Determination of actinide isotopic composition: Performances of the IGA code on plutonium spectra according to the experimental setup
Anne-Catherine Simon, Frédérick Carrel, Isabelle Espagnon, Mickael Lemercier, Alain Pluquet

To cite this version:

HAL Id: cea-03994139
https://cea.hal.science/cea-03994139
Submitted on 17 Feb 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Determination of Actinide Isotopic Composition: Performances of the IGA Code on Plutonium Spectra According to the Experimental Setup

Anne-Catherine Simon, Frédérick Carrel, Isabelle Espagnon, Mickaël Lemercier, and Alain Pluquet

Abstract—The IGA code (a French acronym standing for actinides gamma isotopy) is a tool developed by the CEA LIST to determine the isotopic composition of plutonium and uranium, based on the automatic analysis of the γ/X spectrum emitted by a nuclear sample. Its main feature is its generic approach of the problem. As a consequence, the IGA code is a very flexible tool, because no particular experimental setup is imposed to the user for the acquisitions, in terms of energy range, gain, channel number or detector resolution. However, these experimental conditions can have an impact on the quality of the results. So, a study has been carried out to evaluate the effect of different experimental parameters on the IGA performances for plutonium spectra and quantify these performances. The study has been led according to three different approaches: analysis of IGA results on a whole spectrum database coming from French laboratories, analysis on artificially modified spectra, and finally analysis of results on new real spectra acquired in the laboratory on certified samples.

Index Terms—Gamma and X-ray spectrometry, IGA code, isotopic composition, spectral analysis.

I. INTRODUCTION

THE knowledge of the actinide isotopic composition is a major issue in the field of nuclear industry. Several codes have been developed in this aim for many years. MGA and PC/FRAM are the most used [1]-[3]. The IGA code (a French acronym standing for actinide gamma isotopy) is a more recent tool developed by the CEA LIST in collaboration with AREVA NC to determine the isotopic composition of plutonium (Pu) and uranium (U), possibly in presence of fission products, activation products or other actinides [4]-[6]. It is now commercialized by ITECH INSTRUMENTS and CANBERRA and it is used in France by several laboratories of CEA, AREVA NC and IRSN. The principle is based on the automatic analysis of the γ/X spectrum emitted by the different radionuclides in a nuclear material and measured by a germanium detector.

Each peak in the spectrum is linked to the different isotopes by its position (that gives qualitative information) and its net area (that gives quantitative information). More precisely, the peak areas are linked to the isotope mass ratios via their nuclear data and via the relative detection efficiency. This is described by:

\[S_j = \sum_i f_i \frac{I_{ij}}{T_i A_i} \epsilon_j \]

(1)

with:
- \(S_j \) is the measured net area of the peak at the energy \(E_j \),
- \(f_i \) is the unknown mass fraction of the isotope \(i \) relative to a reference isotope,
- \(I_{ij}, T_i, \) and \(A_i \) are the known atomic or nuclear data for isotope \(i \) at energy \(E_j \); \(I_{ij} \) is the probability of photon emission of isotope \(i \) at energy \(E_j \), \(T_i \) being its half-life and \(A_i \) its atomic mass,
- \(\epsilon_j \) is the unknown global detection efficiency at energy \(E_j \), normalized in relation to the reference isotope.

The difficulty is that no information on the efficiency is available at the beginning of the analysis. To determine the mass ratios of the different isotopes, the spectrum analysis follows the stages after-specified:
- identification of radionuclides and spectrum type (Pu, U, UPu, or no U nor Pu),
- fine energy and resolution calibration,
- estimate of mass ratios and efficiency (first pass),
- estimate of mass ratios and efficiency (second pass),
- consistency tests.

The originality of the IGA process lies in the following points: first, the initial stage of identification enables to work with all the radionuclides present in the spectrum, including “pollutants”. That means that all the detected radionuclides will be considered and treated in the same way.

Second, at each of the three following stages, the general
nuclear database specific to the IGA code, which contains all
the X- and γ-rays of the considered isotopes, is automatically
filtered and the selected lines automatically grouped into
regions of interest, according to the spectrum itself (its
resolution, its energy range), the detected radionuclides, and
the current analysis stage. For instance, for the calibration
stage, only the regions of interest that do not contain more
than two peaks are kept, whereas for the following stages, all
the regions, even the more complex ones, are kept. The
selected regions of interest will be then deconvolved to extract
the parameters of interest for the following process (position
and width of the peaks for the calibration stage, heights of the
peaks for the other stages).

Third, mass ratios and efficiency are simultaneously
determined thanks to a general optimization process that fits
both the mass ratios and the parameters of an efficiency model
in considering all the peaks of the spectrum at the same time.

Finally, the consistency tests enable to also calculate
uncertainties on the results that are not based on statistical
uncertainties only, but try to consider the whole coherence of
the results.

For the user, the IGA software is very easy to use, because
it needs few input data to run. It also benefits from a user-
friendly web interface, configurable from an expert mode to a
"black box" mode, and including a batch mode too. In
particular, in the first mode, the user has access to all the
intermediate results and graphs of the analysis at a very
detailed level via the web interface.

But its major feature is its flexibility: as seen before, there is
no distinction of treatment between the different isotopes or
the different peaks in the spectrum. That enables to accept any
type of spectrum, but also any experimental setup, without
imposing particular gain, or energy range to the user. But if no
constraint is imposed for the experimental setup, the quality of
the results can depend on these experimental conditions. The
aim of the following study is to give indications on the
performances of the code according to several experimental
parameters, like energy range, gain, counting statistics or
resolution.

For this study, three types of approach have been
successively followed:

- global analysis of the results on a general Pu spectrum
database,
- evaluation of the results on reduced spectrum databases,
 for which parameters are modified artificially,
- evaluation of the results on new real spectra acquired on
certified samples, whose parameters are modified experimentally.

II. GLOBAL STUDY ON A LARGE SPECTRUM DATABASE

The first approach has consisted in globally considering all
the available Pu spectra (about 1150 spectra), coming from
different laboratories of CEA, AREVA or IRSN, to evaluate
the effect of some experimental parameters on the results.
First, the studied parameters are the energy range, the gain and
the counting statistics. For each isotope of interest (238Pu to
241Pu and 241Am; 242Pu is never considered because it is not
determined from the spectrum), the criterion on the results is
the relative difference between the mass ratio obtained by
the IGA code and the mass ratio of reference. Fig. 1 and Fig. 2
illustrate the 239Pu results versus gain and counting statistics.
Results versus energy range have the same aspect as for gain,
so they are not displayed here.

![Fig. 1. Relative errors between the 239Pu mass ratio obtained by IGA and the
239Pu mass ratio of reference for the global Pu spectrum database according to
gain.](image1)

![Fig. 2. Relative errors between the 239Pu mass ratio obtained by IGA and the
239Pu mass ratio of reference for the global Pu spectrum database according to
total number of counts in the spectrum.](image2)

Even for the counting statistics, which could be a significant
parameter for the accuracy of the results, no clear tendency
appears for 239Pu from these graphs. The conclusion is the
same for the other isotopes, except for 238Pu, for which a
positive impact of the increasing of the counting statistics can
be globally observed.

The first problem is the disparity of the database, which is
not regular for the three parameters. Moreover, another more
significant parameter has to be taken into account, the isotopic
composition itself. The same type of graph according to the
239Pu mass ratio of reference is displayed in Fig. 3. This graph
shows the predominance of 239Pu mass ratio on the accuracy of
the results: they clearly improve when 239Pu mass ratio
increases. This phenomenon is well known in the domain of
Pu isotopic composition measurement, due to the difficulty to
correctly analyse 239Pu peaks when its mass ratio decreases
[7]. A similar behavior can be observed for 238Pu, whose
results improve when its mass ratio increases.
However, our purpose is to give to the user some indications on the influence of experimental parameters that he can control. So it has been decided to use another approach, described in part III.

III. STUDY ON HOMOGENEOUS SPECTRUM SERIES – ARTIFICIALLY DEGRADED SPECTRA

A. Method

Instead of the global spectrum database, it has been decided to work on sets of homogeneous spectra including various isotopic compositions, acquired in the same experimental conditions, and to artificially modify only one parameter among energy range, gain and global counting statistics. Each set of spectra is chosen in the general spectrum database according to the studied parameter.

Thus, regarding the energy range, the set of original spectra will have a maximum energy as high as possible, like 1 MeV, and each spectrum of the set will be then truncated to obtain new sets of artificial spectra with reduced energy ranges. For the gain parameter, the set of original spectra is chosen acquired with a small gain like 0.060 keV/channel, and channels are merged to create new spectra with a higher gain. Concerning the counting statistics, from a set of experimental spectra acquired with a high counting statistics, like about 10^7 total counts in the spectrum, other spectra with smaller counting statistics are generated using a Monte Carlo technique.

For each parameter, several sets of spectra are studied to confirm the observed tendency. Moreover, when the number of spectra in a collection is weak, the set can be completed with artificial spectra, also generated from the original spectra by Monte Carlo, with the same counting statistics, in order to obtain a reliable tendency based on several dozens of spectra for each set.

B. Results

For each spectrum, the relative error between the mass ratio obtained by the IGA code and the mass ratio of reference is calculated for each isotope. In order to clearly show the impact of the parameters on the results, the cumulative distribution function of the relative error is displayed, i.e. the relative error according to the corresponding proportion of spectra. For example, Fig. 4 shows that for 75% of the spectra of each set, the resulting relative error is smaller than 2% for 239Pu.

An example of results concerning the influence of energy range for 239Pu is given Fig. 4, for a set of spectra whose energy range is equal to 0-1 MeV (gain of 0.060 keV/channel, counting statistics between 2.10^6 and 8.10^7 counts). The influence of gain for 239Pu is displayed in Fig. 5 for the same set. Fig. 6 gives the influence of counting statistics for a set of spectra whose number of counts is initially about 10^7 counts in the spectrum for all the spectra (maximum energy of 600 keV, gain equal to 0.075 keV/channel).

According to Fig. 4 and Fig. 5, the energy range and the gain are not very influent on 239Pu results: in Fig. 4, relative errors remain very close whatever the energy is. However, it has to be noted that the test was not carried out on spectra acquired with very absorbing screens disturbing the detection.
of low-energy photons (about 100 keV), like lead. The conclusion could be different in this case. Regarding the gain, results are also rather similar for values of gain up to 0.240 keV/channel. A difference of behavior can be noted for 0.360 keV/channel, for which relative errors are doubled.

By contrast, the counting statistics has a strong impact on the results (see Fig. 6): from 10^5 counts to 10^6 counts, 238Pu relative errors remain in the same order of magnitude, but they are tripled for 10^7 counts. Results for 240Pu, 241Pu and 241Am follow the same profile for the three parameters, so they are not displayed here. The exception is 238Pu, for the two parameters of gain and energy range. The corresponding results are shown in Fig. 7 for energy range.

Unlike the other Pu isotopes, 238Pu results are clearly degraded for the greater energy ranges. Regarding the gain, a paradoxical behavior can be observed in some cases: if energy range is of 900 keV or 1 MeV, results are better for high values of gain. The reason lies in the 238Pu peak at 766.4 keV: if energy range is higher than 700 keV, this peak is used in the spectrum analysis. But in some cases, there is confusion with the peak of 241Am at 767.0 keV and the region is badly deconvolved. The 238Pu results are then affected by the erroneous determination of 766.4 keV peak area. When gain is high, the code can consider the 766.4 keV peak to be of poor quality in some cases; it is then rejected by the analysis.

As said before, all these general results have been confirmed on several spectrum sets acquired with equivalent or other experimental conditions.

It can be noted that the only three studied parameters do not enable to define relative errors for each isotope. Indeed, although counting statistics for Fig. 4 or Fig. 5 is smaller than for original spectra of Fig. 6, it can be observed that relative errors are globally smaller. Counting statistics is certainly a major parameter for the quality of results, but it has to be reminded that isotopic composition, for instance, is another one.

The advantage of this approach is to clearly show the effect of a parameter on the accuracy of the results. However, it gives no information on the dispersion of the results for a given configuration, which is linked partly to statistical uncertainty. Moreover, each spectrum set covers a large range of isotopic composition and in some cases samples of different nature (mass, conditioning …). The purpose of the last part is to more precisely quantify the IGA performances according to different parameters including isotopic composition and resolution from new experimental spectra acquired in the laboratory.

IV. STUDY ON NEW EXPERIMENTAL SPECTRA

A. Introduction

In order to confirm and complete the preceding results, spectra have been acquired in the laboratory with certified samples from PIDIE exercise (Plutonium Isotopic Determination Intercomparison Exercise) led by the ESARDA (European Safeguards Research and Development Association) at the end of the 80's. The isotopic compositions of the three used samples are in Table I. They are given in percentage of the total plutonium mass of each sample, which is about 0.45 g.

<table>
<thead>
<tr>
<th>Sample</th>
<th>238Pu (%)</th>
<th>239Pu (%)</th>
<th>240Pu (%)</th>
<th>241Pu (%)</th>
<th>242Pu (%)</th>
<th>243Am (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIDIE 2</td>
<td>0.019</td>
<td>89.65</td>
<td>10.08</td>
<td>0.164</td>
<td>0.094</td>
<td>0.530</td>
</tr>
<tr>
<td>PIDIE 4</td>
<td>0.094</td>
<td>78.74</td>
<td>19.91</td>
<td>0.681</td>
<td>0.568</td>
<td>2.68</td>
</tr>
<tr>
<td>PIDIE 6</td>
<td>0.824</td>
<td>68.87</td>
<td>24.66</td>
<td>2.00</td>
<td>3.65</td>
<td>7.00</td>
</tr>
</tbody>
</table>

In addition to the isotopy, three other parameters will be considered here: the counting statistics, the gain and the resolution of the whole spectrometry system, which could not be studied by the preceding method. The resolution will be quantified by the FWHM (Full Width at Half Maximum) measured at 122 keV. For each studied parameter, several counting statistics from 10^5 counts to 10^6 counts in the
spectrum at the minimum have been carried out, and for each counting statistics, at least 10 spectra have been acquired.

The greatest part of the spectra has been acquired with a planar detector (Canberra GL2015 detector, 2000 mm², 15 mm thick, TRP preamplifier, associated with a digital gamma-ray spectrometer Ortec DSPEC). For the resolution parameter, a coaxial detector (Ortec GEM40P-PLUS, diameter equal to 68.83 mm, 44.45 mm thick, p-type, relative efficiency of 40 %, TRP preamplifier, associated with a digital gamma-ray spectrometer Ortec DSPECPro) has been also used to complete the resolution range. About 3000 spectra have been acquired for this study. In every case, a Cd screen, 1 mm thick, has been put in front of the detector in order to absorb a great part of the 59.54 keV photons of 241Am. The distance between the sample and the detector is about 20 cm. No collimator or shield is used.

The following chapters give some of the most significant conclusions of this experiment.

B. Influence of counting statistics

For this series of experiments, the planar detector has been used with the following settings: resolution of 0.610 keV at 122 keV, gain equal to 0.075 keV/channel, 16 384 channels (maximum energy 1228 keV). For PIDIE 2 sample and PIDIE 4 sample, about ten counting statistics have been tested between 10⁵ counts to 10⁶ counts. For PIDIE 6 sample (the weakest ²³⁹Pu mass ratio), the total number of counts in the spectrum has been extended up to 1.2 10⁷ counts. Each acquisition has been repeated at least ten times, which corresponds to a total number of about 120 spectra by sample for PIDIE 2 and PIDIE 4 samples, and 230 spectra for PIDIE 6 sample. It has to be noted that no failure of the IGA code has been observed on these 470 spectra.

Fig. 8 and Fig. 9 present the mean of IGA results for the two major isotopes ²³⁹Pu and ²⁴⁰Pu. They are displayed for the three samples according to the counting statistics, and compared to the reference values. The IGA code provides the uncertainty on the result for the isotopes whose mass ratio is higher than 10 %. Consequently, the mean of the uncertainties given by the code for both isotopes has been calculated for the ten spectra (or more) of each experimental configuration and set out on the graphs.

First of all, it clearly appears that the accuracy of the results and the uncertainties depend on the sample itself, i.e. on the ²³⁹Pu mass ratio: the results are better for PIDIE 2 sample than for PIDIE 6 sample. That confirms the tendency observed in part II. Second, the graphs show the effect of counting statistics: the results and their uncertainties globally improve when the counting statistics increases. This effect is more obvious on PIDIE 6 sample (the weakest mass ratio of ²³⁹Pu); for PIDIE 2 and PIDIE 4 samples, results seem more stable on the counting statistics range because, on one hand they are already rather good from 10⁵ counts, and on the other hand the range is smaller.

In order to quantify the accuracy that can be expected according to isotopic composition and counting statistics, typical relative errors and the corresponding standard deviations for several counting statistics ranges, established from the ten spectra of each experimental configuration, are given for each sample in Tables II, III, and IV. More precisely, these typical relative errors are the mean, on each counting statistics range, of the absolute values of the mean relative errors already calculated on the ten spectra of each configuration. In the same way, the given standard deviations are the mean, for each counting statistics range, of the standard deviations of the relative errors calculated on the ten spectra. It can be remarked that the statistics ranges are not exactly the same in the three tables. Indeed, the decrease of the relative error or of the relative standard deviation is not a regular phenomenon according to the total number of counts: threshold effects can be observed, and limits are not the same for the three samples.

For the three samples, as soon as the total number of counts
in the spectrum is enough (more than about 5.10^5 counts for the samples of higher 239Pu mass ratio, and about 5.10^6 counts for the sample of smaller 239Pu mass ratio), accuracy for each Pu isotope is about 1% (less than 1% for 239Pu), for a dispersion of a few percent (1% or less for 239Pu). Even when counting statistics is smaller, accuracy can be considered as acceptable according to the application, since relative errors remain of a few percent or less than 1%.

The exception is 238Pu, for which results are globally more degraded than for the other Pu isotopes, except for high counting statistics on PIDIE 6 sample, which contains the highest quantity of 238Pu. In part III, it has been shown that the IGA analysis can be disturbed for 238Pu when the energy range is higher than 700 keV. So, all the spectra have been truncated to 4096 and 8192 channels to form spectra of maximum energy equal to 307 keV and 614 keV. As expected, no significant difference has been obtained for 238Pu between the 307 keV configuration and the 614 keV configuration. The new results for spectra of 614 keV energy range are presented in Table V. They confirm the part III conclusion, since they are quite better in some cases (in bold in Table V). The analysis of detailed results for a few spectra shows that the 766 keV peak of 238Pu is implicated in the bad results again. It can be used even when statistics in the region is too weak, and with a too high weight compared to the other 238Pu peaks (99.9 keV and 152.7 keV). So, weight calculation mode has to be slightly modified to remedy the problem.

Table II

<table>
<thead>
<tr>
<th>Counting statistics</th>
<th>10^4 – 5.10^4 counts</th>
<th>5.10^4 – 10^5 counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>238Pu</td>
<td>15 (40)</td>
<td>15 (20)</td>
</tr>
<tr>
<td>238Pu</td>
<td>< 1 (< 1)</td>
<td>1 (< 1)</td>
</tr>
<tr>
<td>240Pu</td>
<td>4 (6.5)</td>
<td>< 1 (4)</td>
</tr>
<tr>
<td>241Pu</td>
<td>2.5 (7)</td>
<td>< 1 (3.5)</td>
</tr>
<tr>
<td>241Am</td>
<td>2.5 (5)</td>
<td>< 1 (3)</td>
</tr>
</tbody>
</table>

Table III

<table>
<thead>
<tr>
<th>Counting statistics</th>
<th>10^2 – 10^4 counts</th>
<th>7.10^4 – 10^5 counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>238Pu</td>
<td>60 (15)</td>
<td>15 (20)</td>
</tr>
<tr>
<td>238Pu</td>
<td>< 1 (1.3)</td>
<td>< 1 (0.8)</td>
</tr>
<tr>
<td>240Pu</td>
<td>1 (5)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>241Pu</td>
<td>1.5 (3.5)</td>
<td>1.5 (3)</td>
</tr>
<tr>
<td>241Am</td>
<td>1 (3)</td>
<td>1 (2)</td>
</tr>
</tbody>
</table>

Table IV

<table>
<thead>
<tr>
<th>Counting statistics</th>
<th>10^4 – 4.10^4 counts</th>
<th>4.10^4 – 10^4 counts</th>
<th>10^4 – 1.2 × 10^4 counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>238Pu</td>
<td>50 (40)</td>
<td>5 (12)</td>
<td>3.5 (3)</td>
</tr>
<tr>
<td>238Pu</td>
<td>2 (4)</td>
<td>1 (2)</td>
<td>< 1 (< 1)</td>
</tr>
<tr>
<td>240Pu</td>
<td>3 (5)</td>
<td>2 (3)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>241Pu</td>
<td>4 (6.5)</td>
<td>3 (4)</td>
<td>1 (3.5)</td>
</tr>
<tr>
<td>241Am</td>
<td>4.5 (5)</td>
<td>3 (2.5)</td>
<td>1 (3.5)</td>
</tr>
</tbody>
</table>

Table V

<table>
<thead>
<tr>
<th>PIDIE 2</th>
<th>3 (25)</th>
<th>10 (20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIDIE 4</td>
<td>10 (15)</td>
<td>5 (5)</td>
</tr>
<tr>
<td>PIDIE 6</td>
<td>3.5 (6)</td>
<td>2.5 (3)</td>
</tr>
</tbody>
</table>

C. Influence of gain

For this series of experiments, the planar detector has been used with the following settings: resolution of 0.610 keV at 122 keV, 16384 channels (maximum energy 1228 keV), counting statistics equal to 10^5 counts in each spectrum. Two new values of gain have been employed, 0.125 keV/channel and 0.250 keV/channel. Ten spectra at the minimum have been acquired for each experimental setup.

The mean of the relative errors and the corresponding standard deviations established from the ten spectra of each experimental configuration are given for each sample in Tables VI, VII, and VIII. Ninety spectra have been analyzed for that; only five failures of the IGA code have occurred, all for the configuration 0.250 keV/channel with PIDIE 6 sample. The reason is difficulties for IGA to calibrate the spectra.

Besides 238Pu, no deep deterioration is observed when gain is 0.125 keV/channel or 0.250 keV/channel compared to 0.075 keV/channel, except for 239Pu and 240Pu on PIDIE 6 sample and gain of 0.250 keV/channel (in bold in Table VIII). In the other cases, results of relative error and standard deviations are quite better in some cases (in bold in Table V).
deviation globally remain smaller than 5% for the three gains and the three samples.

For ^{238}Pu, results appear very odd again since they sometimes seem better for high gains than for the initial configuration with 0.075 keV/channel, which has been already seen in part III. Actually, when relative error is smaller but relative standard deviation is high, each individual relative error is high but on both sides from zero. The 766 keV peak of ^{239}Pu did not seem to be a criterion here. On the contrary, for PIDIE 4 sample, the weight of the 766 keV peak is involved again.

D. Influence of resolution

For this series of experiments, the planar detector has been used with the following settings: gain of 0.075 keV/channel, 16,384 channels (maximum energy 1228 keV), counting statistics equal to 106 counts in the spectrum. Resolution has been increased from 0.610 keV to 1.020 keV at 122 keV. To extend the resolution range, spectra have also been carried out with a coaxial detector, with the same gain, channel number, and counting statistics, and with resolution values between 0.820 keV and 1.580 keV. Ten spectra at the minimum (sometimes several dozens) have been acquired for each experimental configuration again.

Fig. 10 and Fig. 11 show the mean of ^{239}Pu IGA results and ^{240}Pu IGA results on the ten (or more) spectra acquired in the same experimental setup. They are displayed for the three samples according to the FWHM, compared to the reference values. The error bars correspond to the mean of the uncertainties given by the code for ^{239}Pu and for ^{240}Pu on the ten (or more) repeated spectra. It has to be remarked that between 240 and 300 spectra have been acquired by sample for this experiment. That corresponds to a total number of 791 spectra analyzed by the IGA code, and it should be noticed that it has failed on five spectra only.

Fig. 10 and Fig. 11 illustrate a second very interesting result: relative errors and uncertainties for ^{239}Pu and ^{240}Pu seem to be not very degraded by the increase of resolution, in particular for PIDIE 2 and PIDIE 4 samples. PIDIE 6 sample, as for the other tested parameters, is more affected by changes in the experimental configuration, due to a more general difficulty to extract information.

To complete the graphs, Tables IX, X, and XI provide the mean relative errors and the corresponding standard deviations for four values of FWHM (minimum and maximum values for both detectors) and all Pu isotopes.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Gain & 0.075 keV/channel & 0.125 keV/channel & 0.250 keV/channel \\
\hline
^{239}Pu & 7 (6) & 5 (5) & 4 (10) \\
^{238}Pu & 1 (2) & 1 (1.5) & 4.5 (5) \\
^{240}Pu & 1.5 (4.5) & 4 (3) & 10 (10) \\
^{248}Am & 4 (3) & 2 (2.5) & 3 (4.5) \\
\hline
\end{tabular}
\caption{Mean relative errors (%) and corresponding standard deviations (% between brackets and in italics) obtained for PIDIE 6 sample ($^{239}\text{Pu} = 68.87\%$) for the three values of gain (counting statistics 10^6 counts).}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
FWHM at 122 keV & 0.61 keV (planar detector) \ 0.82 keV (coaxial detector) \ 1.02 keV (planar detector) \ 1.58 keV (coaxial detector) \\
\hline
^{239}Pu & 10 (20) \ 45 (40) \ 40 (> 100) \ > 100 (> 35) \\
^{238}Pu & < 1 (< 1) \ < 1 (< 1) \ < 1 (< 1) \ < 1 (< 1) \\
^{240}Pu & < 1 (6) \ < 1 (4) \ 3 (3.5) \ 7 (9) \\
^{248}Am & < 1 (3) \ 4.5 (4.5) \ 4.5 (4.5) \ < 4 (4) \\
\hline
\end{tabular}
\caption{Mean relative errors (%) and corresponding standard deviations (% between brackets and in italics) obtained for PIDIE 2 sample ($^{239}\text{Pu} = 89.65\%$) for four values of resolution (counting statistics 10^6 counts, gain 0.075 keV/channel).}
\end{table}

The tables confirm the preceding tendency: IGA results remain acceptable when resolution degrades, not only on ^{239}Pu, but also on the other Pu isotopes (except ^{239}Pu in particular for the first two samples again). Values higher than 1% for ^{239}Pu
results can be considered as acceptable in most cases, with precision values remaining better than 5%. In particular, the bold in Tables IX, X and XI.

and higher than 5% for the other isotopes (besides 238Pu) are in bold in Tables IX, X and XI.

V. CONCLUSION

The purpose of the described studies was to assess the IGA performances that can be expected on Pu spectra according to some experimental parameters, like energy range, gain, total number of counts, or resolution. Indeed, the IGA code is a very flexible code that accepts any kind of spectrum without imposing constraints on the experimental setup. However, the question was to have an idea of what are the most significant parameters to obtain the best results.

The three approaches have shown that the predominant parameters are the isotopic composition itself, in particular for 239Pu and 238Pu, and then, the counting statistics. In comparison, gain and energy range are not very influential on the results. Thus, typical accuracy for the different Pu isotopes has been given for different isotopic compositions and counting statistics ranges.

It is important to emphasize that the high flexibility of IGA has been confirmed during this study. Indeed, even in cases where experimental setup is degraded (counting statistics down to 10^5 counts, gain up to 0.250 keV/channel, or FWHM up to 1.580 keV at 122 keV), the analysis is still possible, and results can be considered as acceptable in most cases, with precision values remaining better than 5%. In particular, the good results obtained with a degraded resolution allow us to think that the analysis could be possible on CdTe spectra.

To complete this important work, other experiments on Pu could be carried out, first to achieve the panel of the IGA performances according to gain and counting statistics with a coaxial detector, also largely used in the field of applications, second to characterize the IGA behavior in presence of very absorbing screens (for instance copper, steel, or lead) between the sample and the detector, which could modify the conclusion relative to energy range. Another point would be to precise the dependence with counting statistics according to key peaks for each isotope instead of the total number of counts in the spectrum.

Finally, the same type of study is in progress on uranium spectra and has to be led on uranium-plutonium mixture spectra.

ACKNOWLEDGMENT

The authors thank Jean-Pierre Both, Robert Junca, Jean Lefèvre, Jean Morel, and Vincent Picaud, for their contribution to the development of the IGA code.

REFERENCES