proba

 1√
2πσexp

e

−(Yexp−µexp)2

2σ2
exp ≤ 1√

2πσexp

e

−(ysim−µexp)2

2σ2
exp


= 1 − Proba

(Yexp − µexp

σexp

)2

≤
(

ysim − µexp

σexp

)2


= 1 − Fχ2
(1)

(ysim − µexp

σexp

)2
 since Yexp − µexp

σexp
∼ N (0, 1). (18)

3The set-theoretic support of a density f defined on a set X is defined as the set of points where f is non-zero:
supp(f) = {x ∈ X : f(x) ̸= 0}.
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If Ysim is also normally distributed with Ysim ∼ N (µsim, σ2
sim) then the global criterion C(Ysim|PYexp)

is a random variable defined as follows:

C(Ysim|PYexp) = 1 − Fχ2
(1)

(Ysim − µexp

σexp

)2


= 1 − Fχ2
(1)

[
σ2

sim

σ2
exp

(
Ysim − µexp

σsim

)2
]

= 1 − Fχ2
(1)

[
α2 · Ỹ

]
where α = σsim

σexp
and Ỹ =

(
Ysim − µexp

σsim

)2
. (19)

We have Ỹ ∼ χ2
(1)(µsim−µexp)2 where χ2

(1)(λ) denotes the non-central chi-squared distribution of non-
centrality parameter λ). We then obtain for the CDF of C(Ysim|PYexp):

∀x ∈ [0, 1], FC(x) = Proba
[
1 − Fχ2

(1)

[
α2 · Ỹ

]
≤ x

]
= 1 − F

Ỹ

[ 1
α2 F −1

χ2
(1)

(1 − x)
]

= 1 − Fχ2
(1)(µsim−µexp)2

[
σ2

exp

σ2
sim

· F −1
χ2

(1)
(1 − x)

]
. (20)

Note that in the particular case where Ysim ∼ Yexp we find the result of A.1:

C(Ysim|PYexp) = 1 − Fχ2
(1)

[
F −1

χ2
(1)

(1 − x)
]

= x.

B Demonstrations for depth statistics with multivariate
Gaussian distribution

B.1 Formulation of the Tukey depth when Yexp ∼ Nd(µexp, Σexp)
First, we consider DT ukey(z|PX) when X ∼ Nd(0, Id). In this case, the closed halfspace that contains
the smallest number of data points with boundary through z is delimited by the hyperplane that
contains z and is orthogonal to the vector z = (z1, . . . , zd)⊤. The equation of this hyperplane can be
written as ∑d

i=1 αixi − β = 0 with αi being the coordinates of z in the natural basis, i.e. αi = zi
∥z∥ and

β = ∥z∥. The Tukey depth can therefore be expressed as following:

DT ukey(z|PX) = inf {Proba(H) : H is a closed halfspace, z ∈ H}

= Proba
[

d∑
i=1

αiXi − β ≥ 0
]

= 1 − Proba
[

d∑
i=1

αiXi ≤ β

]
. (21)

Since ∑d
i=1 α2

i = 1 and X ∼ Nd(0, Id), we have ∑d
i=1 αiXi ∼ N (0, 1) and:

DT ukey(z|PX) = 1 − Φ(β) with Φ the CDF of N (0, 1)
= 1 − Φ(∥z∥). (22)
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If we now generalize to the case Ysim ∼ Yexp ∼ Nd(µexp, Σexp), we have Σ−1/2
exp (Yexp − µexp) ∼

Nd(0, Id), and since the Tukey depth satisfies the property of linear invariance, we obtain:

DT ukey(ysim|PYexp) = DT ukey

(
Σ−1/2

exp (ysim − µexp)|PΣ−1/2
exp (Yexp−µexp)

)
= 1−Φ

[∥∥∥Σ−1/2
exp (ysim − µexp)

∥∥∥] .

(23)

B.2 Distribution of the Mahalanobis depth when Ysim ∼ Yexp ∼
Nd(µexp, Σexp)

Let W = Σ−1/2
exp (Ysim − µexp), we have W ∼ Nd(0, Id). The CDF of DMah(Ysim|PYexp) is expressed

∀x ∈ [0, 1] by:

FMah,Ysim∼Yexp(x) = Proba
[
DMah(Ysim|PYexp) ≤ x

]
= Proba

[(
1 + (Ysim − µexp)⊤Σ−1

exp(Ysim − µexp)
)−1

≤ x

]
= Proba

[
(1 + W⊤W)−1 ≤ x

]
=
{

1 − Fχ2
(d)

(
1
x − 1

)
for x > 0 since W⊤W ∼ χ2

(d)
0 otherwise

, (24)

where Fχ2
(d)

denotes the CDF of the chi-squared distribution with d degrees of freedom. The associated
PDF is given ∀x ∈ [0, 1] by:

fMah,Ysim∼Yexp(x) =
{ 1

x2 fχ2
(d)

(
1
x − 1

)
for x > 0,

0 otherwise,

with fχ2
(d)

the PDF of the chi-squared distribution with d degrees of freedom.

B.3 Distribution of the Tukey depth when Ysim ∼ Yexp ∼ Nd(µexp, Σexp)
Keeping the previous notation W = Σ−1/2

exp (Ysim − µexp) ∼ Nd(0, Id), we have ∥W∥ ∼ χ(d). From Eq.
(23), we obtain the CDF of DT ukey(Ysim|PYexp), given ∀x ∈]0, 0.5] by:

FT ukey,Ysim∼Yexp(x) = Proba
[
DT ukey(Ysim|PYexp) ≤ x

]
= Proba [1 − Φ(∥W∥) ≤ x] with Φ being the CDF of N (0, 1)

= Proba
[
Φ−1(1 − x) ≤ ∥W∥

]
since Φ is a strictly increasing function

= 1 − Fχ(d)

(
Φ−1(1 − x)

)
since ∥W∥ ∼ χ(d) (25)

where Fχ(d) denotes the CDF of the chi distribution with d degrees of freedom. For the left bound,
we have FT ukey,Ysim∼Yexp(0) = 0.
Hence the PDF can be deduced ∀x ∈]0, 0.5]:

fT ukey,Ysim∼Yexp(x) = 1
fN (0,1) [Φ−1(1 − x)] · fχ(d)

[
Φ−1(1 − x)

]
with fχ(d) the PDF of the chi distribution with d degrees of freedom and fN (0,1) the PDF of stan-
dardized Gaussian distribution. For the left bound, we have fT ukey,Ysim∼Yexp(0) = 0 (and continuity
of the PDF). Note that for d = 1, we can easily show that the PDF obtained is that of the uniform
distribution.
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C Link between the Tukey depth based on CDF trans-
formation and the likelihood-based criterion

We will demonstrate in the following that if the experimental distribution is Gaussian, the CDF-
transformed Tukey depth given Eq. (15) is strictly equivalent to the criterion Cd (Eq. (6)) for any
given simulation vector z ∈ Rd. So, assuming that Yexp ∼ Nd(µexp, Σexp) and denoting w = Σ−1/2

exp (z−
µexp), we first easily obtain as in Eq. (18) that:

Cd(z|PYexp) = 1 − Fχ2
(d)

[
w⊤w

]
since Σ−1/2

exp (Yexp − µexp) ∼ χ2
(d) under the Gaussian assumption

= 1 − Fχ2
(d)

[
∥w∥2

]
.

(26)
Secondly, under the same assumptions, the CDF-based transformed Tukey depth given by Eq. (15)

becomes
D̃T ukey(z|PYexp) = 1 − Fχ(d)

(
Φ−1(1 − DT ukey(z|PYexp))

)
from Eq. (25)

= 1 − Fχ(d)

(
Φ−1(Φ(∥w∥))

)
from Eq. (23)

= 1 − Fχ(d) (∥w∥) . (27)

Since the standardized chi distribution with d degrees of freedom is the distribution followed by
the square root of a chi-squared random variable, we have Fχ(d)(x) = Fχ2

(d)
(x2) ∀x ≥ 0 and therefore

the equality of the two criteria:

if Yexp ∼ Nd(µexp, Σexp), then Cd(z|PYexp) = D̃T ukey(z|PYexp). (28)
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D Additional results on the application case
The results obtained for each of the 94 outputs for likelihood and two depth-based criteria are given
by Figures 6, 7 and 8.

(a)

(b)

(c)

Figure 6: Boxplots of one-dimensional criterion C (Eq. 1), computed from the n = 200-size
sample of MNuclMat simulations. Results are plotted for each output of the 3 groups of outputs:
Y1 (a), Y2 (b) and Y3 (c). Empirical mean and median are indicated by a blue cross and a
red line, respectively.
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(a)

(b)

(c)

Figure 7: Boxplots of one-dimensional transformed Mahalanobis depth (Eq. 15 applied to
DMah), computed from the n = 200-size sample of MNuclMat simulations. Results are plotted
for each output of the 3 groups of outputs: Y1 (a), Y2 (b) and Y3 (c). Empirical mean and
median are indicated by a blue cross and a red line, respectively.
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(a)

(b)

(c)

Figure 8: Boxplots of one-dimensional transformed spherical depth-based criteria (Eq. 15
applied to DSph), computed from the n = 200-size sample of MNuclMat simulations. Results
are plotted for each output of the 3 groups of outputs: Y1 (a), Y2 (b) and Y3 (c). Empirical
mean and median are indicated by a blue cross and a red line, respectively.
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