
HAL Id: cea-03983243
https://cea.hal.science/cea-03983243v1

Submitted on 10 Feb 2023 (v1), last revised 28 Aug 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

End-to-end implementation of a convolutional neural
network on a 3D-integrated image sensor with

macropixel array
Maria Lepecq, Thomas Dalgaty, William Fabre, Stéphane Chevobbe

To cite this version:
Maria Lepecq, Thomas Dalgaty, William Fabre, Stéphane Chevobbe. End-to-end implementation of
a convolutional neural network on a 3D-integrated image sensor with macropixel array. Sensors, 2023,
23 (4), pp.1909. �10.3390/s23041909�. �cea-03983243v1�

https://cea.hal.science/cea-03983243v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Citation: Lepecq, M.; Dalgaty, T.;

Fabre, W. ; Chevobbe, S. End-to-end

CNN on a 3D integrated MPX array.

Sensors 2022, 1, 0. https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Submitted to Sensors for possible open

access publication under the terms and

conditions of the Creative Commons

Attri- bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

End-to-end implementation of a convolutional neural network
on a 3D-integrated image sensor with macropixel array
Maria Lepecq1,∗ , Thomas Dalgaty 1,∗ , William Fabre1 and Stéphane Chevobbe 1

1 Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
* Correspondence: maria.lepecq@cea.fr , thomas.dalgaty@cea.fr

Abstract: 3D-integrated focal-plane array image processor chips offer new opportunities to implement 1

highly parallelized computer vision algorithms directly inside sensors. Neural networks in particular 2

can perform highly complex machine vision tasks, and therefore their efficient implementation in such 3

imagers are of significant interest. However, studies with existing pixel-processor array chips have 4

focused on the implementation of a subset of neural network components - notably convolutional 5

kernels - on pixel processor arrays. In this work, we implement a continuous end-to-end pipeline for 6

a convolutional neural network from the digitisation of incoming photons to the output prediction 7

vector on a macropixel-processor array chip (where a single processor acts on group of pixels). Our 8

implementation performs inference at a rate between 265 and 309 frames per second, directly inside 9

of the sensor, by exploiting the different levels of parallelism available. 10

Keywords: Smart imagers; Macropixel array processors; embedded artificial intelligence; convolu- 11

tional neural networks 12

1. Introduction 13

Convolutional neural network (CNNs) models serve as the basis for a number of 14

important computer vision applications including classification [1,2], detection [3,4] and 15

segmentation[5,6]. However, CNNs are memory intensive models, and their execution on 16

conventional hardware, such as central and graphics processing units (CPUs, GPUs), can 17

often result in high latencies and energy requirements. For the most part, this is due to the 18

time and energy required simply to move sensor data, model parameters and intermediate 19

network states between shared memory and processing units rather than performing 20

the underlying calculations themselves [7]. In order to improve the efficiency of CNNs, 21

different hardware paradigms have been developed with the aim of massively reducing the 22

volume of information movement. Numerous dataflow architectures have been proposed 23

[8,9] whereby an array of processing elements (PEs), each containing their own limited 24

memory called a register file, minimize the flow of data by storing intermediate results 25

locally as well as operating on data received from their neighbouring PEs. Similarly, tensor 26

processing units have been proposed which accelerate matrix multiplication through the 27

cascading of multiplication and sum over a systolic array of PEs [10]. 28

While these approaches allow neural network models to execute more efficiently once 29

the input data is in place, for computer vision tasks, there remains the cost inherent to 30

transporting the input pixel data from an image sensor to a standalone processor. To 31

solve this problem, imager chips have been proposed that integrate processing elements 32

with the pixels themselves [11]. Such approaches, called pixel-arrays, allow computer 33

vision algorithms to be executed inside of the sensor while also storing neural network 34

weights and intermediate data inside the register file of the pixel processors. This in-sensor 35

approach promises a considerable reduction in the energy required to perform inference in 36

embedded systems at the edge [12]. 37

3D-integrated imager chips, whereby the photodetector array is stacked directly on top 38

of a processing layer, offer considerable advantages in terms of pixel density and low latency 39

Version September 20, 2022 submitted to Sensors https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://orcid.org/0000-0001-8426-7789
https://orcid.org/0000-0003-0326-2121
https://orcid.org/0000-0002-5365-699X
https://orcid.org/0000-0001-6907-097X
https://www.mdpi.com/journal/sensors


Version September 20, 2022 submitted to Sensors 2 of 15

processing [13–15]. Integrated solutions have been also proposed where one die, that 40

performs complete image capture, is stacked on top of another which executes the digital 41

signal processing steps required for CNN inference [16]. However, since data connection 42

between the two dies relies on a column analog-to-digital converter, the bandwidth between 43

the sensing and processing components may be limited. By connecting pixels, or sets of 44

pixels (i.e., macropixels), directly to the processing array this limitation can be overcome. 45

Previous work has demonstrated advantages in terms of energy, latency and frame 46

rate, of implementing convolutional neural network layers on pixel array chips [17]. But 47

while pixel processing arrays offer highly parallelized processing, the hardware computing 48

capabilities of the circuits below the pixels may be constrained by the size of the pixels 49

themselves. Macropixel processor arrays therefore offer a compromise between pixel size 50

and the computing resources and the algorithmic flexibility that is possible per pixel. In this 51

paper we present the first end-to-end implementation of a convolutional neural network 52

model on a macropixel processor array (MPA) chip. We compare the framerate achieved 53

on our architecture to previous works based on pixel-arrays. We achieve a favourable 54

performance for neural network architectures of similar sizes but with higher precision 55

weights and activations. 56

2. Materials and Methods 57

2.1. 3D-stacked macropixel array architecture 58

This work is built on the RETINE [13,14] MPA. It is a 3D-stacked vision chip whereby 59

an array of backside-illuminated photodetectors are bonded directly on top of an array of 60

macropixel processors (MPX-p) (see Fig. 1). Specifically, an array of 16x16 photodetectors 61

communicate vertically via sixteen analog-to-digital converters and write the sensed data 62

directly into a local register file (RF) memory that exists within each macropixel proces- 63

sor (MPX-p) - each with a total capacity of 384 bytes. Each MPX-p also contains sixteen local 64

processing elements (PEs) that execute programmed microcodes in a single-instruction 65

multiple-data fashion. These microcodes are generated through compiling a custom as- 66

sembly language. The sixteen PEs write into and read from one of sixteen corresponding 67

columns in the RF in parallel and perform logic and arithmetic operations on this data 68

(i.e., add, multiply, shift, etc.). Furthermore, RF data can be shifted in parallel, to the left or 69

right, between data columns within the register file and also between neighbouring in any 70

direction. This local MPX-p memory can also be written to and read from by an on-chip 98 71

KB SRAM in a highly parallel and low latency fashion via a crossbar circuit. This might be 72

done, for example, to load the weights of a convolutional kernel that will be applied to the 73

pixel data stored in the RF. 74

These 3D-stacked MPX-p are tiled in a 16×12 systolic array - permitting massively 75

parallel and distributed in-sensor computation on 256×192 pixels captured by the top layer 76

of photodetectors on the chip at a rate of up to 5500 frames per second. RETINE can also be 77

configured to operate in a higher image resolution mode of 1080x768 pixels. 78

Figure 1. 3D-stacked macropixel processor array overview : (left) 3D-stacked macropixel array with
16x16 pixels tightly coupled to a SIMD of 16 PEs (right) A full matrix of MPX-p.



Version September 20, 2022 submitted to Sensors 3 of 15

Layers Input Size Filter Size Nb Fil-
ters Stride Output Size

CONV1 24×24×1 (1b) 4×4×1 16 2 11×11×16 (4b)
CONV2 11x11x16 (4b) 5×5×16 24 2 4×4×24 (4b)
FC1 384 (4b) - 150 1 150 (4b)
FC2 150 (4b) - 10 1 10 (4b)

Table 1. Description of the neural network model layers.

Figure 2. End-to-end pipeline implementation of the convolutional neural network model on the
MPA. Each intermediate state of the data from input digit to output class distribution prediction is
represented on the 16×12 array of MPX-p. Grey arrows indicate the flow of data over the array. The
extent of filter parallelism for each layer is noted in the upper part of the figure.

2.2. Convolutional neural network model 79

The neural network architecture applied in this work corresponds to an adapted 80

version of the LeNet-5 convolutional neural network [18]. The model has two convolutional 81

layers followed by two fully-connected layers as summarized in Tab. 1. Since the main 82

objective of this paper is study and detail the implementation details of a CNN on an 83

MPX-p, we therefore consider the arbitrary use case of MNIST digit classification. 84

An input image of dimension 24×24, at a fixed location within the full field of view, 85

is fed into the model which outputs a vector of size ten, denoting the class (i.e., digits 0 86

through 9) logits pertaining to the input digit. After each convolutional and fully-connected 87

layer, the weighted sum is summed with a bias shared parameter that is a common value 88

for each layer, and then passed through a saturating rectifying linear unit (ReLU) - the 89

saturation value is fifteen. A bit-shift scaling factor N is introduced into the ReLU operation 90

applied to the weighted sum per layer. This acts to divide the weighted sum by a factor of 91

2N such that the distribution of weighted sums over the training dataset falls within the 92

permitted range of activations between zero to fifteen [19]. 93

In order to respect the memory constraints of the RETINE MPA, the input image 94

is binarized and, in a post-training quantization step, the weights and activations are 95

quantized to 4 bits (twos-complement signed integer for weights and unsigned integers 96

for the activations) after training. Note that our implementation supports an intermediate 97

precision in the weighted sum of up to 17-bit signed integer precision. At this level of 98

quantization on RETINE, the accuracy on the MNIST digit test set is 96.6% and the resulting 99

34 kB neural network can be fully stored in the MPA on-chip SRAM. 100

3. End-to-end implementation on the MPA architecture 101

The neural network is implemented on RETINE by a series of microcodes that execute 102

the operations required to implement the four layers of our adapted LeNet-5 model in a 103

continuous pipeline. In addition to the functional codes that implement the required core 104

operations (convolutions and fully-connected operations), pre-processing codes are also 105

required before each layer in order to organize and distribute the data (input features (IF) 106



Version September 20, 2022 submitted to Sensors 4 of 15

Figure 3. Example of how the input and output feature maps are distributed over four MPX-p in the
CONV1 layer. The left-hand side image shows the input MNIST digit spanning four MPX-p

and weights) over the MPA architecture to take advantage of all levels of parallelism 107

available. 108

We first detail the end-to-end pipeline, as depicted in Fig. 2, and then in the following 109

section provide more detail relating to how the core functions (i.e., convolution, multiply 110

and accumulate) are realised. All of the intermediate feature maps and vectors shown 111

in the figure correspond to those which resulted on the MPA due to the input digit eight 112

shown in the figure. 113

3.1. High-level pipeline 114

The entire field of view, transduced by the top-layer of the 3D-stacked image sensor, is 115

binarized by the analog-to-digital converters and written into the local register file of each 116

MPX-p. Assuming that the region of interest (ROI), in other words the input MNIST digit, 117

is in the centre of the field of view, the 24×24 input binary pixels of the digit are stored in a 118

square spanning four MPX-p - each observing a 12×12 pixel quadrant of the MNIST digit 119

(Fig.3). 120

3.1.1. Pre-processing CONV1 121

In order to apply the sixteen filters of the first convolutional layer (CONV1) in parallel, 122

the input ROI is duplicated fifteen times on the MPA. This is done first by copying the ROI 123

data to the four southerly MPX-p. The two central MPX-p columns containing the ROI are 124

then duplicated over the width of the MPA. After duplication of the input, the weights 125

for the CONV1 layer are then loaded into the MPA from the on-chip SRAM. Each square 126

group of four MPX-p which contain the input ROI are programmed with the weights of 127

one the sixteen different convolutional filters. 128

3.1.2. CONV1 129

For each filter, the convolution operation is performed in a highly parallel fashion as 130

represented on Fig. 3. Not only is one kernel parallelised over four MPX-p, but twelve of 131

the sixteen available PE with an MPX-p operate simultaneously on by twelve columns of 132

MNIST digit pixels. 133



Version September 20, 2022 submitted to Sensors 5 of 15

The convolutional filter stride is implemented during the convolution.After application 134

of the filters, a ReLU activation is applied and the outputs are quantized as unsigned 4-bit 135

integers - resulting in a 11×11 output features (OF) map. The four quadrants of each of the 136

sixteen OF maps are regrouped into one of the four MPX-p as in the third panel of Fig. 2. 137

All CONV1 layer filters are executed in parallel and at the end of this layer the sixteen OF 138

maps are distributed over the two central lines of the MPA (cf. Fig. 2). 139

3.1.3. Pre-processing CONV2 140

The CONV1 OF maps are then duplicated over vertically such that each column of the 141

entire MPA contains one OF. This is achieved in two steps. In the first, the two central rows 142

of MPX-p are filled with the OF. Then, in a highly parallelised fashion, data from the first 143

line of MPX-p are transferred to the upper part of the matrix while data from the second 144

line are transferred to the lower part. 145

At this point, the CONV2 layer inputs are duplicated twelve times (on the twelve 146

MPA rows). Crucially, this permits the simultaneous execution of twelve filters. Since the 147

second convolutional layer requires twenty-four filters, the kernels can be applied in two 148

passes. Before each pass one set of filter weights are loaded into the MPA such that each 149

MPX-p contains twenty-five weights - corresponding to the 5x5 kernel of a channel for a 150

filter. Each row of MPX-p are loaded with the same filter weights. In each row therefore, 151

one filter is applied to all of the feature maps from the previous layer. 152

3.1.4. CONV2 153

The convolutions for the first twelve filters are executed on the MPA. In one row of 154

the MPA, each MPX-p contains the 11×11 input feature map corresponding to a channel 155

and each PE from PE0 to PE10 contains in its local register file, a line of eleven IF. Similarly 156

to CONV1, the filter is applied simultaneously, in parallel for each set of filters and for set 157

of outputs from the previous layer, on eleven of the sixteen PE for the eleven columns of 158

the input feature map. Weights for the last twelve filters of CONV2 layer are then loaded 159

into the MPA before executing the next set of convolutions for the last twelve filters. 160

At this point, each MPX-p contains a partial output feature map. In order to complete 161

the convolution, a weighted sum of all of the feature maps in each row of the MPA is 162

required. This is achieved by executing an addition tree microcode (Fig.5). Simply, the 163

addition tree sums up, along the rows of the MPA, all of the partial results stored in each 164

MPX-p (i.e., for each channel). It is executed in parallel for the twenty-four filters whereby 165

the sum converges, over four addition branches, towards a central column of MPX-p. 166

Between each addition branch, the partial sums are bit-shifted between neighbouring 167

MPX-p where a different number of shifts are performed at each step. The final 17-bit 168

signed weighted sum is then finally passed through a ReLU activation and quantized to 169

4-bits. At the end of this layer, the twenty-four 4×4 OF maps are located in the MPA central 170

column as represented in Fig. 2. Within each MPX-p, the data is organized such as that the 171

feature maps are contained within the memory of eight of the PEs. 172

3.1.5. Pre-processing FC1 173

To parallelize the calculation of the 150 filters of the FC1 layer, IF maps are first 174

duplicated once inside the MPX-p : features located in the first eight PEs are copied into 175

the eight remaining PEs (PE8 to PE15), thereby doubling the number of partial results that 176

can be evaluated inside a single MPX. The central column of the MPA is then horizontally 177

distributed such that each row in the MPA contains copies of the same output feature map 178

from the previous layer. 179

3.1.6. FC1 180

At this point each column of the MPA contains the flattened 384 ReLU activation 181

vector from the CONV2 layer. Each MPX-p and will compute the partial weighted sum for 182

two hidden neurons in a single pass - therefore and so for thirty-two neurons on the entire 183



Version September 20, 2022 submitted to Sensors 6 of 15

MPA. Each MPX-p is programmed with sixty-four 4-bit signed weights, corresponding to a 184

32×2 weight matrix. To compute the partial products for the 150 hidden layer neurons, five 185

passes are therefore required. After these five passes, to compute full weighted sum, the 186

partial products stored in each MPX-p are summed vertically over the MPA using another 187

addition tree code. This sum converges in a central row of the MPA as shown in Fig. 2. A 188

ReLU activation is then applied and the output is reduced from a vector of 16-bit signed 189

integers to 4-bit unsigned integers. 190

3.1.7. Pre-processing FC2 191

The entire vector of 150 4-bit ReLU activations from FC1 layer is distributed over the 192

sixteen MPX-p of the central row in the MPA. In preparation for the final fully-connected 193

layer, all the activation values are regrouped into one MPX-p which is then copied to nine 194

others to allow the computation of the ten final output neurons in parallel. Each of these 195

MPX-p are loaded with 150 4-bit signed weights. 196

3.1.8. FC2 197

The entire calculation executes within a single MPX-p and no further communication 198

with neighbouring MPX-p are required. The single value calculated per MPX-p corresponds 199

to the output logit of that neuron. The output class distribution for the example input digit, 200

calculated on the MPA implementation, is shown in the final stage of the pipeline in Fig. 2. 201

3.2. Description of core functions 202

In the pipeline described above there are two core functions that underpin the neural 203

network model : convolution operations and vector-matrix multiplications (i.e., fully- 204

connected layers). These operations are well known and widely used on CPU and GPU 205

architectures, but their efficient implementation on a specific architecture such as a highly 206

parallel MPA architecture is a challenging task. One of the main issues is to exploit the 207

computing power in parallel without adding too much data movement time. The following 208

section details, from the perspective of register file of an MPX-p, how these operations are 209

implemented to exploit the MPA parallelism. 210

3.2.1. Convolution 211

The local register file memory of each MPX-p can be viewed as depicted in the two 212

panels of Fig. 4 (each panel shows a different state of the RF at a different moment in 213

the convolution). The RF memory is divided into five sections. The first section, input, 214

contains the data on which the convolutional filters are applied (i.e., pixel data or input 215

feature maps), the second, kernel weights is loaded with the filter weights and the third 216

communication is used for communicating input data between neighbouring columns of PE 217

and neighbouring MPX-p. The fourth section accumulator contains the accumulated values 218

of an ongoing convolution which, after the operation is finished, are written into the fifth 219

section output that contains the output feature maps of the convolution. 220

As described in Sec. 2.1, each PE within an MPX-p operates on one corresponding 221

data column in the RF. Each of the sixteen PE applies the filter (loaded into the second 222

section) simultaneously while the data values are transferred through the communication 223

section to be multiplied by the corresponding weight in the PE. The convolution exploits 224

a specific feature of the MPX-p whereby the weight value currently contained within the 225

zeroth column of the register file (the leftmost in Fig. 4) can be broadcast simultaneously to 226

all sixteen PE. Concretely, the input data value loaded into each PE is multiplied by the 227

broadcast weight value and, in order to cycle through all weights of the loaded filter, the 228

weights are repeatedly shifted from right to left within the register file. By copying the 229

value in column zero into column fifteen the weights circle indefinitely within an MPX-p. 230

The convolution mechanism is composed of three nested loops (denoted by arrows in 231

the input section of Fig. 4) : loop y, which loops over each row of data in the input data 232

section, and the kernel loops i and j - where I and J correspond to the dimensions of the 233



Version September 20, 2022 submitted to Sensors 7 of 15

Figure 4. Convolutional kernel implementation in a MPX-p. Two example states of a 5×5 kernel
convolution at y = 2 ; i = 0 ; j = 0 and y = 3 ; i = 3 ; j = 2. Input, kernel weights, communication,
accumulator and output data section are represented as rows of a table. An additional bottom row
shows the PEs that operate on the columns of data in the register file. Each grey or black square
corresponds to a data stored in the register file. Black squares identify the current data in use by a
processing element and dark grey squares show data already processed on the current Y iteration
by the kernel. White stars in the input and weights sections mark the start and end points of the
operation.

convolutional kernel (both equal to five in this example). Three dashed boxes in Fig. 4 show 234

the neighbourhood over which a subset three PEs apply the kernel. Black squares denote 235

the current point of execution within the nested i and j loops, while grey squares show the 236

data points that have already been multiplied by the corresponding weight in the weight 237

section. At the beginning of each i loop, the (y + j)th row of input data is loaded into the 238

communication section. After each multiplication in the i loop, the communication section 239

shifts its contents progressively from left to right. Note that for processing elements on the 240

right-hand side, input data is shifted in from the neighbouring MPX-p and therefore there 241

are no edge effects between MPX-p. 242

The results of the sixteen parallel multiplications are summed with the existing sixteen 243

values in the accumulator section over the i and j loops. At the end of each outer y loop, in 244

other words after applying the kernel to a full row of input data, the sixteen accumulated 245

values are written into the corresponding column in the output section and the accumulator 246

is reset to an initial value - here a learned bias parameter. The weights are also realigned to 247

their original position. 248

Figure 4 shows two intermediate positions of this convolution operation. In the left 249

panel (y=2, j=0, i=0), the PEs are operating on the data in the same column and the weights 250

are in their initial position. The results of the accumulator after application of the kernel 251

will be written into the second line of the output section. In the right-hand side panel (y=3, 252

j=3, i=2), the PEs are operating on the next row of input data but the kernel is in a more 253

advanced state. Note that the weights section has been shifted several times, wrapping 254

around from the zeroth to the fifteenth PE. Furthermore, the input data that has been loaded 255

into the communication section at the beginning of the third j loop has also been shifted 256

three times to the left. 257



Version September 20, 2022 submitted to Sensors 8 of 15

After iterating over all Y rows in the input data section the convolution operation 258

has been completed and the output section contains the output feature map. In order to 259

implement a stride on the convolution two additional steps are required. First, for the 260

vertical component of the stride, it is simply required to skip a certain number of y iterations. 261

To implement the horizontal component of the stride, the values in the feature map are 262

multiplied by zero and then the columns of the output feature map are shifted to the left. 263

The implementation of the convolution operation described above is illustrated for a 5×5 264

kernel but it remains applicable for any kernel size, the only limitation being the space 265

available in the register file. 266

As detailed in Sec. 3.1, two convolutional layers are required in the model implemented 267

on the MPA. The first requires application of sixteen 4×4 convolutional kernels to a digit 268

spread over four MPX-p (Fig. 3). For this layer, the same set of sixteen weights (one per 269

MPX-p register file column) are loaded to all four MPX-p and perform the convolution on 270

four quadrants of the image in parallel. In the second convolutional layer, composed of 271

twenty-four 5×5 kernels, the output feature maps from the first layer are processed in two 272

steps. First the convolution operation is applied to each channel within a single MPX-p - 273

consistent with the presented operation in Fig. 4 - resulting in sixteen partial output maps 274

distributed in sixteen MPX-p which is then followed by the addition tree operation to 275

accumulate partial results into a single MPX-p. 276

3.2.2. Vector-matrix multiplication 277

The second core operation, required for the final two layers of the model, are fully- 278

connected layers. This requires simply to compute the inner-product between an input 279

vector and a weight matrix. If the input vector is of a dimension N and the desired output 280

vector is of dimension M, the weights will be a N × M matrix. 281

The register file memory within an MPX-p is organized similarly as in the case of 282

convolution (Fig. 4). An input data section, which may be composed of a plurality of 283

rows, stores the input vector. To store, for example, an input vector of sixty-four elements, 284

since there are sixteen PEs, this section would be required to be four rows of data long. 285

A second section contains all of the weights that will be multiplied with this data. The 286

number of rows in the weights section is required to be an integer multiple of the number 287

of rows in the input section such that there exists M sets of weights - one for each of the 288

M outputs. For example if M = 4 (i.e., there are four output neurons) a total of sixteen 289

rows are required for this section. Each set of four rows in this section corresponds to the 290

synaptic weights applied to all the input features to give one output feature. The third 291

section is an output data section which has M rows - one for each element of the output 292

vector. There is also an additional communications section, used to help calculate the 293

accumulation of the partial product calculated in each PE. 294

In the execution of a fully-connected microcode on an MPX-p, all M sets of N weights 295

are multiplied with the N input data elements. These multiplications are performed in 296

parallel in batches of sixteen - one per processing element. After each multiplication 297

operation, the result is accumulated in the output section. After all M sets of weights have 298

been applied to the input, the partial products in each of the PEs must be summed together. 299

This is achieved by performing an addition tree internally within the MPX-p. After the 300

addition tree is completed, one of the PE will contain the full partial result for an MPX-p. 301

In order to compute the full weighted sum between MPX-p an addition tree code that sums 302

partial products from across MPX-p in an MPA. 303

3.2.3. Addition tree 304

Since partial products are computed in a parallelized fashion across the MPA, their 305

elements are required to be summed together in order to calculate the final weighted sum. 306

The addition tree moves data stored in a given RF section to neighboring MPX-p’s where it 307

is added to data stored in the same section. 308



Version September 20, 2022 submitted to Sensors 9 of 15

Figure 5. The addition tree execution steps for a row of sixteen MPX-p. Numbered grey squares
correspond to MPX-p in a row of the MPA. Arrows converging on addition symbols (within a
black circle) show how data from these MPX-p are summed together spatially. After four branches
of the tree, the final results converge at the central MPX-p column (here MPX number 7). The
communication shift value is specified for each branch at the left-hand side of the figure.

The register file memory of each MPX-p is simply divided into two sections. The first 309

section, which is configured to store data up to a 17-bit signed precision, contains the input 310

data to accumulate. The second section is used to communicate between neighbouring 311

MPX-p. 312

In the loop, the data in the first section is written into the communication section which 313

is then shifted as many times as necessary to move the data into the communication section 314

of a neighbouring MPX-p. The direction of the communication is configured before the 315

transfer (i.e., North, South, East or West). For example, to reach the nearest neighbouring 316

MPX-p to the left, the communication section is configured for West communication and 317

the data is shifted the appropriate number of steps from right to left. Since a single shift 318

operation moves data between adjacent PEs, and because each MPX-p contains sixteen 319

PE, it is required to shift the data sixteen times to move the contents of one RF section 320

completely between MPX-p. After the section has been shifted, the data is then simply 321

accumulated with the contents of the destination MPX-p by summing it with the data 322

currently in the first section. If the precision of the data is larger than that permitted in the 323

communication section or larger than the PE precision, the data can be cut into slices and 324

communication-accumulation achieved in an incremental fashion. 325

The addition tree code is repeated over a certain number of addition branches until 326

all of the data distributed over a row or column of MPX-p have been accumulated into 327

a single MPX-p. The first addition branch takes place between neighbouring MPX-p and 328

those that follow with increasingly distant MPX-p in a symmetrical fashion such that the 329

sum converges towards the center as represented in Fig. 5. The number of shift operations 330

varies in integer multiples of sixteen depending on the distance between two MPX-p that 331

are summed in an addition branch. 332

As mentioned in Sec. 3.1, two addition trees are required in the implemented pipeline. 333

The first one - consistent with the Fig. 5 - accumulates the partial results horizontally of 334

each line of sixteen MPX-p in the CONV2 layer. The second one accumulates the partial 335

results vertically for each of the twelve rows MPX-p in the FC1 layer. 336

4. Results 337

The above detailed end-to-end pipeline was implemented on the RETINE MPA chip 338

at a clock frequency of 100 MHz. The results and intermediate states achieved on the chip 339

implementation correspond exactly to those observed in the quantized software version of 340

the model. 341

The latency, for each pre-processing and functional step in the pipeline are shown 342

in Tab. 2. The total time taken to classify an input digit was measured to be 3.8 ms - 343

corresponding to a frame rate of 265 frames per second (FPS). Among all of the steps, the 344



Version September 20, 2022 submitted to Sensors 10 of 15

Step Latency (µs)

Pre-processing CONV1 75.5
CONV1 648.9

Pre-processing CONV2 186.9
CONV2 1556.4

Pre-processing FC1 127.9
FC1 641.8

Pre-processing FC2 476.4
FC2 6.1

Total 3774.7

Table 2. A breakdown of the latency for step of the code. A clock frequency of 100 MHz is used.

second convolutional layer incurred the largest latency, 1.6 ms in total, while the second 345

fully-connected layer was the fastest to execute - only 6.1 µs. For the first three layers, the 346

pre-processing steps, responsible for preparing the data and loading the weights into the 347

MPX-p, correspond to between 10% and 20% of the time taken for the following functional 348

step. In contrast, the pre-processing latency required for the second fully-connected layer is 349

almost two orders of magnitude greater than the execution time of the layer itself. This is 350

due to the more complex mechanism required to regroup together the results from across 351

the MPA and duplicate this data in ten of the MPX-p compared to the relative simplicity of 352

the operations required to realize the second fully-connected layer. 353

In order to better visualize how each step contributes to this total latency, we plot the 354

percentage of the total time of each step in the outer pie chart of Fig. 6. An additional inner 355

pie-chart shows the theoretical computational complexity of each layer - simply the total 356

number of additions and multiplications per layer. This comparison offers an insight to the 357

efficiency of the implementation of each layer. What is striking is the imbalance between 358

the theoretical complexity (0.6% of total MACs) of the second fully-connected layer and the 359

percentage of the total time taken on the MPA to implement it (14.2% of total latency). As 360

discussed, the latency required to perform the pre-processing for this layer exaggerates this 361

difference even more. In stark contrast however, the MPA implementations of the second 362

convolutional layer and the first linear layer contribute less to the total time than would be 363

expected from the computational complexity of these layers. 364

This disparity is in large part due to the fashion in which data can be distributed 365

over the MPA (depicted in Fig. 2) to permit the maximum parallel usage of computing 366

resources. The bar chart in Fig. 7 shows the percentage utilization of all available MPX-p 367

and their processing elements (PEs) for each layer. While the second convolutional layer 368

and the first fully-connected layer make excellent use of the full array, in particular the 369

first fully-connected layer which leaves no PE untapped, the first convolutional layer and, 370

especially, the second fully-connected layer do not. The extent of parallelism is the main 371

reason for the difference between theoretical and implemented latency observed in Fig. 6. 372

In certain applications, instead of implementing the second linear layer on the MPA itself, 373

it might be favourable to offload this computation to an external microprocessor that could 374

handle this calculation faster. In doing this, the pipeline on the MPA would be reduced to 375

3.2 ms per digit - increasing the frame rate to 309 FPS. 376

In Tab. 3 we present a more fine-grained look into the sub-steps that are performed 377

for the entire second convolutional layer to better understand how different operations 378

contribute to the overall latency. After the pre-processing step, already present in Tab. 2, 379

the next step is the loading of the 4-bit kernel filter weights into the MPX-p. The time 380

taken to load the weights from the on-chip SRAM into the full matrix of MPX-p requires 381

only 390 ns. Using these weights, the MPA applies the first twelve convolution filters - 382

taking a total time of 567.5 µs. Thanks to the highly parallel data transfer mechanism 383

between MPX-p register files and the on-chip SRAM, loading the weights amounts to less 384

than one-thousandth of the time spent computing with them. The second pass requires 385

an additional thirty microseconds since it performs further data manipulation operations 386



Version September 20, 2022 submitted to Sensors 11 of 15

Figure 6. Nested pie charts comparing the (inner) theoretical calculation complexity and (outer) the
resulting percentage of the total latency of the layer implemented on the MPA. The pie-chart elapses
from zero degrees in a clockwise fashion and different colours correspond to each layer.

CONV2 Step Latency (µs)

Pre-processing 186.9
Load 1st weights 0.4
CONV first pass 567.5

Load 2nd weights 0.4
CONV second pass 597.1

Addition tree 374.5
ReLU 21.9

Table 3. A breakdown of the latency for each step required to perform the second convolutional layer.
A clock frequency of 100 MHz is used.

that are required to preserve the results from the first pass. The addition tree code, which 387

sums up the partial results of each MPX-p in a tree-structure which converges towards a 388

central column of MPX-p, requires 374.5 µs. Despite it’s conceptual simplicity, relative to 389

the convolutions, this step requires a series of different microcodes to be loaded into MPX-p 390

across the array (loading a microcode requires around 8 µs each time). The microcode that 391

realizes the ReLU that operates on the final feature map requires only 21.9 µs. 392

Considering the pre-processing step and the weight transfer as data movement steps, 393

only 11% of this total latency is incurred due to data movement operations while the 394

remaining 89% is due to actual functional computations using this data. In contrast to 395

typical von Neumann based neural network implementations, our CNN implementation 396

on RETINE succeeds in spending the majority of its time computing with data rather than 397

transporting it. 398

In this work, we have achieved end-to-end CNN inference with 4-bit precision weights 399

and activations at 265 FPS. As the last fully connected layer is very inefficient due to its lack 400

of parallelism, we can achieve CNN inference at 309 FPS. To our knowledge, the SCAMP- 401

5[11] pixel-array processor is the only other fabricated pixel-array processor on which 402

end-to-end neural networks have been implemented. We therefore compare our CNN 403

implementation on the RETINE MPA to other implementations of convolutional models 404

on this pixel-array processor in Tab. 4. Specifically we look at the number and complexity 405

of layers, the precision of the weights and activations and the resulting frame rate that 406



Version September 20, 2022 submitted to Sensors 12 of 15

Figure 7. A bar plot comparing the utilization of MPX-p across the MPA as well as the utilization of
processing elements with the MPX-p for each layer of the model.

was achieved since this offers a reasonable proxy to the efficiency of the implementation. 407

Our macropixel-array based implementation on RETINE achieves equal or favourable 408

performance with to the pixel-array implementations for a similar network size. The fairest 409

comparison can be made between lines two and five of Tab. 4 - both networks realise two 410

convolutional layers followed by a fully-connected layer. While the pixel-array has a frame 411

rate of 224 FPS, our macropixel array based implementation achieves a 309 FPS - a 38% 412

improvement. Furthermore, while the pixel-array uses a 1-bit precision, our macropixel 413

processor array supports weights and activations of up to 4-bits. 414

The fact that, for a similar size of CNN, we achieve not only a higher frame rate, but do 415

so with a higher bit-precision demonstrates the advantage of macropixel-level calculation 416

over single pixel-level calculation. Since the size of the processor is constrained by the 417

form factor of the pixels above, macropixels allow for a more complex digital circuit and a 418

larger data and microcode memory to exist beneath a group of pixels than is possible under 419

individual pixels. 420

5. Discussion 421

We have presented the first end-to-end pipeline of a convolutional neural network 422

model implemented on a 3D-integrated general purpose macropixel array chip. The 423

model was implemented with 4-bit precision weights and activations while allowing for 424

intermediate signed mixed-precision calculations of up to 17-bits. Both convolutional 425

and fully-connected layers were found to be implemented very efficiently when their 426

weight matrices operated in parallel on different subsets of the input data distributed 427

across the full processing array. As parallelization was reduced however, the resulting 428

layer implementations became increasingly less efficient. This was in particular for the 429

second fully-connected layer where parallelization was difficult due to the small size 430

of the output vector of the layer. While we have implemented an adapted version of 431

Lenet-5, the MPA is programmable and supports a wide range of neural networks. In 432

this implementation, we have spatially distributed the number of filters as well as the 433

ifmaps over several macropixels in parallel. The number of parallel units for each layer 434

is a trade-off between the memory available locally in the macropixel, and the amount of 435

data to be transferred to perform the processing. The mechanisms used to implement this 436

network can be adapted for more complex networks. However, this scaling will probably 437

be limited by the data movements to feed the computational elements. Fast data transfer 438

mechanisms will probably have to be added. 439



Version September 20, 2022 submitted to Sensors 13 of 15

Work Chip On-chip layers Precision Frame
rate

Bose ’19
[20]

SCAMP-
5 CONV1: 16 5×5 2-bit 170

Bose ’20
[17]

SCAMP-
5

CONV1: 16 4×4
CONV2: 16 4×4

FC1: 256×10
1-bit 224

Liu ’22
[21]

SCAMP-
5

CONV1: 16 5×5
CONV2: 128 4×4
CONV3: 64 1×1

1-bit 283

This
work RETINE

CONV1: 16 4×4
CONV2: 24 5×5

FC1: 384×150
FC2:150×10

4-bit 265

This
work RETINE

CONV1: 16 4×4
CONV2: 24 5×5

FC1: 384×150
4-bit 309

Table 4. Benchmarking framerate against convolutional models implemented on the SCAMP-5
pixel-array processor.

In a more fine-grained breakdown of the latency incurred within in the second convo- 440

lutional layer, we observed that approximately 11% of the total latency was incurred by 441

data and weight transfer codes, while 89% of the total time was dedicated to processing 442

once the data was in place. Importantly, this demonstrates that by computing in-sensor, in 443

a massively parallel fashion, permits a departure from the von Neumann rhetoric whereby 444

the majority of the time taken to implement neural network models is consumed due to 445

data movement between either memory or sensor and processing units. 446

In comparing our MPA implementation to other pixel-array processor implementa- 447

tions, we achieved a favourable frame rate for similar sizes of model. Furthermore we are 448

able to achieve this using a higher bit-precision for the weights and activations. The four 449

layer version of our neural network model implementation on the MPA was able to process 450

265 frames per second, while for a three layer version (omitting the final fully-connected 451

layer) this was improved to 309 frames per second. 452

Ultimately this study has demonstrated that macropixel processor array based neural 453

network implementations are advantageous to pixel-array processor arrays because they 454

allow for more operations to be applied per pixel. Macropixels offer a good trade-off 455

between hardware factorisation, computing power and sensor readout rate. 456

Future work will investigate the implementation of other neural network architectures, 457

for example fully-convolutional models with dense output layers (i.e., for detection and 458

segmentation tasks) where the full parallelism of the MPA can be exploited. We will also 459

consider how existing MPA architectures can be revised and how they can improved 460

using with more advanced technology nodes such that they can support larger and more 461

advanced model architectures. 462



Version September 20, 2022 submitted to Sensors 14 of 15

6. References 463

464

1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional 465

neural networks. Advances in neural information processing systems 2012, 25, 1097–1105. 466

2. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings 467

of the Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 468

770–778. 469

3. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region 470

proposal networks. Advances in neural information processing systems 2015, 28. 471

4. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object 472

detection. In Proceedings of the Proceedings of the IEEE conference on computer vision and 473

pattern recognition, 2016, pp. 779–788. 474

5. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image 475

segmentation. In Proceedings of the International Conference on Medical image computing 476

and computer-assisted intervention. Springer, 2015, pp. 234–241. 477

6. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous 478

separable convolution for semantic image segmentation. In Proceedings of the Proceedings of 479

the European conference on computer vision (ECCV), 2018, pp. 801–818. 480

7. Horowitz, M. 1.1 computing’s energy problem (and what we can do about it). In Proceedings of 481

the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). 482

IEEE, 2014, pp. 10–14. 483

8. Chen, T.; Du, Z.; Sun, N.; Wang, J.; Wu, C.; Chen, Y.; Temam, O. Diannao: A small-footprint 484

high-throughput accelerator for ubiquitous machine-learning. ACM SIGARCH Computer 485

Architecture News 2014, 42, 269–284. 486

9. Chen, Y.H.; Emer, J.; Sze, V. Eyeriss: A spatial architecture for energy-efficient dataflow for 487

convolutional neural networks. ACM SIGARCH computer architecture news 2016, 44, 367–379. 488

10. Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; 489

Boden, N.; Borchers, A.; et al. In-datacenter performance analysis of a tensor processing unit. 490

In Proceedings of the Proceedings of the 44th annual international symposium on computer 491

architecture, 2017, pp. 1–12. 492

11. Dudek, P.; Hicks, P.J. A general-purpose processor-per-pixel analog SIMD vision chip. IEEE 493

Transactions on Circuits and Systems I: Regular Papers 2005, 52, 13–20. 494

12. Pinkham, R.; Berkovich, A.; Zhang, Z. Near-Sensor Distributed DNN Processing for Augmented 495

and Virtual Reality. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 496

2021, 11, 663–676. https://doi.org/10.1109/JETCAS.2021.3121259. 497

13. Millet, L.; Chevobbe, S.; Andriamisaina, C.; Benaissa, L.; Deschaseaux, E.; Beigne, E.; Chehida, 498

K.B.; Lepecq, M.; Darouich, M.; Guellec, F.; et al. A 5500-frames/s 85-GOPS/W 3-D stacked 499

bsi vision chip based on parallel in-focal-plane acquisition and processing. IEEE Journal of 500

Solid-State Circuits 2019, 54, 1096–1105. 501

14. Chevobbe, S.; Lepecq, M.; Benchehida, K.; Darouich, M.; Dombek, T.; Guellec, F.; Millet, L. A 502

versatile 3D stacked vision chip with massively parallel processing enabling low latency image 503

analysis. In Proceedings of the Proceedings of the 2019 International Image Sensor Workshop, 504

Utah, USA, 2019. 505

15. Nose, A.; Yamazaki, T.; Katayama, H.; Uehara, S.; Kobayashi, M.; Shida, S.; Odahara, M.; 506

Takamiya, K.; Matsumoto, S.; Miyashita, L.; et al. Design and performance of a 1 ms high-speed 507

vision chip with 3D-stacked 140 GOPS column-parallel PEs. Sensors 2018, 18, 1313. 508

16. Eki, R.; Yamada, S.; Ozawa, H.; Kai, H.; Okuike, K.; Gowtham, H.; Nakanishi, H.; Almog, 509

E.; Livne, Y.; Yuval, G.; et al. 9.6 A 1/2.3 inch 12.3 Mpixel with on-chip 4.97 TOPS/W CNN 510

processor back-illuminated stacked CMOS image sensor. In Proceedings of the 2021 IEEE 511

International Solid-State Circuits Conference (ISSCC). IEEE, 2021, Vol. 64, pp. 154–156. 512

17. Bose, L.; Dudek, P.; Chen, J.; Carey, S.J.; Mayol-Cuevas, W.W. Fully embedding fast convolutional 513

networks on pixel processor arrays. In Proceedings of the European Conference on Computer 514

Vision. Springer, 2020, pp. 488–503. 515

18. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document 516

recognition. Proceedings of the IEEE 1998, 86, 2278–2324. 517

19. N2D2: Post-training quantization. https://cea-list.github.io/N2D2-docs/quant/post.html. 518

Accessed: 2022-02-01. 519

https://doi.org/10.1109/JETCAS.2021.3121259
https://cea-list.github.io/N2D2-docs/quant/post.html


Version September 20, 2022 submitted to Sensors 15 of 15

20. Bose, L.; Chen, J.; Carey, S.J.; Dudek, P.; Mayol-Cuevas, W. A camera that CNNs: Towards 520

embedded neural networks on pixel processor arrays. In Proceedings of the Proceedings of the 521

IEEE/CVF International Conference on Computer Vision, 2019, pp. 1335–1344. 522

21. Liu, Y.; Bose, L.; Lu, Y.; Dudek, P.; Mayol-Cuevas, W. On-Sensor Binarized Fully Convolutional 523

Neural Network with A Pixel Processor Array. arXiv preprint arXiv:2202.00836 2022. 524


	Introduction
	Materials and Methods
	3D-stacked macropixel array architecture
	Convolutional neural network model

	End-to-end implementation on the MPA architecture
	High-level pipeline
	Pre-processing CONV1
	CONV1
	Pre-processing CONV2
	CONV2
	Pre-processing FC1
	FC1
	Pre-processing FC2
	FC2

	Description of core functions
	Convolution
	Vector-matrix multiplication
	Addition tree


	Results
	Discussion
	References
	References

