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Assessment of atomistic data for predicting the

phase diagram and defect thermodynamics in UO2

Serge Maillard*, David Andersson†, Michel Freyss∗, Fabien Bruneval‡
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This paper develops a unified presentation of the thermodynamic parameters of eleven point-
defect models in UO2 (defect formation energies and entropies); four of them are fitted to ex-
perimental data, while the remaining seven are obtained through atomistic simulations. This
allows us to compare all the models on the same basis both among themselves and with a large
set of experimental data of various physical quantities. Combining the assessed defect thermo-
dynamics and the TAF-ID functions for U and U4O9 phases makes it possible to compute the
U −O phase diagram in the vicinity of stoichiometric UO2. The defect formation energies and
entropies are very different from one model to another. Concerning the ability to reproduce ex-
perimental data, the fitted models usually correctly reproduce the data sets according to which
they were fitted. For one atomistic-based model, the measurements of the oxygen potential as
a function of the temperature and the O/M ratio are reproduced in a satisfactory manner while
the phase diagram is more approximate. No model, either fitted or atomistic-based, reproduces
simultaneously the measured conductivity and the oxygen concentration as functions of the
oxygen potential. The difficulties of the atomistic-based models in predicting the O/M ratio as a
function of the oxygen potential are thought to partly arise from an erroneous calculation of the
oxygen molecule energy derived from ab initio techniques and probably also from a poor eval-
uation of the electron-hole Gibbs energy of formation; more generally improving the technique
for calculating reliable defect entropies of formation appears of great importance. The difficulty
of obtaining reliable experimental data close to the stoichiometry might also contribute to the
limited agreement between calculations and measurements, which is reason enough to reassess
the behavior of the material in this stoichiometry region comprehensively, using all the possible
characterization techniques on each material sample. In particular, since several independent
studies predict an unexpected crucial role of the uranium vacancies on the evolution of O/M,
experimental assessments of this feature should be sought.
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1 Introduction

Providing a model of fuel materials grounded on reliable thermodynamic functions has long been under-
taken, namely in view of predicting the thermal behavior of these materials during in-pile irradiation and
assessing various related safety limits. For example, recent developments based on the Calphad method
fitting a large thermodynamic database yielded a set of Gibbs energy functions (the TAF-ID [39]) allowing
us to compute most of the important thermodynamic functions and features (melting temperature, oxygen
potential, stoichiometry, etc.) for the main fuel materials such as UO2, (U, Pu)O2, (U, Pu)C... and the
corresponding phase diagrams (U −O, U − Pu−O, U − C−O, U − Pu− C...) [24, 25]. In a similar way to
what has been done to understand the in-pile behavior of metallic materials composing nuclear reactors,
attempts have been made to describe the main features of the fuel behavior (fission gas release, swelling,
restructuring) in terms of micro-structural evolution. Various kinetic models were built for this purpose,
some on the grounds of thermodynamic and diffusion parameters defined at an atomic level [22, 48]. The
first-generation models for defect thermodynamics, i.e. the fitted models, were obtained through fitting
the defect formation Gibbs energies by comparing simulation and measurement of the stoichiometry as
a function of the oxygen chemical potential [37, 41] or electric conductivity [21]. Atomistic calculation
of defect formation energies/entropies progressively became possible so that these techniques produced
sufficient results to support a second generation of defect thermodynamic models [3, 51, 52, 12, 14, 49],
i.e. the atomistic-based models. Surprisingly, few if any attempts have been made to assess the validity
of these thermodynamic parameters by simulating physical properties known to be sensitive to them and
comparing the results with experiments. The purpose of this paper is to review and compare several defect
models, both fitted and atomistic-based, both among themselves and with such observations. After this
introduction, the second, theoretical, part, will present various thermodynamic models (all equivalent) for
the defect concentrations in a unified manner. In the third part, the thermodynamic parameters of these
models will be gathered and discussed. We will propose a set of conventions in which all the analyzed
parameters will be expressed and compared. In the fourth part the model simulation results will be com-
pared to corresponding experimental situations; the first generation of defect models will also be reviewed
to enrich the comparison.

2 Modeling

2.1 Statistical physics modeling

The statistical physics approach presented here seems to implicitly underline several atomistic approaches
such as [53, 55, 52]. The model will be presented in detail as will the thermal behavior of its thermodynamic
parameters in order to clarify its relationships with atomistic simulations.

2.1.1 General equations

Following [26], we use the thermodynamic framework of Fähnle et al. [35, 36] for evaluating the defect
concentrations. As the latter work was devoted to a compound presenting vacancies and anti-site defects,
we decided to slightly adapt the model to the context of UO2 which does not present anti-site defects, but
the creation of vacancies/interstitials and the exchange of O and U atoms with the environment. We study a
system comprising a UO2+x solid sample at a given temperature and pressure; this system is closed so that
its composition remains fixed and comprises NO oxygen O, NU uranium U, Ne electrons e (corresponding to
the total defect charges). Its composition is noted N = (NU , NO, Ne). A perfect sample comprising Ns UO2
patterns will thus be written Λ = Nsλ = Ns (1, 2, 0), while N = Nsλ+ ν (with ν = (νU , νO, νe)) represents a
sample with one defect of composition ν representing the deviation from the perfect material. For instance
a double negatively charged di-vacancy V2′

UO, comprising a uranium vacancy bound to an oxygen vacancy,
is represented as ν = (−1,−1, 2). We also introduce φν as the number of equivalent configurations of the
defect ν inside a given UO2 pattern (i.e. φ−1,−1,2 = 4 since there are 4 equivalent positions for the O vacancy
for each U vacancy). For convenience we define the “null” defect to be an ordinary site, corresponding to
ν = 0 = (0, 0, 0). D is then the total set of generalized defect types (including 0), while D∗ = D \ {0} is
the set of true defect types. According to this convention we have

∑
ν∈D

Nν = N0 + ∑
ν∈D∗

Nν = Ns. (1)
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In a supercell approach we assume the defect concentrations are low enough so that the interactions be-
tween defects can be neglected. GNcλ+ν is the Gibbs energy of a supercell comprising Nc UO2 patterns and
one defect of type ν. In the infinite dilution limit, Nc → ∞, we define δgν = lim

Nc→∞
(GNcλ+ν − GNcλ), which

will be named “differential” Gibbs energy, and choose Nc large enough so that GNcλ+ν ∼ GN0λ + δgν =
NcGλ + δgν, Gλ = GUO2 corresponding to the Gibbs energy for one UO2 pattern of perfect crystal. The
whole UO2 system comprising Nν defects of each type ν is made up of all the supercells of size Nc, each
comprising one defect of type ν. Its composition, which also expresses the U, O and e conservation laws,
can be written:

N = ∑
ν∈D

Nν (Ncλ + ν) = Nsλ + ∑
ν

Nνν = Ns

(
λ + ∑

ν

Cνν

)
(2)

Ns = Nc ∑ Nν is thus the total number of UO2 patterns, and Cν = Nν
Ns

is the site fraction of defect ν, which
we also call “concentration” in the following. The Gibbs energy of the whole system is the sum of the
contributions of the various defects, plus the contribution of the configuration entropy:

G = ∑
ν

NνGNcλ+ν − T.Scon f ∼∑
ν

Nν (NcGλ + δgν)− T.Scon f

with
GNcλ = NcGλ

As the concentrations are low, Scon f can be written and approximated this way:

Scon f ∼ kB ln

(
∏

ν

φNν
ν

(∑ν Nν)!
∏ν Nν!

)
∼ −kB ∑

ν

Nν ln
(

Nν

φν

)
∼ −Ns kB ∑

ν

Cν ln
(

Cν

φν

)
The Gibbs energy is finally written:

G ∼ Nsg

with

g = Gλ + ∑
ν

Cνδgν + kBTCν ln
(

Cν

φν

)
(3)

where g is the Gibbs energy per UO2 pattern of the material with defects.
To obtain the equilibrium concentrations Cν we have to minimize at given T and P and composition
(NU , NO, Ne = 0) the Gibbs energy of the whole system under the corresponding constraints (2) and (1):

min
Ns,Nν,ν∈D

G (Ns, Nν,ν∈D, T, P)

with

Nsλ + ∑
ν

Nνν−N = 0

∑
ν

Nν − Ns = 0

Introducing the Lagrange multipliers µ and χ, the Lagrangian J of this optimization problem (P and T
being fixed) is written:

J (Ns, Nν,ν∈D, µ, χ) = G (Ns, Nν,ν∈D, T, P)− µ.

(
Nsλ + ∑

ν

Nνν−N

)
− χ

(
∑
ν

Nν − Ns

)

Introducing the deviation from perfect composition ∆λ as a function of Ns according to

N
Ns

= λ + ∆λ, (4)
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we can write the equilibrium concentrations given through the following optimality conditions:

∂Ns J = 0 = g−∑
ν

Cν∂Cν
g− µ.λ + χ (5a)

∂Nν J = 0 = ∂Cν
g− µ.ν− χ (5b)

∂µ J
Ns

= 0 = ∑
ν

Cνν− ∆λ (5c)

∂µ J
Ns

= 0 = ∑
ν

Cν − 1 (5d)

Evaluating ∂Cν
g from Eq. (3), χ to kBT (ln (C0) + 1) from Eq. (5b) applied to the case ν = 0, and combining

the above equations yields:

Gλ − µ.λ + kBT ln (C0) = 0 (6a)

δgν − µ.ν +kBT ln
(

Cν
φνC0

)
= 0 (6b)

∆λ− ∑
ν∈D∗

Cνν = 0 (6c)

C0 + ∑
ν∈D∗

Cν − 1 = 0 (6d)

Eq. (6c) being equivalent to:

∑
ν

νUCν = ∆λU (6e)

∑
ν

νOCν = ∆λO (6f)

∑
ν

νeCν = 0 (6g)

These equations are related to x, the deviation from stoichiometry, according to the relation:

x =
∆λO − 2∆λU

1 + ∆λU
∼ ∆λO − 2∆λU

Let us notice that in Eq. (6c), the sum can be calculated indifferently on the set D or D∗since C(0,0,0) = C0
has no contribution anyway.
Equations (6a) to (6d) define the canonical ensemble of the material (in which NU , NO and Ne are fixed).
Solving these equations, we obtain all the concentrations Cν, the number Ns (via Eq. (4)) of sites of the
material (equivalent to its volume if thermal expansion is neglected) and the Lagrange multipliers µ of U,
O and e, as functions of the composition (NU , NO) (or (λU , λO)). At equilibrium, J = µ.N and µ represents
the chemical potentials of U, O and e. The same set of equations also holds for the grand canonical en-
semble (in which the chemical potentials are fixed) that allows us to describe the equilibrium in which the
exchange of U and O with the environment occurs (even of e, if the sample is connected to an electric de-
vice, which is outside the scope of of this article). Mixing constraints on the quantities and on the chemical
potentials allows us to solve problems closer to real experimental conditions, e.g. where both µO and λU
are fixed (uranium vaporization is supposed negligible), in addition to Ne which is fixed to 0 as we know.
In other experiments where the phase diagram is studied, both chemical potentials are fixed because of the
simultaneous existence of two solids at a given temperature, such as UO2 and metallic U or U4O9 as will
be seen below.
While the various absolute energetic quantities such as Gλ, δgν or µ have no physical meaning, only their
differences appear in the above equations (δgν − µ.ν, Gλ − λ.µ). For example, δgν − µ.ν is the defect,
temperature-dependent, formation Gibbs energy as defined in [53, 52]. Nevertheless, these differences de-
pend on the chemical potential vector µ which is a characteristic of the material’s environment (notably
the oxygen pressure), so that a conventional reference state in terms of chemical potentials is necessary
to tabulate these parameters in a way they can be understood unambiguously (and used). For each tem-
perature, the chosen thermodynamic reference is (when relevant) the standard state at this temperature
µ0 (T) = µ

(
P0, T

)
, and we define the corresponding relative chemical potentials as:

∆µ = µ − µ0 (T)
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Noticing that δgν − ν.µ = δgν − ν.µ0− ν.∆µ, we now unambiguously define the standard Gibbs formation
energy of defect ν as a function of the temperature:

gν (T) = δgν (T)− ν.µ0 (T) (7)

A more rigorous notation such as ∆g0
ν (instead of gν) would clearly underline that a formation energy in

this sense is actually a difference of standard energies, but for simplicity we will keep the above notation
gν (T) or even gν.
For example, the Gibbs formation energy of the oxygen interstitial ν = O2′

i = (0, 1, 2) is written:

gO2′
i
(T) = δgO2′

i
(T)− µ0

O (T)− 2µ0
e (T) (8)

and, provided the relative chemical potentials ∆µj are known (e.g. through the conservation equations)
and kBT � gO2′

i
, the concentration is approximately given by:

CO2′
i
∼ exp

(
−

gO2′
i
(T)− ∆µO − 2∆µe

kBT

)

The same notation idea holds if we transform Eq. (6a) to Gλ (T)− ν.µ0 (T)− ν.∆µ, which similarly defines
the ordinary site standard Gibbs formation energy as ∆g0

UO2
(T) = Gλ (T)− ν.µ0 (T) which could also be

noted as ∆g0
UO2

= g0 in the same line as gν (as in Eq. (15a)).

2.1.2 Reference states for U, O and e

The reference states always correspond to the atmospheric pressure P0 = 1 bar. For U and O, we apply the
usual convention:

• One atom of metallic uranium U at T and P0 for the U reference
• “Half a molecule” of gaseous oxygen O2 at T and P0. In the relevant pressure and temperature

range, the expression of the relative chemical potential of a O2 molecule considered as a perfect gas
at pressure PO2 applies:

∆µO =
1
2

kBT ln (p) with p =
PO2

P0 (9)

The standard chemical potentials for U and O, µ0
U (T) and µ0

O (T), are taken from the TAF-ID while the
values at 0 K are from [16]; all this data is reported in the appendix, Table 5.
The commonly claimed reference state for the electrons is the Fermi level in the perfect material (or µVBM

e =
0, noted as “VBM”), which is not a standard thermodynamic convention but has a physical significance
when there is exchange of electrons with the environment. We will see below that a more practical conven-
tion is to define the reference state of the electrons so that the hole formation Gibbs energy at the current
temperature T is zero, i. e. gh (T) = 0, noted as “h”.

2.1.3 Temperature dependence of the formation Gibbs energies

An atomistic calculation produces results at a given reference temperature Tr. The temperature dependence
of these quantities is written:

hν (T) = hν (Tr) +
[
δhν − ν.h0

]T

Tr
= hν (Tr) +

∫ T

Tr

cν (Θ) dΘ (10a)

sν (T) = sν (Tr) +
[
δsν − ν.s0]T

Tr
= sν (Tr) +

∫ T

Tr

cν (Θ)

Θ
dΘ (10b)

The last member of each line allows us to define various heat capacities. cν = δcν− ν.c0 is thus the standard
formation heat capacity of the defect ν, c0 being the vector of the thermal capacities of the components
U, O, e in the reference state. δcν represents the difference in thermal capacity at constant pressure and is
defined in the same way as δgν or δhν as the difference of c between a faulted supercell and a perfect one.
The notation [ f ]TTr

stands for the variation of any function f between the temperatures Tr and T. As will be
seen later, all calculated defect Gibbs energies δgν correctly accommodate a quasi constant heat capacity
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j h0
j (0 K) h0

j (298 K) h0
j (T

r) s0
j (T

r) c0
j

(eV) (eV) (eV) (kB) (kB)
U −0.066 0 0.223 10.550 5.822
O −0.045 0 0.098 14.401 2.200
UO2 −11.362 −11.241 −10.776 19.172 11.053

Table 1: Thermodynamic parameters for the components and UO2 at Tr = 900 K obtained from CODATA
(at 0 K) and by fitting of the TAF-ID data (Table 5) on the range 650-2700 K

cν on a certain temperature range [Tm, TM] (typically [400 K, 1900 K]). This means the tables concerning
energies, entropies or Gibbs energies of [14, 12, 49] can easily be summarized in the following equation:

δgν ∼ δhν (Tr)− T
(

δsν (Tr) + δcν ln
(

T
Tr

))
(11)

This will be used to propose a practical and general framework for the various atomistic evaluations of
the defect thermodynamic parameters. In this case, the following thermodynamic information has to be
provided for each defect:

• Tm, TM, Tr: the minimum and maximum temperature limits of the model, and the reference temper-
ature for the starting point of the interpolation model (11)

• hν (Tr) = δhν (0)− ν.h0 (0) + [δhν]
Tr
0 : the defect formation enthalpy (or energy considering the very

low pressure) at Tr (usually combining results of ab initio and empirical potential techniques)

• [δsν]
Tr
0 = δsν (Tr): the corresponding entropy term (which is zero at 0 K)

• δcν: the differential heat capacity of the defect (supposed to be constant in the range [Tm, TM]).
To simplify the comparison of different ab initio approaches, it is also useful to provide the formation
enthalpy at 0 K as well, hν (0) = δhν (0)− ν.h0 (0).
We additionally consider that the Gibbs energy of the components (U, O, e) also fit to an equation of type
(11), with a constant thermal capacity on the temperature interval [Tm, TM], as defined in Table 1. The
equations (10a)-(10b) can thus be rewritten:

hν (T) =
(

δhν (0)− ν.h0 (0)
)

+
(
[δhν]

Tr
0 + δcν (T − Tr)

)
− ν.

([
h0
]Tr

0
+ c0 (T − Tr)

)
(12a)

sν (T) = 0 +

(
[δsν]

Tr
0 + δcν ln

(
T
Tr

))
− ν.

([
s0]Tr

0 + c0 ln
(

T
Tr

))
(12b)

or equivalently

hν (T) = hν (Tr) + cν (T − Tr) (13a)

sν (T) = sν (Tr) + cν ln
(

T
Tr

)
(13b)

On the one hand, presenting the atomistic results according to the first set of equations (12a)-(12b) for δgν

(i.e. [14]) is particularly interesting since the part of the atomistic results in the formation quantities is
clearly identified and separated from the part related to the component thermodynamics. The first term is
usually calculated with ab initio techniques, while the second is calculated with empirical potential tech-
niques, and the third is taken from thermodynamic databases. On the other hand, although the second
presentation (Eqs. (13a)-(13b), i.e. [3]) is simpler, giving directly gν, it does not highlight this distinction
easily.
For better clarification, a short explanation on h0

e and s0
e is necessary, which will be illustrated using the

case of the oxygen interstitial formation enthalpy. This quantity can be evaluated through the following
equation:

hO′′i
(T) =

(
δhO′′i

(0)− h0
O (0)− 2h0

e (0)
)

+
[
δhO′′i

]T

0
−
[
h0

O
]T

0 − 2
[
h0

e
]T

0

The first three terms should be evaluated through ab initio calculations while the last two should be ex-
tracted from thermodynamic databases. The reference term for O is the standard thermodynamic con-
vention, so that ∆µO, equal to k T ln (PO2/P0), is a measurable quantity possibly fixed by the environment.
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h0

O
]T

0 can be extracted from Table 1 or equivalently from the TAF-ID. For e there is no equivalent standard
convention, but h0

e (T) is commonly chosen as the Valence Band Maximum (VBM). But since ∆µe is not
measured nor fixed nor influencing the final solution, there is no definitive reason to chose a particular
reference for this quantity. However, fixing gh (T) = 0 appears to be a clear and simple convention, which
additionally corresponds to impose

µ0
e (T) = −δgh° (T) (14)

according to Eq. (6b), for an evaluation of δgh° (T) in a given reference system. As the actual value of µ0
e (T)

has no impact on the final results, no data are displayed for this quantity in Table 1.

2.1.4 Con�guration entropies

The configuration numbers of the main defects are presented Table 2. They are evaluated as follows, con-
sidering the components of the composite defects are generally in first neighbor positions:

• There is only one uranium and one interstitial site per UO2 pattern, yielding one configuration for h°,
e
′
, V4′

U , O2′
i .

• There are two oxygen sites, thus 2 configurations for V2°
O .

• Supposing the vacancies comprising the oxygen di-vacancy cluster are neighbors on the oxygen cubic
lattice, each O vacancy has thus 6 neighbors, yielding 3 configurations to avoid double counting for
each site of the cell, the total number for the two sites being 6 for V2°

O2
= Z2°.

• Each di-interstitial cluster W
′
= O

′
i2 (which is actually a triangle of 3 oxygen atoms) has 8 configu-

rations, corresponding to the 8 positions of the center of the triangle (see Figure 1 of [4]), each one
corresponding to one orientation from the center to one corner of the large cube of the figure.

• The quad-interstitial Q3′ = O3′
i4

has 12 configurations, based on the analysis of Figure 4 of [4]. The
first di-interstitial has 8 configurations. For each of them, the second one can be set on one of the 3
edges of the cube starting at the first one. The result should be divided by two because of double
counting.

• The di-vacancy V2°
UO has 8 configurations corresponding to the positions of the oxygen vacancies at

the corners of the cube whose center is the uranium atom.
• In the most stable bound Schottky defect the two oxygen vacancies are next neighbor on the same

edge of a cube, the uranium vacancy staying at the center, thus yielding 12 configurations for VUO2 .

2.1.5 Generic equations

With these conventions, eqs. (6a) to (6d) can be rewritten:

g0 − (∆µU + 2∆µO) + kBT ln (C0) = 0 with g0=∆g0
UO2

(formation Gibbs energy of UO2) (15a)

gν − ν.∆µ +kBT ln
(

Cν
φνC0

)
= 0 (15b)

∑
ν∈D∗

νUCν = ∆λU = CU − 1 (15c)

∑
ν∈D∗

νOCν = ∆λO = CO − 2 (15d)

Cdop + ∑
ν∈D∗

νeCν = 0 (15e)

C0 = 1− ∑
ν∈D∗

Cν (15f)

∆µO =
1
2

kBT ln (p) with p =
PO2

P0 (15g)

In order to account for impurities (or dopant) in the material, we have added a term Cdop to the electro-
neutrality equation (15e), corresponding to the total electrons concentration born by impurities (e.g. the
contribution to Cdop of pentavalent ions is the opposite of their concentration).
This set of equations can also be expressed when (UO2 ↓, O2 ↑) are the thermodynamic references for O
and U, instead of (U ↓, O2 ↑). Considering that the chemical potential of UO2 verifies

µUO2 = µU + 2µO and ∆g0
UO2

+ ∆µUO2 = ∆µU + 2∆µO,
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we obtain the following set of equations that can formally be reinterpreted in the defect base νUO2 defined
as follows:

gνUO2 − νUO2 .∆µUO2 +kBT ln
( C

νUO2
φ

νUO2 C0

)
= 0 (16a)

νUO2 = (νU , νO − 2νU , νe) (16b)

∆µUO2 = (∆µUO2 , ∆µO, ∆µe) (16c)

gνUO2 = gν − νU∆g0
UO2

(16d)

This is also the convention developed by Bruneval et al. [12], Soulié et al. [49]. If we additionally consider
Eq. (15a), we obtain ∆µUO2 = kBT ln (C0), and Eq. (16a) is rewritten:(

gν − νU∆g0
UO2

)
− (νO − 2νU)∆µO − νe∆µe + kBT ln

(
Cν

φνC1+νU
0

)
= 0 (17)

If the electron reference is VBM, the first term in bracket in both expressions

gUO2,VBM
ν = gν − νU∆g0

UO2

is the formation Gibbs energy reported by these authors as calculated in the (UO2 ↓, O2 ↑, VBM) reference
(i.e. in [12, Eq. (8)] or [49, Eq. (1)]). This equation, slightly modified to account for the additional change in
the electron chemical potential reference, is used here for the translation between the (UO2 ↓, O2 ↑, VBM),
(UO2 ↓, O2 ↑, h) and (U ↓, O2 ↑, h) references, corresponding to the Gibbs energies gUO2,VBM

ν , g∗ν = gUO2,h
ν

and gν=gU,h
ν respectively:

g∗ν = gUO2,h
ν = gUO2,VBM

ν + νegUO2,VBM
h

gν = gU,h
ν = gUO2,h

ν + νU∆g0
UO2

For example, in the case of the uranium vacancy we have

gV4′
U
= gUO2,VBM

V4′
U

− ∆g0
UO2

+ 4gUO2,VBM
h (18)

The energy at 0 K given by Bruneval eUO2,VBM
V4′

U
= 0.68 eV corresponds to eV4′

U
= 11.50 eV in the (U ↓, O2 ↑, h)

reference and Table 4, considering ∆e f
UO2

= −11.206 eV and eUO2,VBM
h = −0.096 eV (when the reference for

the electron chemical potential is the Valence Band Maximum). Let us remark that applying Eq. (17) to the
case of V4′

U , considering C0 ∼ 1 yields an equation formally equivalent to that of an oxygen di-interstitial
(Oi)

4′
2 .

2.1.6 Model illustration

Let us now illustrate the model using a simplified case and considering the defect concentrations are low
(Cν � 1 for ν 6= 0, and C0~1). At thermodynamic equilibrium, the concentrations verify the following
equations (the charges are omitted unless necessary):

∆g0
UO2

(T)− (∆µU + 2∆µO)− kBT (CVO + CZ + Ch + COi + CW + CVU + Ce) = 0 (19a)

gVO + ∆µO + 2∆µe + kBT ln
(

CVO

2

)
= 0 (19b)

gZ + 2∆µO + 2∆µe + kBT ln
(

CZ

6

)
= 0 (19c)

gOi − ∆µO − 2∆µe + kBT ln (COi) = 0 (19d)

gW − 2∆µO − ∆µe + kBT ln
(

CW

8

)
= 0 (19e)

gVU + ∆µU − 4∆µe + kBT ln (CVU ) = 0 (19f)
ge − ∆µe + kBT ln (Ce) = 0 (19g)
gh + ∆µe + kBT ln (Ch) = 0 (19h)

2CVO + 2CZ + Ch −
(
2COi + CW + 4CVU + Ce + Cdop

)
= 0 (19i)

∆µO =
1
2

kBT ln (p) (19j)
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∆g0
UO2

(T) is the standard formation Gibbs energy of UO2.

2.2 Formalism of equilibrium reactions

Another way to represent the thermodynamic equilibrium of defects can be obtained by eliminating the
electron chemical potential (using (19h) for instance) in the various equations of type (6b). The result is a
set of mass action law equations that can be solved if the remaining chemical potentials are known. For
example, the set of equations (19a) to (19j) is transformed to the following reaction and balance equations:

2h° � V2°
O (2 configurations) +

1
2

O2
CVO

√
p

2C2
h

= exp
(
− gVO − 2gh

kBT

)
(20a)

2h° � Z2°(6 configurations) + O2
CZ p
6ch

= exp
(
− gZ − 2gh

kBT

)
(20b)

1
2

O2 � O2′
i + 2h° COi C

2
h√

p
= exp

(
− gOi + 2gh

kBT

)
(20c)

O2 �W
′
(8 configurations) + h° CWCh

8p
= exp

(
− gW + gh

kBT

)
(20d)

O2 � V4′
U + 4h° + UO2

CVU C4
h

p
= exp

(
−

gVU + ∆g0
UO2

+ 4gh

kBT

)
(20e)

�� e
′
+ h° ChCe = exp

(
− ge + gh

kBT

)
(20f)

0 = 2CVO + 2CZ + Ch −
(
2COi + CW + 4CVU + Ce + Cdop

)
(20g)

This presentation is generally adopted in experimental approaches such as those of [37, 38, 41, 42, 21].
Atomistic parameters of [18, 3] are also reported this way. This presentation is clearly equivalent to that
used in the previous paragraph. It should nevertheless be noticed that several approaches of the configura-
tion entropies exist. In [37], there are no combinatory numbers in the Mass Action Law expressions, which
leads to modify the reaction entropy of the corresponding quantity to remain coherent with our approach;
for instance the experimental formation entropy of V2°

O needs to be increased by an amount of ln (1/2) kB.
In other publications [42, 21], the Mass Actions Law explicitly include the sites of the perfect lattice that
contribute to the defect reaction, for example the formation reaction for V2°

O2
would be written

2U°
U + 2O×O � 2U×U + V2°

O2
+ O2

and the corresponding Mass Action Law:∣∣U×U ∣∣2 ∣∣∣V2°
O2

∣∣∣ p∣∣U°
U

∣∣2 ∣∣O×O ∣∣2 = exp
(
− geq

ν

kBT

)

In this case, as
∣∣O×O ∣∣ = 2, the experimental formation entropy is increased by an amount of ln

(
22

6

)
kB. The

values of Table 4 take these corrections into account.
Equations (19b) to (19j) have shown that on the one hand, the formation Gibbs energies gν have a unique
physical meaning once the standard state is chosen for electrons, uranium and oxygen. On the other hand,
we always observe (Eqs. (20a) to (20f)) the quantity

gν + νegh = δgν + νeδgh − νUµ0
U − νOµ0

O

in the formula for the reaction Gibbs energy, which furthermore is independent of the electron reference
(as stated in Section 2.1.3, gν and gh change in a way that their combination does not change when the
reference for e changes). This confirms that the relevant quantity is actually gν + νegh (identically zero for
ν = h), which justifies the convention gh = 0 for describing the thermodynamic reference for the electrons.
Let us notice that this convention is close to the more usual convention of taking the electrons at the VBM,
as shown by atomistic calculations of the hole formation energy at 0 K, which is around 0.096 eV according
to [12], and the hole entropy, which is small compared to other defects. Finally, as exemplified by Eq. (20e),
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the equilibria described by Eqs. (20a) to (20f) are related to the reference (UO2 ↓, O2 ↑, h) ; in such a case,
the defect formation Gibbs energies (g∗ν = gν − νU∆g0

UO2
+ νegh) are strictly equal to the reaction Gibbs

energy defined in these equilibria. More generally equations such as (15b) for a defect ν = (νU , νO, νe)
correspond to an equilibrium of the following type with its Mass Action Law:

νO−2νU
2 O2 ↑ � (νU , νO, νe) + νeh° − νUUO2 ↓

CνU ,νO ,νe×Cνe
h

γνU ,νO ,νe×p
νO−2νU

2
= exp

(
−

gνU ,νO ,νe−νU∆g0
UO2

+νegh

kBT

)
= exp

(
− g∗νU ,νO ,νe

kBT

) (21)

2.3 Calphad method

In this section we show the Calphad modeling of UO2 [24, 25] can be interpreted in the framework de-
veloped in Section 2.1. In the Calphad formalism, the Gibbs energy of the system is generally written
G = Gre f + Gcon f + Gexc (Eqs. (4) and (5) of [24]):

Gre f = ∑
i,j,k

y1
i y2

j y3
kGi,j,k (22)

Gexc =y1
U3+ × y1

U4+ × y2
O2− × y3

Va

[
La
(U3+,U4+)(O2−)(Va) + Lb

(U3+,U4+)(O2−)(Va)

(
y1

U3+ − y1
U4+

)]
(23)

+ y1
U4+ × y1

U5+ × y2
O2− × y3

O2−L(U4+,U5+)(O2−)(O2−)

Gcon f =kBT

(
∑

i
y1

i ln
(

y1
i

)
+ 2 ∑

j
y2

j ln
(

y2
j

)
+ ∑

k
y3

k ln
(
y3

k
))

(24)

where ys
m is the site fraction of the component m in the sub-lattice s so that ∑m ys

m = 1, Gi,j,k is the Gibbs

energy of the i, j, k end-member the composition of which is
(

y1
i , y2

j , y3
k

)
= (1, 1, 1), and Gexc is the excess

Gibbs energy [50]. The sub-lattices 1, 2, 3 correspond to U atoms, O atoms and interstitial sites respectively.
Using the same notations as in [25], we detail the variables: for the U sub-lattice, the variables y1

i correspond
to the fractions of the different oxidation states of the U atom (i = U3+, U4+, U5+): y1

U4+ =
∣∣U4+

∣∣ = ∣∣U×U ∣∣,
y1

U5+ =
∣∣U5+

∣∣ = ∣∣U°
U

∣∣ = Ch° and y1
U3+ =

∣∣U3+
∣∣ = ∣∣∣U ′

U

∣∣∣ = Ce′ . For the second and third sub-lattice variables,

we have (j = O2−, Va) y2
O2− =

∣∣O×O ∣∣ , y2
Va =

∣∣V°°
O

∣∣ = 1
2 CV°°

O
and (k = O2−, Va) y3

Va =
∣∣V×i ∣∣ , y3

O2− =
∣∣O”

i

∣∣ =
CO”

i
. By expressing G as a function of the defect concentrations Cν and deriving the differential of this

function, we can identify δgν and µi based on the thermodynamic functions of Appendix A of [25]:

G = gUO2 + COi δgOi + CVO δgVO + Ceδge + Chδgh

gUO2 = GMOX
(U4+)(O2−)(Va)

δgOi = GMOX
(U4+)(O2−)(O2−) − GMOX

(U4+)(O2−)(Va)

δgVO =
1
2

(
GMOX
(U4+)(Va)(Va) − GMOX

(U4+)(O2−)(Va)

)
δgh = GMOX

(U5+)(O2−)(Va) − GMOX
(U4+)(O2−)(Va)

δge = La
(U3+,U4+)(O2−)(Va) − Lb

(U3+,U4+)(O2−)(Va) + GMOX
(U3+)(O2−)(Va) − GMOX

(U4+)(O2−)(Va)

µ0
U = GUα,metal

µ0
O = GO,gas

µ0
e = −

(
GMOX
(U5+)(O2−)(Va) − GMOX

(U4+)(O2−)(Va)

)
The last three equations determine the uranium, oxygen and electron standard chemical potentials. GO,gas
and GUα,metal are the Gibbs energy for half a molecule of gaseous O2 and one atom of U in the metallic α
phase as described in the TAF-ID thermodynamic database. The electron value was arbitrarily chosen so
that the hole formation Gibbs energy gh = δgh + µ0

e is zero, in line with our previous explanations. The
results are summarized in Eq. (25) below, while the thermodynamic details are given in the set of equations
in Table 5 (in the appendix).
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gOi = 2∆GMOX
(U5+)(O2−)(Va)

gVO =
1
2

∆GMOX
(U4+)(Va)(Va) − 2∆GMOX

(U5+)(O2−)(Va)

ge = La
(U3+,U4+)(O2−)(Va) − Lb

(U3+,U4+)(O2−)(Va) + ∆GMOX
(U3+)(Va)(Va) − ∆GMOX

(U4+)(Va)(Va) + ∆GMOX
(U5+)(O2−)(Va) (25)

gh = 0

This linearized version of the Calphad model of UO2 will be named the “Guéneau model”.

3 Synthesis of thermodynamic information

3.1 Comments on the atomistic-based models

Uranium reference

As noticed in Section (2.2), many of the defect thermodynamic data involving uranium defects are given
in the (UO2 ↓, O2 ↑, h or VBM) references, whether it is defined as equilibrium reactions (21) (Andersson,
Perriot) or in relation to the components chemical potential (16a) (Soulié). In these cases, the Gibbs energies
are converted to the chosen reference (U ↓, O2 ↑, h), using the TAF-ID for ∆g0

UO2
, whatever the model, since

no data is provided for this function by the corresponding models. This choice for ∆g0
UO2

, apparently
inconsistent, has no impact on the applications since the terms in ∆g0

UO2
cancel out during the equation

resolution because of Eq. (15a). Table (3) summarizes this information.

Oxygen reference

Most of the publications concerning the ab initio evaluation of the formation energies quoted here report a
discrepancy of some tenths of eV between the calculated and measured formation energy at 0 K for UO2,
corresponding to the chemical reaction U ↓ +O2 ↑� UO2 ↓ [18, 3, 14, 40], although the use of VdW [52]
gives very good results. More generally, oxide formation energies are not well reproduced by the ab initio
DFT techniques used in the quoted papers, but other ab initio techniques (not reported here) give good
results. Among the generally mentioned reasons is that such techniques devoted to solids are irrelevant
for small molecules. Other problems may occur from the difficulty to produce a set of “unequivocal”
“ab initio” constants (such as de DFT U and J parameters), that would be identical for metal and oxide
uranium, this issue is addressed in more details in section 5. For these reasons, the O2 molecule energy is
corrected, and in some cases [14, 49], uranium oxide is chosen instead of metal as the uranium reference.
This means the oxygen reference correction actually bears all the errors concerning the ab initio evaluation
of the energies of O2, U and UO2. Three types of correction are reported, all based on replacing the oxygen
energy by a value making it possible to reproduce the energy of a particular reaction (or a set of such
reactions) while the other reactants/products of the reaction are calculated ab initio:

1. Reproduce the O2 atomization reaction energy O2 � 2O, which means adding 0.9 eV to the O2
molecule energy at 0 K in [40]. However, the authors underline that miscalculation of small molecules
is not necessarily the only reason for this discrepancy, at least in the case of MnO2. The same feature,
calculated by other authors and/or other methods yields quite different correction values (e.g. 2.4 eV
in LDA, 1.6 eV in GGA [5]).

2. Reproduce a particular oxidation reaction involving solid uranium phases, [20, 14]:

U ↓ +O2 ↑� UO2 ↓ (26)

or [3]:

4UO2 ↓ +
1
2

O2 ↑� U4O9 ↓ (27)

Let us notice that other ab initio techniques, such as VdW-DF exchange-correlation functional, allow
a much better evaluation of the UO2 formation energy (see for instance Table 2 of [52]) and do not
require an energy correction for oxygen.
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3. Wang et al. [54] plotted the calculated formation energies against the measured formation energies
for a series of oxides. The trend shows an average shift of 1.36 eV between the quantities, which is
used as the basis to correct the calculated values.

4. We will also propose, Table 3, a correction based on the best fit between calculated and measured
stoichiometry deviation as a function of oxygen potential.

The following examples give more detail on the corrections used for each model, among 1 to 3 above.

3.1.1 Andersson et al. [3] [2014]

Referring to [2], the authors obtain a better value of the oxygen reference energy using the fitting technique
number 2 above based on the equilibrium UO2/U4O9, Eq. (27). The calculated enthalpy is −1.36 eV while
the experimental value is reported to be−1.8 eV, yielding a correction of 0.44 eV for the O2 energy. Accord-
ing to this method, the O2 correction captures indistinctly the errors concerning the gas molecule but also
that concerning the oxide).
Entropy reaction values are calculated using the Basak potential [10] for U and O atoms. As polarons are
not available in this kind of model, the electron-hole formation entropy, 0.73kB, is reported as the calculated
value coming from other authors [28]; there seems to be an error, since 0.73kB is actually the experimental
value of [27], with the veritable calculated value of [28] being 1.1kB.

3.1.2 Vathonne et al. [53] [2014]

The formation thermodynamic parameters were not directly available in that publication. They were ex-
tracted from the graphs (Figure 3) showing eν − ν.∆µ as functions of ∆µe for various values of ∆µU and
∆µO. No correction is reported in the publication for the oxygen reference energy. The Madelung constant
used in the article for energy correction was that of a fcc lattice (2.519), instead of that of a cubic lattice
(2.8373); this point has been corrected in the values reported in Table 4. None of the defect formation en-
tropies were calculated nor were the formation energy for the electronic defects (h° and e

′
). To provide an

elementary assessment of the ab initio energies of this model, we define the lacking information as follows:
• energies for electronic defects are taken from [12] reported to use the same calculation methods
• entropies are from [49].

Since the data set is quite large and cannot be wholly presented in Table 4, the complete data set is gathered
in Table 7.

3.1.3 Vathonne et al. [52] [2017]

This work is closely related to the previous study [53] by the same team; the improvement is essentially
based on the use of the vdW-DF functional in the DFT calculation. The energies are somehow different
from one model to the other, the discrepancies becoming rather large generally when uranium vacancies
are involved (around 1 eV par VU). As for the data of 2014, only energies at 0 K are provided (no entropies),
but the data set is much larger and the electronic defects h

◦
and e

′
are addressed additionally. For the

comparison to the experiments we also used the entropies of [49] (in particular se′ = 0). The complete data
set is compared to that of 2014 in Table 7.

3.1.4 Cooper et al. [14] [2018]

In that article, what is called “defect energy” or “entropy” (∆E, ∆S) results from the difference of two
simulation boxes and corresponds to (δhν, δsν) according to our convention. At a given temperature T,
the physically meaningful information, (hν = δhν − ν.h0, sν = δsν − ν.s0) requires a reference set of values
h0, s0 (for the components U, O, e). Table 1 of the original article provides the energetic parameters δhν, δsν

at 0 K but unfortunately does not give the reference information h0 (while the corresponding entropies at
0 K are known to be zero). The best way we were able to use this defect model despite this flaw was
to extract the formation Gibbs energies from the graph of Fig. 4 a showing the defect concentrations as
functions of the oxygen pressure at 650 K and to deduce the corresponding entropies and enthalpies (for
the CRG model). For this purpose, the δsν’s of the article and s0’s of the TAF-ID were fitted as linear
functions on the temperature in the ranges [650 K, 2000 K] and [650 K, 2700 K] respectively, yielding δcν, cν

and sν according to Eq. 12b (both for CRG [15] and Busker [47] potentials). Eq. 10a was also used to roughly
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evaluate the defect formation enthalpy of each defect at 0 K. For this rough estimation, the defect thermal
capacities δcν were supposed to vary linearly between 0 K and an effective Debye temperature of 400 K and
to remain constant above this temperature; the fairly arbitrary value of this model temperature has a slight
influence on the defect enthalpy and provides anyway a better result than no correction. As noticed in
Section 2.1.2 above, we use the oxygen standard chemical potential from CODATA at 0 K and from the TAF-
ID for temperatures above 298 K; the latter slightly differs from that of the original article (Eqs. (9) and (10))
even if the misprints are disregarded (factor 1

2 missing in (10) and undue in (9)). As reported in the article,
the oxygen ab initio value for the reference energy has been corrected according to the fitting technique
number 2 (using the oxidation reaction (26)); however, as the genuine ab initio reference energies for U
and O are lacking, there is no way of knowing the real value of this oxygen energy correction. The Gibbs
formation energy of UO2, ∆g0

UO2
, necessary to calculate the uranium vacancy concentration according to

Eq. (17), is from the experiments (TAF-ID), since the paper does unfortunately not give this information, it
can be calculated from Table 1. The calculated values of the concentrations for the uranium bearing defects
should be slightly different of what would be obtained on the basis of the atomistic evaluation of ∆g0

UO2
.

This fitting procedure ensures that, for the CRG model, the Gibbs energies are very close to that of Fig. 4 a
for 650 K and are close to the theoretical values above this temperature, which is satisfying for the purpose
of this paper. However, since the values at 0 K on which the Busker enthalpies exclusively relies, may be
erroneous, the higher temperature values that we calculate for the Busker model are less reliable than for
the CRG model.

3.1.5 Soulié et al. [49] [2018]

Similarly to Cooper et al. this article calculates the free energy differences δ fν (that we suppose identical
to δgν) from which sν (Tr) and cν were calculated; the fitting range for δ fν is [400 K, 1900 K]. The forma-
tion enthalpies at 0 K, hν (0 K), used in the calculations are from [12]; there is no correction for the oxygen
molecule energy. Unlike other models, the reference for uranium is the chemical potential of U in stoi-
chiometric UO2, so that the reported value of the Gibbs formation energy of V4′

U is actually g∗
V4′

U
in Eq. 18.

The Gibbs formation energy of UO2, ∆g0
UO2

, used to evaluate gV4′
U

from g∗
V4′

U
is the experimental value, as

was done for the CRG model above. Contrary to the case of Soulié, this choice for ∆g0
UO2

has no impact
on the defect concentrations, since the same quantity is removed in Eq. (17) for the concentration calcula-
tion. The effect on entropies of electronic defects are considered negligible, in particular for electrons and
holes. Many complex defects were calculated (up to (Oi)5) in [12] and [49], most of them were included
in the present evaluation. To accelerate the calculations the following negligible defects were omitted:
(Oi)

6′
4 , (Oi)

7′
4 , (Oi)

8′
4 and all the species of (Oi)5.

3.1.6 Perriot et al. [43] [2019]

The relevant thermodynamic data are from Table 1 of [43] and are reported to be based on that of [3],
but recalculated with larger super-cells to be consistent with the other results of the article. The Schottky
defect (S) in [43] appears to be unbound, while the values proposed here in Table 4 are for the bound
Schottky defect. For this reason no Schottky defect is reported for this model here. The Gibbs energy for
V4′

U , equivalent to that of the equilibrium .� V4′
U + 4h

◦
+ U ↓, is deduced from the reaction data of Table 1

as gV4′
U
= ∆g0

S − 2∆g0
FPO

+ 2∆g0
OI
− ∆g0

UO2
. The Gibbs energy for V2◦

O , equivalent to that of the equilibrium

2h
◦
� V2◦

O + 1/2O2, is deduced from the reaction data of Table 1 as gV2◦
O

= ∆g0
FPO
− ∆g0

OI
.

3.2 Defect thermodynamic parameters

When available, Table 4 provides the formation energies and entropies at 900 K, and the heat capacities
in the appropriate range for each model. As noticed above, according to the thermodynamic convention,
what is actually written for each defect, ν, corresponds to the transformed Gibbs energy gν + νegh of the
genuine data gν and gh of the publications. For the purpose of comparison, the parameters for a set of
defects (FPO, e − h, V2°

O , V4′
U ) are also plotted, see Figures 1 to 3; the models obtained by experimental

fitting are also presented. In order to eliminate the influence of the O and e reference energies, appropriate
combinations of defects were plotted such as the oxygen Frenkel pair “FPO” and the electron-hole pair
“e− h”.
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3.2.1 Energies at 0K and Gibbs energies at 900K

Figure 1 displays the defect energies at 0 K. Since the fitted models were calibrated at high temperature, the
comparison of the parameters at 0 K is mostly valid for atomistic-based models. For the reactions involving
no exchange with the environment (FPO, e− h), the ab initio parameters are rather close to each other. For
example, four of the five ab initio values for the O Frenkel pair are very close, but there is a large difference
of 1.57 eV between Vathonne’s models and the other ones. The ab initio values for the electron-hole pair
energy of formation at 0 K somehow split in two groups: Andersson, Vathonne, Soulié one the one hand
and Cooper, Busker, Perriot on the other hand. The presence of Perriot in the latter is surprising since its
values are derived from those of Andersson. For the reactions involving the exchange of atoms with the
environment (V2°

O , V4′
U ) the scatter is much higher, in line with the differences in the energy of the oxygen

molecule.
Figure 2 displays the Gibbs energies at 900 K. The tendencies are very similar to that at 0 K.

3.2.2 Entropies at 900K

The entropies are displayed in Figure 3. The atomistic entropies for the e− h pair are rather close to each
other; on the contrary, the fitted entropies are very scattered. The uranium vacancy entropies of CRG (or
Busker) and Soulié are very different at 900 K. We can propose some hints to explain this large discrepancy.
Soulié’s model uses UO2 as uranium reference (hence the * in above the data) so that according to Eqs. (18)
and (14) the entropy is written:

sV4′
U
= δs∗

V4′
U
− s0

UO2
+ 4δsh° + s0

U

while CRG and Busker directly use the defect V4′
U :

sV4′
U
= δsV4′

U
+ 4δsh° + s0

U

First, s0
UO2

should be calculated with Soulié’s potential. As the data was lacking in the publication, we used
its experimental value to compute sV4′

U
on the basis of the article value of δs∗

V4′
U

. The calculated values for

s0
UO2

of CRG or Busker are roughly 2.5 to 4kB lower than the experimental value respectively. Second, δsh° is
zero in Soulié’s model which is about 1kB lower than for the other models. Third, there is no contribution
to the scatter due to uranium entropy which is the same experimental value for both equations. Altogether,
the scatter of parameter values combine to give an value in the range [6.5kB, 8kB] which reduces the large
scatter of sV4′

U
(10.5 to 13.3kB, see Table 4) to a more limited one for δsV4′

U
(4kB).

h
◦

e
′

VO VO2 Oi Oi2 Oi4 VU VUO VUO2

1 1 2 6 1 8 12 1 8 12

Table 2: Configuration numbers for the various defects (regardless to the charge)

Model Ref. U dµ0
O (eV)

Nakamura 86 UO2 0.121
Park 92 UO2 -0.102
Gueneau 11 UO2 -0.241
Garcia 17 UO2 0.095
Andersson 14 UO2 -0.195
Vathonne 14 U 1.043
Vathonne 17 U 0.868
CRG 18 U 0.468
Busker 18 U 0.566
Soulié 18 UO2 1.307
Perriot 19 UO2 -0.114

Table 3: Reference for U and shifts in µ0
O according to a least squares fitting with the experimental data
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Figure 1: Comparison of the models: formation energy at 0 K
The fitted models correspond to dotted edges
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Figure 2: Comparison of the models: Gibbs formation energy at 900 K
The fitted models correspond to dotted edges
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Figure 3: Comparison of the models: formation entropy at 900 K
The fitted models correspond to dotted edges
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3.2.3 First application: calculating the defect concentrations

The direct application of the thermodynamic parameters described above is the calculation of the equi-
librium defect concentrations as functions of the oxygen chemical potential and temperature (solving Eq.
(6a)-(6g)). For instance, Figure 16 in the appendix allows for a comparison of the models at an intermediate
temperature of 1600 K.
Although the quantitative results are very different among the models, the general trends are in general
qualitatively rather similar in many respects. Except for Vathonne’s models, electronic defects (e

′
and

h° ) are dominant around stoichiometric UO2 at all temperatures; oxygen single defects (V2°
O or O2′

i ) are
generally dominant further from the stoichiometry (respectively in the hypo and hyper–stoichiometric
regions).
Besides this relative uniformity, differences still occur. In the models of Cooper (CRG and Busker), Soulié
and Perriot, the uranium vacancy formation Gibbs energy is low enough to allow this defect to explain x at
high oxygen potential. In the same line, large values of x are accounted for by the oxygen interstitial clusters
in the models of Nakamura, Park, Garcia and Andersson. Moreover, the electronic defect concentrations
are particularly low for the model of Garcia, in line with the high value for the formation energy of the
electron-hole.
As noticed above, Vathonne’s model provides a special case: at high temperature, the concentration of the
oxygen defects is much higher than that of the electronic defects, unlike the other models, because of the
very low value of the Frenkel pair formation energy compared to that of the electron-hole. This trend is
enhanced at higher temperature (see Figure 17 in appendix). Moreover the presence of negatively charged
oxygen vacancies (V

′
O, V2′

O ) is very original and has a strong impact on the defect behavior. In fact, in most
models, the electroneutrality is controlled by both oxygen and electronic defect and the corresponding
equation reduces to e′ = 2V2◦

O and h◦ = 2O2′
i in the near hypo/hyper stoichiometric regions respectively;

here the electroneutrality is under control of the oxygen defects on the whole oxygen potential range,
according to the equations 2V2◦

O + V
◦
O = 2V2′

O or 2V2◦
O = 2O2′

i . The O2′
i concentration is still rather high in

the hypo-stoichiometric region.
The general trends emphasized here usually appear at all temperatures, but this may suffer exceptions, for
instance (Figures 15 and 17):

• the uranium vacancies do not control x at lower temperature in the models of Cooper, Soulié and
Perriot;

• at 900 K and high oxygen potential, x is controlled by the oxygen tetra-interstitial in Vathonne 14 and
by the uranium vacancies in Vathonne 17.

4 Comparison with experiments

We tried to derive observable quantities from the various defect models studied here and compare them to
available experimental data, such as basic bulk thermodynamic properties, electron-hole Gibbs formation
energy, phase diagram in the vicinity of UO2+0, and deviation from stoichiometry or electric conductivity
as functions of the temperature and of the oxygen potential.

4.1 UO2 thermodynamic properties

The general ability of the simulation techniques can also be evaluated through the thermodynamic func-
tions of the bulk material, which should be better reproduced than defect quantities since they are more
easily calculated, notably by ab initio techniques.
Some of the atomistic models give useful and precise information on UO2 thermodynamics. As already
mentioned, the formation enthalpy of [51] and [52] are −10.54 eV and −11.3 eV respectively, the second
being very close to the experimental value of−11.3 eV (according to the TAF-ID database and the CODATA
database for 0 K values). Unfortunately, the other articles addressed here do not give enough information
for calculating the UO2 formation enthalpy.
However, experimental and simulated entropies and heat capacities for bulk UO2 obtained from the CRG
and Busker models [14] are compared in Figure 4. The heat capacity at constant volume and pressure, cV

UO2

and cP
UO2

, have been evaluated following the publication indications and according to the thermodynamic
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Figure 4: Comparison of calculated and measured (TAF-ID) entropies and heat capacities for UO2

relation:
∂S
∂T

∣∣∣∣
P
=

∂S
∂T

∣∣∣∣
V
+

∂V
∂T

∣∣∣∣
P

∂S
∂V

∣∣∣∣
T

(28)

or equivalently:

cP
UO2

= cV
UO2

+ T
∂Ω
∂T

∣∣∣∣
P

∂S
∂V

∣∣∣∣
T

(29)

cV
UO2

= 9kB

where the basic data come from [14], where Ω (T) is the measured UO2 unit cell volume given in [19] and
shifted so that it gives 5.47 Å at 0 K. We suppose that S at zero pressure is given in Tables 2 and 3, ∂S

∂V

∣∣∣
T

in

Table 4 (0.341 kB/Å
3 and 0.447 kB/Å

3 for Busker and CRG resp.), and that the Dulong Petit relation for cV
UO2

is
valid (as stated Eq. 3 of [14]). An additional contribution to the entropy (sde f ) is tested (dashed cyan lines)
corresponding to the formation of the oxygen Frenkel and electron-hole pairs during temperature increase
of a pure and perfectly stoichiometric UO2:

sde f =
(

sO2′
i
+ sV2◦

O

)√
2 exp

(
gO2′

i
+ gV2°

O

2kBT

)
+
(
se′ + sh°

)
exp

(
ge′ + gh°

2kBT

)
.

This defect contribution to the entropy (sde f ) is negligible (max 0.14kB), although it is not to the thermal
capacity (T∂Tsde f , i.e. 0.7kB at 2000 K) (Figure 4).
The simulated variations with the temperature are quite close to that of the experimental data, as shown
particularly by the cP

UO2
graph including the defect correction (∂Tsde f/T).

4.2 UO2 electron-hole Gibbs formation energy as a function of the temperature

Figure 5 presents the various models for the electron-hole Gibbs energy of formation as a function of tem-
perature. As noticed in Section 3.2.1, the models gather in two groups: CRG, Busker and Perriot on one
side and Andersson and Vathonne on the other side. The band gap values deduced from UV-VIS-NIR
optical absorption measurements of [45, 44] are also plotted for comparison. They are very far from all
model values, except Nakamura 86. However we could not undoubtedly assume that the physical quan-
tity measured in Ruello’s publications was actually the defect Gibbs energy as evaluated in the present
work.

4.3 Deviation from stoichiometry versus oxygen chemical potential

Many measurements of the deviation from the stoichiometry, x, as a function of the oxygen potential
µO and the temperature T are available. Since the data in the literature is very scattered, considerable
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Figure 5: Comparison of the models with experiments [45]: electron-hole Gibbs formation energy vs tem-
perature

efforts have been made to rationalize them: [7, 8] for the hypo-stoichiometric region, [32, 33] for the
hyper-stoichiometric region. The Calphad [24, 25] and Guéneau models, corresponding to the TAF-ID,
are grounded on the resulting selected data. Because of this careful selection and the important appli-
cations enabled by the TAF-ID in the nuclear materials field, we also chose this experimental set of data
as reference for our validation. The simulated and measured variations of x as a function of ∆µO for a
large range of temperatures (900-2700 K) are shown in Figures 6-7 (for the fitted models) and 8-9 (for the
atomistic-based ones).
To summarize, Figure 10 presents the temperature variation of the stoichiometric oxygen potential for the
different models, including the shifted ones. For all the models, this chemical potential is approximately
given by the following equation, except for Garcia’s model, as noticed in Section 4.3.2:

∆µsto
O =

1
2
(gOi − gVO + kBT ln (2))− (ge − gh) . (30)

4.3.1 The atomistic-based models

Scatter is also very large for the atomistic-based models (Figure 8).
A comprehensive overview concludes Andersson’s model to be the only one showing a correct agreement
with the experiments across the whole temperature range. Indeed, in Figures 8 and 10c, the position of the
UO2 stoichiometric oxygen potential appears to be more or less shifted for all the models, suggesting that
the oxygen references of the models might be erroneous. The relative success of Andersson’s model in this
issue suggests that we can use the same procedure for the O energy fitting, i.e. reproducing the oxidation
energy of UO2 into U4O9, see Eq. (27). This is actually not possible with the thermodynamic parameters
made available in the publications considered here. As a backup, for each atomistic-based defect model,
we propose to shift the oxygen standard potential, µ0

O, by a quantity dµ0
O. The Gibbs energy of a defect

gν is then transformed to gν − νOdµ0
O. The same is done for the equation of C0 (15a): an error of dµ0

O on
µ0

O yields a shift of −2dµ0
O on g0 = ∆g0

UO2
. For this reason, to obtain the graph x = f (∆µO) of a set of

parameter with µ0
O shifted of dµ0

O we just have to shift the abscissa of the initial graph by an amount of
−dµ0

O. It is then possible to give a best estimate of dµ0
O for a given model by a least squares fitting of ∆µO

to the experimental data of Figure 8, which yields dµ0
O =

〈
∆µsim

O − ∆µ
exp
O

〉
.
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To improve the fitting procedure we excluded the irrelevant experimental data. The slope, d log(|x|)/d∆µO,
in the graph is under control of the charge and oxygen composition of the main defects, namely, in our
case,the larger slopes are related to oxygen interstitial clusters (Oin,n>1). According to this, a better fitting
can be obtained for models devoid of such clusters if the data points corresponding to the larger slopes
are removed from the experimental set. The models Vathonne 17, CRG, Busker and Perriot (as well as
Guéneau among the fitted models) were processed this way (this mostly induced to remove the data for
T ≤ 1600 K and ∆µO > −1.4 eV, cf. Figure 18 in the appendix). Table 3 gathers the resulting shifts. Figure 9
presents the new variations of x after the corresponding shifts. In a view of being comprehensive, we also
calculated the shifts for the “fitted” models, although the shifts are rather small, in line with the fact that
these models have already be fitted.
Various features of the graphs deserve comments ( shifted models only are addressed, unless specifically
mentioned).

• Andersson’s model behaves much better than the genuine one at low temperature and high oxygen
potential, where di-interstitials dominate, while the agreement with experiments at higher tempera-
ture is fairly unchanged.

• Both Vathonne’s models appear quite far from the experimental data, except at low temperature (up
to 1200 K), in the hyper-stoichiometric zone. The behavior in the hypo-stoichiometric domain at high
temperature is quite puzzling, since although the shifted curves cross the point cloud, their slopes
remain very different from it. This very likely comes from the presence of negatively charged oxygen
defects masking the electronic ones in the hypo-stoichiometric region (as noticed in Section 3.2.3),
which changes the slope d log(|x|)/d∆µO.

• CRG and Busker models behave correctly in the hypo-stoichiometric (high temperature) region, and
poorly in the hyper-stoichiometric (low temperature) region.

• Soulié’s model behaves quite well in the hypo-stoichiometric domain (at high temperature). In the
hyper-stoichiometric one, at lower temperature, the behavior is fairly correct close enough to the
perfect stoichiometry, where x is controlled by the concentration of VU or Oi; for larger values, x is
controlled by the clusters of oxygen interstitial atoms (see Figures 15, 16, 17) and hardly reproduces
the experimental slope, this seems to be connected to the characteristics of the main interstitial clus-
ters of the model (Oi4 of various charges) which do not account for a slope of 1, as does the standard
di-interstitial W = O

′
i2 for other models. Although there are no experimental data in the low hyper-

stoichiometry and low temperature region to say whether a model behaves well or not, we should
consider that Andersson’s model is better because at that temperatures it works for a larger range of
x.

• Perriot’s model (whose shift, -0.114 eV is very small) behaves well in the hypo-stoichiometric regime,
and quite poorly in the hyper-stoichiometric. Equations (5) and (6) of [43] suggest the oxygen va-
cancy formation entropy might have been fitted on experimental results at 1973 K; this may be an
explanation for this very good performance. Let us notice that this fitting procedure interferes with
our fitting (-0.114 eV) of the oxygen potential at 0 K in some complicated way.
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4.3.2 The �tted models

As a preliminary remark, we may say that as expected, the shifts dµO appear fairly small considering these
models have already been fitted according to similar data sets. Additionally, we can see that no two models
overlap for the whole oxygen potential range, which can be partially understood.

• Nakamura’s model [37] is grounded on data in the 0 < x ≤ 0.05 range, which explains why it
behaves correctly mainly in the hyper-stoichiometric region, as can be seen by comparison with the
experimental data for temperatures below and above 2000 K, which addresses the hyper- and hypo-
stoichiometric regions respectively.

• The data used by Park [41] and Guéneau [25] comprises various subsets gathered in [34]. Surpris-
ingly, the models do not perform the same way at all. Park’s results are particularly close to the ex-
perimental data in the hyper-stoichiometric range, and also rather close to the results of Nakamura.
Guéneau does not fit them very well, especially in regions far from x = 0, where the Willis cluster is
predominant, in line with the absence of this defect in the model. In this region, the linearized model
is oversimplified and cannot behave so well as the genuine one; in particular, the region with a higher
slope (i.e. for x > 0.01) is generally accounted for by the di-interstitial oxygen atoms in other models,
and are here probably accounted for by the excess term of the Gibbs energy (Eq. (23)), which has
been partly removed in the linearized model. In the hypo-stoichiometric range, Guéneau is closer
than Park to the measurements, probably because x is controlled by the oxygen single vacancy which
is part of the linearized model. Nakamura remains far from both models, but rather close to Garcia’s
results.

• Garcia’s model performs quite well in the region where the Willis cluster W is dominant, which
corresponds to the case where the conductivity (proportional to the hole concentration) is controlled
by the predominant oxygen defect concentration which is always W in this region (Figure 11). This
means that for high oxygen potential, the conductivity is a measure of W concentration and the model
fits well both for conductivity and stoichiometry deviation measurements. This is in line with the
peculiar behavior of the stoichiometric oxygen chemical potential of this model (Fig. 10, green curve)
which corresponds, only at high temperature, to the equation CW = CVO , giving rise to a different
slope in the graph, instead of the usual situation where the equality COi = CVO and Eq. (30) stand
at all temperatures. In the plateau regions of the curve, e + h corresponds to the electroneutrality
equation Ch ∼ Cdop since various defect concentrations are negligible compared to the impurity’s.
According to Figure 11 based on the model results, there is practically no experimental data where
O2′

i or V2◦
O impact the conductivity: we should not expect a good precision on the corresponding

thermodynamic parameters, thus explaining the poor agreement, Figure 6, between calculated and
measured deviation from the stoichiometry where W is not predominant.

4.4 Electric conductivity versus oxygen chemical potential

While Nakamura, Park and Guéneau developed their models based on measurements of the deviation
from stoichiometry, Garcia [21] developed his on the basis of electric conductivity measurements by Ru-
ello [46]. Figures 12a, 12c and 12d compare the modeling and experimental results. The conductivity (σ)
measurements were transformed into total electronic defect concentrations according to the relation:

σ = q
me

T
e−

Hm
e

kBT nUO2 (Ce + Ch)

in which q = 1.602× 10−19 C, nUO2 = 2.5× 1028 m−3, me = 0.26 m2KV−1s−1, Hm
e = 0.26 eV respectively

stand for the electron charge, the site UO2 pattern concentration per unit volume, the electron and hole
mobility (supposed to be equal), and the corresponding common migration enthalpy. For the reported
graphs, the equivalent concentration of “electrons” coming from the impurities is Cdop = 2.1× 10−4; the
positive value indicates this is equivalent to a doping with the same amount of trivalent ions.
As noticed for the analysis of the deviation from stoichiometry, a model fitted on one type of measurement
does not correctly reproduce another type: Garcia’s model is the only fitted model to behave correctly in
Figure 12a.
Neither the unshifted atomistic-based models (Figure 12c) nor the shifted ones (Figure 12d) behave cor-
rectly. In general, in the extrinsic region (i.e. in the plateau, supposed to mark the impurity concentration
Cdop), the electron+hole concentration at high temperatures is much higher than measurements. This falls
in line with the much higher value for the electron-hole formation energy found by Garcia (Figure 5).
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Figure 11: Defect concentrations in Garcia’s model, experimental concentration of the electronic defects [46]

Both Vathonne’s models behave however differently since their electron-hole formation energy are signif-
icantly higher than the other ones: the scatter with the experimental data is quite small at high tempera-
ture but increases below 1200 K. Finally, the shift in oxygen potential performed above on the basis of the
stoichiometry deviation measurements tends to degrade the model quality concerning conductivity and
unfortunately does not seem to be adapted to this physical quantity.
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Figure 12: Comparison of the models with experiments [46]: electronic defects concentration
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Figure 12: Continued...
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4.5 Phase diagram

Eq. (15a), in conjunction with relevant phase-equilibrium equations, allow us to determine the phase limits
between UO2+x, and U or U4O9 respectively. For simplicity, oxygen solubility and defects in the two latter
phases were neglected so that they were described as compounds.
The existence of the metal uranium phase imposes the U chemical potential. According to the thermody-
namic reference for uranium, the equation set corresponding to U and UO2 coexistence is written:{

∆µU = 0
∆µU + 2∆µO = ∆gUO2 + kBT ln (C0)

(31)

In the same way, the formation equilibrium of U4O9 as a perfect compound is described in conjunction
with UO2: {

∆µU + 9
4 ∆µO = ∆gUO9/4

∆µU + 2∆µO = ∆gUO2 + kBT ln (C0)
(32)

Since few if any models give evaluation of the formation enthalpy of U4O9 based on atomistic techniques,
we chose for all the models to use the same experimental function of temperature ∆gUO9/4

, and took it from
the TAF-ID and CODATA (at 0 K). To simplify, we also chose the TAF-ID/CODATA value for ∆gUO2 since
it seems that few model calculate this data; additionally, the two calculated values at 0 K (Vathonne 14 and
17) are close to the experimental one. This means that, for a given temperature, the values of the oxygen
relative chemical potential ∆µO do not differ very much from one model to another, since they differ of the
sum kBT ln (1−∑ν Cν) which is generally small compared to other terms in Eqs. 32 and 31. For this reason,
solving these equations devoid of this term yields a good approximation of the phase limits, this is why
the corresponding lines are drawn in blue in the graphs x (∆µO, T), Figures 6-8, from which it is possible
to determine the corresponding points in the phase diagram.
Solving Eqs. (15b) to (15g) with either (31) or (32) provides a complete description of the phase limits
U/UO2+x or UO2+x/U4O9 as shown in the phase diagrams, Tlimit vs O/M or x, Figures 13 and 14. The
shifted models should not be addressed here, since the phase limits rely on the solid formation Gibbs
energies ∆gUO2 and ∆gUO9/4

which are to be shifted the same way as the defect Gibbs energies, which results
in no change in the phase diagrams. However, we tested the shifted models using the somehow ad hoc
assumption that ∆gUO2 and ∆gUO9/4

alone are not affected by he shift.
It should be emphasized that for the phase diagrams, experimental data in the quasi-stoichiometric region
is even scarcer and scattered than already noticed for the x (∆µO, T) graphs (Section 4.3) so that limited
confidence can be granted to a comparison of simulations and measurements.

• There is only one measurement in the region −0.02 < x < 0, at x = 0.01.
• In the region 0 < x < 0.01, the only data we found is from [23] (for which we chose an arbitrary

uncertainty on x of 0.005). For x > 0.01, we could not find the uncertainties for the data supporting
the TAF-ID and took them from [9] whose values (although not selected) are close to those selected
for the TAF-ID.

• As shown Figure 14 the scarcity and uncertainty of data in the region −0.01 < x < 0.01 do not allow
any conclusion on the quality of any model.

Specific comments can be made for the various models. As shows a comparison between the second and
third graphs of Figure 14, the shift does significantly improve the phase limits calculations by most of the
atomistic models. For this reason, we mostly comment on fitted and atomistic unshifted models.

• The very low (negative) values of the interstitial and di-interstitial formation energy of Park’s model
yield unrealistically high values of x at low temperatures in the hyper–stoichiometric region, pre-
venting the phase limit to reach the x = 0 point above 300 K. This extreme behavior is enhanced at
low temperature because of the (very) negative formation entropies of these defects.

• Our version of Guéneau’s model yields a curve (Figure 14) practically superimposed to the TAF-
ID curve for −0.01 ≤ x ≤ 0.005. For higher deviations from stoichiometry, the non-linear terms
of the Gibbs TAF-ID energy, neglected in our model due to linearization, are no longer negligible,
which probably induces the discrepancy in the graph between the corresponding curves. Close to
the stoichiometry and for x < 0, Guéneau and the TAF-ID underestimate the experimental values of
x. This seems to be also the case for x > 0.01. In the region 0 < x < 0.01, the experimental data is too
uncertain to allow a conclusion, as noticed above.
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• In Garcia’s model, V2°
O has a low energy and a high entropy of formation, yielding a very low (nega-

tive) value of x in Figure 13a, in line with Figure 6 at 2100 K for instance.
• Andersson’s model behaves quite satisfactory both in hypo- and hyper- stoichiometric regions, al-

though the correct hyper-stoichiometric region seems to be much larger. Surprisingly, for 0.667 <
O/M < 0.68, the result is closer to the measurements than the TAF-ID.

• CRG behaves quite correctly for 0 < x < 0.03.

• Similar comments stand for Perriot’s model as for Park’s, but in this case, it comes from the low
formation energy of the uranium vacancy. The shifted version of this model behaves quite correctly
on a large x range.

As a conclusion, let us remind that the linear approximation on which the models rely is theoretically valid
in the narrow stoichiometric region (i.e. |x| / 0.01). Despite this limitation, two models show a satisfying
behavior both for the U4O9 and U limits: unshifted Andersson’s model and shifted Perriot’s, although to a
lesser extent. For the lower temperatures of the phase diagram, close to the stoichiometry, the phase limits
measurements are very scarce and difficult to obtain, so that the phase limits are not precisely characterized,
nor the model validated; this calls for renewed experimental efforts both to confirm the existing data and
to unambiguously characterize this region of high interest in the practical use of the material.
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(b) shifted fitted models

Figure 13: Comparison of the fitted models with experiments [24, 25]: phase diagram (Ttransition vs O/M)
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Figure 13: Continued...
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5 Discussion about DFT perspectives

In this paper, different sets of calculated data for the thermodynamic properties of UO2+x have been pre-
sented and analyzed, with one of the observations being that, even though the sets represent similar trends,
in many cases the absolute values for the predicted thermodynamic properties are quite different and those
in closest agreement with experiments tend to rely on applying a correction scheme. Although the origins
of the discrepancies between different atomistic methods and between methods and experiments have been
discussed and at least partially rationalized, we would like to briefly reflect on a few of the outstanding
issues and potential paths forward from a DFT perspective.
The oxidation and reduction energies of UO2 vary significantly between, for example, LDA+U and GGA+U,
where both deviate from known experimental data. Some of this discrepancy has already been correctly
ascribed to the reference energy of an O2 molecule, which is known to be overestimated by both GGA and
LDA based on the measured binding energy, with an error of up to 1.2 eV per atom for LDA [31]. Applying
a correction that accounts for the known error is straight-forward and makes oxidation more favorable in
agreement with experiments, however there are still quantitative deviations that must originate from the
description of the oxygen defects in the UO2 lattice.
The present paper discusses how that may be addressed by adding further corrections based on known
oxidation thermodynamics and even though a practical and useful approach, it undermines the goal of
making first principles predictions. One assumption underlying essentially all GGA+U and LDA+U calcu-
lations for UO2+x to date is that the U parameter does not change from that established for the stoichiomet-
ric compound. This is probably a pretty good approximation, nevertheless as we move from qualitative
to quantitative requirements on the thermodynamic predictions even small changes could play a role. The
oxidation/reduction energies are also influenced by assumptions regarding the crystal symmetry in the
DFT calculations, i.e. whether the lattice is allowed to develop Jahn-Teller distortions or not, with the pre-
dictions based on a lattice with Jahn-Teller distortions being less favorable from an oxidation/reduction
point of view, because the perfectly stoichiometric UO2 benefits the most from this distortion [6]. Ques-
tions remain regarding the behavior of these distortions at finite temperature in the paramagnetic phase
and the role they may play in quantitative predictions of thermodynamic properties. One additional cause
of discrepancies versus experiments might be the way the magnetism of UO2 itself is modeled, presenting
important simplifications relatively to the experiments. Three issues can be distinguished.

• At 0 K the Jahn-Teller structure of UO2 is a 3k antiferromagnet but it is often simplified as a collinear
1k antiferromagnetic model.

• At higher temperature, UO2 has the fluorite structure and is paramagnetic. The energy calculations
by DFT are done at 0 K but imposing the symmetries of the fluorite structure (which is known not to
be true at this temperature).

• Additionally, in this fluorite imposed structure in temperature, the paramagnetic state is mimicked
as a collinear antiferromagnetic state which is a strong approximation.

These approximations should at least be assessed in terms of impact on the material energy/entropy, and
improved if necessary.
Other contributions to uncertainties of the predicted defect Gibbs energies come from the entropy evalu-
ation. For the moment there seem to be no possibility to routinely evaluate the defect entropies with the
same techniques (ab initio) as the energies, since this would require extensive phonon calculations that
have so far been outside reach of DFT calculations. The current strategy is to use empirical potentials, even
if they are known not to be particularly fitted to this physical quantity. For the same reasons anharmonicity
and changes in the defect formation energies with temperature are not calculated yet in completely satis-
factory way. Clearly, it would be desirable to improve the overall phonon ab initio calculation techniques,
in order to correctly address the temperature effects on defect buildup.
The model heat of formation of UO2 also exhibits deviation among each other, and also from experiments
probably depending on how the reference states are treated [52]. In addition to the O2 molecule discussed
above, the neglect or inclusion of a Hubbard parameter for pure uranium metal and the approach taken
to compare the energy of compounds using different U parameters has been debated in the literature and
significantly impacts the predicted heat of formation. This originates from the fact that the thermophysical
properties of uranium metal do not require a Hubbard U parameter for accurate modeling, while UO2 does
[11, 17]. In fact, some reports claim that uranium metal is better described without it. It is possible to choose
a combination of U parameters for U metal and UO2 that reproduces the experimental formation energy,
but there is not yet a consensus whether comparing compounds with different U values is an accurate way
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of obtaining heats of formation and other thermodynamic properties. The way to resolve this conundrum
would be to use a methodology that does not rely on variable parameters like the Hubbard U or calculates
the Hubbard U value self-consistently based on the local environment and bonding. The latter approach
is available [30, 13, 1], but it has not been exercised on UO2+x and it still suffers from questions regarding
the validity of comparing energies for structures with different Hubbard U parameters. On the other
hand, hybrid density functional theory methods are popular, because they fulfill this requirement and,
as an added benefit, this methodology does an excellent job at describing the energy of an O2 molecule
[31], thus reducing the error to a few hundredths of an eV. Even though hybrid functionals have been
used to study UO2, the heat of formation has not yet been reported to the best of our knowledge. As has
already been discussed, defect properties have been studied and, somewhat surprisingly, the calculated
Frenkel and Schottky energies are predicted to be high compared to the LDA+U and GGA+U methods
as well as compared to experimental estimates. Among the reasons for that, we should emphasize that
metastable states also exist using hybrid functionals [29] and that no method exist to avoid convergence
toward metastable states. Moreover, the computational time seems still too important for a use with the
large supercells required for defects. Further studies are needed to fully assess the accuracy of the hybrid
approach to model the UO2+x thermodynamics.
The band gap or the electron-hole formation energy is a third thermodynamic quantity with observed
uncertainty with respect to experiments. The reason for introducing advanced DFT methods capable of
capturing the strongly correlated nature of the uranium 5f electrons was that the standard LDA and GGA
schemes failed to capture the band gap and semi-conducting nature of UO2, rather it was predicted to be
a metal. The LDA+U and GGA+U approaches improve on this discrepancy and predict a band gap that
is in decent agreement with experiments for the commonly used value of the Hubbard U parameter, as
previously discussed in this paper. The lower values reported in [19, 23] is at least partially a consequence
of studying the electron-hole pair explicitly in a supercell, which allows for the formation of polarons
with lower energies than obtained from the pure band gap. Hybrid methods predict higher band gaps,
but they are not obviously better than the LDA+U or GGA+U predictions compared to experiments. The
magnitude of the band gap and the position of the occupied 5f states with respect to the O-2p dominated
band just below the isolated 5f peak are very important quantities, not only because the electron-hole
energies impact the thermodynamics, but also because their relative positions determine the change in
energy upon oxidation and reduction as well as the balance between hyper-stoichiometry due to oxygen
interstitials or uranium vacancies. We recommend future studies to pay close attention to this behavior
as they try to resolve the remaining thermodynamic issues of the UO2+x system from a first-principles
perspective.
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6 Conclusions

This paper develops a unified presentation of the thermodynamic parameters of eleven point-defect mod-
els in UO2 (defect formation energies and entropies); four of them are fitted on experimental data, while
the remaining seven are obtained through atomistic simulations. This allows us to compare all the models
on the same basis both among themselves and with a large set of experimental data of various physical
quantities. In particular, combining the defect thermodynamics and the TAF-ID functions for U and U4O9
phases makes it possible to compute the U−O phase diagram in the vicinity of stoichiometric UO2. As far
as we know, this is a new application of such kind of data.
Several results are worth highlighting.

1. The formation energies and entropies are very scattered from one model to another, even among the
ab initio values (energies at 0 K from Andersson, Vathonne, Cooper, Soulié and Perriot). As the tech-
niques are similar in general, if not identical, one might a priori expect very similar results, which is
not the case. Internal degrees of freedom of these computational techniques exist that might explain
the observed scatter: for instance the occurrenced of nonphysical and undetected metastable states,
the use of different energy functionals or crystallographic structures (accounting or not of the Jahn-
Teller effect), the convergence criteria and the occupation matrix control procedure. The publications
do not necessarily describe all these features in details, which complicates the analysis and compar-
isons of the results. Providing files of the DFT programs both for the input data and for the raw
results would be highly helpful for a precise understanding of what calculations have actually been
performed in a given publication, and to what extent they can be compared to other calculations.

2. The comparison of model results with experiments offers quite contrasted results. The VdW-DF ex-
change correlation functional allows a good estimation of the UO2 formation energy at 0 K (Vathonne
17), while when available (CRG and Busker models), the bulk UO2 heat capacities of the different
models are rather close to the experimental values, when taking account for intrinsic defects forma-
tion (eletron-hole and oxygen Frenkel pairs). Conversely, the different values for the electron-hole
Gibbs formation energy are very scattered. Moreover, they are far from the available gap measure-
ments, especially at high temperatures, which triggers for a clarification concerning either what is
actually measured or how the calculations can be improved. This discrepancy might explain the
poor ability of some models to reproduce also other observations.

3. In general, and as expected, the fitted models behave favorably in interpolation conditions, i.e. when
compared with the data sets according to which they were fitted. In this respect, Garcia’s model,
which was fitted to the conductivity measurements, correctly predicts this quantity while the other
fitted models built on the stoichiometry deviation measurements do not, and vice versa.

4. For the atomistic-based models, the comparison of the deviation from stoichiometry as a function
of the oxygen potential and the temperature with experimental data is quite good for Andersson’s
model, although a small systematic deviation occurs at low temperature and high hyper-stoichiometry.
The other atomistic models do not compare favorably in this way unless the oxygen molecule energy
at 0 K is shifted, sometimes of more than one eV, to minimize the variance of the difference between
measured and simulated oxygen potentials. After this energy shift, Andersson’s model behaves well
or very well on the whole temperature/stoichiometry range; Soulié’s model behaves well at high
temperature and in acceptable way otherwise.

5. Based on the atomistic defect Gibbs formation energy and on the experimental formation energies
of the perfect oxides (UO2 and U4O9), “semi atomistic” phase diagrams could be drawn. The better
atomistic-based model is Andersson’s for this issue as well, but surprisingly not the shifted version.
However, one should not draw too many conclusions concerning the phase diagrams, since unless
at very low temperature (where few if any validation data is available), the deviation from the sto-
ichiometry is quite high and presumably out of the normal scope of the models that rely upon the
dilution limit.

6. Large shifts in the energy of the O2 molecule are necessary to improve the agreement of the simula-
tions with the measurements of x and µO; in the same way, a similar shift is usually necessary for a
good agreement with the formation energy of various oxides. Unfortunately, for any given model,
both procedures do not lead to the same shift in energy. This points out that the poor evaluation of
O2 energy in ab initio explains probably only a part of the errors in the defect energy computation.
This urges for a strong action at least circumventing the role of this parameter among the other ones
in the defect formation energies.
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From these results, we can suggest a few additional prospects and requirements for the further develop-
ment of atomistic-based defect models.

1. In this application, the thermodynamic references of the atomistic models, when clarified, appeared
different from one model to another, and some basic information was lacking in such a way that it
had to be extracted from the publications through ad hoc procedures. It thus appears advisable to
choose a standard thermodynamic convention in which the thermodynamic parameters of all the
models are expressed. The standard used in this paper is based on three figures for each defect that
proved sufficient for our applications: energy and entropy at 900 K and a constant approximation of
the heat capacity.

2. Additionally, large discrepancies exist among atomistic values given by different teams, although
they should be equal. The fact that some of them were neither noticed nor explained in the publi-
cations might result from the absence of a standard method for presenting the thermodynamic pa-
rameters. At the least, using a standard presentation would probably facilitate both the future use
of atomistic-based thermodynamic functions as well as their comparison with previous atomistic re-
sults and with experiments, which will contribute to establish the ability of the atomistic techniques
for modeling the defect thermodynamics of actinide compounds.

3. The oxygen molecule energy calculation still raises questions, notably concerning the strategies, or
absence thereof, adopted by the various authors to address the issue. As this energy is clearly of
prime importance for characterizing the material’s exchange with the environment, an exact ab initio
evaluation of the oxygen molecule energy should be undertaken, possibly leading to use other ab
initio techniques. This would in particular help delineate the effort to be devoted specifically for the
solid modeling improvement. Failing that, should calculations keep being circumvented by fittings,
it seems reasonable to expect a unique convention in calibrating the oxygen energy at 0 K, perhaps
using the oxidation of UO2 into U4O9 which proved quite efficient in Andersson’s model. In such
cases, the atomistic energies for the reactants/products of this reaction should be published as is the
case for the defect thermodynamic parameters. Along the same lines, building a U −O phase dia-
gram completely relying upon atomistic calculations in the vicinity of UO2 now appears within reach,
provided that the thermodynamic functions for at least Usolid, UOliquid

2 and U4Osolid
9 are calculated by

atomistic techniques.
4. Using alternative ab initio techniques, for instance hybrid density functional theory, might be a way

to solve various issues concerning the calculation of important thermodynamic defect quantities,
such as oxygen molecule energy, band gap or oxide formation energy. Assessing and, if necessary,
improving these methods would be very interesting.

5. The comparison of the model results with the experiments shows good agreement in too few situa-
tions. This flaw might originate either from inconsistency in the experimental data or from limits in
the atomistic calculations. Progress on both sides would be very valuable.

• On the experimental side, several aspects could be improved:
a) Since no model could reproduce the experimental results of more than one type of mea-

surement at a time, one may ask whether the problem occurs form the model design or
from the consistency of the experimental techniques or samples. It would thus be very use-
ful to perform all the available characterization techniques on each UO2 sample in the same
test campaign and perform the corresponding calculations in order to validate the models
according to as many as possible consistent physical quantities. Similarly, obtaining mea-
surements of x and µO both below and above the stoichiometry at given temperatures would
be very helpful.

b) The type of defect model presented here is expected to best behave close to stoichiometry.
Moreover, this region contains the initial in-pile duty point of the fuel. Unfortunately, the
experimental data in this region is scarce and inaccurate, and the TAF-ID model does not fit
them sharply. Increasing the corresponding availability and precision of observations and
reconsidering the Calphad model fitting would thus largely contribute to improving the
fitted models and the validation process of the atomistic models. In this region, the impuri-
ties have the largest impact since the defect concentrations are the lowest and the deviation
from stoichiometry is the most difficult to measure (especially at lower temperatures). Us-
ing samples of high purity and exploring higher temperatures would hopefully reduce the
impurity influence and increase the precision of the measurements.

c) There are few if any conductivity measurements for hypo-stoichiometric UO2, which pre-
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vents us from directly evaluating electron mobility (which is supposed to be equal to that
of the hole). Producing such data would notably improve the efficiency of conductivity as a
way to investigate defect thermodynamics.

d) The models CGR, Busker, Soulié and Perriot are predicting a deviation from the stoichiom-
etry controlled by the uranium vacancies in the close hyper-stoichiometric region. This
very unexpected result obtained from independent studies deserve special consideration
and should be carefully assessed by dedicated experiments.

• On the modeling side, several issues could be addressed to improve the prediction skills of the
models.

a) The energies and entropies of electrons and holes are sometimes unknown, in which case
they need to be calculated.

b) Some models do not account for uranium vacancies, nor aggregates of oxygen vacancies or
interstitials. Considering these defects should extend the ability of these models to cover
larger deviations from stoichiometry at low temperature.

c) To date, the defect entropies cannot be calculated with the same tool as the energies because
the required intensive ab initio calculation of faulted supercells are not yet possible. To our
knowledge, it is not possible to fit the empirical potentials used for the entropies on the
ab initio values at 0 K of the defect formation energies. This means the empirical values of
the entropies may differ from what the ab initio calculation would yield if it were possible.
Moreover, the discrepancies of calculated entropies with respect to the measurements are
considerable. Therefore, it seems very important to make efforts in improving the consis-
tency of the calculated defect entropies with the results of ab initio calculations. Similarly, in
a longer-term perspective, ab initio techniques should be improved to calculate anharmonic
effects occurring at high temperature.

d) No calculated Gibbs energy of formation for U4O9 was available, which did not allow a
purely ab initio prediction of the phase diagram. Overcoming this limitation would be of
great use.

6. Ab initio techniques are expected to provide a cost-effective way to study complex systems derived
from UO2, even comprising a proportion of other actinides such as Pu or Am. In our opinion, it will
be difficult to build confidence in the results of such studies unless significant efforts are made to
compare the different models both among themselves and with experimental results, first using the
“simple” UO2 system before using the complex systems.

Acknowledgments

This work was funded by CEA within the project “basic research for fuel materials” (RCOMB). The author
is grateful to J. Léchelle and C. Riglet-Martial for fruitful discussions, data and insights concerning the
Calphad method and to C. Guéneau and G. Jomard for their discussions of the results and appropriate
suggestions.

September 22, 2021 42/52



Assessment of atomistic data...

Bibliography

[1] Amadon, B., Applencourt, T., and Bruneval, F. (2014). Screened Coulomb interaction calculations: cRPA
implementation and applications to dynamical screening and self-consistency in uranium dioxide and
cerium. Physical Review B, 89(12):125110.

[2] Andersson, D. A., Baldinozzi, G., Desgranges, L., Conradson, D. R., and Conradson, S. D. (2013). Den-
sity functional theory calculations of UO2 oxidation: Evolution of UO2+x, U4O9−y, U3O7, and U3O8.
Inorganic Chemistry, 52(5):2769–2778.

[3] Andersson, D. A., Garcia, P., Liu, X. Y., Pastore, G., Tonks, M., Millett, P., Dorado, B., Gaston, D. R.,
Andrs, D., Williamson, R. L., Martineau, R. C., Uberuaga, B. P., and Stanek, C. R. (2014). Atomistic mod-
eling of intrinsic and radiation-enhanced fission gas (Xe) diffusion in UO2±x: Implications for nuclear
fuel performance modeling. Journal of Nuclear Materials, 451(1-3):225–242.

[4] Andersson, D. A., Lezama, J., Uberuaga, B. P., Deo, C., and Conradson, S. D. (2009). Cooperativity
among defect sites in AO2+x and A4O9 (A = U, Np, Pu): Density functional calculations. Physical
Review B, 79(2):024110.

[5] Andersson, D. A., Simak, S. I., Johansson, B., Abrikosov, I. A., and Skorodumova, N. V. (2007). Modeling
of CeO2, Ce2O3, and CeO2−x in the LDA + U formalism. Physical Review B, 75(3):035109.

[6] Andersson, D. A., Uberuaga, B. P., Nerikar, P. V., Unal, C., and Stanek, C. R. (2011). U and Xe transport
in UO2±x: Density functional theory calculations. Physical Review B, 84:054105.

[7] Baichi, M. (2001). Contribution à l’étude du corium d’un réacteur nucléaire accidenté : aspects puissance
résiduelle et thermodynamique des systèmes U-UO2 et UO2-ZrO2. PhD thesis, INP Grenoble.

[8] Baichi, M., Chatillon, C., Ducros, G., and Froment, K. (2006). Thermodynamics of the O-U system. IV -
Critical assessment of chemical potentials in the U-UO2.01 composition range. Journal of Nuclear Materials,
349(1-2):17–56.

[9] Bannister, M. J. and Buykx, W. J. (1975). A dilatometric study of the solubility of U4O9 in UO2. Journal
of Nuclear Materials, 55(3):345–351.

[10] Basak, C., Sengupta, A., and Kamath, H. (2003). Classical molecular dynamics simulation of UO2 to
predict thermophysical properties. Journal of Alloys and Compounds, 360(1-2):210–216.

[11] Bouchet, J. and Bottin, F. (2017). High-temperature and high-pressure phase transitions in uranium.
Physical Review B, 95(5):054113.

[12] Bruneval, F., Freyss, M., and Crocombette, J.-P. (2018). Lattice constant in nonstoichiometric uranium
dioxide from first principles. Physical Review Materials, 2(2):023801.

[13] Cococcioni, M. and de Gironcoli, S. (2005). Linear response approach to the calculation of the effective
interaction parameters in the LDA+U method. Physical Review B, 71(3):035105.

[14] Cooper, M., Murphy, S., and Andersson, D. (2018). The defect chemistry of UO2±x from atomistic
simulations. Journal of Nuclear Materials, 504:251–260.

[15] Cooper, M. W. D., Rushton, M. J. D., and Grimes, R. W. (2014). A many-body potential approach
to modelling the thermomechanical properties of actinide oxides. Journal of Physics: Condensed Matter,
26(10):105401.

[16] Cox, J. D., Wagman, D. D., and Medvedev, V. A. (1989). CODATA key values for thermodynamics. Hemi-
sphere Pub. Corp., New York. OCLC: 18559968.

[17] Dewaele, A., Bouchet, J., Occelli, F., Hanfland, M., and Garbarino, G. (2013). Refinement of the equa-
tion of state of α-uranium. Physical Review B, 88(13):134202.

[18] Dorado, B., Andersson, D. A., Stanek, C. R., Bertolus, M., Uberuaga, B. P., Martin, G., Freyss, M., and
Garcia, P. (2012). First-principles calculations of uranium diffusion in uranium dioxide. Physical Review
B, 86(3):035110.

[19] Fink, J. K. (2000). Thermophysical properties of uranium dioxide. Journal of Nuclear Materials, 279(1):1–
18.

[20] Finnis, M. W., Lozovoi, A. Y., and Alavi, A. (2005). The oxidation of NiAl: What can we learn from ab
initio calculations? In Annual Review of Materials Research, volume 35, pages 167–207.

[21] Garcia, P., Pizzi, E., Dorado, B., Andersson, D., Crocombette, J.-P., Martial, C., Baldinozzi, G., Siméone,
D., Maillard, S., and Martin, G. (2017). A defect model for UO2+x based on electrical conductivity and
deviation from stoichiometry measurements. Journal of Nuclear Materials, 494(Supplement C):461–472.

September 22, 2021 43/52



Assessment of atomistic data...

[22] Griesmeyer, J. and Ghoniem, N. (1979). The response of fission gas bubbles to the dynamic behavior
of point defects. Journal of Nuclear Materials, 80(1):88–101.

[23] Grønvold, F. (1955). High-temperature X-ray study of uranium oxides in the UO2-U3O8 region. Journal
of Inorganic and Nuclear Chemistry, 1(6):357–370.

[24] Guéneau, C., Baichi, M., Labroche, D., Chatillon, C., and Sundman, B. (2002). Thermodynamic assess-
ment of the uranium-oxygen system. Journal of Nuclear Materials, 304(2-3):161–175.

[25] Guéneau, C., Dupin, N., Sundman, B., Martial, C., Dumas, J.-C., Gossé, S., Chatain, S., De Bruycker, F.,
Manara, D., and Konings, R. (2011). Thermodynamic modelling of advanced oxide and carbide nuclear
fuels: Description of the U–Pu–O–C systems. Journal of Nuclear Materials, 419(1–3):145–167.

[26] Howard and Lidiard (1964). Matter transport in solids. Report on progress in physics, 27:161.
[27] Hyland, G. J. and Ralph, J. (1983). Electronic contributions to the high-temperature thermophysical

properties of UO2 + x: a critical analysis Gerard J Hyland, Jeffrey Ralph. High temperature high pressure,
15:179–190.

[28] Jackson, R. A., Murray, A. D., Harding, J. H., and Catlow, C. R. A. (1986). The calculation of defect
parameters in UO2. Philosophical Magazine A, 53(1):27–50.

[29] Jollet, F., Jomard, G., Amadon, B., Crocombette, J. P., and Torumba, D. (2009). Hybrid functional for
correlated electrons in the projector augmented-wave formalism: Study of multiple minima for actinide
oxides. Physical Review B, 80(23):235109.

[30] Kulik, H. J., Cococcioni, M., Scherlis, D. A., and Marzari, N. (2006). Density Functional The-
ory in Transition-Metal Chemistry: A Self-Consistent Hubbard U Approach. Physical Review Letters,
97(10):103001.

[31] Kurth, S., Perdew, J. P., and Blaha, P. (1999). Molecular and solid-state tests of density functional
approximations: LSD, GGAs, and meta-GGAs. International Journal of Quantum Chemistry, 75(4-5):889–
909.

[32] Labroche, D. (2000). Contribution à l’étude thermodynamique du système U-Fe-O. PhD thesis, INP Greno-
ble.

[33] Labroche, D., Dugne, O., and Chatillon, C. (2003). Thermodynamics of the O-U system. I - Oxygen
chemical potential critical assessment in the UO2-U3O8 composition range. Journal of Nuclear Materials,
312(1):21–49.

[34] Lindemer, T. and Besmann, T. (1985). Chemical thermodynamic representation of UO2±x. Journal of
Nuclear Materials, 130:473–488.

[35] Mayer, J., Elsässer, C., and Fähnle, M. (1995). Concentrations of Atomic Defects in B2FexAl1−x. An
Ab-Initio Study. physica status solidi (b), 191(2):283–298.

[36] Mayer, J. and Fähnle, M. (1997). On the meaning of effective formation energies, entropies and vol-
umes for atomic defects in ordered compounds. Acta Materialia, 45(5):2207–2211.

[37] Nakamura, A. and Fujino, T. (1986). Thermodynamic analysis on point defects of UO2+x at relatively
small deviation from stoichiometry between 600 and 1400°C. Journal of Nuclear Materials, 140(2):113–130.

[38] Nakamura, A. and Fujino, T. (1987). Thermodynamic study of UO2+x by solid state emf technique.
Journal of Nuclear Materials, 149(1):80–100.

[39] OECD. NEA Nuclear Science Committee - Thermodynamics of Advanced Fuels – International
Database (TAF-ID).

[40] Oxford, G. A. E. and Chaka, A. M. (2011). First-Principles Calculations of Clean, Oxidized, and Re-
duced β-MnO2 Surfaces. The Journal of Physical Chemistry C, 115(34):16992–17008.

[41] Park and Olander (1990). A defect model for the oxygen potential of urania. High Temperature Science,
29:203.

[42] Park, K. and Olander, D. (1992). Defect models for the oxygen potentials of gadolinium-and europium-
doped urania. Journal of Nuclear Materials, 187(1):89–96.

[43] Perriot, R., Matthews, C., Cooper, M. W. D., Uberuaga, B. P., Stanek, C. R., and Andersson, D. A.
(2019). Atomistic modeling of out-of-pile xenon diffusion by vacancy clusters in UO2. Journal of Nuclear
Materials, 520:96–109.

[44] Ruello, P. (2001). Etude du changement de comportement du dioxyde d’uranium au voisinage de 1300 K :
Propriétés électriques, optiques et structurales. PhD thesis, Ecole Centrale des Arts et Manufactures (Ecole
Centrale Paris).

September 22, 2021 44/52



Assessment of atomistic data...

[45] Ruello, P., Becker, K. D., Ullrich, K., Desgranges, L., Petot, C., and Petot-Ervas, G. (2004). Thermal
variation of the optical absorption of UO2: determination of the small polaron self-energy. Journal of
Nuclear Materials, 328(1):46–54.

[46] Ruello, P., Petot-Ervas, G., Petot, C., and Desgranges, L. (2005). Electrical Conductivity and Thermo-
electric Power of Uranium Dioxide. Journal of the American Ceramic Society, 88(3):604–611.

[47] Rushton, M., Stanek, C. R., Cleave, A. R., Uberuaga, B. P., Sickafus, K. E., and Grimes, R. W. (2007).
Simulation of defects and defect processes in fluorite and fluorite related oxides: Implications for ra-
diation tolerance. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with
Materials and Atoms, 255(1):151–157.

[48] Skorek, R. (2013). Étude par Dynamique d’Amas de l’influence des défauts d’irradiation sur la migration des
gaz de fission dans le dioxyde d’uranium. PhD Thesis, Univ. Aix-Marseille.

[49] Soulié, A., Bruneval, F., Marinica, M.-C., Murphy, S., and Crocombette, J.-P. (2018). Influence of vi-
brational entropy on the concentrations of oxygen interstitial clusters and uranium vacancies in nonsto-
ichiometric UO2. Physical Review Materials, 2(8):083607.

[50] Sundman, B. and Ågren, J. (1981). A regular solution model for phases with several components and
sublattices, suitable for computer applications. Journal of Physics and Chemistry of Solids, 42(4):297–301.

[51] Vathonne, E. (2014). Étude par calcul de structure électronique des dégâts d’irradiation dans le combustible
nucléaire UO2 : comportement des défauts ponctuels et gaz de fission. PhD Thesis, Univ. Aix-Marseille.

[52] Vathonne, E., Andersson, D. A., Freyss, M., Perriot, R., Cooper, M. W. D., Stanek, C. R., and Bertolus,
M. (2017). Determination of Krypton Diffusion Coefficients in Uranium Dioxide Using Atomic Scale
Calculations. Inorganic Chemistry, 56(1):125–137.

[53] Vathonne, E., Wiktor, J., Freyss, M., Jomard, G., and Bertolus, M. (2014). DFT + U investigation of
charged point defects and clusters in UO2. Journal of Physics: Condensed Matter, 26(32):325501.

[54] Wang, L., Maxisch, T., and Ceder, G. (2006). Oxidation energies of transition metal oxides within the
GGA+U framework. Physical Review B, 73(19):195107.

[55] Wiktor, J., Vathonne, E., Freyss, M., Jomard, G., and Bertolus, M. (2014). Calculation of defect forma-
tion energies in UO2. In Symposium EE/ZZ – Advanced Materials in Extreme Environments, volume 1645 of
MRS Online Proceedings Library.

September 22, 2021 45/52



Assessment of atomistic data...

Appendix

GMOX
(U5+)(O2−)(Va)

= GMOX
(U4+)(O2−)(Va)

+ ∆GMOX
(U5+)(O2−)(Va)

GMOX
(U4+)(Va)(Va)

= GMOX
(U4+)(O2−)(Va)

− 2GO,gas + ∆GMOX
(U4+)(Va)(Va)

GMOX
(U3+)(O2−)(Va)

= GMOX
(U4+)(O2−)(Va)

+ GMOX
(U3+)(Va)(Va)

− GMOX
(U4+)(Va)(Va)

GMOX
(U3+)(Va)(Va)

= GMOX
(U4+)(O2−)(Va)

− 2GO,gas + ∆GMOX
(U3+)(Va)(Va)

GMOX
(U4+)(O2−)(O2−)

= GMOX
(U4+)(O2−)(Va)

+ GO,gas

∆g0
UO2

= GMOX
(U4+)(O2−)(Va)

− 2GO,gas − GUα

∆GMOX
(U5+)(O2−)(Va)

= −0.604772 + 5.46509 kBT

∆GMOX
(U4+)(Va)(Va)

= 5.65071

∆GMOX
(U3+)(Va)(Va)

= 7.74343− 7.3216 kBT

La
(U3+ ,U4+)(O2−)(Va)

= 0.41596

Lb
(U3+ ,U4+)(O2−)(Va)

= 0.01116

GO,gas =


−0.0449913 T = 0
−0.03608− 0.00026432 T − 5.2846× 10−8 T2 + 6.8560× 10−12 T3 − 0.397625

T − 0.000115416 T ln (T) 298 ≤ T ≤ 1000
−0.06808 + 0.00013121 T − 6.1750× 10−9 T2 + 7.0280× 10−14 T3 + 2.72482

T − 0.00017426 T ln (T) 1000 < T ≤ 3300
−0.14500 + 0.000323983 T − 4.4073× 10−9 T2 + 1.1112× 10−13 T3 + 45.4287

T − 0.00019644 T ln (T) 3300 < T

GUα =


−0.0659582 T = 0
−0.08714− 4.5873× 10−11 T3 + 1.2972× 10−8 T2 + 0.00135725 T + 0.399729

T − 0.000278987 T ln (T) 298 ≤ T ≤ 955
−0.233422 + 0.00302762 T − 0.000504325 T ln (T) 955 < T ≤ 3000

GUγ =

{
−0.0078019 + 1.003165× 10−11 T3 − 8.6603× 10−8 T2 + 0.0013633 T + 2.12064

T − 0.00028517 T ln (T) 298 ≤ T ≤ 1049
−0.04870− 0.002101 T − 0.0003968 T ln (T) 1049 < T < 3000

GUO2 =

{
−11.36214 T = 0
−11.597− 2.10743× 10−11T3 + 1.05409× 10−7T2 + 0.00574186 T + 11.3082

T − 9.66655× 10−4T ln (T) 298 ≤ T

GUO9/4
=

{
−11.8278 T = 0
−11.9742− 8.06602× 10−8T2 + 0.0046298 T + 4.51175

T − 0.000806364 T ln (T) 298 ≤ T

Table 5: Thermodynamic functions used for the determination of the component chemical potentials and
Calphad model for UO2.

They were extracted from the TAF-ID [39] database and CODATA [16] database (for data at 0K). The tem-
peratures are in K and the energies in eV.
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e (eV) (0K) e (eV) (900K) s
kB

(900K) c
kB

(T K)
h
◦

0 0 0 0
e
′

1.71 1.71 0 0
O2′

i 1.57 1.67 -4.63 0.74
O
′
i 1.11 1.21 -4.63 0.74

Oi 0.80 0.90 -4.63 0.74
O
◦
i 0.68 0.78 -4.63 0.74

VO 5.38 5.28 11.77 -0.72
V
◦
O 3.95 3.85 11.77 -0.72

V2◦
O 2.74 2.63 11.77 -0.72

O4′
i2 3.29 3.47 -8.76 1.43

O3′
i2 2.54 2.73 -8.76 1.43

O2′
i2 2.02 2.20 -8.76 1.43

O
′
i2 1.31 1.50 -8.76 1.43

Oi2 1.19 1.38 -8.76 1.43
O
◦
i4 -0.26 0.13 -17.88 2.84

Oi4 -0.13 0.25 -17.88 2.84
O
′
i4 0.26 0.64 -17.88 2.84

O2′
i4 1.02 1.40 -17.88 2.84

O3′
i4

1.66 2.04 -17.88 2.84
O4′

i4 3.10 3.48 -17.88 2.84
O5′

i4
4.44 4.82 -17.88 2.84

V
′
U 10.69 10.17 -4.57 -8.31

V2′
U 11.10 10.58 -4.57 -8.31

V3′
U 11.24 10.72 -4.57 -8.31

V4′
U 11.50 10.98 -4.57 -8.31

Table 6: Complete thermodynamic dataset of Soulié’s genuine model [12, 49].
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Defect Vathonne 14 Vathonne 17
(VO4VU2)

2◦ 28.49
(VO4VU2)

◦
28.33

(VO4VU2)
x 25.60 28.15

(VO4VU2)
’ 26.60 29.31

(VO4VU2)
2’ 27.74 30.56

(VO4VU2)
3’ 32.14

(VO4VU2)
4’ 30.71 33.71

(VO2VU2)
2◦ 23.93

(VO2VU2)
◦

24.49
(VO2VU2)

x 23.47
(VO2VU2)

’ 23.37
(VO2VU2)

2’ 21.24 23.65
(VO2VU2)

3’ 23.83
(VO2VU2)

4’ 21.91 24.26
(VOVU2)

2◦ 22.43
(VOVU2)

◦
22.14

(VOVU2)
x 22.01

(VOVU2)
’ 21.99

(VOVU2)
2’ 19.88 21.92

(VOVU2)
3’ 20.05 22.19

(VOVU2)
4’ 22.66

(VOVU2)
5’ 20.91 23.23

(VOVU2)
6’ 21.63 23.96

V2◦
U2

21.18
V
◦
U2

21.05
Vx

U2
21.01

V’
U2

20.95
V2’

U2
20.99

V3’
U2

21.12
V4’

U2
19.35 21.38

V5’
U2

22.05
V6’

U2
20.40 22.49

V7’
U2

21.11 23.32
V8’

U2
22.14 24.33

(a)

Defect Vathonne 14 Vathonne 17
(VO2VU)

2◦ 14.61
(VO2VU)

◦
14.41

(VO2VU)
x 14.29

(VO2VU)
’ 15.50

(VO2VU)
2’ 17.09

(VOVU)
2◦ 12.75

(VOVU)
◦

11.37 12.36
(VOVU)

x 12.70
(VOVU)

’ 12.86
(VOVU)

2’ 11.26 12.54
(VOVU)

4’ 14.11
V2◦

U 11.91
V
◦
U 11.34

Vx
U 10.96

V’
U 10.10 11.29

V2’
U 11.12

V3’
U 10.18 11.41

V4’
U 10.65 11.52

V2◦
O 2.60 2.55

V
◦
O 3.97

Vx
O 5.45

V’
O 7.02

V2’
O 7.85 8.29

h
◦

0.00 0.00
e’ 1.71 2.04

O2◦
i 0.03

O
◦
i −0.13

Ox
i 0.03

O’
i −0.09 −0.07

O2’
i 0.09 0.21

O2◦
i2 0.53

O
◦
i2 0.75 0.41

Ox
i2 0.61

O’
i2 0.40

O2’
i2 0.60 0.42

O3’
i2 0.72

O4’
i2 1.11 1.09

U4◦
i 0.51 −0.35

U3◦
i 1.39 0.71

U2◦
i 2.59 2.14

U
◦
i 4.01

Ux
i 6.08

U’
i 7.22 6.96

U2’
i 8.92 8.84

(b)

Table 7: Complete thermodynamic datasets for Vathonne’s 14 and 17 models [53, 52]
Reference gh = 0, the Bound Schottky defect is BSD2 of the original articles, in which the O vacancies lie

in the 110 direction.
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