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Modelling inertial effects in periodic fluid–structure systems
with an homogenisation approach: Application to seismic

analysis of tube bundles
Daniel Broc a, Jean-François Sigrist b,n
a CEA, DEN, DANS, DM2S, SEMT, F-91191 Gif-sur-Yvette, France

b Département Dynamique des Structures, DCNS Research, 44620 La Montagne, France

Fluid–structure interaction (FSI) is of major importance when describing the dynamic behaviour of nuclear pressure vessels, since the 
presence of confined fluid strongly influences the response of structures when subjected to external loadings, such as a seismic loading. 
Accounting for FSI when performing the seismic analysis of nuclear reactors or steam generators can be done through the description of 
inertial effects, which are predominant in the low frequency domain. Finite element techniques are now of common use in design office to 
model coupled (quiescent) fluid–structure systems, using standard non-symmetric (u,p) or symmetric (u,p,φ) coupled formulations. 
When con-sidering complex systems such as a tube bundle in steam generators, producing a finite element model which includes tubes, 
fluid and structures is a tedious task which is out of reach in many practical applications. A homogenisation method has been proposed 
which allows FSI modelling of tube bundles: it has been successfully applied to a complex structure. In the aforementioned developments, 
focus was put on the mathematical and numerical aspects of the method, leaving out some questions regarding the physical 
interpretation of the calculations. In the present paper, a new insight on the homogenisa-tion approach is exposed with the objective of 
proposing a formulation of the method based on physical considerations, leading to a correction of the homogenised problem. 
Enhancement of the method is discussed from an engineering standpoint: it allows for a wider range of applications in the nuclear 
industry.

1. Introduction

Fluid–structure interaction (FSI) is of major importance when describing the dynamic behaviour of nuclear pressure
vessels, since the modal characteristics of such systems are strongly affected by the fluid, whether in flowing conditions (De
Ridder et al., 2013) or in a quiescent state (Sigrist and Garreau, 2007). FSI formulations have been developed and
implemented in many finite element codes (Morand and Ohayon, 1995). They are in particular applied for the numerical
modelling of nuclear components which are subjected to external loading, such as occurring in a seismic event. However,
“classical” FSI methods are sometimes not applicable in practice, when the system under concern has a complex geometry,
such as steam generators. Describing FSI within tube bundles by coupling fluid and structure finite element methods is
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obviously not possible as regards the number of degrees of freedom at stake. Alternative approaches, such as homogenisa-
tion of the periodic fluid–structure system, have been proposed to tackle this issue.

Homogenisation methods have been developed and applied in various fields for structures with periodic geometry, for
instance for composite media (Bensoussan et al., 1978), for fluids in porous media (Sanchez-Palencia, 1980) and for fluid–
structure coupled problems (Conca et al., 1995). In power nuclear engineering, such approaches have been applied for fluid–
structure interaction modelling in reactor cores (Broc et al., 2003; Brochard et al., 1987a; Cheval, 2001; Zhang, 1998a; Zhang
et al., 2001), in reactor internals (Brochard et al., 1987b) and in fuel assemblies (Schumann, 1981; Shinohara-Shimogo, 1981;
Planchard, 1985a, 1985b) or tube bundles (Hammami, 1991; Jacquelin et al., 1996; Planchard, 1987; Zhang, 1999, 1998b). In
these studies, two-dimensional as well as three-dimensional applications of homogenisation techniques have been
considered (Brochard et al., 1996). Using a homogenisation method for FSI modelling in tube bundle configuration enables
the description of both the tubes and fluid system through an equivalent continuous media, thus avoiding the tedious task
to mesh all structure and fluid sub-domains within the tube bundle (Sigrist and Broc, 2007a).

Recently, Broc and Sigrist proposed an engineering approach of homogenisation techniques to account for fluid–
structure interaction in reactor internals (Sigrist and Broc, 2007b) and in tube bundles (Sigrist and Broc, 2008a, 2008b). The
method is based on the following hypotheses.

� Modelling of fluid–structure interaction is restricted to inertial effects, i.e. displacements of the tubes are assumed small
with respect to the dimension of the bundle, and the fluid is considered incompressible and inviscid. Compressibility
effect in the fluid can be discarded when the first coupled frequencies and the pure acoustic frequencies are well
dissociated. As detailed by Veron et al. (2014) and as evidenced further on, a formulation of the homogenised fluid–
structure with compressibility effects in the fluid is possible, so that vibro-acoustic coupling can be accounted for.

� The fluid–structure system exhibits a repetitive pattern, i.e. accelerations of the tubes are supposed to undergo small
variations from one cell to another, and interactions between neighbouring tubes are not taken into account.

Although validated on simple test cases and applied to industrial-like structures (Sigrist and Broc, 2009), some questions
regarding the physical interpretation of the calculations were left unanswered. In addition some limits of the method have
been highlighted, for instance, when describing the behaviour of high frequency coupled eigenmodes. As it might be of
importance to correctly describe the contribution of such modes, particularly when modelling non-linear effects (impact
between tubes for example), this shortcoming is still to be tackled in order to allow applications to a broader range of
industrial problems. In such context, the aim of the paper is i) to propose a new insight of the homogenisation approach,
focusing on both the mathematical and the physical standpoints (Section 2), ii) to highlight and discuss the existing
shortcomings of the method with a physical point of view (Section 3), and iii) to propose an appropriate correction of the
method in order to solidify its application (Section 4).

2. Inertial effects in a periodic tubes and fluid system

2.1. Homogenisation methods

Reduced Order Modelling (ROM) receives a growing attention for various engineering applications since it allows for the
design of computationally efficient numerical simulations of multi-physics problems, such as FSI (Gallardo et al., 2014).

Nomenclature

Γ fluid/structure interface
Δ direction of dynamic loading
εðuΣÞ structure strain field
μn effective mass
ρΣ ; ρ structure, fluid density
sðuΣÞ structure stress field
Σ structure domain
φ fluid displacement potential field
Φ fluid displacement potential degrees of

freedom
ωn eigenpulsation
Ω fluid domain
ΩS tube elementary domain
ΩF fluid elementary domain
ΩT elementary cell domain

BS confinement ratio
c fluid acoustic wave velocity
C fluid/tubes interaction matrix
K system stiffness matrix
KΣ ;KS;KF structure, tubes and fluid stiffness matrices
M system mass matrix
MΣ ;MS;MF structure, tubes and fluid mass matrices
p fluid pressure field
P fluid pressure degrees of freedom
R fluid/structure interaction matrix
uF ; €uF fluid local displacement/acceleration field
UF ; €UF fluid global displacement/acceleration field
uS; €uS tube displacement/acceleration field
uΣ structure displacement field
UΣ ;US structure, tubes displacement degrees of

freedom
Xn eigenmode
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Among ROM techniques, homogenisation methods can be used to model heterogeneous systems, such as coupled fluids and
solids. The variety of such approaches is beyond the scope of the present paper; it can however be simply stated that
homogenisation derives from the following hypothesis.

� Double scale asymptotic development: When the problem exhibits a geometrical periodicity, it is convenient to divide the
domain into identical cells with a typical length period ε which is supposed to be “small” in comparison to the
characteristic length of the system. Denoting by φ the problem unknowns and supposing φ to be ε-dependent, one writes
φε ¼ φoþ∑kZ1ε

kφkðX; xÞ, where functions φk depend on the “local scale” variable x and the “global scale” variable X (with
x¼ X=ε).

� Term-to-term identification: Substituting the former expression of φ into the partial differential equations which
represent the fluid–structure system and performing term-to-term identification yields a set of multi-scale problems
for φk. In addition, an averaging process is required to formulate the equations for the “mean problem” φo.

� Closure condition: For periodic systems, the multi-scale and the “mean problems” are to be solved in an elementary cell,
which yields the “homogenised model”.

The “homogenisation method” under concern in the present paper does not follow this rigorous development. Adopting
a straightforward approach, it solely lies on an average process over an elementary cell. Despite this simplification, such an
approach is found to be of engineering relevance. The underlying principles of the method are detailed in various preceding
publications. They are summarised below, adopting a physical viewpoint.

2.2. Elementary cell analysis

As the geometry of tube bundle systems is characterised by periodicity/symmetry conditions it is possible to identify an
elementary cell, which is representative of the tube confinement. As depicted in Fig. 1, ΩS and ΩF stand for the tube and fluid
domain, ΩT ¼ΩS [ ΩF is the elementary cell; ΓT , ΓS and ΓF denote the cell, the tube and the fluid boundaries.

For the homogenisation approach discussed here, it is assumed that the tube/fluid dynamics at the “local scale” can be
described by a two degrees of freedom system, namely through the acceleration (or displacement) of the tube, denoted as €uS

(or uS), and the mean acceleration (or displacement) of the cell, denoted as €UF (or UF ). The latter is defined as

€UF ¼
jΩSj
jΩT j

€uSþ
1

jΩT j

Z

ΩF

€uF dΩF ; ð1Þ

where €uF stands for the acceleration of the fluid.
Highlighting the physical interpretation of Eq. (1) is as follows:

� ð1=jΩF jÞ
R

ΩF
€uF dΩF ¼ €uF is the mean acceleration of the fluid within the fluid domain,

� jΩT j €UF Uei is the mean fluid flux through the cell boundary along direction ei.

uF

Tube uS Boundary

boundary

(periodicity condition)

UF

ej

-∂p/∂xi ei

Pressure gradient

Boundary F

(symmetry condition) Fluid domain
Tube domain F

Fluid boundary

uF

uS

Γ π

ΩΩ

ΓF = ΓFo U ΓFπ U ΓS

ΓFo

Elementary cell  ΩT = ΩS U ΩF

Cell boundary  ΓT = ΓFo U ΓFπ

ΓS

ΩS

Φ

Fig. 1. Elementary cell: single tube in array confinement.
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The latter is indeed defined as
R

ΓT
xi €uUn dΓT , which can be equivalently calculated as

R

ΩT
∇U ð €uxiÞdΩT according to the

divergence theorem. Since ∇Uð €uxiÞ ¼ €ui ∇xiþxi∇U €ui ¼ €uUei when considering an incompressible flow (∇U €ui ¼ 0), one writes
Z

ΓT

xi €uUn dΓT ¼
Z

ΩT

€uUei dΩT ¼ jΩSj €uS UeiþjΩF j €uF Uei ¼ jΩT j €UF Uei;

which is Eq. (1).
Using €uS and €UF as degrees of freedom of the elementary problem, the fluid force applied to the tube is

Φ¼ �ma €uSþðmaþρ jΩSjÞ €UF ; ð2Þ

with ma being the added mass of the tube within the cell confinement. The latter expression of the fluid force accounts for
FSI only through inertial effect. As will be highlighted in Section 3.1, ma is obtained from a simple calculation on the
elementary cell.

Considering a non-viscous incompressible flow, one can write the equation of motion of the fluid in the elementary
cell as

Z

ΩF

ρ €uF dΩF ¼Π�Φ;

since the fluid is subjected to the force applied by the tube (�Φ) and the pressure forces Π; the latter is calculated from the
pressure gradient Π¼ �jΩT j∇p, where jΩT j is the elementary cell volume (see notations of Fig. 1).

Using Eqs. (1) and (2) in the fluid momentum conservation equation leads to

ρ €UF ¼ �ð1�BSÞ∇pþρBS €uS; ð3Þ

where BS is the confinement ratio of the tube in the elementary cell, given by

BS ¼
maþρjΩSj

maþρðjΩSjþjΩT jÞ
: ð4Þ

As conveyed by Eq. (1), the flux of the fluid passing through the cell boundary originates from the acceleration of the tube
and the pressure gradient. These sources of motion have opposite actions and are balanced by the confinement ratio: the
proposed model is equivalent to fluid flow model in porous media.

Using Eq. (1), the expression for the fluid force on the tube can also be reformulated as

Φ¼ �ρðBSjΩT j�jΩSjÞ €uS�BSjΩT j∇p;

or

Φ¼ �mn

a
€uS�BSjΩT j∇p; ð5Þ

with mn

a ¼ ρðBSjΩT j�jΩSjÞ.
Eq. (3) is the starting point of the homogenisation approach, since it relates the pressure gradient and the tube

acceleration to the mean cell acceleration (as defined by Eq. (1)). BS ¼ 0 indicates that the elementary cell is filled by the
fluid only. In this case, Eq. (3) yields the classical relation between fluid acceleration and pressure gradient ρ €UF ¼ �∇p.
BS ¼ 1 indicates that the elementary cell is filled by the solid only and Eq. (3) gives €UF ¼ €uS, the physical meaning of which is
obvious.

Using €UF and €uS as degrees of freedom for the tubes and fluid systems is straightforward since any situation is a linear
combination of the two situations depicted in Fig. 2. In both cases, the periodicity condition is imposed on the left hand side
and right end side of the cell, while the symmetry condition is imposed on the top and bottom sides. The pressure is
therefore constant along both left and right lateral boundaries.

� In the first situation depicted in Fig. 2(a), the fluid flows around the tube which is supposed to be at rest within the cell
( €uS ¼ 0). The resulting global motion of the fluid is constant ( €UF ¼ γ) and the pressure gradient within the cell is
∇p¼ �ðργ=ð1�BSÞÞ. On the left hand side, the high level of pressure triggers the fluid motion.

� In the second situation depicted in Fig. 2(b), the tube is accelerated, €uS ¼ γ, and generates fluid motion within the cell.
At the local scale, the fluid gains acceleration ( €uFa0); the mean fluid acceleration is negative ( €uFo0), while the tube
acceleration is positive. As a result, the mean acceleration represented by Eq. (1) is null ( €UF ¼ 0). The pressure gradient
within the cell is ∇p¼ ρBSγ=ð1�BSÞ. High pressure at the right hand side fosters the fluid motion. It is worth emphasizing
that in such a case, the global flux between two adjacent cells is null, while locally some fluid flows from one cell to
another.

Using UF or €UF as the degree of freedom for the fluid is also more versatile than using uF or €uF . Indeed, as _UF stands for
the fluid velocity flux at the elementary cell boundary, continuity conditions between two adjacent cells are enforced in a
simple manner with UF . As a consequence, various configurations encountered in many industrial applications can be easily
dealt with, see Fig. 3 for illustration.

4



2.3. Global behaviour of a structure, tubes and fluid system

Eq. (3) can be used to describe a homogenised domain which contains both tubes and fluid. The general case is
schematically represented by Fig. 4. It deals with an elastic structure Σ which is coupled with the homogenised domain Ω,
the latter containing the fluid and tubes.

Ω
-

Ω+

uF
-

=0 uS

uF

n

Ω
-

Ω+

Ω- Ω+ Ω Σ

uΣ

UF
-
= UF

+ UF . n = uΣ . n

BS
 -

BS
 -

BS
 -BS

 +

BS

BS +

BS
 +

uF
-

uF
-

uF

+

uF

+

uF

+

uS
-

uS
-

uS
-uS

+
uS

+

UF
-
= UF

+ UF
-
=UF

+

Fig. 3. Various configurations possibly encountered in steam generator and handled by the homogenisation method: (a) two identical adjacent cells,

(b) Two different adjacent cells, (c) Two adjacent cells with/without tube, and (d) cell coupled with elastic structure.

Fig. 2. Elementary cell: a two degrees of freedom system (acceleration and pressure field in the fluid): (a) flowing fluid ( €UF ¼ γ40) with tube at rest

( €uS ¼ 0) and (b) moving tube ( €uS ¼ γ40) without fluid “globally flow” ( €UF ¼ 0).

5



Let uΣ be the structure displacement, uS the tube displacement and p the fluid pressure. Following Sigrist and Broc
(2008a), it can be stated that the weighted integral formulation of the structure, tubes and fluid coupled problem reads

Z

Ω

€p δp

c2
dΩþ

Z

Ω

ρð1�BSÞ∇pU∇ δp dΩþ
Z

Γ

ρδp €uΣ Un dΓ�
Z

Ω

ρBS €uS∇ δp dΩ¼ 0; ð6Þ

for any pressure test function δp (fluid), and

R

Σ
ρΣ €uΣ UδuΣdΣþ

Z

Σ

sðuΣÞUεðδuΣÞdΣþ
Z

Ω

mS €uS UδuS dΩþ
Z

Ω

kSuS δuS dΩ

¼
Z

Γ

pnUδuΣ dΓþ
Z

Ω

ρðjΩSj=jΩT j�BSÞ €uS UδuS dΩ�
Z

Ω

BS ∇pUδuS dΩ ð7Þ

for any displacement test functions δuΣ (structure) and δuS (tubes).
As suggested by Eq. (6), compressibility effects are accounted for with the equivalent speed of sound in the cell:

c¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jΩF j=jΩT j
p

, where c denotes the speed of sound in the fluid without tubes.
According to Sigrist and Broc (2008a) and Veron et al. (2014), finite element discretisation of the preceding equations yields

MSþMn

S 0 0

0 MΣ 0

�ρBSC
T

ρRT MF

2

6

4

3

7

5

€USðtÞ
€UΣðtÞ
€PðtÞ

8

>

<

>

:

9

>

=

>

;

þ
KS 0 BSC

0 KΣ R

0 0 ð1�BSÞKF

2

6

4

3

7

5

USðtÞ
UΣðtÞ
PðtÞ

8

>

<

>

:

9

>

=

>

;

¼
0

0

0

8

>

<

>

:

9

>

=

>

;

: ð8Þ

MΣ and KΣ are the mass and stiffness matrices of the structure, MS and KS are the mass and stiffness matrices of the
tubes, MF and KF are the “mass” and “stiffness” matrices of the fluid. R is the fluid/structure interaction matrix, which
describes the coupling of the fluid and the structure, as defined in Axisa and Antunes (2006). Additional operators arise from
the homogenisation approach (Sigrist and Broc, 2008a):

� C is the tube/fluid interaction operator, which describes the interaction between the fluid and the tubes,
� Mn

S is the tube added mass operator, which accounts for an additional inertial effect on tubes, as a consequence of the
fluid confinement within the elementary cell.
Using the pressure/displacement formulation yields non-symmetric matrices, as highlighted by Eq. (8). From the

engineering standpoint, it can be more convenient to use a pressure–displacement potential/displacement formulation,
which leads to symmetric operators (for recall, the displacement potential field is related to the pressure field in the fluid
domain according to the relation p¼ �ρð∂2φ=∂t2Þ).

As shown in Sigrist and Broc (2008b), the symmetric formulation of the structure, tubes and fluid systems reads

MSþMn

S 0 0 �ρBSC

0 MΣ 0 ρR

0 0 0 MF

�ρBSC
T

ρRT MF �ρð1�BSÞKF

2

6

6

6

6

4

3

7

7

7

7

5

€USðtÞ
€UΣðtÞ
€PðtÞ
€ΦðtÞ

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

þ

KS 0 0 0

0 KΣ 0 0

0 0 1=ρMF 0

0 0 0 0

2

6

6

6

4

3

7

7

7

5

USðtÞ
UΣðtÞ
PðtÞ
ΦðtÞ

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

¼

0

0

0

0

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

: ð9Þ

It is worth mentioning that the formulation of the coupled problem given by Eqs. (6) and (7) is consistent with the
“classical” pressure/displacement formulation of a coupled fluid–structure system as developed in Morand and Ohayon
(1995). In particular, potential energy of the fluid is accounted for in the above equations, through the mass matrix MF

n

uS

ΣΣ

uΣ Elastic structure

Γ

UF . n = uΣ . n

ΩοΩπ

UF 0 = n . 0 = p

Homogenised domain = Fluid + Tubes

ρ
2UF/ t

2
 = -(1-B S ) grad p + ρB S

2uS/ t
2

ΓM sur Γ

UF, p, ϕ

M in Ω
ρ, c

M in Ω
mS, kS

M in Σ

Ω

Fig. 4. General case: coupled structure, tubes and fluid system.
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calculated with the equivalent speed of sound. However, this latter contribution will be omitted in the following, as the
application of the method will be restricted to the description of inertial effects. From a practical point of view, this will be
achieved in numerical simulations with finite elements by setting c410þ6 m/s to model the fluid incompressibility.

3. Physical discussion on a simple fluid–tube system

3.1. 10� 10 two-dimensional tube bundle

An application of the homogenisation method is first proposed: it is restricted to a simple 2D case. Note that additional
test cases for 2D and 3D problems are presented by Sigrist and Broc (2008a, 2008b, 2007a) and confirm the applicability of
the method. Dynamic analysis of a compact steam generator with fluid–structure interaction modelling is shown by Sigrist
and Broc (2009).

The test case under concern here consists of a tube bundle embedded in a circular structure. The tube and fluid geometry
and physical properties are defined in Fig. 5: ml¼4.58 kg, kl¼100 N/m, R¼1.35 cm, and ρ¼1000 kg/m3. The radius of the
outer structure is R0 ¼ 1:05ðLR=

ffiffiffi

2
p

Þ¼ 2:23 m (L¼10 is the number of tubes and R is the radius of a single tube). The pitch to
diameter ratio is T=2R¼ 90% (where T¼3 cm is the tube spacing), which corresponds to a rather confined tube bundle. The
outer bundle structure is of negligible mass (mΣ⪡ml) and of large stiffness (kΣ⪢kl) in comparison to, respectively, the tube
mass and stiffness.

All tubes have identical mass and stiffness and have two degrees of freedom. Without fluid, the tubes system has
therefore 200 eigenmodes with the same eigenfrequency f o ¼ ð1=2πÞ

ffiffiffiffiffiffiffiffiffi

k=m
p

and same effective mass μo ¼ml in both x and y

directions. It is recalled that the effective mass μn of eigenmode Xn in direction Δ is calculated as μn ¼ ðXT
nMΔÞ2=XT

nMXn,
where M denotes the mass matrix of the system. It is also recalled that the total mass of the system can be calculated
according to m¼ΔTMΔ¼∑

n
ðXT

nMΔÞ2=XT
nMXn ¼∑

n
μn.

A finite element mesh for the elementary cell is produced in order to evaluate the confinement ratio (see Fig. 6). This
latter is calculated by solving the elementary problem Δp¼ 0 in ΩF , with the following boundary conditions (according to
the definitions of Fig. 1):

� ∂p=∂n¼ �ργUn on ΓS (coupling with the tube),
� ∂p=∂n¼ 0 on ΓFπ (outer boundary of the elementary cell with symmetry condition),
� p¼0 on ΓFo (outer boundary of the elementary cell with periodicity condition).

The elementary cell calculation yields the fluid force on the tube Φ and the fluid acceleration €uF . €UF is first evaluated
using the equation €UF ¼ ðjΩSj=jΩT jÞγþð1=jΩT jÞ

R

ΩF
€uF dΩF . The added mass is then calculated using Φ and €UF according to

Φ¼ �mAγþðmAþρjΩSjÞ €UF . The confinement ratio BS is finally obtained from the equation BS ¼ ððmaþρjΩSjÞ=
ðmaþρðjΩSjþjΩT jÞÞÞ. For the geometry under concern here, calculation leads to BS ¼ 0:7752.

Outer (Elastic) Structure
u
k

Direction of Dynamic Excitation
Δ

(Incompressible) Confined fluid
p

ρ

Tube Bundle
u

L × L tubes

k

m

Fig. 5. 10�10 tube bundle system embedded within a circular elastic structure.
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3.2. Upper and lower bound of tubes/fluid eigenfrequencies

Calculations of eigenmodes and eigenfrequencies together with the effective mass of the tube bundle are performed with
the “classical method” – i.e. based on the finite element discretisation of the structure, tubes and fluid “classical” equations –
and with the “homogenised method”; Fig. 7 highlights the differences between the two methods in terms of finite element
mesh of the coupled system: using the homogenised method obviously reduces the size of the problem (see also Table 1).

As stated above, eigenfrequencies of the tubes system in vacuum have the same value for all modes. When coupled with
the fluid, inertial effects arise and are characterised as follows. Motion of the tubes induces fluid flow, the latter gaining
kinetic energy which depends on the tubes motion pattern.

� Fluid kinetic energy, hence inertial effect, is maximum when no global flux is observed between two adjacent cells, i.e.
when the confinement of the tube in the cell is maximum (in this case, €UF ¼ 0). Using Eq. (2), the force on the tube is
calculated as Φ¼ �ma €uS, which yields a lower bound for the frequencies of the tubes with fluid fmin ¼
f o=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðm=maÞ
p

o f o,
� Fluid kinetic energy, hence inertial effect, is minimumwhen the fluid and the tubes move in the same direction, i.e. when

the tubes offer no resistance to the fluid flow (in this case, ∇p¼ 0). Using Eq. (5), the force on the tube is calculated as
Φ¼ �mn

a
€uS, which yields an upper bound for the frequencies of the tubes with fluid fmax ¼ f o=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðm=mn

aÞ
p

o f o.

The eigenfrequencies of the tubes and fluid system are therefore found to lie within the frequency range ½fmin; fmax�.
Calculations performed both with “classical” and “homogenised” methods are compared in Fig. 8 in terms of cumulated
effective mass and number of modes versus the reduced eigenfrequencies (β¼ f =f o) of the tube bundle. Both methods yield

Fig. 6. Elementary cell mesh and elementary pressure field calculation.

Fig. 7. Finite element mesh of the 10�10 tube bundle: (a) coupled method and (b) homogenisation method.

Table 1

Comparison of coupled and homogenised methods in terms of computation cost.

Coupled Homogenised

Computation time [s] 2150 295

Number of nodes 6700 660

Problem size [non-dimensional] 21,000 3500
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a lower and a upper bound of the eigenfrequencies, with some discrepancies (see Table 2), which can be accounted for as
follows.

In the low frequency range, an added mass is evaluated with the “classical” and “homogenised” representations: denoted
mClassical

a and mHomogenised
a , they differ from the theoretical value ma. Assuming that there is no interaction between tubes of

adjacent cell, and considering the case of a maximum confinement for the tube in the cell:

� the “classical” representation corresponds to an elementary calculation with boundary conditions ∂p=∂n¼ 0 on ΓFπ and
ΓFo, which is equivalent to having €UF ¼ 0 (no global flux) and €uF � 0 (no local flow) at the cell outer boundary,

� the “homogenised” representation corresponds to an elementary calculation with boundary conditions ∂p=∂n¼ 0 on ΓFπ

and p¼ 0 on ΓFo, which is equivalent to considering €UF ¼ 0 (no global flux) but not €uF � 0 (some fluid can flow from one
cell to another) at the cell outer boundary.

Confinement being higher with the “classical” representation, it follows that mClassical
a 4mHomogenised

a ; hence,
βClassicalmin oβ

Homogenised
min , as observed in Table 2.

In the same manner, the “classical” and “homogenised” representations yield an added mass in the high frequency range
which differs from the theoretical value mn

a. They are denoted as mnClassical
a and mnHomogenised

a , with mnClassical
a omnHomogenised

a ;
hence, βClassicalmax 4β

Homogenised
max , as observed in Table 2.

Fig. 9 gives a representation of the coupled eigenmode with the highest effective mass, obtained through calculationwith
the “classical” method on one hand and the “homogenised” method on the other. Agreement between the two approaches
is remarkable both qualitatively (mode shape) and quantitatively (frequency, effective mass).

3.3. Accuracy of the method for low inertial effects

For the mode depicted in Fig. 9, the inertial effect is high and the small scale variations of the displacement/pressure
fields are low, so that the physics is in accordance with underlying assumptions of the homogenisation. Although no
discrepancies are noticeable for other modes with high inertial effects, some differences arise for modes with low inertial
effects. The homogenisation approach fails to accurately calculate the eigenfrequencies for such modes since all computed
modes have an identical eigenfrequency.

This shortcoming of the method is of no importance when linear dynamic analysis of the system subjected to seismic
loading is concerned. Indeed the modes of concern have low effective mass and their contribution to the global behaviour of
the system can be neglected.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

75% 80% 85% 90% 95% 100%

ββββn = fn / fo [%]

ΣΣ ΣΣ
n

μμ μμ
n 

/ m
 [

%
]

0

20

40

60

80

100

120

140

160

180

200

N
n

Effective mass -

Classical method

Effective mass -

Homogenised method

Number of modes -

Classical method

Number of modes -

Homogenised method

Eigenmodes with low inertial effect

Eigenmode with highest effective 
mass (ββββ *, μμμμ*)

Lower bound of 
eigenfrequencies

Fig. 8. Comparison of the “classical” and “homogenised” methods: effective masses and number of modes.

Table 2

Comparison of coupled and homoge-

nised methods in terms of calculation

of the frequency range of the spectrum

for the elementary tube bundle.

Frequency

ratio

Coupled Homogenised

βmin [%] 79.28 80.28

βmax [%] 98.75 98.50
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It is however no longer the case when non-linear effects (such as impacts between tubes) are taken into account in the
analysis: enhancement of the homogenised representation is therefore needed to handle such situations.

4. Modelling of interaction between tubes

4.1. 1-D interaction model

As highlighted in the introduction, one underlying hypothesis of the proposed homogenisation approach is that
“interactions between neighbouring tubes are not taken into account”. This assumption implies that the fluid kinetic energy
generated by the local motion of adjacent tubes is rendered in Eqs. (6) and (7).

Eigenmodes with low inertial effects are characterised by interactions between neighbouring tubes, and the
homogenisation method fails to adequately describe FSI for such modes. Assembling the dynamic equations of the
homogenised system accounts for interaction between cells, but under the assumption of a repetitive pattern from one cell
to another. This holds when acceleration of the tubes does not vary significantly from one cell to another. As emphasized in
Fig. 8 and as illustrated in Fig. 9, this way of modelling tube interactions holds only for “global modes” of the tubes system.
Higher order modes involve local motion which gives rise to different relative tube displacements from one cell to the other.
The kinetic energy which is generated by such interactions is not accounted for.

In order to highlight the consequence of this assumption, let us first consider a row of square tubes in square
confinement. The problem is limited to 1D, for the sake of clarity (see Fig. 10). All tubes have identical mass and stiffness
properties m and k; the natural frequency of each tube is f o.

Fig. 9. Comparison of “classical” and “homogenised” methods: eigenmodes with highest effective mass (β is the ratio of the mode frequency to the

frequency of a single tube in vaccum, μ is the ratio of the mode effective mass to the total mass of the system – i.e. structure, fluid and tubes mass):

(a) “classical” method – β¼80.41% (frequency), μ¼34.3% (effective mass) and (b) “homogenised” method – β¼80.3% (frequency), μ¼31.7% (effective mass).
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To begin with, the interaction between tubes is not accounted for. According to Cheval (2001), an analytical calculation of
the force acting on tube i is possible. It is found to be φi ¼ �ðρL3=eÞγi, where γi is the tube acceleration; hence, all tubes have
an identical added mass ma ¼ ρL3=e.

When the interaction between tubes is taken into account, following once again Cheval (2001), the fluid force on tube i is
calculated as

φi ¼ �ρL3

e
γiþ

ρL3

12e
ðγi�1�2γiþγiþ1Þ ð10Þ

Let us now consider a vibration mode of a set of Iþ1 tubes, such that γi ¼ cos ðiπ=IÞ for all iA ½0; I�; the force on tube i is
readily

φi ¼ �ðρL3=eÞ cos ðiπ=IÞþðρL3=12eÞð cos ðði�1Þπ=IÞ�2 cos ðiπ=IÞþ cos ððiþ1Þπ=IÞÞ which is also φi ¼ �ðρL3=eÞ cos ðiπ=IÞ
ð1þ sin 2ðπ=2IÞ=3Þ, so that the added mass on any tube is mI

a ¼ ðρL3=eÞð1þ sin 2ðπ=2IÞ=3Þ.

� For I¼ 1, the tubes vibrate according to an “out-of-phase” motion: the elementary pattern in the mode shape is �1; þ1.
The inertial effects are maximised. The corresponding added mass is m1

a ¼ 4ρL3=3e; hence the lower bound of the
coupled eigenfrequencies is evaluated as fmin ¼ f o=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðm=m1
aÞ

p

.
� For I¼ 2, the tubes vibrate according to a periodic shape �1;0; þ1;0 and the added mass is m2

a ¼ 7ρL3=6e. For I¼ 3, the
tubes vibrate according to a periodic shape �1; �1=2;1=2;1;1=2; �1=2, and the added mass is m2

a ¼ 13ρL3=12e.
� For I-1, the tubes vibrate according to an “in-phase” motion, the inertial effects are minimised and the added mass is

m1
a ¼ ρL3=e, which corresponds to the case where no interaction occurs between tubes. This gives the upper bound of the

coupled eigenfrequencies: fmax ¼ f o=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðm=m1
a Þ

p

.

Considering a system of I identical tubes and discarding the tubes interaction give Imodes with the same eigenfrequency
f ¼ f o=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðm=maÞ
p

; therefore an “accumulation” of modes is observed; modelling the tubes interaction yields I modes with
frequencies f A ½f o=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðm=m1
aÞ

p

; f o=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðm=mI
aÞ

p

� as presented in Fig. 11 for I¼10 tubes (for the sake of convenience, it is
assumed that m¼ma ¼ 1).

In the 2-D case for a circular tube in square confinement, an accumulation is also observed for low inertial effect
eigenmodes at the same frequency, as highlighted in Fig. 8, while the high inertial effect eigenmodes are correctly accounted
for. Thus it is expected that taking tubes interaction into account will improve the representation of the “accumulated
modes”.

4.2. 2-D interaction model

The case of a circular tube in a square confinement is considered here, although the same approach could be employed
for other situations.
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Fig. 11. Evidencing the mode accumulation for the 1D square tube array.
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Fig. 10. 1D square tube array in square confinement.
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Eq. (10) takes into account the interaction of tube i with tubes i�1 and iþ1 through a corrective term which can be

calculated as �ðρL3=12eÞðγi�γi�1Þ�ðρL3=12eÞðγi�γiþ1Þ, so that the interaction between tube i and iþ1 is described through

a fluid force φiþ1-i ¼ �mcð €ui� €uiþ1Þ, with mc ¼ ρL3=12e; hence, the kinetic energy generated in the fluid by the interaction

between tube i and iþ1 is ð1=2Þ €UT
Mi;iþ1

C
€U, with Mi;iþ1

C ¼ �
þmc �mc

�mc þmc

" #

i

iþ1

i iþ1

.

In the 2-D case for a tube in a square confinement, let us consider the interaction of a tube with its eight neighbours, see

Fig. 12. Interactions of the central tube with the others are described with fluid force φij ¼∑ i0 ¼ i�1; iðj0a jÞ; iþ1

j0 ¼ j�1; j; jþ1

�mXY
ij;i0 j0

ðγXYij �γXY
i0j0
Þ

in the directions X and Y, which can be seen as a corrective force to account for tube interactions.
The interaction matrix ½mX;Y

ij;i0 j0
� is composed of 16 terms (interaction of each tube with eight other tubes in two directions).

However, because of symmetries within the nine tubes system, only five terms have to be calculated. According to notations
of Fig. 13, fluid force on the central tube is given by

φ0 ¼ þm0
0γ

X
0 þm0

1ðγX1 þγX5 Þþm0
2ðγX3 þγX7 Þþm0

3ðγX2 þγX4 þγX6 þγX8 Þþm0
4ðγY2�γY4þγY6 �γY8 Þ:

m0
0, m

0
1, m

0
2, m

0
3 and m0

4 are calculated with five elementary calculations, through the analysis of simple vibration modes
for the bundle. The analysis of each mode is reduced to only one cell with one tube. The fluid flow and the forces applied to
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Fig. 13. Interactions between tubes: definition of corrective terms.
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Fig. 12. 2D tube array: one tube/eight neighbouring tubes and interactions between two tubes.

12



the tube is calculated by the difference between a “classical” and “homogenised” calculation (see Fig. 14): the corrective
force is obtained from the difference between the results obtained with the two methods. A linear equation in terms of m0

0,
m0

1, m
0
2, m

0
3 and m0

4 is derived from the correction. These coefficients depend on the geometry under concern: for a tube in
square confinement, they are obtained from the study of five different vibration cases (see Fig. 15), as detailed below.

Coupled calculationHomogenised calculation

FSaSa mm Uu )( Ω++−= ρ

pm
TSa ∇Ω−−=

S

*
Bu

= np

0=Δp nu ⋅−=
∂

∂
Sn

p
ρ

ϕ

ϕ

 p, UF

Δp = 0

uS uS

Fig. 14. Homogenised and classical calculation on elementary cell.
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Fig. 15. Definition of five elementary cases for determining the m0 coefficients.

13



Case #1 corresponds to the situation where all the tubes of the bundle have the same acceleration γ, with a global fluid
flow equal to zero. The pressure and acceleration fields in the elementary cell are depicted in Fig. 16(a). In this case the
homogenisation method gives exact forces applied to each tube, �maγ. The corrective force, given bym0

0þ2m0
1þ2m0

2þ4m0
3,

is therefore null. The tube interaction forces deal with local effects and do not influence the global fluid flow in the bundle.
This yields the first linear relations for the m0 coefficients: m0

0þ2m0
1þ2m0

2þ4m0
3 ¼ 0.

Cases #2–4 correspond to vibration modes with various symmetry/anti-symmetry conditions, as detailed in Table 3. The
pressure and acceleration fields in the elementary cell are depicted in Fig. 16(b)–(d). Detailed calculation of the corrective
forces is as follows.

� For case #2, the force applied to the tube evaluated with the coupled calculation is �778:85γ, while the force applied to
the tube with the homogenisation method is �373:32γ. The corrective force is þ405:53γ and the second linear relation
is �m0

0þ2m0
1þ2m0

2�4m0
3 ¼ �405:53.

� For case #3, the coupled calculation gives the force �344:92γ, while homogenised method yields �373:32γ. The
corrective force is �28:40γ; hence �m0

0�2m0
1þ2m0

2þ4m0
3 ¼ �28:40.

� For case #4, the fluid forces are �1667:70γ (coupled calculation) and �1574:90γ (homogenised calculation); the fourth
linear relation is then �m0

0þ2m0
1�2m0

2þ4m0
3 ¼ �102:80.

Finally, case #5 yields the last relation as �m0
0�4m0

3 ¼ �175:82, which corresponds to the vibration mode depicted in
Fig. 16(e), with calculation of the fluid force as �549:14γ and �373:32γ, respectively, with the coupled and homogenised
methods.

Pressure Acceleration

Pressure Acceleration Pressure Acceleration

Pressure Acceleration Pressure Acceleration

Fig. 16. Pressure and acceleration field in the fluid-tube cell for the five elementary cases: (a) 1, (b) 2, (c) 3, (d) 4, and (e) 5.
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Once calculated, the five coefficients define an elementary “corrected added mass” matrix for each tube. Assembling
these elementary matrices yields a global “corrected added mass” matrix MC which is introduced in the general formulation
of the coupled problem; Eq. (9) is thereby modified as

MSþMn

SþMC 0 0 �ρBSC

0 MΣ 0 ρR

0 0 0 MF

�ρBSC
T

ρRT MF �ρð1�BSÞKF

2

6

6

6

6
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7

7

7

7
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€USðtÞ
€UΣðtÞ
€PðtÞ
€ΦðtÞ

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>
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>

>

>

>

;

þ

KS 0 0 0

0 KΣ 0 0

0 0 1=ρMF 0

0 0 0 0

2

6

6
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4

3

7

7

7

5
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8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>
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>

>

>

;

¼

0

0

0

0

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

: ð11Þ

4.3. Application for the 10� 10 2-D tube bundle

Using a corrective matrix which accounts for the interaction of adjacent tubes is expected to improve the ability of the
homogenisation method to describe the dynamic behaviour of a tube bundle. Application of the “corrected homogenised”
method is carried out on the 10�10 tube bundle as depicted in Fig. 5. A modal analysis is performed with the
“homogenised” and “corrected homogenised” methods. Comparison of the homogenised methods and the coupled method
is shown through the calculation of the effective mass, which characterises the seismic behaviour of the system, and its
eigenfrequencies.

Fig. 17 compares the numerical results with those given by a modal analysis using the “classical” method. As far as the
effective mass is concerned, the agreement between both approaches is fairly good. The correction introduced in the
“homogenised” technique improves the precision of the modal effective masses but differences between the “uncorrected”
and “corrected” homogenisation approaches, when compared to the “classical” approach, are not obvious. Improvements
are more significant when it comes to predicting the repartition of eigenmodes throughout the spectrum of the tube bundle.
As presented in Fig. 18, the number of modes versus frequency curve obtained with the “corrected homogenised method” is
in good qualitative agreement with the one obtained with the “classical” method, especially as far as coupled modes with
low inertial effects are concerned. Comparison of the number of modes calculated over the ½fmin; fmax� frequency range with
the “classical” and the “homogenised” methods (with and without corrective terms) is proposed in Fig. 14. It clearly
emphasises the influence of tube interactions for modes close to fmax.

A more quantitative comparison is obtained by calculating the “correlation matrix” of modal bases Φc (“classical”
method) and Φh (“homogenised” method). By definition, it is calculated according to ΦT

cΦh=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ΦT
cΦc

q ffiffiffiffiffiffiffiffiffiffiffiffiffi

ΦT
hΦh

q

: the closer to

Table 3

Symmetry conditions an boundary conditions for elementary cases #2–4.

Case X direction Y direction Lower/upper boundaries Lateral boundaries

♯2 Anti-symmetry Anti-symmetry p¼ 0 p¼ 0

♯3 Symmetry Anti-symmetry ∂p
∂n¼ 0 p¼ 0

♯4 Symmetry Symmetry ∂p
∂n¼ 0 ∂p

∂n¼ 0
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Fig. 17. Comparison of the “classical” and “corrected homogenised” methods: effective masses and number of modes.
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the unity diagonal, the better the correlation of modal bases (Allemang, 2003). Fig. 19 gives the correlation matrices of
“classical” and “homogenised” methods with and without correction and illustrates the improvement trends observed in
Fig. 18.

5. Conclusion

A homogenisation method has been developed in order to perform the dynamic analysis of a tube bundle with fluid–
structure interaction modelling using modal methods. It is concerned with the description of inertial effects which
predominate in the low frequency range, for small displacement of the tubes when immersed in a fluid, supposed non-
viscous and incompressible. It is based on the description of the tubes–fluid system through an equivalent continuous
medium, characterised by a set of dynamic equations which describe the behaviour of the tubes and the fluid from a global
point of view. Based on physical consideration, the interaction between fluid and tubes is accounted for at the local scale
using a two degrees of freedom system.

Fig. 19. Correlation matrices: “classical” modes versus “homogenised” modes: (a) correlation of “classical” and “homogenised” modes – without correction

and (b) correlation of “classical” and “homogenised” modes – with correction.
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Fig. 18. Comparison of the “classical” method and “homogenised” method with and without correction: number of modes.
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Mathematical formulation of the proposed method has been shown and discussed from the physical point of view. From
the numerical perspective, the discretisation of the coupled equation can be performed with a finite element technique,
which enables possible industrial applications. The ability of the method to accurately account for inertial effects has been
discussed on a simple 2D test-case, namely a 10�10 tube array immersed in a fluid. The limits of the homogenised model
have been identified and discussed using physical considerations.

The underlying hypothesis of the method has also been clarified: taking into account the interactions between the tubes
allows for a more accurate description of inertial effects for particular modes of the tubes and fluid system. Accordingly, a
correction of the homogenisation method has been proposed by introducing some inertial terms in the model. This
correction improves the representation of “low inertial effects” eigenmodes, without burdening the overall modelling
procedure. This approach opens a path for applications of the method to a wider range of problems encountered in the
nuclear industry.

Description of inertial effects in a tube bundle still remains as an open problem to some extent. Future work will focus on
some physical as well as mathematical aspects of the method. Additional FSI effects are also of importance when modelling
the behaviour of periodic fluid–structure systems. For instance, taking into account viscous effects for the fluid and/or large
displacement of the tube might be of interest. To that end, an extension of the present methodology to the homogenisation
approach on the Navier–Stokes equations should be proven worthy. A first contribution is proposed in Desbonnets and Broc
(2012) and offers some perspectives to extend the present homogenisation model in tube bundles.
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