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ABSTRACT
We design and implement a new efficient and accurate fully homo-

morphic argmin/min or argmax/max comparison operator, which

finds its application in numerous real-world use cases as a classi-

fier. In particular we propose two versions of our algorithms using

different tools from TFHE’s functional bootstrapping toolkit. Our

algorithm scales to any number of input data points with linear time

complexity and logarithmic noise-propagation. Our algorithm is

the fastest on the market for non-parallel comparisons with a high

degree of accuracy and precision. For MNIST and SVHN datasets,

which work under the PATE framework, using our algorithm, we

achieve an accuracy of around 99.95% for both.
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1 INTRODUCTION
Comparing two or more values is a very simple task in the clear

domain and is a part of an incalculable amount of algorithms from

“traditional" statistical analysis tools to themost up-to-date machine

learning algorithms. For this reason, achieving an efficient and

precise private comparison has been at the forefront of privacy-

preserving computation research for decades.
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Indeed, that was precisely the matter addressed in Yao’s original

millionaires’ problem [20] which discussed how two millionaires

could determine who is richer while keeping their actual wealth pri-

vate. From that work spawned the rich and ever-evolving research

around Multi-Party Computation (MPC). MPC requires at least a

few rounds of interactions between parties that want to compute a

result privately. This is in contrast with Homomorphic Encryption

(HE) which requires no interaction.

HE has had its limitations since its theoretical inception in 1978

[17]. The idea is for an untrusted party to be able to compute over

encrypted data with no need for either the secret-key or interactions

with the secret-key holder. HE schemes up to the end of the 2000s

were either limited in terms of multiplicative depth or could only

add and subtract ciphertexts [14]. Gentry’s 2009 article and his

Ph.D. thesis [9, 10] laid the groundwork for HE to increase its scope

to more complex applications such as the one that interest us here.

Since then, a host of different HE cryptosystems and applications

have been developed by the cryptographic community. Among

them, one of the most important applications is the computation

of the minimum or the maximum from a collection of encrypted

data. This application can be easily seen in numerous use cases :

identify the closest model to an external model from the database;

identify the model which receives the highest number of votes,..

etc.

1.1 Scope
We place ourselves in the simple context of an entity (“the client")

holding a number of indexed values 𝑥1, . . . , 𝑥𝑛 . Using a homomor-

phic encryption scheme, it encrypts these values ([𝑥1] , . . . , [𝑥𝑛])
and sends them to “the server", an untrusted entity. The server com-

putes an argmin and min operation (alternatively argmax/max),

returning an encryption of both the minimum (alternatively maxi-

mum) value among the 𝑥𝑖 and its index. The server should do this

without interacting with the client at any point, save for receiving

possible evaluation keys.

While this scope may not seem very applicable in itself, solving this

problem opens the door to a number of real-world use-cases. Some

of those are: the case of a 1-Nearest Neighbour computation as in

[22]; the case of an embedding-based neural network evaluation as

in [21]; the case of a distributed learning algorithm as in the case

of the PATE framework [15], to name a few. The particular case of

PATE framework consists of a “student" sending unlabelled data

to several “teachers", all with their own machine learning model

that can classify that data. The teachers then vote for the label that
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should apply through the use of a third party called the “aggregator".

This aggregator then sends the results of the vote to the student

who learned labels for an unlabelled dataset without ever accessing

the teacher’s models. This framework can be improved as in [18] by

adding both Differential Privacy and HE. The teachers can encrypt

their votes using the student’s HE public key and the aggregator can

compute an argmax over the encrypted teacher votes. The result is

sent to the student for decryption.

1.2 Prior work
Some of the work that has been done on the subject only addresses

the original millionaires’ problem by comparing two integer and

returning the index of the biggest one. [19] is such an article. It

claims to have the best times for a 1 to 1 bit-wise comparison of two

integer on the cloud. Since they don’t allow the for selection of the

maximum value, their method can’t trivially be expanded to any

number of values to compare. This reduces the range of applications

and does not fit the scope that we defined for ourselves.

Modern work that fits in our scope can be best represented by

two recent articles. [22] uses the TFHE cryptosystem and its potent

bootstrapping operation. They build a fully homomorphic𝑘-Nearest

Neighbor operator (a generalization of the argmin problem with the

addition of a distance computation) that has a quadratic complexity

and therefore scales poorly in terms of time performance. This is

because they use a “league" method where every input is compared

to every other one first and then results are compiled. [13] was

published simultaneously and combines a “tournament" method

(where every input is compared to another input and the winner

goes on to the next round) with the league method to solve the

same problem. A third method to which we compare our results

is the use of the original TFHE MUX bootstrapping gates from [6].

They can be used very easily to build any bit-wise computation,

and the min problem is not an exception. We omit the solution

using levelled CMUX gates from [6]: although they allow for a

very fast comparison of 2 integers (much faster than any other

solution presented here) their performance decreases dramatically

(much below any presented here) when increasing the number of

values to compare. This is due to the necessary use of the circuit
bootstrapping operation. For reference we refer the reader to Section
8 of [6].

Among the distinctions one can make between these three methods,

several are worth highlighting: the option for a batched computa-

tion, which reduces performance overhead significantly in some

use-cases; whether the computation is fully homomorphic (the pa-

rameters do not depend on the number of inputs) or levelled is

important when considering the scalability of a method; whether

only the min, the argmin, or both can be obtained. Table 1 presents

these characteristics for every method cited and our own proposed

alternative.

1.3 Our Contributions
Table 2 compares our performance results for an min and argmin

computation over 𝑁 8-bit integers. We compare ourselves both to

the best existing work [13] and to the TFHE bitwise implementation.

In the table, it is clear that our algorithm is much faster than TFHE’s

our work [22] [13] [6]

L/F L F L F

batching ✗ ✗ ✓ ✗

min/argmin m/a a m/a m

Table 1: A table comparing previous work to our own. The
different lines show whether the algorithms are using lev-
elled (L) or full HE (F), whether they can accommodate for
batching and whether the algorithm outputs just the argmin
(a) and/or the min (m).

simple bitwise approach. At first glance, our algorithm is also much

faster than that of [13]. This is not true for all cases. Indeed, by

using BGV’s batching, they can compute a min over a number of

different integer arrays simultaneously. For this computation in

particular they have 5220 ciphertext slots whether they use them

or not. One therefore computes 5220 one-to-one comparisons as

quickly as a single one-to-one comparison. While [13] and TFHE’s

bitwise approach allow for an exact comparison, our work only

provides an exact comparison over 4 bit integers (though still with

8 bits of precision for the final min value). This difference between

accuracy and precision is explained in fine detail in Section 3.4

and the impact that our lower precision incurs is expanded upon

in Section 4, showing that it can be used very effectively in real-

world and state-of-the-art settings. Whether our algorithm is better

therefore depends on the number of simultaneous comparisons one

needs to make and the accuracy needed.

N our work (s) [13] (s) [13] (amortized in ms) [6] (s)

2 0.17 12.3 2.37 1.5

4 0.52 50.6 9.68 4.3

8 1.2 151 29.1 10.2

16 2.6 387 74.1 21.8

32 5.3 884 169 45.1

64 10.8 2112 405 91.7

Table 2: A table comparing previous work to our own on an
exact min and/or argmin computation over 𝑁 8-bit integers.
The amortized time by [13] is obtained because they run
the comparison in parallel over arrays of size 5220 (see their
Table 4). The bit-wise time is extrapolated assuming a 26ms
MUX gate time from [6].

We argue that, although [13] proposes an algorithm that can be

very efficient in some cases, it lacks malleability. A comparison

between 64 integers takes 35 minutes whether we do 5220 of them

or a single one. Our algorithm is less efficient for very large num-

bers of simultaneous computations but much more efficient for a

single min/argmin computation whatever the number of values

𝑁 . Furthermore, our method allows for a much bigger pool of in-

puts, while [13] restrict themselves to a maximum of 64 values to

compare.
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1.4 Paper outline
The organization of the article is as follows : Section 2 lays the

underlying notations, definitions and details of the TFHE encryp-

tion scheme. We describe the various types of ciphertexts which

are used along with the details of the various procedures like boot-

strapping and key-switching. This is followed by the description

of our algorithms in Section 3. We also provide a thorough noise

analysis of algorithms and give a detailed analysis of the algorithm

from its accuracy and precision point of view. Section 4 details the

performance of our algorithms which includes its application to

the PATE use-case.

2 TECHNICAL BACKGROUND
2.1 Notations
In the upcoming sections, we denote vectors by bold letters and so,

each vector 𝒙 of 𝑛 elements is described as: 𝒙 = (𝑥1, . . . , 𝑥𝑛). ⟨𝒙,𝒚⟩
is the dot product between two vectors 𝒙 and𝒚. We denote matrices

by capital letters, and the set of matrices with𝑚 rows and𝑛 columns

with entries sampled in K byM𝑚,𝑛 (K). 𝑥
$←− K denotes sampling 𝑥

uniformly from K, while 𝑥
N(𝜇,𝜎2)
←−−−−−−− K refers to sampling 𝑥 from K

following a Gaussian (normal) distribution of mean 𝜇 and variance

𝜎2
. The Gaussian distribution is the probability distribution with

density:

𝑓𝜇,𝜎2 (𝑥) = 1

𝜎
√

2𝜋
𝑒−

1

2
( 𝑥−𝜇𝜎 )

2

We will refer to the real torus by T = R/Z. T is the additive group

of real numbers modulo 1 (R mod 1) and it is a Z-module. That

is, multiplication by scalars from Z is well-defined over T. T𝑁 [𝑋 ]
denotes the Z-module R[𝑋 ]/(𝑋𝑁 + 1) mod 1 of torus polyno-

mials, where 𝑁 is a power of 2. R is the ring Z[𝑋 ]/(𝑋𝑁 + 1) and
its sub-ring of polynomials with binary coefficients is B𝑁 [𝑋 ] =
B[𝑋 ]/(𝑋𝑁 + 1) (B = {0, 1}).

Given a function 𝑓 : T → T, we define LUT𝑁 (𝑓 ) to be Look-

Up Table defined by the set of 𝑁 pairs

(
𝑖, 𝑓

(
𝑖
𝑁

))
. We may write

LUT(𝑓 ) when the value 𝑁 is implied.

Negacyclic functions are anti-periodic functions with period 𝑝:

verifying 𝑓 (𝑥) = −𝑓 (𝑥 + 𝑝). For example sine is anti-periodic with
period 𝜋 and periodic with period 2𝜋 .

2.2 TFHE encryption scheme
The TFHE encryption scheme was proposed in 2016 [3]. It improves

the FHEW cryptosystem [8] and introduces the TLWE problem

as an adaptation of the LWE problem to T. It was updated later

in [5] and both works were then unified in [6]. The TFHE scheme

is implemented as the TFHE library [4]. We refer to the original

articles for details on the TFHE cryptosystem. Here, we only give

a high-level overview, one that is as high as possible for compre-

hension by the reader, but in-depth enough so that our results and

their nuances can be understood. TFHE relies on three structures

to encrypt plaintexts defined over T, T𝑁 [𝑋 ] or R:

• TLWE Sample: (𝒂, 𝑏) is a valid TLWE encryption of𝑚 ∈ M ⊂
T if 𝒂

$←− T𝑛
and 𝑏 ∈ T verifies 𝑏 = ⟨𝒂, 𝒔⟩ +𝑚+𝑒 , where 𝒔 $←− B𝑛

is the secret key, and 𝑒
N(0,𝜎2)
←−−−−−−− T is the noise introduced in

the ciphertext.

• TRLWE Sample: a pair (𝒂, 𝑏) ∈ T𝑁 [𝑋 ]𝑘 × T𝑁 [𝑋 ] is a valid
TRLWE encryption of𝑚 ∈ M ⊂ T𝑁 [𝑋 ] if 𝒂

$←− T𝑁 [𝑋 ]𝑘 , and
𝑏 = ⟨𝒂, 𝒔⟩ +𝑚 + 𝑒 , where 𝒔 $←− B𝑁 [𝑋 ]𝑘 is a TRLWE secret key

and 𝑒
N(0,𝜎2)
←−−−−−−− T𝑁 [𝑋 ] is a noise polynomial. In practice, in

this paper we only use a TRLWE encryption where 𝑘 = 1

• TRGSW Sample: is a vector of ℓ TRLWE samples encrypting 0.

To encrypt a message𝑚 ∈ R, we add𝑚.𝐻 to a TRGSW sample

of 0, where 𝐻 - called the gadget matrix
∗
- is a matrix that

defines the base decomposition parameters used for the TRGSW

encryption. The base is written 𝐵𝑔 and the exponent ℓ . Indeed,

an approximate, base-decomposedmessage is encrypted instead

of the original message𝑚.

In the following, we refer to an encryption of𝑚 with the secret key

𝒔 as a T(R)LWE ciphertext noted 𝑐 ∈ T(R)LWE𝒔 (𝑚). To decrypt a
sample 𝑐 ∈ T(R)LWE𝒔 (𝑚), we compute its phase 𝜙 (𝑐) = 𝑏 − ⟨𝒂, 𝒔⟩ =
𝑚 + 𝑒 . Then, we round to it to the nearest element ofM. Therefore,

if the error 𝑒 was chosen to be small enough (and yet high enough

to ensure security), the decryption will be accurate.

The ciphertext of a scalar value 𝜇, encrypted using the noise pa-

rameter 𝛼 and the key ®𝑠 is written [𝜇]®𝑠,𝜎 . Both ®𝑠 and 𝛼 can be

omitted from the notation when their addition is not integral to

the understanding of the reader and when their removal helps with

clarity.

A TRGSW ciphertext [𝑚] and a TRLWE ciphertext [𝜇] can be

multiplied using the external multiplication algorithm defined in

[3]. The result is a valid TRLWE encryption of𝑚 × 𝜇 provided the

parameters (polynomial size, noise, base decomposition) are chosen

correctly.

2.3 Encoding and Representation
Since we use TFHE as our homomorphic encryption scheme, every

message from plaintext input or output space needs to be encoded

in T. Therefore, in order to build any homomorphic function 𝑓 , we

need to create a torus-to-torus function 𝑓T, from input space I to

output space O and appropriate encoding and decoding functions 𝜄

and 𝜔 .

I
𝑓 = 𝜔◦𝑓T◦𝜄−−−−−−−−−→ O

𝜄 ↓ ↑ 𝜔
T −−→

𝑓T
T

Usually, these encoding and decoding functions are just re-scaling,

though one must sometimes keep track of the number of operations

done to ensure the output re-scaling gives the correct result.

∗
Refer to Definition 3.6 and Lemma 3.7 in TFHE paper [6] for more information

about the gadget matrix 𝐻 .
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Figure 1: The representation we use for the torus and its
values.

2.4 The original bootstrapping operation
The original bootstrapping algorithm from [3] had already all the

tools to implement a LUT of any negacyclic function. In particular,

TFHE is well-suited for
1

2
-antiperiodic function, as the plaintext

space for TFHE is T, where [0, 1

2
[ corresponds to positive values

and [ 1
2
, 1[ to negative ones.

The idea behind the operation is the following. Given a
1

2
-antiperiodic

function 𝑓T, we want to implement

LUT (𝑓T) =
(
𝑖

2𝑁
, 𝑓T

(
𝑖

2𝑁

))
𝑖∈[[−𝑁,𝑁−1]]

Take an input ciphertext [𝜇]. Take an initial polynomial containing

all of the LUT outputs from positive values: the test vector

testv =

𝑁−1∑︁
𝑖=0

𝑓T

(
𝑖

2𝑁

)
𝑋 𝑖 ∈ T𝑁 [𝑋 ]

This polynomial is then privately multiplied by a re-scaling of 𝑋 𝜇

through the BlindRotate operation. As its name suggests, this op-

eration operates a blind rotation of the polynomial, landing us on

the coefficient of the initial test vector whose index is closest to 𝜇.

We then extract the first (or another one) coefficient of the resulting

rotated polynomial (the accumulator: ACC). This operation is writ-

ten SampleExtract𝑖 for the extraction of coefficient 𝑖 and we write

SampleExtract when the coefficient extracted is 0. At this point in

the original algorithm, this TLWE ciphertext is key-switched back

to its original key. Here, we omit this step to gain time and reduce

the output noise that the key-switching operation incurs.

Algorithm 1 shows the bootstrapping algorithm with the test vector

given as input and with an extraction at coefficient 0 of the output

TRLWE ciphertext ACC.

If the test vector is set to be testv =
∑𝑁−1

𝑖=0

1

𝑏
𝑋 𝑖

, given a base 𝑏 ∈ R,
then the bootstrapping operation returns a LUT based on the sign

function, with an output of
1

𝑏
for positive input values and − 1

𝑏
for

negative input values. Figure 2 shows the representation that we use

for this sign bootstrapping operation. This canwork because the sign
function is negacyclic. This operation is well known and was first

used in [2] for use in a private neural network evaluation.

Algorithm 1 The bootstrapping algorithm.

Input: a TLWE sample [𝜇] = (𝒂, 𝑏) ∈ TLWE𝒔 (𝜇) with 𝜇 ∈ T, a
bootstrapping key BK𝒔→𝒔′ = (BK𝑖 ∈ TRGSW𝑆′ (𝑠𝑖 ))𝑖∈[[1,𝑛]]
where 𝑆 ′ is the TRLWE interpretation of a secret key 𝒔′, a
polynomial testv.

Output: a TLWE sample 𝒄 ′ = (𝒂′, 𝑏 ′) ∈ TLWE𝒔′ (𝑓 (
𝜙 (�̄�, ¯𝑏)

2𝑁
))

1: Let
¯𝑏 = ⌊2𝑁𝑏⌉ and 𝑎𝑖 = ⌊2𝑁𝑎𝑖 ⌉ ∈ Z,∀𝑖 ∈ [[1, 𝑛]]

2: ACC← BlindRotate(testv, (𝑎1, . . . , 𝑎𝑛, ¯𝑏), (BK1, . . . ,BK𝑛))
3: 𝒄 ′ = SampleExtract(ACC)

Figure 2: The representation we use for the sign bootstrap-
ping operation. Every value in the upper (resp. lower) part
of the torus is given a sign of 1

𝑏
(resp. − 1

𝑏
).

2.5 Partial domain functional
bootstrapping

The term functional bootstrapping (or programmable bootstrapping)
is used to define versions of the bootstrapping algorithm that can

implement LUTs based on functions that are not negacyclic. [7]
presents most current forms that functional bootstrapping can take

and present their own. Among those, we present here the partial
domain functional bootstrapping.

Essentially, given a function 𝑓 : I → O, instead of encoding it

as 𝑓T : T → T, we choose 𝜄 and 𝜔 such that we encode it as

𝑓T+ : [0, 1

2
[→ T. We therefore encode the plaintext space in a space

half as big as it was before. However this allows us to call Algorithm

1 with a test vector

testv =

𝑁−1∑︁
𝑖=0

𝑓T+

(
𝑖

2𝑁

)
𝑋 𝑖 ∈ T𝑁 [𝑋 ]

Since the input 𝜇 can only be positive the output will be an encryp-

tion of the closest LUT value to 𝑓T+ (𝜇).

2.6 Private functional bootstrapping
The bootstrapping algorithm can be adapted to compute an en-

crypted negacyclic function. Given a function 𝑓T : T→ T, we cre-

ate

[
𝑃𝑓

] (𝑟 )
, a TRLWE ciphertext whose 𝑖𝑡ℎ coefficient is a TLWE



Efficient and Accurate Homomorphic Comparisons WAHC ’22, November 7, 2022, Los Angeles, CA, USA

ciphertext encrypting 𝑓T

(
𝑖

2𝑁

)
. Such a ciphertext can either be en-

crypted by the secret key owner or be created by anyone with the

appropriate key-switching key using the TFHE public functional

key-switching operation (see Algorithm 2 of [6]) from 𝑁 TLWE

ciphertexts 𝑓T

(
𝑖

2𝑁

)
. We call Algorithm 1 and replace the test vector

with

[
𝑃𝑓

] (𝑟 )
.

This works because the original first step of the blind rotation is

a multiplication of the clear test vector with a TRGSW sample

BK1. We can replace this operation with an external multiplication
between a TRLWE sample (

[
𝑃𝑓

] (𝑟 )
) and a TRGSW sample BK1. For

more detail on this operation and how it works, see Definition 3.12

of [6].

The method presented in Section 2.5 can be applied in the case of a

private functional bootstrapping operation since it only requires

a different encoding of 𝑓 into 𝑓T+ . This allows us to compute this

private bootstrapping over half the torus and evaluate an LUT based

on any private function (negacyclic or not).

2.7 Public functional key-switching
Algorithm 2 of [6] presents their public functional key-switching
operation which is a generalization of their original key-switching

algorithm (Algorithm 2 from [3]). This operation takes 𝑝 TLWE ci-

phertexts as inputs and builds a single TRLWE ciphertext as an out-

put with a different key and applying a public Lipschitz morphism

𝑓 : T𝑝 → T𝑁 [𝑋 ] of Z-modules. Essentially, given 𝑝 ciphertexts

[𝑥1]𝑠 , . . . ,
[
𝑥𝑝

]
𝑠
, the operation outputs

[
𝑓 (𝑥1, . . . , 𝑥𝑝 )

] (𝑟 )
𝑠′ with 𝑠 a

TLWE key and 𝑠 ′ a TRLWE key not built from 𝑠 . The key-switching

key is a TRLWE encryption of a decomposition of 𝑠 in base base
and exponent 𝑡 of the key 𝑠 ′.

Although the algorithm can be run with a host of different functions

𝑓 , we present here the only version that we use in the paper for

simplicity sake. The function is defined by:

𝑓𝑝 : (𝑥1, . . . , 𝑥𝑝 ) ↦→
𝑝−1∑︁
𝑖=0

𝑋
𝑖 𝑁
𝑝 ·

𝑁
𝑝
−1∑︁

𝑗=0

𝑥𝑖𝑋
𝑗

Essentially, this function takes the 𝑝 inputs and fills a size 𝑁 poly-

nomial with
𝑁
𝑝 of each of them in order.

Optimization. The method described in [6] is not efficiently op-

timized when the number of inputs is lower than 𝑁 . Because in

this paper we only have a maximum of 4 inputs we can create a

specific, pre-computed, key-switching key that drastically increases

the efficiency of the key switching. This method is the same as the

one presented by [12] in their Algorithm 7, and which they call

“Base-aware TLWE-to-TRLWE Public Functional Key Switching".

In their case, they use it for digit decomposition (hence the name)

but it works exactly the same for any number of inputs that are not

digits. The key-switching process is much faster this way but at the

cost of a key-switching key which is as many times bigger as there

are inputs (for us 4 times bigger). We refer to their algorithm for

more information.

2.8 Noise propagation through homomorphic
computations

As mentioned before, any TFHE encryption (whatever the encryp-

tion type) introduces an error in the ciphertext. This is done to

maintain the security of the scheme but renders any computation

inherently probabilistic. Given an input ciphertext with an error

following a Gaussian distribution with standard deviation 𝜎 and a

variance 𝜗 = 𝜎2 †
. In this section, we present the formulas for the

variance of the noise in the output ciphertext for all the operations

that interest us in the paper.

As previous articles do, we introduce 𝛽 = 𝐵𝑔/2 and 𝜖 = 1

2𝐵ℓ
𝑔
for the

expression of the noise formula.

Operation Noise

Bootpublic 2𝑁𝑛ℓ𝛽2 × 𝜗BK + 𝑛(𝑁 + 1)𝜖2

Bootprivate 𝜗𝑣 + 2𝑁𝑛ℓ𝛽2 × 𝜗BK + 𝑛(𝑁 + 1)𝜖2

KeySwitch𝑓4 𝜗𝑐 + 𝑛𝑡𝑁𝜗KS + 1

12
𝑛base−2(𝑡+1)

Table 3: Operations in TFHE and their noise overhead Here
𝜗BK (resp. 𝜗KS) is the variance of the noise introduced at
encryption time for the bootstrapping key (resp. the key-
switching key). 𝑣 is the encrypted test vector in the case of the
Bootprivate operation. 𝜗𝑐 is the variance of the input TLWE
ciphertexts for the KeySwitch𝑓4 operation: we assume they
all have the same and that assertion holds in our application.

Most noise formulas presented in Table 3 are taken from [6]. Bootpublic
represents any public bootstrapping operation (which all have

the same variance overhead). See their Algorithm 9 for reference.

Bootprivate means calling BlindRotate with an encrypted test

vector and therefore adding the variance of the test vector at the

output: see their Algorithm 4. The formula for the output noise

of both the TLWE-TLWE key-switch and the TLWE-TRLWE pub-

lic functional key-switch is detailed in Section 3.3 of [12] where

they make the bound tighter than in [6]. See their work for more

precision.

2.9 FHE distance
There are situations where one needs to build a privacy-preserving

1 Nearest Neighbour (1-NN) operator. Our min/argmin algorithms

are a good solution for this provided we can compute a distance

homomorphically. This can be done either between two encrypted

vectors or an encrypted vector and a clear domain vector. Examples

of this use can be found in previous articles, see for instance [21,

22].

†
In some cases the error is described by the width parameter, usually written 𝛼

which is defined as

√
2𝜋𝜎
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3 OUR FHEMIN/ARGMIN ALGORITHMS
In this section, we present the algorithms that we have developed

to obtain a fast and accurate min/argmin operation. Sections 3.3

and 3.2 present two variants on what we call a tournament method,
one quicker than the other at the expense of some accuracy. In

Section 3.4, we provide an in-depth analysis of the accuracy and

precision of our algorithms.

3.1 Tournament Method
As the name suggest, this method computes the overall minimum

among a collection of arguments by constructing a tree. It com-

putes the minimum between two arguments at every level with

the minimum values populating the next level of nodes in the tree.

If one wishes to only compute the minimum overall value, one

could omit populating the next level of the tree with the indices of

the minimum values from the previous level. The algorithms that

we present in this section allow for both a min computation and

an argmin computation at no additional performance cost. These

algorithms can be adapted to compute a max/argmax operation

trivially.

In the following, given two encrypted values [𝑥𝑖 ] and
[
𝑥 𝑗
]
and their

encrypted indices [𝑖], [ 𝑗], we build fast and accurate homomorphic

computations of

[
min(𝑥𝑖 , 𝑥 𝑗 )

]
and

[
argmin(𝑥𝑖 , 𝑥 𝑗 )

]
. From those,

the next level of the tree can be iterated. We assume that 𝑥𝑖 , 𝑥 𝑗 ∈ T
and do not bother here with considerations about encoding.

In this paper, we present two novel ways to do this. The first one

with a sign computation to create a selector value before a MUX

(multiplexor) gate is applied. A second one where the difference of

the two values [𝑥𝑖 ] and
[
𝑥 𝑗
]
is directly used as a selector value for

the MUX gate.

3.2 Tournament with sign selection
Difference. The first step is to obtain the difference of the two inputs
with an homomorphic subtraction: [𝑥𝑖 ] −

[
𝑥 𝑗
]
=

[
𝑥𝑖 − 𝑥 𝑗

]
. This

is a trivial operation that “only" doubles the noise in the output

ciphertext with respect to the initial noise. However, for this tomake

any sense, we need to have 𝑥𝑖 , 𝑥 𝑗 ∈ [− 1

4
, 1

4
]. Therefore 𝑥𝑖 − 𝑥 𝑗 ∈

T.

Sign. We mention in Section 2.4 that it is easy to obtain a sign

function output from the original bootstrapping operation. Indeed,

the sign function is negacyclic and this has been known for some

time in the community. If the test vector in Algorithm 1 is set to

testv =
∑𝑁−1

𝑖=0

1

16
𝑋 𝑖

we obtain a bootstrapping operation we call

Bootsign. Its output is:

[
𝑠𝑖, 𝑗

]
= Bootsign

( [
𝑥𝑖 − 𝑥 𝑗

]
− 1

4𝑁

)
=

{[
1

16

]
if 𝑥𝑖 > 𝑥 𝑗[

− 1

16

]
if 𝑥𝑖 < 𝑥 𝑗

with the notation 𝑠𝑖, 𝑗 used to simplify later expressions.

Bootstrapping a 0 value. Here, we need to address the behavior of

the bootstrapping operation around 0. Because it is a LUT and not

a continuous function, if 𝑥𝑖 − 𝑥 𝑗 = 0, then the output of Bootsign
will be

[
1

16

]
100% of the time. We want it to have a 50% chance to

output either

[
1

16

]
or

[
− 1

16

]
for an input value of [0]. For this, the

input needs to be “rotated" by
1

4𝑁
: [𝑥𝑖 ] −

[
𝑥 𝑗
]
− 1

4𝑁
; where 𝑁 is the

size of the bootstrapping key as seen in Section 2. Indeed, after the

rotation applied here and the re-scaling by 2𝑁 in the bootstrapping

algorithm (Algorithm 1), an input value of 𝑥𝑖 − 𝑥 𝑗 = 0 would

therefore be equal to ⌊− 1

2
+ 𝑒⌉ where 𝑒 is the Gaussian error of

the ciphertext. This is −1 or 0 with equal probability because the

error is centered on 0. Hence the output is − 1

16
or

1

16
with equal

probability.

Min and argmin selection. Using the partial domain functional boot-

strapping method presented in Section 2.5, we could imagine a way

to select the min and argmin values of [𝑥𝑖 ] and
[
𝑥 𝑗
]
. We set the

test vector from the original bootstrapping algorithm (Algorithm

1) to:

testv =

𝑁
4
−1∑︁

𝑙=0

𝑥𝑖𝑋
𝑙 +

𝑁
2
−1∑︁

𝑙=𝑁
4

𝑥 𝑗𝑋
𝑙 +

3𝑁
4
−1∑︁

𝑙=𝑁
2

𝑖

𝑏
𝑋 𝑙 +

𝑁−1∑︁
𝑙= 3𝑁

4

𝑗

𝑏
𝑋 𝑙

(1)

given a base 𝑏 with which to encode the indices 𝑖 and 𝑗 (mak-

ing sure that
𝑖
𝑏
,
𝑗

𝑏
∈ T). We apply Algorithm 1 without the last

SampleExtract step. Therefore we output a TRLWE encryption of

a degree 𝑁 − 1 polynomial. We call this operation as Bootselect.
For a random input of 𝜔 ∈ [0, 1

4
[ , the output of the operation

is

𝑁
8
−1∑︁

𝑙=0

𝑥𝑖𝑋
𝑙 +

3𝑁
8
−1∑︁

𝑙=𝑁
8

𝑥 𝑗𝑋
𝑙 +

5𝑁
8
−1∑︁

𝑙= 3𝑁
8

𝑖

𝑏
𝑋 𝑙 +

7𝑁
8
−1∑︁

𝑙= 5𝑁
8

𝑗

𝑏
𝑋 𝑙 −

𝑁−1∑︁
𝑙= 7𝑁

8

𝑥𝑖𝑋
𝑙

(2)

when 𝜔 ∈ [0, 1

8
[ and

𝑁
8
−1∑︁

𝑙=0

𝑥 𝑗𝑋
𝑙 +

3𝑁
8
−1∑︁

𝑙=𝑁
8

𝑖

𝑏
𝑋 𝑙 +

5𝑁
8
−1∑︁

𝑙= 3𝑁
8

𝑗

𝑏
𝑋 𝑙 −

7𝑁
8
−1∑︁

𝑙= 5𝑁
8

𝑥𝑖𝑋
𝑙 −

𝑁−1∑︁
𝑙= 7𝑁

8

𝑥 𝑗𝑋
𝑙

(3)

when 𝜔 ∈ [ 1
8
, 1

4
[.

Therefore:

SampleExtract
0

(
Bootselect

( [
𝑠𝑖, 𝑗

]
+ 1

8

− 1

4𝑁

))
=

{[
𝑥 𝑗
]

if 𝑥𝑖 > 𝑥 𝑗

[𝑥𝑖 ] if 𝑥𝑖 < 𝑥 𝑗

and

SampleExtract𝑁
2

(
Bootselect

( [
𝑠𝑖, 𝑗

]
+ 1

8

− 1

4𝑁

))
=

{[
𝑗

𝑏

]
if 𝑥𝑖 > 𝑥 𝑗[

𝑖
𝑏

]
if 𝑥𝑖 < 𝑥 𝑗

The addition of
1

8
after the sign computation is to rescale the possi-

ble output values

{
− 1

16
, 1

16

}
up to

{
1

16
, 3

16

}
. The addition of

−1

4𝑁
is

for the same reason as for the sign bootstrapping operation.
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Figure 3: The inner torus represents the sign bootstrapping
operation as in Figure 2 though with the output rotated by 1

8
.

The outer torus represents the private functional bootstrap-
ping operation given the test vector in Equation 1. Because
our functional bootstrapping method is the partial domain
one, the lower part of the torus cannot be used as input. Dot-
ted spaces in the torus represent all possible values at a given
time.

This solves our problem perfectly except for the fact that we need

clear values 𝑥𝑖 and 𝑥 𝑗 in order to build the test vector in Equa-

tion 1, thus defeating the purpose of FHE altogether. Thankfully,

as presented in Section 2.6, we can obtain the same result if we

use an encrypted test vector instead, using the private functional

bootstrapping method.

Encrypted test vector creation. In order to create a TRLWE encryp-

tion of the test vector in Equation 1, we use the public functional

key-switching method presented in Section 2.7. In keeping with

the notation of that section, we use the function 𝑓4 as the pub-

lic function of our key-switching and call the public functional

key-switching operation with inputs [𝑥𝑖 ],
[
𝑥 𝑗
]
,

[
𝑖
𝑏

]
and

[
𝑗

𝑏

]
. By

definition, we obtain the exact test vector in Equation 1 in encrypted

form.

3.3 Tournament without sign selection
The use of a sign bootstrapping operation is not necessary in some

cases. Indeed, the output of the Bootselect operation as presented in
Equations 2 and 3 is the same for all inputs respectively in [0, 1

8
] and

[ 1
8
, 1

4
] and not just for

1

16
and

3

16
. Therefore, if one takes 𝑥𝑖 and 𝑥 𝑗

to be in [− 1

16
, 1

16
] (and not [− 1

4
, 1

4
]), then we have 𝑥𝑖 −𝑥 𝑗 ∈ [− 1

8
, 1

8
]

and

𝑥𝑖 − 𝑥 𝑗 +
1

8

∈
{
[ 1

8
, 1

4
] if 𝑥𝑖 > 𝑥 𝑗

[0, 1

8
] if 𝑥𝑖 < 𝑥 𝑗

Therefore, we can use

[
𝑥𝑖 − 𝑥 𝑗 + 1

8
− 1

4𝑁

]
as a direct input to the

Bootselect operation. This has the benefit of removing a bootstrap-

ping operation entirely. Given the weight that the bootstrapping

operations have in the running time of the algorithm, this is very

significant. More details are given in Section 4. Removing the sign

bootstrapping operation has two drawbacks :

Figure 4: The functional bootstrapping operation represen-
tation given 𝑥𝑖 − 𝑥 𝑗 + 1

8
as input and no sign bootstrapping.

Dotted spaces in the torus represent all possible values at a
given time.

• Because the Bootselect operation is a partial domain functional

bootstrapping operation, we have a margin for error that is

halved compared with a full domain bootstrapping operation

such as Bootsign. Indeed, if the homomorphic LUT has 𝑁 slots

here compared with 2𝑁 for the sign.

• On top of this, the encoding of the data to compare (𝑥𝑖 and 𝑥 𝑗 )

makes them four times smaller. However the noise that we need

to introduce at encryption time remains the same. Therefore

the initial ciphertext noise is four times bigger relative to the

actual (not rescaled for encoding) data.

3.4 Noise Analysis
Section 2.8 presents the formulas for the variance overhead of every

operation that we use in our FHE algorithm. In this section we use

theses formulas to analyse the precision of our algorithms. When

using this term - precision - for a given bootstrapping operation,

there are two distinct phenomenons that this could actually point

to:

• the error in the input ciphertext to a given bootstrapping op-

eration does not influence the output error as seen in Table

3. This is the whole point of bootstrapping. However it may

affect the actual output (and not its error). Say for instance

that we have an input to a Bootsign operation: a ciphertext

of a negative value [𝑚 + 𝑒] with 𝑚 < 0 but with an error 𝑒

such that𝑚 + 𝑒 > 0. Then the output might be

[
1

16
+ 𝑒 ′

]
with

error 𝑒 ′ decorrelated from 𝑒 . In the following, we talk about the

accuracy of the operation.

• as for the output error, it is controlled both by the parameters

of the bootstrapping key (𝜗BK, 𝑁 , 𝐵𝑔 and ℓ) and (if it is a private

boot operation) the error in the encrypted test vector. That

error needs to be analysed so that it does not grow to an extent

that the output cannot be used for further computations. In the

following, we talk about the precision of the operation.

The precision of a given homomorphic application can be easily

evaluated by giving an upper bound on the the variance of the

output ciphertext. This is what we do in Section 3.4.1. The accuracy
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of an homomorphic application is a harder notion to define formally.

For this reason we introduce Definition 3.1. For simplicity sake, we

set the type of plaintext space to be any spaceM of odd size𝑀 ∈ N
such thatM =

{
−𝑀−1

2
, . . . , 0, . . . , 𝑀−1

2

}
⊂ N. Our accuracy results,

presented in Section 3.4.2, are only valid for this kind of plaintext

space but one can easily see how they can be adapted depending

on the use-case.

Definition 3.1 (Worst Case Accuracy). The worst case accuracy of a

bootstrapping operation is defined with respect to the input plain-

text spaceM of size 𝑀 ∈ N and a probability 𝑝 ∈ [0, 1]. Given a

plaintext space size 𝑀 , we say that a bootstrapping operation is

accurate in the worst case with probability 𝑝 if, for every plaintext

member taken as input, the probability of a correct result is more

than 𝑝 .

Essentially, by setting a probability considered as "overwhelming",

Definition 3.1 allows us to determine a plaintext space size for

which all computations are accurate when all of them are at the

most risk of mistake. In our case, that means the eventual winning

value 𝜇 of the argmin/min tournament is compared, at every step,

with 𝜇 + 1.

3.4.1 Precision of the algorithm. First of all, we define layers of our
tournament tree as going from 1 to 𝐿 with each layer corresponding

to a comparison step in the tournament. Therefore 2
𝐿
comparisons

require 𝐿 layers.

In this section we evaluate the precision of the algorithm in the two

different variations of our protocol. An evaluation of the output

noise of this operation at the last layer of the tournament tree yields

an upper bound on the noise in our [𝑥𝑖 ] ciphertexts throughout all
the other layers of the tree. We call 𝜗 (𝑙) the variance (actually an

upper bound) of the noise of the [𝑥𝑖 ] ciphertext at the 𝑙 th layer of

the tournament tree
‡
, before the comparison step. Therefore 𝜗 (1)

is the variance of the ciphertexts before the algorithm is applied.

𝜎 (𝑙) is its corresponding standard deviation.

With sign. In the case where we use a sign bootstrapping first, we

need to introduce a simple TLWE-TLWE key-switch after Bootsign,
but the output noise is not affected by it.

The output variance overhead at layer 𝑙 + 1 with regard to that at

layer 𝑙 can be written:

𝜗 (𝑙+1) ≤ 𝜗 (𝑙) +𝑛𝑡𝑁𝜗KS +
𝑛

12

base−2(𝑡+1) +2𝑁𝑛ℓ𝛽2𝜗BK +𝑛(𝑁 +1)𝜖2

Therefore, by recurrence, with regard to the first layer of the tree,

we can write:

𝜗 (𝑙) ≤ 𝜗 (1)+𝑙 ·
(
𝑛𝑡𝑁𝜗KS +

𝑛

12

base−2(𝑡+1) + 2𝑁𝑛ℓ𝛽2𝜗BK + 𝑛(𝑁 + 1)𝜖2

)
‡
not to be confused with ℓ , the TFHE parameter

No sign. This variance overhead is also the one for the case where

we omit the sign bootstrapping operation and simply run the

Bootselect operation on the difference of the two values (Section

3.3). However, in that case, the values are encoded over [− 1

16
, 1

16
]

instead of [− 1

4
, 1

4
] for the versionwith Bootsign (Section 3.2). There-

fore, even though the variance of the result is the same, the relative

error is 4 times as high when not using a sign bootstrapping opera-

tion.

3.4.2 Accuracy of the algorithm. In this section we measure the

worst-case accuracy of both versions of our algorithm in accordance

with Definition 3.1. Specifically, we make explicit the link between

the parameters of the scheme (𝐵𝑔 , ℓ , . . . ), the target probability of

success 𝑝 and the plaintext size𝑀 .

We first analyse the accuracy of a single Bootsign operation and the
following Bootselect operation in order to infer the overall worst-

case accuracy of the algorithm with sign. Then we do the same for

a single Bootselect operation and infer the overall accuracy of the

algorithm without sign.

First, for a given probability of success 𝑝 ∈ [0, 1] and a given stan-

dard deviation𝜎 , we define themaximumpossible error 𝑒max (𝑝, 𝜗) >
0 as the smallest value such that:

1

√
2𝜋𝜗

∫ 𝑒max (𝑝,𝜗)

−𝑒max (𝑝,𝜗)
𝑓
0,𝜗 (𝑡) 𝑑𝑡 ≥ 𝑝

where 𝑓𝜇,𝜗 (𝑥) is the density function for the general Normal distri-

bution.

Accuracy of bootstrapping operations. As [12] explain in detail in

their Section 3.3.1, the noise added by the rounding step of the

bootstrapping algorithm corresponds to the sum of 𝑛 uniformly dis-

tributed variables each with variance
1

12
·
(

1

2𝑁

)
2

. This results in an

Irwin-Hall distributed variable of variance
𝑁
12
·
(

1

2𝑁

)
2

which, as they

do, we assimilate to a normally distributed variable. That noise is

additive with the noise initially present in the ciphertext. Therefore

at level 𝑙 of the tournament tree, the input noise of the Bootsign
operation (or Bootselect in the case there is no sign computation)

has a variance of:

𝜗
(𝑙)
𝑏

= 2𝜗 (𝑙) + 1

48𝑁

𝜗
(𝑙)
𝑏

is the "real" variance at the input of a bootstrapping operation at

layer 𝑙 . 𝜗𝑏 is the variance at the output of a bootstrapping operation

at any level (by definition it is constant).

We define 𝑟 such that input values (after re-scaling) are in the

interval

[
− 1

𝑟 ,
1

𝑟

]
. When Bootsign is used, we have 𝑟 = 4, and 𝑟 = 16

otherwise as seen in Section 3.1. Because of how our plaintext

space was defined, at level 𝑙 of our tournament tree, the maximum

plaintext space size𝑀max for which the result of a bootstrapping

operation is accurate in the worst case with probability 𝑝 according

to definition 3.1 is:
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𝑀max =


2

𝑟 × 𝑒max

(
𝑝, 𝜗
(𝑙)
𝑏

)  (4)

Accuracy of the overall algorithm. Here we talk about overall worst-
case accuracy as a straight-forward extension of Definition 3.1 to

our algorithm as a whole. The probability therefore is that of the

final result being the actual min/argmin.

Theorem 3.2 (Algorithm with sign Accuracy). Given two prob-
ability values 𝑝sign and 𝑝select, for our algorithm with sign to be
worst-case accurate over all with a plaintext size of 𝑀 , a number
of comparisons < 2

𝐿 , and probability at least 𝑝𝐿sign × 𝑝
𝐿
select it is

sufficient that:

𝑀 ≤ 2

4 × 𝑒max

(
𝑝sign, 𝜗

(𝐿)
𝑏

) (5)

and

4 ≤ 2

16 × 𝑒max

(
𝑝select, 𝜗𝑏 + 1

48𝑁

) (6)

where 𝜗𝑏 is the upper bound on the variance at the output of the sign
bootstrapping operation as given in Table 3.

Proof. The first condition (Equation 5) is an expression of the

condition that, at the last layer of the tournament, the Bootsign
operation must be worst-case accurate with probability 𝑝 . If that

holds, because ∀𝑙 < 𝐿, 𝜎 (𝑙) < 𝜎 (𝐿) , that means all other previous

Bootsign operations were worst-case accurate with probability at

least 𝑝sign. This makes the probability that all of the Bootsign

operations in the tournament are worst-case accurate at least 𝑝2
𝐿−1

sign .

However, we don’t need every comparison to be accurate, just the

ones that involve the eventual winner. That means only 𝐿 Bootsign
operations must be accurate. Therefore, the probability goes up to

𝑝𝐿sign

The second condition (Equation 6) is an expression of the condition

that, at any level of the tournament, the Bootselect operation be

worst-case accurate with probability 𝑝select. This is true because

the output of the Bootsign operation effectively has a plaintext size

of 4. Therefore we can apply our accuracy result in Equation 4 with

𝑟 = 16 and𝑀 = 4. Then, as before, we need only 𝐿 operations to be

correct. That leads to a probability of 𝑝𝐿select overall. □

Theorem 3.3 (Algorithm without sign Accuracy). For our algo-
rithm without sign to be worst-case accurate over all with a plaintext
size of𝑀 , a number of comparisons < 2

𝐿 , and probability at least 𝑝𝐿

it is sufficient that:

𝑀 ≤ 2

16 × 𝑒max

(
𝑝, 𝜗
(𝐿)
𝑏

) (7)

Where 𝜗 (𝐿) is the upper bound on the standard deviation in the
ciphertexts before the last comparison step as defined in Section 3.4.1.

Proof. The condition in Equation (7) is an expression of the con-

dition that, at the last layer of the tournament, the Bootselect
operation must be worst-case accurate with probability 𝑝 , as per

Equation 4 when 𝑟 = 16. □

On the error-resilience of such an algorithm. All of the evaluations
above strive to provide a strict mathematical structure in which one

can evaluate our homomorphic algorithm on its ability to provide

exactly the same results as a clear-domain algorithm would. This

would obviously be great to achieve in all cases. Sadly HE is not at

that point yet. A consolation can be found in the fact that, in a lot

of cases, a small computational error can be either invisible or not

too damaging too many real-case scenarios. Indeed, our algorithm

is built in such a way that errors will occur when two values are

close to each-other. Many applications require the computation

of an argmin over values that are all very high except for one be-

cause such was the goal of the pre-processing done beforehand (see

embedding-based neural networks [21] or collaborative learning

approaches [18]).

4 PERFORMANCE AND EXPERIMENTAL
RESULTS

Our two levelled homomorphic algorithms are evaluated in this

section, both for their time performance and their precision. Pa-

rameter choices are explained, and we strive to present the main

options at the disposal of a user of these algorithms. All times

were obtained on an Intel Core i7-6600U CPU @ 2.60GHz, with no
multi-threading.

4.0.1 Parameter selection. For this algorithm, we use three main

homomorphic operations, all with their own parameter set. These

parameters determine both the variance upper bound for the output

noise and the computation time for the operation. All of this comes

with the usual time/precision trade-off. There are a vast number of

possible combinations for parameter choices and to help the reader

with their own choice depending on their constraints we present

in Table 4 (resp. Table 5) the possible choices that we recommend

for the bootstrapping parameters 𝐵𝑔 and ℓ (resp. the key-switching

parameters base and 𝑡 ). Times are measured experimentally and

variance upper bounds are computed using the formulas given in

Table 3.

The initial ciphertexts are encrypted using a key size 𝑛 = 1024 and a

noise parameter 𝛼 = 2 · 10
−8

(the standard deviation 𝜎 corresponds

to 𝜎 = 𝛼√
2𝜋

). This, according to the latest work on LWE-based

encryption schemes, ensures a security level of 𝜆 = 120. We use for

this the latest commit of the LWE estimator
§
[1, 16]. This security

level was chosen as it corresponds to the one [13] provide for their

set of parameter in Table 4, which gives the timing values relevant

to this problem. This allows us to fairly compare our work to theirs.

The same values (key size and noise parameter) are used for all

§
https://bitbucket.org/malb/lwe-estimator/
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log
2

(
𝐵𝑔

)
ℓ time (ms) 𝜗

boot
× 10

9

1 26 246 3.5

2 13 129 7.0

2 12 115 7.3

3 8 82 18

4 6 65 52

5 5 60 170

6 4 53 380

Table 4: The possible parameter choices for a bootstrapping
that we recommend. These are chosen carefully. Any combi-
nation of parameters that have a strictly better alternative
both in terms of time and variance are not included. The
other parameters are set to 𝛼 = 2 · 10

−8 and 𝑁 = 1024 for a
security level of 𝜆 = 120.

log
2
(base) 𝑡 time (ms) 𝜗

boot
× 10

9

3 10 92 3.4

5 6 55 14

6 5 47 40

7 4 38 300

Table 5: The possible parameter choices for a public func-
tional key-switching operation that we recommend. These
are chosen carefully. Any combination of parameters that
have a strictly better alternative both in terms of time and
variance are not included. The other parameters are set to
𝛼 = 2 · 10

−8 and 𝑁 = 1024 for a security level of 𝜆 = 120.

encryptions of the evaluation keys (bootstrapping keys and key-

switching keys). While some tweaking could be used to optimize

the noise output and the computation time, we did not look into

it.

On TFHE’s implementation –. The parameters that we present in

tables 4 and 5 are all constrained by the implementation of TFHE.

In the implementation that we use, torus values are written over

32 bits. This means we are constrained by ℓ × log
2

(
𝐵𝑔

)
< 32 and

𝑡 × log
2
(base) < 32 for both decomposition algorithms to provide

a correct result (otherwise the values overflow). This limits the

precision we can attain using the public functional key-switching

operation (though it does not limit the precision of the bootstrap-

ping) which could go down to a variance of 3 · 10
−10

. A 64-bit

implementation does exist in the original TFHE library that we use

but is not as optimized as the 32-bit version, thus our choice.

4.1 Theoretical analysis
Here we present precision, accuracy and time performance results

for our algorithms in an abstract setting (no real-world application)

to give a general overview of their performance.

As in Section 3.4, we differentiate between accuracy and precision.

We compute the maximum size (in bits) of a plaintext space for

which our algorithm is accurate in the worst case with probability

𝑝 > 1 − 2
−32

(at most one error for every 2
32

runs of the argmin

computation) according to Theorems 3.2 and 3.3. We call this value

𝑎𝑐𝑐 . Given the noise formulas presented in Section 3.4.1, we can

define 𝑝𝑟𝑒𝑐 to be the maximum plaintext size (in bits) for which

ciphertexts can be decrypted correctly throughout the computation

(including the overall result) with probability 𝑝 > 1 − 2
−32

.

Table 6 presents 𝑎𝑐𝑐 and 𝑝𝑟𝑒𝑐 values for three sets of parameters

and for both our algorithm with sign and without sign. The “slow"
set of parameter corresponds to 𝐵𝑔 = 2

1, ℓ = 26, base = 2
3, 𝑡 = 10.

The “meh" set corresponds to 𝐵𝑔 = 2
4, ℓ = 6, base = 2

5, 𝑡 = 6.

The “fast" one corresponds to 𝐵𝑔 = 2
6, ℓ = 4, base = 2

7, 𝑡 = 4. We

limit our table to those two sets for the sake of clarity but those

results can be obtained for any set of parameters using the formulas

provided in this paper.

speed 𝐿 2
𝐿 sign no sign

𝑎𝑐𝑐 𝑝𝑟𝑒𝑐 time 𝑎𝑐𝑐 𝑝𝑟𝑒𝑐 time

slow..

1 2 4 9 0.58 2 7 0.39

7 128 4 8 79.16 2 6 42.63

10 1024 4 8 643.82 2 6 343.5

meh.

1 2 4 8 0.18 2 6 0.11

7 128 4 6 24.15 2 4 15.7

10 1024 4 6 192.4 2 4 113.5

fast!

1 2 4 6 0.13 2 4 0.12

7 128 4 5 17.02 2 2 10.3

10 1024 4 4 134.69 2 2 81.25

Table 6: A table comparing the two versions of our algorithm:
with sign and without. 𝐿 indicates the depth of the tourna-
ment tree and therefore 2

𝐿 is the number of values compared
with that tree. 𝑎𝑐𝑐 (in bits) is the plaintext space size that
ensures worst-case accuracy (Definition 3.1) with probability
𝑝 > 1 − 2

−32. 𝑝𝑟𝑒𝑐 (in bits) is the plaintext space size at the
output of the algorithm with probability 𝑝 > 1 − 2

−32. The
timings, which are presented in “seconds", are the experi-
mental times required for computing the argmin using the
respective algorithms.

On the limited precision of TFHE bootstrapping. The use of TFHE’s
functional bootstrapping operation incurs a well known limit on the

accuracy of values that can be achieved. This accuracy is due to the

error introduced in Algorithm 1 in the first line: the multiplication

by 2𝑁 and subsequent rounding of the ciphertext values to the

nearest integer. A natural way to increase the accuracy would be

to decompose the input integers into several digits. This method is

investigated in several recent articles [7, 11, 12] but we do not use

it here.

Memory usage. The memory space used by our algorithms com-

prises three distinct things: the encrypted values to compare; the

bootstrapping key
¶
; the key-switching key. Both the bootstrapping

key and the key-switching key can be sent before the computation

starts and can be reused for several computations over time. Table 7

shows the memory usage for the three depending on the parameter

sets. The encrypted inputs’ size does not depend on the parameter

¶
with a circular security assumption we limit ourselves to the use of a single

bootstrapping key, otherwise one would need several
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sets because we set 𝑛 = 1024 for all sets, therefore it just depends

on the number of inputs.

speed 𝐿 2
𝐿

inputs (kB) bk (MB) ks (MB)

slow..

1 2 8.2

436 847 128 525

10 1024 4200

meh.

1 2 8.2

101 507 128 525

10 1024 4200

fast!

1 2 8.2

67 347 128 525

10 1024 4200

Table 7: A table withmemory usage values for our algorithms.
The memory usage is the same for both versions of our algo-
rithm. The same sets of parameters are chosen as in Table
6. The columns “bk" and “ks" represent the size of the boot-
strapping and the key-switching keys respectively.

4.2 Argmax computation in the PATE
framework

The PATE framework, presented in [15] and summarized in Section

1.1, requires the computation of an argmax over encrypted values.

In order to test the performance of our algorithm we ran it on

the initial datasets used by [15]. They had teachers vote on labels

for both the MNIST dataset and the SVHN dataset
∥
. There are 250

teachers and therefore the votes can go from 0 (if nobody votes

for a label) to 250 (if everybody agrees on a label). In both MNIST

and SVHN, there are 10 classes and therefore we need to find the

argmax among 10 votes for each aggregation.

The parameters are as follows: 𝑁 = 1024, 𝛼 = 2 · 10
−8
, 𝑙 = 6,

log
2
(𝐵𝑔) = 4, 𝑡 = 6 and log

2
(base) = 5. These provide a security

level of 𝜆 = 120. Over the MNIST votes, our approach has an

accuracy of 99.96% with the correct argmax being computed for

8996 data point out of 9000. Over the SVHN votes, our argmax

yields 99.92% accuracy over 26032 data points (20 mistakes). All the

mistakes happen when there are two votes that are closer than 4.

In both cases, the argmax among the 10 labels took 1.65s.

5 CONCLUSION
Our work introduces a novel method to compare a number of

encrypted values efficiently. Though it is less precise than previous

methods based on bitwise decomposition for instance, real-world

applications show that it can provide results almost as good as

in the clear domain, with a significant decrease in computation

time when not comparing several sets of values in parallel. Such a

private comparison operator is the base for a wide variety of very

useful machine learning and statistical analysis tools. Building any

of those tools in privacy-preserving manner becomes much easier

with the use of our work.

∥
we took the teacher’s votes from https://github.com/npapernot/multiple-

teachers-for-privacy
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