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Abstract: Crack characterization is one of the central tasks of NDT&E (the Non-destructive Testing
and Evaluation) of industrial components and structures. These days data necessary for carrying out
this task are often collected using ultrasonic phased arrays. Many ultrasonic phased array inspections
are automated but interpretation of the data they produce is not. This paper offers an approach
to designing an explainable AI (Augmented Intelligence) to meet this challenge. It describes a
C code called AutoNDE, which comprises a signal-processing module based on a modified total
focusing method that creates a sequence of two-dimensional images of an evaluated specimen;
an image-processing module, which filters and enhances these images; and an explainable AI
module—a decision tree, which selects images of possible cracks, groups those of them that appear
to represent the same crack and produces for each group a possible inspection report for perusal by a
human inspector. AutoNDE has been trained on 16 datasets collected in a laboratory by imaging steel
specimens with large smooth planar notches, both embedded and surface-breaking. It has been tested
on two other similar datasets. The paper presents results of this training and testing and describes in
detail an approach to dealing with the main source of error in ultrasonic data—undulations in the
specimens’ surfaces.

Keywords: Non-destructive Testing/Evaluation (NDT/NDE); ultrasonic imaging and inversion;
ultrasonic characterization; explainable Augmented Intelligence

1. Introduction

The aim of this paper is to address a challenge of developing an explainable AI for
semi-automatic crack characterization, with a view to its ultimate deployment in ultrasonic
units for NDT&E (the Non-destructive Testing and Evaluation) of industrial components
and structures. Since the most advanced units are phased arrays of ultrasonic transducers
all the experimental data used to train and test the AI discussed below have been collected
using linear arrays of this nature. Moreover, the experiments have been designed to
emulate cracks and inspection surfaces typically encountered in walls of nuclear reactors.
It is particularly important to minimize human involvement in interpretation of NDT data
in nuclear industry: With the new nuclear build already under way, NDT practitioners
anticipate a severe shortage of suitably qualified and experienced personnel. Also there is
pressure in industry for both speeding up the inspections and increasing their reliability.
Interestingly, even though ultrasonic inspections have been conducted for decades, a study
conducted by TWI (The Welding Institute) a few years ago has demonstrated that although
their reliability is high it is not as high as many believe or wish it to be [1]. The most
surprising outcome of the study was the fact that human inspectors experienced the
greatest difficulty when characterizing large planar cracks. A less surprising finding was
that the most difficult cracks to identify were those normal to inspection surface—the
responses of their tips are known to be weak. A desire to respond to this study has been
another rationale for the work reported here.
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In order to carry out crack characterization NDT inspectors rely mostly on TOFD
(Time of Flight Diffraction) configurations, in which the most prominent features are the
diffraction spots surrounding crack tips. By contrast the approaches pursued by those
who work towards automating crack characterization often rely on specular reflections.
There have been attempts to develop general but time-consuming model-based data
processing algorithms, see e.g., [2,3] as well as pure signal processing approaches, such as
CS (Compressed Sensing) algorithms [4]. The approach meeting a practical need best seems
to be TFM (Total Focusing Method) based on FMC (Full Matrix Capture) [5,6]. Briefly,
every element of the Full Matrix is an A-scan (a sequence of ultrasonic pulses) received
by an array transducer after this or another array transducer fires a single pulse. TFM
uses this matrix to create images that lend themselves to a relatively easy interpretation by
both human and artificial intelligence. However, TFM images are often contaminated by
noise and various strategies have been offered to modify the TFM algorithm to eliminate
false indications [7,8] and reduce noise [8–10], enabling real-time imaging with portable
NDT devices [8,11]. Researchers also began to explore application of machine learning to
NDT [12–15]. However, at present, standard machine learning approaches have limited
value: Firstly, most researchers have no access to big data such approaches require and
even a few laboratory datasets used below have required a considerable effort and expense
to collect. Secondly, standard approaches often lead to results that are unexplainable, and a
highly regulated branch of industry, such as NDT of nuclear reactors is unlikely to adopt
results of this nature. In this paper we present an alternative: a code that combines a signal
processing algorithm based on a simple modification of the TFM with the well-known
image processing algorithms as well as a decision tree. The latter is an AI module, which
mimics thought processes followed by human inspectors in writing standard inspection
reports. The code has been designed to deal with the scatter from large planar cracks,
whether specular reflections from crack surfaces or echoes from crack tips.

We demonstrate the efficacy of the approach using laboratory data. To collect such
data engineers manufacture test blocks to contain flaws with known characteristics and
use the the NDT procedure they want to investigate to establish whether it can gener-
ate reasonable estimates of these characteristics [1]. The paper is organized as follows:
in Section 2 we describe the relevant experiments; in Section 3 we present our composite
signal/image processing/AI algorithm for crack characterization and in Section 4 we
present results of its training on 16 datasets and testing on two. Since it is known that in
many industrial situations the main source of error is undulations in component surfaces,
one of the test blocks has been deliberately chosen to have a qualitatively different surface
to the test block used for the AI training. In the last section we discuss our findings and
present recommendations.

2. The Experimental Set-Up

This paper builds on the original feasibility study reported in [16], with the experimen-
tal set-up presented in Figure 1. The RF (radio-frequency) data used there were collected
by DPS (Doosan Power Systems) engineers with a demonstrator multiplexed to an 128
element IMASONIC linear transducer array with the pitch De = 0.8 mm, the central pulse
frequency f = 5 MHz and sampling frequency fs = 50 MHz. The specimen probed was
a steel block, 30 mm thick, 200 mm wide and 350 mm long, with four surface-breaking
notches and four further notches buried underneath the notched surface. Four notches out
of eight were non-tilted and four, tilted at 110◦ to the surface. The longitudinal speed in
steel varies with composition. In the steel used in this experiment it was cl = 5.89 km/s.

The experiments have been performed in immersion, with the water temperature of
22 ◦C, so that the speed in water was cw = 1.48 km/s. The water path standoff distance was
about 13 mm. A typical input pulse (a pulse transmitted by a transducer) is presented in
Figure 2a, and a typical A-scan (a train of pulses received at a transducer), in Figure 2b.
The full matrix of A-scans, [Akln, k, l, = 1, 2, . . . , K, n = 1, . . . , N] has been collected, where
the first index denotes the transmitter, second—the receiver and third—the time sample.
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Both transmitters and receivers are numbered from the left. Let us introduce tk,x,l , the time
of travel from transmitter k to receiver l through one of the evenly spread nodes x = (x, z)
and signal Akl(t) ≈ Akln|n=bt/∆tc, where ∆t is the time increment defined by the sampling
frequency; bt/∆tc = floor (t/∆t). In order to reduce the processing burden [17], instead of
A-scans AutoNDE uses their Hilbert transform,

h(Akl)(t) =
1
π

p.v.
∫ Akl(τ)

t− τ
dτ. (1)
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Figure 1. A schematic of the DPS experiment.
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Figure 2. (a) A typical input pulse A_n; and (b) a typical A-scan A_n.

Note that the A-scan in Figure 2b is A82,82,n. Taking into account that the offset was
n = 743 the first pulse is the echo of the pulse transmitted by element 82 arriving back to
this element from the point x1 on the upper surface of the specimen and the second pulse
is the echo arriving back from point x2 on the backwall. The distance d between x1 and x2
can be calculated using the standard formula d = 0.5 n cl/fs, where n is the number of time
samples between arrivals of two pulses.

3. The AutoNDE Code for Semi-Automatic Crack Characterization

The original version of the code described in [16] was written in LabView and con-
tained only a rudimentary AI module. In this paper we present a more advanced version
written in C. Its flowchart is presented in Figure 3.



Appl. Sci. 2021, 11, 10867 4 of 18

 

ReportGenerating 

True 
False 

 ImageSelection 

DefectCharacterization 

ImageGrouping 

SurfaceProfiling 

Meshing 

RayTracing 

True 
False 

True 
False 

FindSpecAndDiffFeatures  BlobDetector 

IntensityFunctionGenerating  

Dm lies within specified range 

Threshold counter within specified range 

GroupMerging 

GroupMerging 

Figure 3. A flowchart of AutoNDE.

Let us describe the submodules presented there in more detail:

3.1. Signal Processing

The submodules of the Signal Processing module are used to create 2D images of the
tested specimen:

1. SurfaceProfiling effects profiling by (1) locating for each array element the surface
point directly underneath and (2) interpolating the acquired surface points using
polynomial regression. The first step is performed by convolving h(A)(N∆t − t),
the Hilbert transform of the time inverse of the input pulse with the corresponding
pulse scattered by the surface. Only A-scans received by the same transducers that
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transmitted them are utilized. Hence the maximum number of surface points collected
during the first step is K. The regression model used in interpolation is

z = X b + e, (2)

where the response vector z, the parameter vector b, the design matrix X and the error
vector e are given, respectively, by

z =


z1
z2
. . .
zJ

, X =


1 x1 x2

1 . . . xp
p

1 x2 x2
2 . . . xp

2
. . . . . . . . . . . . . . .

1 xJ x2
J . . . xp

J

, b =


b1
b2
. . .
bp

, e =


e1
e2
. . .
eJ

 (3)

• Originally, the polynomial degree to produce good results with the DPS data has been
found by trial and error to be p = 8.

• In the latest version of AutoNDE the degree p is selected automatically. There is a
number of approaches recommended for this purpose in the literature on machine
learning. We have found that the most common of those, the bias-variance trade-off
leads to ill-conditioned the Vandermonde matrix XTX and overfitting of the DPS
data. Since for all DPS datasets SurfaceProfiling acquires surface points whose location
error is random it is reasonable to assume that their underlying error distribution is
normal. Therefore, we attempted and found satisfactory a method that involves the
Wald test [18] based on the t-statistic of the leading coefficient.

• In order to apply this method we first estimate pmax and qmax, where pmax is the
highest polynomial degree that can be reliably estimated from the available data and
qmax is the maximum number of digits of accuracy on top of what would be lost
to the numerical method due to loss of precision from arithmetic methods [19]. A
well-known rule-of-thumb suggests that pmax = J/5 and the training of AutoNDE
on the DPS data suggests that for realistic random surface undulations used in this
experiment qmax = 6.

• The suggested method utilizes the algorithm presented in Figure 4. Note that since
all Xj2 values are non-zero and distinct for every p = p’ all Vandermonde matrices
XTX are invertible [20]. Note too that the t-statistic is normally applied to assess
significance of regression parameters, while here tp′ is used to test the null hypothesis
that the leading coefficient bp′ = 0. It follows that the algorithm selects the polynomial
of the highest significant degree. The threshold tp = 1.96 assures that if the error
in location of surface points has a normal distribution, the null hypothesis that the
leading coefficient is zero can be rejected at the 95% significance level.

The spline method has been tried too but was found to be too sensitive to the choice
of smoothing parameters and thus not amenable to automation

2. Meshing of the specimen is performed by specifying a regular grid of evenly spaced
rows and columns, covering the portion of the specimen, which lies underneath the
probe. The meshing module also specifies the region of interest. If the measurements
are taken only when the crack is located more or less underneath the array center
the region of interest is reduced to the central region underneath the probe. Any
reduction of the region of interest speeds up the crack characterization process.

3. RayTracing starts by issuing a fan of rays from each array element. The central angle of
each fan is −90◦ to the x-axis, the optimal vertex angle has been found to be 60◦ and
the optimal difference between the angles of neighboring rays, 0.057◦. These values
effect a trade-off between the code accuracy and speed. For each ray the RayTracing
submodule locates the point where it hits the upper surface, finds the refracted ray
issuing from this point (in the current version no shadowing is accounted for) and
calculates the time it takes the ray to reach each row in the region of interest. In the
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present version of AutoNDE mode conversion is allowed as well as one reflection
from the backwall.
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4. IntensityFunctionGenerating utilizes the matrix A of A-scans to generate the inten-
sity function

I(x) = |∑
k,l

h(Akl)(tk,x,l)| (4)

where time tk,x,l is the moment of time the corresponding pulse is at its peak. In the standard
TFM (Total Focusing Method) the summation in (4) is carried out over the whole probe.
In addition to TFM we use an MTFM (a Modified TFM), a signal processing approach
developed by trial and error to produce not just one image for one position of the probe
as in TFM but a series of images m: Inside each such image, each vertical segment x is
scanned with a “partial probe” [k + Dm,k + Dm + L], k < K − Dm − L when Dm > 0 (a blue
colored portion of the transducer array in Figure 5 or [ k + Dm − L, k + Dm], k > L − Dm
when Dm < 0, where the transducer element k = bx/Dec or k = dx/Dee, respectively. Here
dx/Dee = ceil(x/De). This allows us to use the same amount of information to image each
vertical segment of the specimen, except for the segments close to the array ends. However,
as a rule, the end portions of the array lie outside the region of interest. The approach
often filters out the “blinding” surface reflections and enhances images of diffraction spots.
Both the TFM and MTFM images are produced using the normalized version of intensity
function, I1(x) = 256 I(x)/max

x
I(x). Each image is stored in the standard way, using

256 different intensities, the highest indicated by red color and the lowest, by blue.
 

 
 

 

 

 

 

 

 

Figure 5. A schematic of MTFM.

3.2. Image Processing

The image processing module is used to select those MTFM images, which lend
themselves to easy interpretation. The basis for selection is a priori knowledge that the crack
to be characterized is large and plane. Therefore the crack image is expected to contain a
straight segment, which is a specular reflection from the crack, or else two diffraction spots
surrounding the crack tips. Sometimes only one crack tip can be picked up. AutoNDE
differentiates the possible diffraction spots from the possible specular features by size,
allowing for some overlap.

The ImageProcessing module of AutoNDE uses a variety of intensity thresholds.
As mentioned above, the maximum intensity is 256. Thresholding is a standard tool
in image processing, which is used to filter out noise. During the AutoNDE training,
in most cases 125 has been found to produce the best results. However, some significant
weak features could only be picked up at lower thresholds, while some noise could be
filtered out only at thresholds that are higher. For this reason, AutoNDE normally utilizes
three thresholds, 65, 125 and 185.

AutoNDE analyse the resulting images using OpenCV (Open Source Computer Vision
Library) functions [21]. Two submodules are involved, FindSpecAndDiffFeatures and BlobDe-
tector.

1. FindSpecAndDiffFeatures relies on the OpenCV FindContour function to select two
types of features, large (longer than 7 mm) and small (between 1 mm and 7 mm long).
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If one of the features is 7 mm or slightly smaller and there are several other small
features smaller than 3 mm in extent the small features are neglected and the larger
one is treated as a specular reflection.

2. The BlobDetector relies on the OpenCV DetectBlob function to filter blobs by size
between 80 and 160 pixels. The BlobDetector is particularly useful when dealing with
surface-breaking cracks, because in these situations the probe often picks up only one
crack tip. When only one blob is picked up the final crack characterization can be
made only by a human inspector. In cases like this the AutoNDE flags the situation by
putting the question mark after every defect characteristic and estimate of the report
quality (the definition of quality is given below). All the feature and blob parameters
mentioned above have been chosen by trial and error to maximize the number of true
positives and minimize the number of false positives selected by the code.

3.3. Explainable AI

The AI module of AutoNDE is a decision tree, which selects images that appear to
contain defects, characterizes these defects and then groups similar images. Note that by
their nature, decision trees produce explainable results: all the reasoning can be traced.
The decision tree comprises the following submodules:

1. ImageSelection submodule selects images containing one or two blobs (bright spots),
two small contour selected features, one large feature or maybe, one blob and one
small feature. If a blob and a contour selected feature are detected at the same location
it is the feature parameters that are used to characterize the potential diffraction spot.
If one of the contour selected features is slightly bigger than 7 mm it is still treated as
a possible diffraction spot.

2. DefectCharacterization carries out calculations of the extent (notch length in the imaged
plane), depth (the smallest of distances between notch tips and specimen surfaces) and
orientation (the angle the notch makes in the imaged plane with the mean specimen
surface) of the detected planar defect. The calculations are based on parameters of the
bounding boxes, which the FindContour OpenCV function draws around the objects
or else on parameters of blobs detected by the DetectBlob function. Planar cracks
are expected to produce two types of images, specular reflections and TOFD (Time
of Diffraction) images, which contain two diffraction spots surrounding notch tips.
When the image contains one large feature (interpreted as a specular notch image),
the extent is calculated as the longest box side; the depth, as the shortest distance
between box vertices and specimen surfaces; and orientation as orientation of box’s
longest side. For TOFD, the extent is calculated as the largest distance between vertices
of their bounding boxes; the depth, as the shortest distance between vertices of these
boxes and specimen surfaces; and orientation, as orientation of the line connecting
the gravity centers of the boxes. If only two small features are identified the code
draws a straight yellow line connecting their gravity centers.

3. ImageGrouping checks whether each selected image appears to be similar to the pivot
image in the group g = 1, 2, . . . , G, that is contains a notch with a similar extent E and
orientation O at a similar location C (so that the coordinates of the gravity centers of
the notches are similar). The pivot is the image with the smallest Dm in the group.
If the image is similar to the pivot it is added to the group; otherwise, it is used
as a pivot for the next group. The crack parameters are referred to below as v = E,
O, C, respectively. For each group a preliminary report is compiled, describing the
weighted averages vg.

vg =
∑

Mg
m=1 ŵg,mvg,m

M̂g
, ŵg,m = we,g,m·wo,g,m·wl,g,m·wadd, (5)

wv,g,m = w
(
∆vg,m, tv

)
.
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Above M̂g =
Mg

∑
m=1

ŵg,m is a modified number of images in group g, with Mg—the

number of images in group; ∆vg,m =
∣∣vg,m − vg,0

∣∣ is the deviation of parameter vg,m in
the group g and image m from the corresponding parameter vg,0 in the pivot image (in
case of the gravity center location, this deviation is the distance between centers); tv is
the acceptable threshold for this deviation; and the weighting function, which smoothes
transition over this threshold is

w(u, U) =

{
1, if u < U

e−(
u
U−1)2

, otherwise,
(6)

see Figure 6. The following thresholds have been established by trial and error:

te = tl = 2.1 mm, to = 21
◦
. (7)

 
1 

𝑤𝑤 

𝑢𝑢 
 

𝑈𝑈 
 

Figure 6. Modification weights.

The weight wadd is used to taper off the probability of almost horizontal cracks situated
very close to the top surface or backwall. The quality of the resulting group report is
assessed by using the subjective probability (rounded up to the nearest multiple of 10),

Qg = max

{
10%, min

[
90%, 100%

M̂g

M̂

]}
, (8)

where M̂ =
G
∑

g=1
M̂g is the sum of modified numbers of images in all G groups identified.

Thus, one of the advantages of MTFM is the fact that various images it produces allow
AutoNDE to assess the quality of crack characterization.

4. GroupMerging employs similar principles to ImageGrouping, working with group
averages instead of individual crack characteristics. Group merging is performed
first for each intensity threshold: the first of all groups on the list is chosen as a pivot,
the next group on the list is merged with it if the extents of their defects differ by
no more than 2.1 mm; the distance between the gravity centers of these defects is
no more than 2.5 mm; and their orientations differ by no more 21◦. The remaining
groups form a new list and the merging process is repeated. For a given intensity
threshold, only groups detected by the same method (FindContour or BlobDetector)
can be merged. No such restriction is used when merging groups identified using
different intensity thresholds. Otherwise, this last merging is performed using the
same principles as above but with deviations in extents and distances allowed to
reach 3 mm.

5. ReportGenerating reports the group(s) with the maximum probability. If more than
one group with the maximum probability is reported the final choice has to be made
by the human inspector on scrutinizing the TFM image.

4. Training AutoNDE

The AutoNDE was trained using sixteen datasets produced by DPS (Doosan Power
Systems) and then tested on one dataset collected by AMEC and one, by CEA (The French
Commission for Atomic and Alternative Energies).
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4.1. Training AutoNDE on DPS Data

It has been established by trial and error that the best images of the specimen used in
DPS experiment (see Figure 1) could be obtained by specifying its thickness as 29.5 mm and
distance from the probe to the specimen, as 12.5 mm. In other words, it has been established
that the 0.5 mm difference in these parameters has a significant effect on the image quality.
The number of array elements and length of A-scan have been already specified above as K
= 128 and N = 800. The optimal length of the “partial probe” has been established by trial
and error to be 25 elements, covering the aperture of 20 mm. This aperture is large with
respect to the typical length of the longitudinal wave: Given the longitudinal speed within
the steel specimen of 5.89 km/s and the central pulse frequency of 5 MHz, this typical
length is 1 mm. Similarly, it has been found that enough information could be collected
with 25 images, Dm varying between 0 to 24 array elements. No interpretable images were
produced for larger values of Dm. Finally, whatever the dataset, quality results have been
obtained for the same region of interest. This has been chosen as the central region, roughly
20% of the area underneath the probe, symmetrical with respect to the probe center. The
resulting estimates of notch characteristics are compared to their known experimental
values in Table 1. The experimental values were established using standard approaches
used in experiments of this nature, see, e.g., [1].

Table 1. The DPS data set: Estimated (est) and experimental (exp) crack characteristics. The crack
position is specified as distance between the notch and left edge of the specimen. The “hc” stands for
Human Choice and indicates that the estimates are chosen by a human and not the AI.

Inspection Surface/
Approximate Notch Depth/
Notch Distance from Edge

Report
Quality/Comments

Defect Parameters

Extent,
in mm Est/Exp

Orientation,
in deg Est/Exp

Depth, in
mm Est/Exp

Flatside/Buried/24 mm 60% 9/10 105/110 8/5

Flatside/Buried/62 mm 40% 6/5 105/110 5/5

Flatside/Buried/113 mm 40% 12/10 90/90 5/5

Flatside/Buried/149 mm 20%hc 5/5 85/90 6/5

Flatside/Breaking/25 mm 60% 6/5 80/90 0/0

Flatside/Breaking/64 mm 90% 11/10 90/90 0/0

Flatside/Breaking/113 mm 60% 7/5 100/110 0/0

Flatside/Breaking/150 mm 90% 12/10 110/110 1/0

Notchside/Buried/24 mm 60% 11/10 110/110 5/5

Notchside/Buried/62 mm 70% 6/5 110/110 5/5

Notchside/Buried/113 mm 30% 12/10 90/90 4/5

Notchside/Buried/149 mm 30% 5/5 80/90 3/5

Notchside/Breaking/25 mm 40% 5/5 100/90 1/0

Notchside/Breaking/70 mm 30%hc 8/10 90/90 2/0

Notchside/Breaking/113 mm 30% 5/5 115/110 1/0

Notchside/Breaking/155 mm 50% 8/10 115/110 2/0

Table 1 shows that depths of the notches in DPS data could be estimated with the
error of up to 2 mm (in one instance, 3 mm), and orientations—with the error of 5–10◦.
We note here that assuming the inspection surface plane would produce similar estimates
for most of the notches but the second entry would be 7 mm in extent, located at 1 mm
depth, oriented at 75◦ and the fourth entry would be 7 mm in extent, located at 0 mm depth,
oriented at 125◦. It follows that results are more reliable when small surface undulations
are taken into account.

Typical MTFM images are presented in Figure 7: both Figure 7a,b contain three bright
spots, with the two brightest ones joined by a thin yellow line. However, while the top spot
is bright in both images, in Figure 7a the brightest lower spot is found at a distance of 4 mm
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from the backwall, while in Figure 7b the brightest spot lies on the backwall. We know that
both bright spots in Figure 7a represent diffraction spots surrounding tips of the planar
notch, while the lowest bright spot in Figure 7b is spurious, probably due to a defect in the
backwall: The noise is similar to the signal and inside any given image the code cannot
always distinguish between the two. However, in this case most MTFM images allow it
to make the correct choice. This leads to a reasonable entry for the correponding notch in
Table 1. The accompanying AutoNDE inspection report is presented in Figure 8.
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Figure 7. DPS data set: the buried notch located 113 mm from the left edge, imaged from the flat
side. MTFM images have been obtained with intensity threshold = 185 and Dm = (a) 24; (b) 21. Key:
E—notch extent, D—notch depth and O—notch orientation. The portion of the image to the left of
the region of interest is cut off.
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GROUP-1: 
---------------- 
Number of images in group = 11 
DM(s) in groups: 14 17 24 22 23 24 -20 
A possible planar defect is detected. 
Defect depth = 5 mm 
Defect extent = 12 mm 
Defect orientation = 90 deg 
Report Quality = 40% (the group displays the shooting star effect) 
 

Upper surface (interpolated using the polynomial degree 9) 
 

POSSIBLE INSPECTION REPORT 
************************************************************************ 
Folder: FSBuried113mm 
 
TFM image 

 

Figure 8. Inspection report for buried notch located 113 mm from the left edge. Key (here and below):
dots–surface points acquired by SurfaceProfiling; line interpo lating polynomial.

Note that unlike MTFM images in Figure 7, the TFM image in Figure 8 contains bright
reflections from both top surface and backwall and the portion of the image to the left
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of the region of interest is not cut off. Unlike with MTFM images the diffraction spots
surrounding notch tips are very faint. The presence of the TFM image in the report allows
a human inspector to make an immediate assessment of the validity of the AI conclusions.
Note too that the upper surface points presented in the second figure of this report have
been obtained using the Profiling submodule and solid line is the interpolating polynomial.
Finally, the order of DMs listed in the report indicates that the first four interpretable
images have been obtained with the intensity threshold of 65, the next four—with the
intensity threshold of 125, and the last two—with the intensity threshold of 185.

As mentioned above, when an AutoNDE report lists several possibilities, it is for a
human inspector to select the most probable. Let us illustrate this by the report for the
surface-breaking notch situated 113 mm from the left edge of the specimen and inspected
from the notched side. The corresponding AutoNDE report can be seen in Figure 9.
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GROUP-1: 
---------------- 
Number of images in group = 3 
DM(s) in groups: -12 -13 -11 
A possible planar defect is detected. 
Defect depth = 3 mm 
Defect extent = 19 mm 
Defect orientation = 30 deg 
Report Quality = 30% 

GROUP-2: 
---------------- 
Number of images in group = 10 
DM(s) in groups: 3 4 6 10 22 15 17 18 20 21 
A possible planar defect is detected. 
Defect depth = 1 mm 
Defect extent = 5 mm 
Defect orientation = 115 deg 
Report Quality = 30% (the group displays the shooting star effect) 

 

Upper surface (interpolated using the polynomial degree 9) 
 

POSSIBLE INSPECTION REPORT 
************************************************************************ 
Folder: NSBreaking113mm 
 
TFM image 

 

Figure 9. Inspection report for the surface-breaking notch located 113 mm from the left edge.

The presence of Group 1 is due to the fact that some MTFM images pick up two spuri-
ous spots, see Figure 10a. Group 2 contains slightly skewed specular images, see Figure 10b.
We emphasize here that all TFM images obtained with DPS data contain either clear diffrac-
tion spots as above or else clear specular images, see Figure 11. While the present version
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of AutoNDE has not been trained to mask the images of upper and lower surfaces this
will be done in future. It would then become possible to characterize these images without
employing MTFM. Thus, the main advantage of MTFM is the fact that unlike TFM it allows
to produce many images instead of one, allowing to estimate the quality of a notch image
by how often it is reproduced.
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Figure 10. The DPS data set: the surface-breaking notch located 113 mm from the left edge, im-
aged from the notched side. MTFM images have been obtained with (a) intensity threshold = 125,
Dm = −11, and (b) intensity threshold = 185, Dm = 15. Key as in Figure 7.
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Figure 11. The DPS data set: the TFM image of the surface-breaking notch (circled) located 70 mm
from the left edge, imaged from the notched side. Key as in Figure 7.

Typical run times involved in creating Table 1 under the Ubuntu 64-bit operating
system on the VMware workstation 16.x with an i7-1165G7 @ 2.80 GHz and 16 GB of Ram
are presented in Table 2.

Table 2. Maximum run times (in seconds) involved in creating Table 1.

Reading Data Profiling Raytracing Creating an Image I/O Handling Total

1.5 2 2 1.5 4 12

4.2. Testing AutoNDE on AMEC Data

AutoNDE has been tested on a data set collected by AMEC engineers using a 64 el-
ement phased transducer array with the pitch De = 0.63 mm and sampling frequency
fs = 25 MHz, placed in direct contact with a 55.5 mm deep steel specimen. The geometry
of the experiment, input pulse and typical A-scans are similar to the ones in the DPS
experiment and are not reproduced.

The standard TFM image of the AMEC specimen is presented in Figure 12a. It con-
tains two diffraction spots, but they are too faint to be identified by the current version
of AutoNDE. The code picks the diffraction spots up only when we cut off minimum
20% of the specimen thickness from the bottom of the image, see Figure 12b. The latter
displays the following estimates of the crack characteristics: extent—4 mm, depth—16
mm, orientation —100◦. The necessity to reduce the region of interest appears to be due to
the defect in the backwall, which produces a response that is too bright. After the region
of interest is cropped as described, AutoNDE produces the report reproduced in Figure
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13. The parameters of the manufactured notch are as follows: extent—5 mm, depth—16
mm, orientation—101◦. We can see that the AutoNDE estimates are of the same quality as
estimates obtained with the DPS data.
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(a)                       (b)                           

Figure 12. The AMEC data set. (a) The standard TFM image of the full specimen; (b) an MTFM
image, with 20% thickness cut off the bottom, intensity threshold = 125, Dm = 3.
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************************************************************************ 
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Upper surface (interpolated using the polynomial degree 0) 
 

GROUP - 1: 
---------------- 
Number of images in group = 6 
DM(s) in groups: 3 4 5 6 7 8 
A possible planar defect is detected. 
Defect depth = 16 mm 
Defect extent = 6 mm 
Defect orientation = 100 deg 
Report Quality = 40% 

 0                        40    

Figure 13. The inspection report for the AMEC dataset.

4.3. Testing AutoNDE on CEA Data

AutoNDE has been also tested on a data set collected by CEA engineers using a 64
element phased transducer array, with the pitch De = 0.6 mm and sampling frequency
fs = 50 MHz, imaging in immersion a 42 mm deep steel specimen. The geometry of the
experiment is presented in Figure 14, the input and typical A-scans are similar to the ones
in the DPS experiment and are not reproduced.
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water 

phased array 

steel  block 

Figure 14. A schematic of the CEA experiment.

The set-up is more challenging than the one used in the DPS experiments: both the top
surface and blackwall are more indulated and there is a backwall breaking flaw, creating
additional response, see Figures 15b and 16a. The numerical experiments conducted with
CIVA [22] (a commercial package for analyzing and simulating NDT [23–28], in particular,
NDT of components with irregular surfaces [7,8,28,29]) showed that the notch fabricated
for the purposes of this experiment was best imaged using the half-skip LTT mode, with
the L (longitudinal) transmitted pulse converting at the backwall to the T (transverse) pulse
and then reflecting from the notch, so that the received pulse is also T, see Figure 16a.

Note that the CEA experiment was designed to investigate the effect of highly un-
dulated surfaces, with the distribution of undulations different to normal. Both types
of surfaces, those reproduced in the CEA experiment and those reproduced in the DPS
experiment are realistic, but our analysis confirmed that they have to be modeled differ-
ently, The CIVA code was provided with precise descriptions of both the inspection surface
and backwall obtained with a flexible probe. AutoNDE relied instead on a rather crude
Profiling submodule described above. Moreover, the offset of 2095 samples in A-scans
obtained with the 64 element transducer array was too high, eliminating reflections from
the higher portions of the inspection surface. For this reason, the quality of the Profiling
output was very low. A trial and error approach was used to establish that the best results
could be obtained when the upper surface was assumed to be plane and the backwall
was represented by a parabola, cf. Figure 15a,b with the surfaces in the AutoNDE report
presented in Figure 17.
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Figure 15. CEA experimental specimen. (a) The upper surface and (b) the backwall.
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Figure 16. CEA data set. The backwall notch imaged with a 64 element transducer array, using the half-skip LTT mode as
processed by (a) CIVA and AutoNDE, (b) employing the standard TFM algo-rithm and (c) MTFM (intensity threshold = 185
and Dm = −8).
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This report was obtained using the partial probe of 33 transducerelements, that is of
19.8 mm aperture. All other parameter values were the same as described in the previous
sections. Inspecting the TFM image confirms that the second group provides a more reliable
characterization of the 12 mm surface-breaking notch normal to the backwall. The depth is
overestimated due to distortions introduced by crude of the surfaces.
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Figure 17. The inspection report for the CEA dataset.
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5. Conclusions

A novel code containing a decision tree, that is, an explainable AI has been designed
and developed for characterizing single large planar cracks. For the component surfaces
whose undulation errors can be described using a normal distribution, we developed a
method for automatic estimation of the degree of the interpolating polynomial. The code
has been trained on 16 experimental data sets and tested on two. The inspection surface
and backwall used in training had realistic small undulations whose distribuation could be
considered normal. One test dataset was collected using a specimen with plane surfaces
and another, a specimen with surfaces whose undulations were smooth and large and
could not be described using a normal distribution.

It has been demonstrated that every type of material and inspection configuration
requires preliminary investigation to establish not only how to model the surfaces but also
most appropriate values of such hyperparameters as the component thickness, distance to
the probe and portion of the image to be analyzed. Numerous other parameters described
in this paper have been optimized manually. Remarkably, they perform well on all datasets
described in the paper. It is important to realize that in some configurations only one crack
tip can be picked up and in others no crack localization is possible.

Once suitable parameters and limitations are established the code can be used to
generate possible inspection reports. These contain an assessment of their own quality
based on the subjective probability of the report being correct. The probabiltiy is calculated
by analysing a variety of images (rather than one) produced by a particular modification of
the TFM offered in this paper. It is expected that the human inspectors would still have
to examine the AutoNDE reports, particularly the TFM images they contain, to ascertain
whether they agree with the preliminary conclusions made by the AI module.

Despite the initial success reported here, just like any other artificial intelligence
system, the code can be guaranteed to analyze well only the type of data used for its
training, so that, say, the random undulations of the component surface follow the same
probability distribution as in the training data set. Also, so far AutoNDE has been trained to
process only the regions of interest, which contain one crack or else several cracks parallel to
the inspection surface. It is clear that many more data sets are required for testing AutoNDE
before it is accepted by the NDT community as a practical tool. To widen the AutoNDE
applicability we have plans to automate the choice of the hyperparameters described above
too. It is also clear that other methodologies have to be developed for modeling surfaces
with undulations that do not obey a normal distribution. Notwithstanding these challenges,
AutoNDE shows a great promise, demonstrating feasibility of an explainable AI, suitable
for applications in industrial NDE, increasing its accuracy and efficiency.
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