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Abstract. The CINEL code dedicated to generate the thermal neutron scattering files in ENDF-6 format
for solid crystalline, free gas materials and liquid water is presented. Compared to the LEAPR module of
the NJOY code, CINEL is able to calculate the coherent and incoherent elastic scattering cross sections for
any solid crystalline materials. Specific material properties such as anharmonicity and texture can be taken
into account in CINEL. The calculation of the thermal scattering laws can be accelerated by using graphics
processing unit (GPU), which enables to remove the short collision time approximation for large values of
momentum transfer. CINEL is able to generate automatically the grids of dimensionless momentum and
energy transfers. The Sampling the Velocity of the Target nucleus (SVT) algorithm capable of determining
the scattered neutron distributions is implemented in CINEL. The obtained distributions for free target nuclei
such as hydrogen and oxygen are in good agreement with analytical results and Monte-Carlo simulations when
incident neutron energies are above a few eV. The introduction of the effective temperature and the rejection
step to the SVT algorithm shows improvements to the neutron up-scattering treatment of hydrogen bound in
liquid water.

1 Introduction

Neutron transport through materials is crucial for nuclear
reactor core design, neutron detection and shielding. If the
incident neutron energy is much larger than the atomic
binding energy, the target materials can be approximated
by a collection of unbounded atoms. In this case, the
treatment of the neutron scattering with materials can
be well approximated by the two-body collision kinetics.
However, when neutron energies lie below a few eV, the
atomic vibration behaviors and/or crystalline structure
play a predominant role in the neutron scattering reac-
tions. Low-energy neutrons have been used to probe the
crystalline structure of oxides of uranium [1–4] and other
materials [5,6] since the sixties.

The low energy (below a few eV) neutron scattering
theory is well detailed in the literature [7–9]. The key
quantity is the double differential neutron scattering cross
section (DDXS) which represents the probability of find-
ing a scattered neutron with a given energy at a specific
solid angle. The DDXS has been expressed as a func-
tion of the dynamic structure factor S( ~Q, ω) by Van
Hove [10] in 1950s, where ~ ~Q and ~ω are respectively
the momentum transfer and energy transfer of neutrons.
Under the incoherent and Gaussian approximations, the
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dynamic structure factor S( ~Q, ω) can be calculated from
the phonon density of states (PDOS) of materials. The
PDOS representing the structure dynamics of materials
can be obtained from ab initio density functional theory
(DFT) or molecular dynamics (MD) calculations. S( ~Q, ω)
are later converted to dimensionless thermal scattering
laws (TSL) or S(α, β). S(α, β) are stored in ASCII files
by following the ENDF-6 format requirements [11], to
prepare the neutron scattering data libraries.

The TSL in ENDF format have been generated by
using the LEAPR module [12] of the nuclear data pro-
cessing code NJOY [13] which is an industry standard
of the same class codes. Stemming from the incoherent
and Gaussian approximations, LEAPR is able to calcu-
late the TSL for various kinds of materials. For solid
crystalline materials, S(α, β) are further divided in an
elastic and inelastic parts, with coherent and incoherent
terms. However, the calculations of the coherent elastic
scattering cross sections in LEAPR are limited to crys-
talline materials with specific symmetries. In addition, to
reduce the computational time and/or for coding con-
venience, LEAPR adopts the short collision time (SCT)
approximation and the atom site approximation in which
the mean-squared displacement (MSD) are supposed the
same for different types of atoms in the same material.

To overcome the limitations of the LEAPR mod-
ule, new codes have been developed in the scientific
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community: NJOY+NCrystal [14], FLASSH [15] and
OCLIMAX [16,17]. They are able to calculate the coher-
ent elastic scattering cross sections of any kind of solid
crystalline materials. NJOY+NCrystal allows to gener-
ate the coherent and incoherent elastic cross sections in
the same ENDF file (mixed elastic format [18]). FLASSH
and OCLIMAX improve the calculations of TSL by
introducing the coherent one-phonon correction [8] to
the incoherent approximation and eliminating the cubic
approximation.

In this work we present the CINEL code which is ded-
icated to generate the thermal neutron scattering files in
ENDF-6 format for solid crystalline, free gas materials
and liquid water. Compared to the LEAPR module of the
NJOY code, CINEL is able to compute the coherent elas-
tic scattering cross sections of any crystals. The generated
ENDF files support the mixed elastic format. CINEL is
able to generate automatically the α and β grids used
for the calculations of S(α, β). Specific properties such as
anharmonicity and texture can be taken into account in
CINEL. The SCT approximation is removed thanks to
the use of graphics processing unit (GPU) acceleration.
CINEL is able to use the PDOS obtained by MD or DFT
calculations.

The main expressions involved in the low-energy neu-
tron scattering formalism are reported in Section 2.
The implementation of CINEL is briefly presented in
Section 3. CINEL is composed of three modules named
Cubic, INELastic and SVT, respectively. Validations of
Cubic and INELastic by comparing with other codes and
databases are presented in Section 4. The automatic gen-
eration of α and β grids, mixed elastic cross section, taking
into account the anharmonicity and texture are illustrated
with examples. Section 5 presents the validations of the
SVT module by comparing with Monte-Carlo calculations
and analytical results. Conclusions and perspectives are
given in the last section.

2 Theory

2.1 General formalisms

As mentioned above, the key quantity in low-energy neu-
tron scattering is the double differential cross section
(DDXS). For unpolarised neutrons and samples, based on
Born approximation or Fermi’s Golden rule [7], the DDXS
can be obtained by:

d2σ~ki⇒~kf
dΩdEf

=
kf
ki
S( ~Q, ω), (1)

where ~ki and ~kf are respectively the wave vectors of
incident and scattered neutrons, ki and kf represent the
wavenumbers with k = |~k|, ~ ~Q is the momentum transfer
of neutron defined by ~ ~Q ≡ ~(~ki − ~kf ) in which ~ is the
Planck constant divided by 2π, ~ω is the energy transfer
with ~ω ≡ Ei−Ef 1, and S( ~Q, ω) is the dynamic structure

1 Ei represents the incident neutron energy, the subscript i is omitted
in this work for the sake of clarity.

factor or scattering function defined by:

S( ~Q, ω) ≡ 1

2π~

N∑
j,j′=1

bj′bj

∫ ∞
−∞
〈j′, j〉 exp(−iωt)dt. (2)

In equation (2), N is the number of particles in the
scattering system under consideration, bj represents the
scattering length of the particle j, bj is the average value,
〈A〉 represents the operator expectation value in the scat-
tering system, and 〈j′, j〉 (notation taken from Ref. [9],
which is referred as intermediate function in Ref. [8]), rep-
resents the correlation between the position of the particle
j at time t and the position of the particle j′ at time 0:

〈j′, j〉 ≡ 〈exp(−i ~Q · ~Rj′(0)) exp(i ~Q · ~Rj(t))〉, (3)

where ~R(t) is the time-dependent Heisenberg operator.
It is assumed that there is no correlation between the

scattering lengths and the positions of the particles in the
scattering system [7], then

bj′bj =

{
bj′ · bj j 6= j′

b2j j = j′
. (4)

Equation (4) enables to decompose the dynamic struc-
ture factor in equation (2) into two distinct parts:

S( ~Q, ω) = Scoh( ~Q, ω) + Sinc( ~Q, ω), (5)

where

Scoh( ~Q, ω) ≡ 1

2π~

N∑
j,j′=1

bj′ · bj
∫ ∞
−∞
〈j′, j〉 exp(−iωt)dt,

(6)
and

Sinc( ~Q, ω) ≡ 1

2π~

N∑
j=1

(
b2j − (bj)

2
)∫ ∞
−∞
〈j, j〉 exp(−iωt)dt.

(7)
Scoh( ~Q, ω) is the coherent scattering function, repre-

senting the correlation between the positions of the same
particle at different time (when j = j′) and the correla-
tion between the positions of different particles at different
time (when j 6= j′). Therefore, Scoh( ~Q, ω) gives interfer-
ence effects [8]. Sinc( ~Q, ω) is the incoherent scattering
function, which represents the correlation between the
positions of the same particle at different time. The inco-
herent scattering does not give interference effects (there
is no terms 〈j′, j〉 for j 6= j′ in Eq. (7)).

Based on equation (2), the value of the scattering func-
tion S( ~Q, ω) increases with the number of particles in
the scattering system. In practice, the normalization is
performed with respect to the number of particles given
by the chemical formula or the unit cell [7]. In addition,
the principle of detailed balance must be fulfilled for the
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dynamic structure factor S( ~Q, ω) [7]:

S( ~Q,−ω) = exp(− ~ω
kBT

)S( ~Q, ω), (8)

where kB is the Boltzmann constant, T is the temperature
of the material under consideration.

2.2 Scattering models for solid crystalline materials

2.2.1 Harmonic, incoherent and cubic approximations

For solid crystalline materials, the operator representing
the position of atom ~R(t) in the intermediate function
(Eq. (3)) can be represented as the displacement of the
atom ~u(t) from its equilibrium position ~d at time t:

~R(t) = ~d+ ~u(t). (9)

In addition, the equilibrium position ~d is a simple vec-
tor, which commutes with all the operators. Hence, the
intermediate function can be obtained by:

〈j′, j〉 = exp(−i ~Q · (~dj′ − ~dj))

× 〈exp(−i ~Q · ~uj′(0)) exp(i ~Q · ~uj(t))〉.
(10)

For practical purposes, it is desired to permute the
exponential and the operator expectation in 〈exp(−i ~Q ·
~uj′(0)) exp(i ~Q · ~uj(t))〉 in equation (10). To this end, the
harmonic approximation is supposed, in which atoms are
assumed to have harmonic vibrations, i.e., the interatomic
forces are linear with respect to the displacements of
atoms and all the higher terms related to the anharmonic
vibrations are neglected. The intermediate function 〈j′, j〉
in equation (10) becomes:

〈j′, j〉= exp(−i ~Q · (~dj′−~dj)) exp(−Wj′( ~Q)) exp(−Wj( ~Q))

× exp(〈( ~Q · ~uj′(0))( ~Q · ~uj(t))〉),
(11)

where Wj( ~Q) is the Debye-Waller function, which mea-
sures the mean-squared displacement (MSD) of the atom
j along the direction ~Q:

Wj( ~Q) =
1

2
〈( ~Q · ~uj(0))2〉. (12)

Note that corrections related to the anharmonic effects
can be lately introduced to the intermediate function in
equation (11), in the case of small atomic displacements
compared to interatomic distances.

In equation (11), 〈( ~Q · ~uj′(0))( ~Q · ~uj(t))〉 represents the
correlation of linear displacement along ~Q of two atoms
at different time. Though the correlation for distinct
atoms j 6= j′ is well formulated, the calculation is com-
putationally cumbersome. Thus, in this work, a widely
used approximation is utilized, called incoherent approx-
imation, in which the correlation for distinct atoms is

neglected for inelastic scattering, i.e.,

〈( ~Q · ~uj′(0))( ~Q · ~uj(t))〉 = 0 if j 6= j′. (13)

For j = j′, the last term in equation (11) does not
vanish. Its computation is quite difficult (〈( ~Q · ~uj(0))( ~Q ·
~uj(t))〉). To circumvent this difficulty, the cubic approxi-
mation is used in this work. It assumes that for atoms of
a solid crystalline material under consideration, the inter-
atomic forces along all directions are isotropic. Under the
cubic approximation, we have:

〈( ~Q · ~uj(0))( ~Q · ~uj(t))〉 =
~Q2

2Mj

∫ ∞
0

ρj(ω)

ω

×
(

coth(
~ω

2kBT
) cos(ωt) + i sin(ωt)

)
dω,

(14)

where Mj is the mass of the atom j, ρj(ω) represents the
phonon density of states (PDOS) of the atom j satisfying∫ ∞

0

ρj(ω)dω = 1. (15)

The cubic approximation has the considerable merit
that it enables to connect the PDOS of atoms to their
dynamics. By utilizing the symmetry of the PDOS versus
ω, i.e., ρj(−ω) = ρj(ω), equation (14) can be rewritten as:

〈( ~Q · ~uj(0))( ~Q · ~uj(t))〉 =
~2Q2

2MjkBT

∫ ∞
−∞

Pj(ω) exp(iωt)dω,

(16)
where

Pj(ω) =
ρj(ω)

2~ω
kBT

sinh(
~ω

2kBT
)

exp(
~ω

2kBT
). (17)

An important condition emerges from equations (16)
and (17): ρj(ω) must vary as ω2 as ω goes to zero,
to ensure the convergence of the temperature-dependent
function Pj(ω). The integral of Pj(ω) provokes the
Debye-Waller coefficient Λj(T ) [13]:

Λj(T ) =

∫ ∞
−∞

Pj(ω)dω. (18)

Based on equations (12) and (16), the Debye-Waller
function Wj( ~Q) represents the dynamics of the atom j at
t = 0. In addition to equation (18),Wj( ~Q) can be obtained
from the corresponding Debye-Waller coefficient Λj(T ) as:

Wj( ~Q) =
~2Q2

4MjkBT
Λj(T ). (19)

Thanks to the incoherent and cubic approximations,
the dynamic term 〈( ~Q · ~uj(0))( ~Q · ~uj(t))〉 and the Debye-
Waller function Wj( ~Q) in the intermediate function
(Eq. (11)) can be obtained with equations (16) and (19),
respectively. The following step consists of expanding



4 S. Xu et al.: EPJ Nuclear Sci. Technol. 8, 8 (2022)

exp(〈( ~Q · ~uj(0))( ~Q · ~uj(t))〉) in equation (11) in a Taylor
series:

exp(〈( ~Q · ~uj(0))( ~Q · ~uj(t))〉)

=

∞∑
n=0

1

n!

(
〈( ~Q · ~uj(0))( ~Q · ~uj(t))〉

)n
. (20)

Equation (20) is referred to phonon expansion, origi-
nally introduced by Sjölander [19]. The first term n = 0
corresponds to elastic scattering (no energy exchange
between the incident neutron and the system under con-
sideration). The terms n ≥ 1 represent inelastic scattering
contributions.

The cross sections of the coherent elastic scattering,
incoherent elastic scattering and inelastic scattering are
presented in the following sections.

2.2.2 Coherent elastic scattering

Important crystallographic quantities used for the calcu-
lations of the coherent elastic scattering cross section for
solid crystalline materials are presented. Any crystal can
be characterized by a periodic unit cell containing Nuc
atoms. In the direct lattice, it is defined by a set of unit
vectors ~a,~b, ~c of lengths a, b, c and volume Vuc = ~a · (~b×~c).
The angles between them are conventionally denoted α, β
and γ. The position of the jth atom located at the point
(xj , yj , zj) is given by:

~pj = xj~a+ yj~b+ zj~c xj , yj , zj ∈ [0, 1]. (21)

In the reciprocal lattice, the unit vectors become:

~τa =
2π

Vuc
(~b× ~c), ~τb =

2π

Vuc
(~c× ~a), ~τc =

2π

Vuc
(~a×~b),

(22)
and indices h, k, l denote planes (hkl) orthogonal to the
reciprocal lattice vector:

~τhkl = h~τa + k~τb + l~τc. (23)

Given that the Fourier transform of a constant function
is a Dirac delta function:∫ ∞

−∞
exp(−iωt)dt = 2πδ(ω), (24)

and thanks to equations (6), (11) and (20), the coherent
elastic dynamic structure factor Sel

coh( ~Q, ω) is given by:

Sel
coh( ~Q, ω) =

δ(ω)

~

Nuc∑
j, j′=1

bj · bj′ exp(−i ~Q · (~dj′ − ~dj))

× exp(−Wj′( ~Q)) exp(−Wj( ~Q)).
(25)

Considering a crystal with the previous notations,
Sel

coh( ~Q, ω) can be rewritten as:

Sel
coh( ~Q, ω) =

(2π)3δ(ω)

~Vuc

∑
hkl

δ( ~Q− ~τhkl) |F (~τhkl)|2 . (26)

The neutron diffraction will occur from the planes
(hkl) that are oriented at the correct angle to fulfill the
Bragg condition. The coherent elastic cross section per
atom emerges from the sum of all the neutron scatter-
ing contributions over the Nuc atoms of the unit cell and
plans (hkl). The analytical expression taking into account
the anharmonicity and the texture properties for crystal
powder is given by:

σel
coh(E) =

π2~2

mNucVucE

E≥Ehkl∑
hkl

dhkl |F (~τhkl)|2 Phkl(Θhkl),

(27)
with

F (~τhkl) =

Nuc∑
j=1

bj exp

(
− ~2τ2

hkl

4MjkBT
Λj(T )

)
ei~τhkl·~pj−icj123τ

3
hkl ,

(28)
in which m is the neutron mass, Ehkl = ~2τ2

hkl/(8m) rep-
resents the Bragg edges, dhkl = 2π/τhkl stands for the
distance between adjacent planes (hkl) and bj is the bound
coherent scattering length.

Compared to the reported equation in the literature [9,
14], in our work, the texture or preferred orientation
correction is taken into account by introducing the cylin-
drically symmetric Pole-Density Distribution Function
(PDDF) Phkl(Θhkl) which depends on the orientation
angle Θhkl, i.e., angle between the preferred orientation
vector ~PO and the plan vectors ~τhkl:

Θhkl = arccos

(
~PO · ~τhkl

‖ ~PO‖‖~τhkl‖

)
. (29)

Various types of PDDFs reported in the literature [20]
are investigated, such as the models proposed by March-
Dollase [21,22], Altomare et al. [23], Černý, Valvoda, and
Chládek [24]. The impact of introducing the PDDFs to the
calculations of σel

coh(E) will be illustrated in Section 4.4.
The third-cumulant coefficient cj123 is introduced in the

form factor to account for the anharmonicity of atoms [25].
The influence of the anharmonicity of oxygen atoms
in uranium dioxide on σel

coh(E) will be investigated in
Section 4.3.

2.2.3 Incoherent elastic scattering

Sel
inc, j(Q, ω) representing the incoherent elastic dynamic

structure factor of the atom j is obtained thanks to
equations (7), (11), (19), (20) and (24), which is given
by:

Sel
inc, j(Q, ω) =

δ(ω)

~

(
b2j − (bj)

2
)

exp

(
− ~2Q2

2MjkBT
Λj(T )

)
.

(30)
The incoherent elastic scattering cross section σel

inc, j(E)
is obtained by integrating the dynamic structure factor
Sel

inc, j(Q, ω) in energy and scattering angle. The analytical
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result is given by:

σel
inc, j(E) =

AjkBT

4EΛj(T )

(
1− exp

(
−4EΛj(T )

AjkBT

))
σinc, j ,

(31)
where Aj = Mj/m is ratio of the mass of the atom j to the
neutron mass and σinc, j = 4π

(
b2j − (bj)

2
)

is the bound
incoherent scattering cross section of the atom j. The
incoherent elastic cross section can thus be determined by
the Debye-Waller factor Λj(T ).

2.2.4 Inelastic scattering

Under the incoherent and cubic approximations, the
inelastic dynamic structure factor Sinel(Q, ω) can be
obtained by summing the coherent and incoherent inelas-
tic components. Thanks to equations (6), (7), (11)
and (20), Sinel

j (Q, ω) representing the inelastic dynamic
structure factor of the atom j is given by:

Sinel
j (Q, ω)

=
b2j
~

e−
~2Q2

2MjkBT Λj(T )
∞∑
n=1

1

n!

(
~2Q2

2MjkBT
Λj(T )

)n
Tj, n(ω),

(32)

where Tj, n(ω) has the generic form (when n ≥ 2):

Tj, n(ω) =

∫ ∞
−∞
Tj, 1(ω′)Tj, n−1(ω − ω′)dω′. (33)

The one-phonon term is given by:

Tj, 1(ω) =
1

Λj(T )
Pj(ω). (34)

2.3 Scattering models for free gas materials

The momentum transfer ~ ~Q and the energy transfer
~ω are large when neutrons scatter with free gas parti-
cles. Hence, the interaction time is short and the time
dependent Heisenberg operator ~R(t) which represents
the position of the particle in the intermediate function
(Eq. (3)) can be approximated by its first order term [26]:

~R(t) = ~R(0) + ~vt, (35)

where ~v is the speed of the particle.
Since there is no inter-particle interaction for a free gas

material, the incoherent approximation is automatically
valid. Thus, the intermediate function 〈j, j〉 is given by:

〈j, j〉 = 〈exp(i ~Q · ~vt)〉. (36)

The free gas material is assumed to be monatomic.
From the statistical point of view, the speeds of the
free gas atoms ~v follow the Maxwell-Boltzmann (M-B)
distribution with:

~v ∝ exp(−v2/v2
p), (37)

where v2
p = 2kBT/M is the square of the most probable

speed, T represents the temperature of the gas and M is
the mass of the gas atom.

By replacing the M-B distribution (Eq. (37)) in equa-
tion (36), thanks to the Gaussian integral property and
the Fourier transform of the Gaussian function, the
intermediate function for monatomic free gas is given by:

〈j, j〉 = exp(−Q2w2(t)/2), (38)

where w(t) is the width function of the free gas:

w(t) = t

√
kBT

M
(39)

w(t) in equation (39) should be corrected to account for
quantum effects [27,28]:

w̃(t) =

√
w2(t)− i~

M
t. (40)

Based on equations (2), (38), (39) and (40), the dynamic
structure factor for monatomic free gas can be obtained
by:

S(Q, ω) =
b2

~

√
M

2πkBTQ2
exp

(
− M

2kBTQ2

(
ω − ~Q2

2M

)2
)
.

(41)

2.4 Scattering models for liquid water

The intermediate function 〈j′, j〉 (Eq. (3)) of liquid mate-
rials obtained by a Fourier transform of the generalized
pair distribution function G(~r, t) is introduced by Van
Hove [10].

By distinguishing the contribution from the same par-
ticle to different particles, Van Hove split G(~r, t) into a
self part Gs(~r, t) and a distinct part Gd(~r, t):

G(~r, t) = Gs(~r, t) +Gd(~r, t). (42)

For a given particle at position ~r and time t,
Gs(~r, t)d~rdt represents the probability of finding the same
particle between ~r and ~r + d~r in a time interval t and
t+ dt. Similarly, Gd(~r, t)d~rdt is the probability of finding
a distinct particle between ~r and ~r+ d~r in a time interval
t and t+ dt.

Since it is difficult to predict theoretically the con-
tribution from the distinct part, we use the incoherent
approximation, as for solid crystalline materials:

Gd(~r, t)) ∼= 0. (43)

To obtain an analytical form of Gs(~r, t), Vineyard [29]
introduces the Gaussian approximation that assumes a
weak time-dependent atomic position coupling:

Gs(~r, t) ∼= (2π)−3/2w−3(t) exp(−r2/2w2(t)), (44)

where 3w2(t) represents the mean square displacement of
the particle after time t, in which w(t) is called the width
function.
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Under the incoherent and Gaussian approximations, the
dynamic structure factor S( ~Q, ω) for liquid materials is
given by:

S( ~Q, ω) =
1

2π~
b2
∫ ∞
−∞

exp(−Q2w2(t)/2) exp(−iωt)dt.

(45)
The Q2 dependence of equation (45) indicates that

S( ~Q, ω) is isotropic with respect to the momentum
transfer, leading to:

S( ~Q, ω) ≡ S(Q,ω). (46)

The width function w(t) plays a central role in the cal-
culation of the dynamic structure factor. In this work,
we focus on liquid water which is widely used as modera-
tor in pressurized water reactors. An analytical expression
of w(t) was proposed in the sixties [30] for liquid water.
However, introducing such an expression in equation (45)
leads to numerical issues at zero energy transfer. These
mathematical problems can be solved by decoupling the
mean square displacement into a diffusion part wdiff(t) and
a solid-like vibrational part wvib(t):

w2(t) = w2
diff(t) + w2

vib(t). (47)

The corresponding diffusion Sdiff(Q,ω) and solid-like
Svib(Q,ω) parts of the dynamic structure factor are calcu-
lated with equation (45) by introducing different models
for wdiff(t) and wvib(t). According to the convolution
theorem for Fourier transforms, the composite dynamic
structure factor is calculated as follows:

S(Q,ω) =
~
b2

∫ ∞
−∞

Sdiff(Q,ω
′)Svib(Q,ω − ω′)dω′, (48)

where ~/b2 is a scale coefficient, the values of Sdiff(Q,ω)
and Svib(Q,ω) depend on the density of states ρ(ω) of
liquid water, which is partitioned in two parts:

ρ(ω) = wdρdiff(ω) + wvρvib(ω). (49)

The diffusion wd and solid-like vibrational wv weights
satisfy the condition:

wd + wv = 1. (50)

The diffusion weight wd can be calculated with
the model involving the fluidicity [31,32], proposed by
Marquez Damian (private communications, 2021). The
roto-translational diffusion model with random jump dif-
fusion correction for Sdiff(Q,ω) has been investigated in
reference [33]. The formalisms are recalled here.

In view of using a descriptive analytical model, the
diffusion term in equation (48) related to liquid water
is approximated by a translational diffusion motion
corrected for rotational diffusion contributions:

Sdiff(Q,ω) =

∫ ∞
−∞

Strans(Q,ω
′)Srot(Q,ω − ω′)dω′. (51)

The translational diffusion behavior of the water
molecule was interpreted with the Egelstaff-Schofield dif-
fusion model [34], in which the width function is given
by:

w2
trans(t) =

2 c wd ~2

MkBT

√(kBT
~

)2

+ c2 +
1

4
− c

 (52)

where M is the mass of the scattering atom and c is a
dimensionless diffusion parameter. Its meaning has been
revisited in reference [35] by introducing the Singwi-
Sjolander residence time τ0 [36] to account for the
non-continuous motions of the water molecules:

c =
M

~wd
D(Q), (53)

with

D(Q) =
D

1 +DQ2τ0
, (54)

in which D represents the self-diffusion coefficient of the
liquid water. The dynamic structure factor Strans(Q,ω)
can be derived analytically by introducing equation (52)
in equation (45) with correction to fulfill the principle of
detailed balance:

Strans(Q,ω) =
b2

kBT

DQ2

π
e

MD2Q2

wdkBT
+ ~ω

2kBT

√
c2 + 1/4√

ω2 + (DQ2)2
K1(x),

(55)

in which K1(x) is the modified Bessel function of the
second kind, with:

x =
~

kBT

√
c2 +

1

4

√
ω2 + (DQ2)2. (56)

The rotational diffusion correction in equation (51) is
related to the dynamics of hydrogen bonds. Their con-
tributions is approximated with the Sears expansion [37]
expressed in terms of spherical Bessel functions jl(QRcm)
of order l:

Srot(Q, ω) =j2
0(QRcm)δ(ω)

+
1

π

∞∑
l=1

(2l + 1)

× j2
l (QRcm)

l(l + 1)(~/6τR)

ω2 + [l(l + 1)(~/6τR)]
2 .

(57)

This model assumes a continuous and isotropic rota-
tion of the hydrogen atoms arround the center of mass
of the molecule with a rotational relaxation time τR. The
rotation of the water molecule is confined to a spherical
surface of radius Rcm, whose value is often taken equal to
the O-H intramolecular distance.

The computation of the solid-like Svib(Q,ω) part of
the dynamic structure factor is equivalent to the inelastic
part of dynamic structure factor for the solid crystalline
materials.
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Fig. 1. JupyterLab interface. Live code, texts, mathematical equations and interactive graphics are mixed in Jupyter Notebooks
which are integrated in JupyterLab together with blocks like terminal and text editor.

2.5 Converting S(Q,ω) into thermal scattering laws

The dynamic structure factor for nuclear materials (e.g.,
beryllium, iron, liquid water) is routinely used to sim-
ulate the neutron behaviors in light water reactors.
The neutron transport formalism implemented in dedi-
cated Monte-Carlo or deterministic code systems relies
on the symmetric form of the thermal scattering laws
S(α, β) [12,38], which is defined as a function of the
dimensionless parameters α:

α =
~2Q2

2MkBT
=
E′ + E − 2µ

√
E′E

AkBT
, (58)

and β:

β = − ~ω
kBT

= −E − E
′

kBT
(59)

where µ = cos(θ) is the cosine of the scattering angle θ in
the laboratory system and A is the ratio of the mass M
of the scattering atom to the neutron mass. The change
of sign in equation (59) is introduced to keep neutron
energy gains positive in neutron transport calculations.
The relationship between S(α, β) and S(Q,ω) is given by
the following expression:

S(α, β) =
kBT

b2
e−

~ω
2kBT S(Q,ω). (60)

Note that the thermal scattering laws S(α, β) are
symmetric in energy.

3 Implementation of CINEL

CINEL is developed in Python by using JupyterLab [39].
JupyterLab is a new generation of user interface [40]
which is an open-source tool enabling to mix live code,
texts, mathematical equations and interactive graph-
ics. An example of JupyterLab interface is given in
Figure 1 for illustration. This interactive development
environment facilitates the verification and visualization
of calculations.

CINEL consists of three modules: Cubic, INELastic and
SVT. The data flow presenting the generations of the ther-
mal scattering laws (TSL) in ENDF-6 format by using the
Cubic and INELastic modules, and the scattered neutron
energy distributions via the SVT module are shown in
Figure 2. These modules will be briefly presented in the
following.

3.1 Cubic and INELastic modules

Various physical quantities are necessary for the gener-
ation of the TSL such as scattering length, positions of
atom in the unit cell, general settings and temperature-
dependent parameters including the lattice parameters,
PDOS and the phonon expansion order. Optional param-
eters are preferred orientation of crystal ~PO, cylindrically
symmetric PDDF Phkl(Θhkl) and the third-cumulant
coefficient cO123.

The Cubic module calculates the Debye-Waller coef-
ficients Λ(T ) and the coherent elastic scattering cross
sections σel

coh(E). Λ(T ) is computed from the PDOS
(Eq. (18)) since the cubic approximation is assumed.
σel

coh(E) is calculated by directly looping through the
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Fig. 2. Data flow presenting the generation of the thermal scattering laws in ENDF-6 format and scattered neutron energy
distributions by using CINEL.

Fig. 3. Screenshot of cross section file generated by the Cubic module of CINEL for uranium dioxide at 296 K. Columns 1 to 11
represent respectively: index h, k, l, interplanar distance dhkl (in Å), diffraction angle θhkl (in degree), orientation angle Θhkl (in
degree), Pole-Density Distribution Function value Phkl(Θhkl), form factor square |F (τhkl)|2 (in barn), multiplicity Mhkl, Bragg
edge Ehkl (in eV) and Ehklσ

el
coh(Ehkl) (in eV.barn), which serve as calculations of the coherent elastic cross sections.

indexes hkl until the interplanar distance dhkl of the corre-
sponding plan is smaller than 0.1 Å. The default threshold
value is chosen to be 0.1 Å because the contribution from
plans with dhkl < 0.1 Å to σel

coh(E) can be neglected, as
discussed in reference [9]. Nonetheless, the threshold value
can always be modified by the users. During the loop
over hkl, plans with identical interplanar distance dhkl
and form factor |F (τhkl)| are grouped together since they
contribute equally to σel

coh(E) (Eq. (27)). The number of
identical plans (hkl) is referred to multiplicityMhkl. These

physical quantities are calculated by CINEL and stored in
ASCII file, as illustrated in Figure 3.

If the incident neutron energy E is provided, the diffrac-
tion angle θhkl corresponding to the Bragg edge Ehkl is
given by:

θhkl = arccos(1− 2Ehkl/E). (61)

The orientation angle Θhkl and Phkl(Θhkl) can be
obtained if the preferred orientation of crystal and the
PDDF model are given in input.
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Table 1. Comparison of the computational time of the TSLs of H in H2O at room temperature with a phonon
expansion order Nphonon = 2000.

CPU GPU K20 GPU K6000
GPU memory (gigabyte) N/A 2 12
CUDA cores N/A 384 2280
Computational time ∼3 h ∼15 min <2 min

Table 2. Comparison of codes or platforms which enable to calculate the TSL.

Codes/Platforms NJOY+NCrystal OCLIMACX FLASSH CINEL (this work)
Harmonic approximation Yes Yes Yes Yes
1-p correction2 No Yes Yes No
Cubic approximation Yes No No Yes
Support any material Yes Yes Yes Yes
SCT approximation Yes No No No
GPU speedup No Not reported Not reported Yes
Automatic α β grids No Yes Yes Yes

The INELastic module calculates the S(α, β) tables
with the phonon expansion method. The Egelstaff-
Schofield diffusion model and the recombination of the
diffusive and vibrational parts are also implemented in
INELastic. Physical constants such as Boltzmann con-
stant and common functions used by Cubic and INELastic
are available via the library CINELLib.

To improve the performance of Cubic and INELas-
tic, a Just-in-Time (JIT) compiler named Numba [41] is
used. Numba allows to reduce the computational time
by directly adding simple Python syntaxes to the initial
functions without rewriting them in low-level languages.
In addition, Numba supports Compute Unified Device
Architecture (CUDA) graphics processing unit (GPU)
programming, which enables these two modules to benefit
from the powerful computing capability of GPU.

GPU programming, introduced in the early 2000s, has
been developed tremendously during the last two decades.
In our work, the use of GPU enables to accelerate the
phonon expansion calculation. To test the speedup with
GPU, the TSL of hydrogen bound in water molecule (H in
H2O) at room temperature were calculated with a phonon
expansion order Nphonon = 2000. Two kinds of GPU are
used: NVIDIA® QUADRO® K620 with 2 gigabyte mem-
ory and 384 cores; NVIDIA® QUADRO® K6000 with
12 gigabyte memory and 2880 cores. The comparisons
of the computational time are presented in Table 1.
High performing GPU allows to significantly reduce the
computational time down to 2 minutes.

Approximations adopted in codes are summarized in
Table 2. For strongly coherent crystalline materials such
as pyrolytic graphite, the introduction of the coherent
one-phonon correction [8] to the incoherent approxima-
tion enables to better reproduce the experimental inelastic
scattering cross sections as shown in reference [42]. The
calculations of one-phonon coherent inelastic scattering

2 For coherent one-phonon correction to incoherent approximation.

function necessitates the dispersion relations of materials.
This correction will be implemented in the future version
of CINEL. The cubic approximation will also be elimi-
nated since it only necessitates the partial PDOS which
can be calculated by DFT codes.

3.2 SVT module

The SVT module is implemented with the Sampling the
Velocity of the Target nucleus (SVT) algorithm [43,44],
in which the neutron-nucleus scattering is approximated
by the two-body kinetics as illustrated in Figure 4. The
neutron mass and the mass of target nucleus are respec-
tively m and M with M = Am. The speeds of neutron and
target nucleus are respectively ~v and ~V . Angles between
two speeds are represented by θ. The subscripts of ~v or θ
indicate their belonging frame and the superscript ′ repre-
sents the physical quantities after scattering. For example,
~vTR and ~v′TR are respectively the speeds of neutron in
the target-at-rest (TR) frame before and after scattering.
For the sake of clarity, the subscripts of quantities in the
laboratory (LAB) frame are omitted.

As presented in the data flow of CINEL (Fig. 2), the
incident neutron energy E and the velocities of the target
nuclei V are necessary for the calculation of the scattered
neutron energy distributions. V are either sampled from
trajectory files obtained by molecular dynamics (MD)
calculations, or from a Maxwell-Boltzmann (M-B) distri-
bution MT (V ) which is determined by the temperature
or effective temperature of the nuclei. In the latter case,
the cosine of the angle between the incident neutron and
the target nucleus µ = cos(θ) before collision is sampled
uniformly on [−1; 1].

The equations implemented in the SVT module to cal-
culate the scattered neutron energy E′ and the cosine of
the scattering angle µ′ = cos(θ′) are summarized in the
following. The first step consists of calculating the rela-
tive velocity between the incident neutron and the target
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Fig. 4. Schematic representation of neutron-nucleus scattering in LAB (top plot), TR (bottom left plot) and CM (bottom right
plot) frames. Detail descriptions can be found in the text.

nucleus:

vTR = ‖~v − ~V ‖ =
√
v2 − 2µvV + V 2, (62)

where v =
√

2E/m represents the incident neutron veloc-
ity.

This step enables to transform the neutron-target sys-
tem from the LAB frame to the TR frame, as shown in
Figure 4, from the top plot to the bottom left plot. Next
step is to transform the studied system from the TR frame
to the center-of-mass (CM) frame in which the neutron-
target collision is assumed to be isotropic. The speed of
the CM frame in the TR frame ~cTR is computed by:

~cTR =
~vTR

1 +A
. (63)

Then the speeds of neutron and target in the CM frame
~vCM and ~VCM can be obtained respectively by subtracting
the speed of the CM frame:

~vCM =
A~vTR

1 +A
, (64)

and

~VCM = − ~vTR

1 +A
. (65)

Since the neutron-target collision is assumed to be
isotropic in the CM frame, the cosine of the scattering

angle µCM = cos(θCM) is sampled uniformly on the inter-
val [−1; 1]. The total momentum and the kinetic energy of
the neutron-target system are conserved before and after
the collision. It can be easily shown that the scalar veloci-
ties of the neutron and the target remain invariant in the
CM frame, i.e., vCM = v′CM and VCM = V ′CM, as illustrated
in the bottom right plot of Figure 4.

The following step is to transform back the neutron-
target system from the CM frame to the TR frame. Based
on geometric relations, speeds in the TR and CM frames
lie on the same plan (P ′). The scalar velocity of the post-
collision neutron v′TR and the cosine of the scattering
angle µ′TR = cos(θ′TR) in the TR frame can be respectively
calculated by:

v′TR =

√
(1 + 2µCMA+A2)(v2 − 2µvV + V 2)

1 +A
(66)

and

µ′TR =
1 + µCMA√

1 + 2µCMA+A2
. (67)

The final step consist of transforming the neutron-
target system back to the LAB frame to calculate v′ and
µ′ = cos(θ′). The target speed ~V lying on the plan (P )
which does not coincide with the plan (P ′) except for
µ = ±1. Thus, an azimuthal angle φCM must be sampled.
φCM is sampled uniformly on the interval ] − π;π] based
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on the assumption that the neutron scattering is isotropic
in the CM frame. In summary, there are four variables
sampled in the SVT algorithm [45]: V and µ are related
to the motion of target nuclei, and µCM and φCM are used
in the collision kinematics.
µr = cos(θr) is the cosine of the angle between the rel-

ative speed ~v − ~V and the speed of the target nucleus
~V :

µr =
µv − V√

v2 − 2µvV + V 2
. (68)

The speed of the scattered neutron in the TR frame
~v′TR is decomposed into two components with one parallel
to the relative speed ~v − ~V and the other perpendicular
to it, i.e., ~v′TR = ~v′TR, ‖ + ~v′TR,⊥. Equally, the speed of the
target nucleus is decomposed into ~V = ~V‖ + ~V⊥. Hence,
the speed of the scattered neutron in the LAB frame ~v′
can be obtained by:

~v′ = ~v′TR + ~V = ~v′TR, ‖ + ~v′TR,⊥ + ~V‖ + ~V⊥. (69)

Based on geometric relations, the velocity of the scat-
tered neutron in the LAB frame v′ can be calculated
by:

v′ = (v′TR)2 + 2µV v
′
TRV + V 2, (70)

where µV = cos(θV ) represents the cosine of the angle
between v′TR and ~V , which is obtained thanks to the
decompositions of ~v′TR and ~V in equation (69) and

µV = µ′TRµr +
√

1− (µ′TR)2
√

1− µ2
r cos(φCM). (71)

µV can be computed thanks to the calculations of µ′TR
and µr from equations (67) and (68). Since v′TR can be
obtained from equation (66), the velocity of scattered
neutron in the LAB frame v′ in equation (70) can be
determined. Finally, the cosine of the scattering angle
µ′ = cos(θ′) can be calculated by:

µ′ =
(~vTR + ~V ) · (~v′TR + ~V )

vv′
(72)

=
vTRv

′
TRµ

′
TR + vTRV µr + v′TRV µV + V 2

vv′
.

4 Numerical validations of the cubic and
INELastic modules

As presented in the data flow of CINEL in Figure 2,
the Debye-Waller factor Λ(T ) and the coherent elastic
scattering cross section σel

coh(E) computed from the Cubic
module, and the symmetric TSL (S(α, β)) calculated from
the INELastic module are merged into a file in ENDF-6
format. The ENDF files are later processed by using the
THERMR module of NJOY to obtain the inelastic scatter-
ing cross sections. The numerical validations of the Cubic
and INELastic modules of CINEL were performed by com-
paring the calculated scattering cross sections of solid

crystalline materials with the ENDF/B-VIII.0 database
and the NJOY+NCrystal library.

4.1 Automatic generation of α and β grids: UO2

Uranium dioxide (UO2) is the major component of the
UOX fuel. In the ENDF/B-VIII.0 database, UO2 as ideal
fluorite structure with Fm3̄m symmetry is illustrated
in Figure 5a. The atom positions in the unit cell are
presented in Table 3.

The PDOS of 238U in UO2 and 16O in UO2 for the lat-
est ENDF/B-VIII.0 database are generated by using the
ab initio lattice dynamics methods [48]. The two peaks
of the PDOS of 238U in UO2 in Figure 6 correspond to
the acoustic modes of the uranium atoms. The peak at
nearly 10 meV corresponds to the transverse acoustic (TA)
mode while the peak at nearly 20 meV corresponds to
the longitudinal acoustic (LA) mode. The peaks at nearly
30 meV, 55 meV and 70 meV are dominated by the opti-
cal modes of the oxygen atoms. The peak at roughly 30
meV stems from the transverse and longitudinal optical
(TO1, LO1) modes. The peak at nearly 55 meV corre-
sponds to the transverse optical mode (TO2) and the last
peak at nearly 70 meV corresponds to the longitudinal
optical mode (LO2).

CINEL is able to generate automatically the α and β
grids for the calculations of the S(α, β) tables. Impor-
tant steps are summarized in the following. The first step
consists of determining the minimum and the maximum
values of the α and β grids. According to equation (58),
the minimum momentum transfer αmin is obtained when
µ = 1:

αmin =
(
√
E′ −

√
E)2

AkBT
. (73)

The scattered neutron energy is regarded as having
an energy gain δE compared to the incident energy, i.e.,
E′ = E + δE, then equation (73) can be rewritten as:

αmin =
δE

4AkBT
. (74)

The momentum transfer achieves its maximum value
αmax when µ = −1:

αmax =
(
√
E′ +

√
E)2

AkBT
. (75)

Since the incident neutron energy has a threshold Ethr,
αmax in equation (75) is obtained:

αmax =
4Ethr

AkBT
. (76)

In the case of the energy transfer β, based on equa-
tion (59), the minimum value βmin and the maximum value
βmax are respectively:

βmin = 0 when E′ = E, (77)
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Fig. 5. Left hand plot presents the cubic unit cell of UO2: a = b = c and α = β = γ = 90◦. Blue and red spheres represent
respectively uranium and oxygen atoms. Right hand plot presents the tetragonal unit cell of MgH2 or MgD2: b = c and α = β =
γ = 90◦. Orange spheres represent magnesium atoms. Pink spheres represent hydrogen or deuterium atoms. The drawings of these
two figures are with the aid of the Crystal Toolkit in the Materials Project [46].

Table 3. Positions of uranium and oxygen atoms in the
unit cell of UO2 with Fm3̄m symmetry [47].

Atom j
~pj

x y z

U 1 0 0 0
U 2 0 1/2 1/2
U 3 1/2 0 1/2
U 4 1/2 1/2 0
O 5 1/4 3/4 3/4
O 6 1/4 1/4 3/4
O 7 1/4 1/4 1/4
O 8 1/4 3/4 1/4
O 9 3/4 3/4 1/4
O 10 3/4 1/4 1/4
O 11 3/4 1/4 3/4
O 12 3/4 3/4 3/4

and

βmax =
Ethr

kBT
when E = Ethr and E′ = 0. (78)

The second step is to fix the number of grids Nα and Nβ
and the distribution modes: logarithmic, linear or mixed.

In the case of UO2, the value of δE is set to be
2.8 meV. The energy threshold Ethr = 5 eV, Nα = 150 and
Nβ = 200. Note that these parameters can be modified by
the users.

Results are presented in Figure 7. The total scattering
cross sections of UO2 for a wide temperature range (from
room temperature to 1200 K) obtained by using the Cubic
and INELastic modules are in very good agreement with
the ENDF/B-VIII.0 database.

Fig. 6. PDOS of 238U in UO2 and 16O in UO2, obtained from ab
initio lattice dynamic methods [48].

4.2 Mixed elastic format: MgH2 and MgD2

Magnetism hydride (MgH2) is investigated as a potential
candidate for cold neutron reflectors [51]. Magnetism deu-
teride (MgD2) shows improvements on neutron slowing
down since the neutron capture cross section of deu-
terium is lower than that of hydrogen. MgH2 and MgD2
share the same crystal structure which is illustrated in
Figure 5b. The PDOS of components in MgH2 and MgD2
generated by Campi and Bernasconi from University of
Milano-Bicocca within the density functional perturbation
theory [49,50], are presented in Figure 8.

To overcome the shortage of the ENDF-6 format in
which the coherent and incoherent elastic components
cannot be encompassed in the same file, the scientific
community has proposed recently a mixed elastic format.
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Fig. 7. Comparison of the total scattering cross sections of
UO2 for temperatures from 296 K to 1200 K. The resonances
of uranium are not included in the calculated cross sections.

Fig. 8. PDOS of 24Mg in MgH2, 1H in MgH2, 24Mg in MgD2
and D in MgD2, generated by using the density functional
perturbation theory [49,50].

This new option is supported in CINEL when gener-
ating the ENDF files. The mixed elastic cross sections
are illustrated with MgD2 in Figure 9. The comparisons
of the CINEL calculated total cross sections of MgH2
and MgD2 with the NJOY+NCrystal library are pre-
sented in Figure 10. An excellent agreement with the
NJOY+NCrystal library is obtained.

The total cross sections (elastic and inelastic) are in
excellent agreement with the ENDF/B-VIII.0 database
and the NJOY+NCrystal library, which validates the
Cubic and the INELastic modules. The symmetric S(α, β)
tables generated by using the INELastic module are in
excellent agreement with the ENDF/B-VIII.0 database,
as illustrated in Xu’s thesis [52].

Fig. 9. Total scattering cross section (solid line) and the coher-
ent/incoherent elastic/inelastic components (dot lines) of MgD2
at 293.6 K.

Fig. 10. Comparison of the total scattering cross sections of
MgH2 and MgD2 for temperatures from 20 K to 600 K.
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Fig. 11. Comparison of coherent elastic scattering cross sections
of UO2 with different third-cumulant coefficient values: cO

123 =
0, 10−3, 5× 10−3.

Fig. 12. Comparison of cylindrically symmetric PDDF proposed
by March-Dollase with parameter P1 = 0.6 and Altomare et al.
with P1 = 1.5.

4.3 Anharmonicity of oxygen

The anharmonic motion of the oxygen atoms in UO2 with
fluorite symmetry (illustrated in Fig. 5a) is taken into
account by using the third-cumulant coefficients cj123 [25].
cU123 are zero due to the symmetry of UO2. The impact of
introducing the non-zero coefficient cO123 on the coherent
elastic cross sections is illustrated in Figure 11. The posi-
tions of the Bragg diffraction peaks remain unchanged.
However, the impact on the coherent elastic cross section
σel

coh(E) increases with the incident neutron energy E
until σel

coh(E) reaches the asymptotic part (when E is
larger than about 0.1 eV). The impact of cO123 on the
Monte-Carlo simulations of uranium dioxide is discussed
in reference [53].

Fig. 13. Comparison of coherent elastic scattering cross section
σel

coh(E) of zirconium with random orientation and with pre-
ferred orientation ~PO = [0, 0, 1]. σel

coh(E) obtained by using the
cylindrically symmetric PDDFs proposed by March-Dollase and
Altomare et al. are respectively presented.

4.4 Texture: zirconium

Texture or preferred orientation presented in solid crys-
talline materials impacts the neutron diffraction compared
to materials with random orientation. In this work,
the texture is taken into account by the cylindrically
symmetric Pole-Density Distribution Function (PDDF)
Phkl(Θhkl). The PDDFs proposed by March-Dollase [21,
22] and Altomare et al. [23] are respectively given by:

PMD
hkl (Θhkl) = (P 2

1 cos2(Θhkl) + P−1
1 sin2(Θhkl))

−3/2,
(79)

and

PAl
hkl(Θhkl) = exp(P1 cos(2Θ)), (80)

where P1 is given by the users.
The comparison of the PDDFs PMD

hkl (Θhkl) and
PAl
hkl(Θhkl) is illustrated in Figure 12. These PDDFs are

applied to the zirconium crystalline with preferred orien-
tation ~PO = [0, 0, 1] at room temperature. The obtained
coherent elastic scattering cross sections of zirconium
are compared to the calculations with random orienta-
tion in Figure 13. The positions of Bragg diffraction
peaks are invariant. The modifications of the peak inten-
sities correspond to the introduced PDDFs presented in
Figure 12.

5 Numerical validations of the SVT module

5.1 Comparison with the Tripoli-4® calculations

In this part, the algorithm implemented in the SVT
module of CINEL (cf. Sect. 3.2) is validated by com-
paring the scattered neutron energy distributions of 1H
and 16O in form of free gas materials with the results
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Fig. 14. Comparison of the scattered neutron energy distri-
butions of 1H and 16O (free gas materials) obtained by using
the SVT module of CINEL and Tripoli-4® for incident neutron
energies E = 5 eV and 6.67 eV, respectively.

obtained by using the Monte-Carlo neutron transport
code Tripoli-4® [54].

The physical model employed in the Tripoli-4® sim-
ulations is briefly presented. A capillary sample with a
radius equal to 5 µm and a height of 10 µm is placed in
the center of the simulation model. The dimensions are
chosen to minimize the impact of multiple scattering. The
incident neutron energy is monoenergetic which is set to
be 5 eV for free 1H and 6.67 eV for free 16O. The out-
going neutrons are detected at θ′ = 10◦, 45◦ and 90◦.
The Tripoli-4® simulations are performed at room tem-
perature with T = 294 K for 1H and T = 298 K for 16O,
respectively.

The incident neutron energy E is set to be 5 eV and
6.67 eV for 1H and 16O in the SVT module, respectively.
The velocities of the target nuclei are sampled from a
M-B distribution MT (V ) with T = 294 K for 1H and
T = 298 K for 16O:

MT (V ) =
4√
π
B3V 2 exp(−B2V 2), (81)

where

B =

√
M

2kBT
. (82)

The scattered neutron energy distributions obtained by
using the SVT module of CINEL and Tripoli-4® are com-
pared in Figure 14. Overall good agreement is obtained
for all the angles, which validates the two-body kinematic
equations implemented in the SVT module of CINEL.

5.2 Comparison with analytical results of the free gas
model

The DDXS for free gas materials is obtained by convert-
ing the dynamic structure factor S( ~Q, ω) (Eq. (41)) to
dimensionless S(α, β):

d2σFGM

dµdE′
=

σb
2kBT

√
E′

E

1√
4πα

exp(− (α+ β)2

4α
). (83)

The analytical results for free 1H with incident neutron
energies E = 1 and 5 eV are compared with the scat-
tered neutron energy distributions obtained by using the
SVT module in Figure 15. Excellent agreement is obtained
for E = 5 eV, because the SVT algorithm satisfies the
assumptions made in the analytical free gas model: the
momentum and energy transfers are large, and the veloci-
ties of target nuclei follow a M-B distribution, as presented
in Section 2.3. Discrepancies are observed for large scat-
tering angles when E = 1 eV. Since in this case, the first
assumption is not satisfied. Similar results are found for
free 16O, as presented in Figure 16. These results enable
to validate the sampling of the velocities from a M-B
distribution in the SVT module.

The comparison with Tripoli-4® calculations enables to
validate the two-body kinematic equations implemented
in the SVT module (as presented in Sect. 3.2). We remark
in Section 2.3 that a simplified S(α, β) formula for free
gas model is obtained thanks to the assumption of M-B
distribution. Thus, the comparison with the analytical free
gas models allows to validate the sampling of the velocities
from a M-B distribution in the SVT module. Therefore,
we think that these two comparisons are necessary.

5.3 Comparison with velocities sampled from MD
trajectory files

As presented in the data flow of CINEL (Fig. 2), the
SVT module is able to sample the velocities from the
MD calculated trajectory files. In this work, the trajec-
tory files of liquid water generated by using the MD
code GROMACS [55] are used to validate the velocity
sampling.

The generation of the trajectory files for liquid water
by using GROMACS is described in Scotta’s thesis [56].
The physical model used in the MD simulation consists of
in total 512 water molecules within a cubic box with side
length 2.48 nm. We calculated the number volume density

of water at 294 K by ρV =
NA
MH2O

ρH2O = 33.5 nm−3 where
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Fig. 15. Comparison of the scattered neutron energy distribu-
tions of free 1H obtained by using the SVT module of CINEL
and analytical results of the free gas model for incident neutron
energies E = 1 and 5 eV.

NA is the Avogadro constant, MH2O and ρH2O are respec-
tively the molar mass and mass density of water. Then the
size of the box is determined by (512/33.5)1/3 = 2.48 nm.
TIP4P/2005f [57], a flexible water potential model taking
into account the intermolecular and intramolecular inter-
actions, is adopted to quantify the forces between atoms.
Thanks to this potential, the positions and velocities of
the hydrogen and oxygen atoms in the water molecules
are obtained for a time step of 0.6 fs and they are stored
in the trajectory files with a time duration of 100 ps.

Each water molecule is composed of two hydrogen
atoms and one oxygen atom. For each time step, the
partial velocities along the x, y and z directions are
respectively Vj,x, Vj,y and Vj,z, with j representing the
hydrogen atom H or oxygen atom O. The velocities Vj is
thus computed via the partial components as follows:

Vj =
√
V 2
j,x + V 2

j,y + V 2
j,z. (84)

The distributions of velocities of H and O are pre-
sented in the left hand plot of Figure 17. The velocity

Fig. 16. Comparison of the scattered neutron energy distribu-
tions of free 16O obtained by using the SVT module of CINEL
and analytical results of the free gas model for incident neutron
energies E = 0.1 and 1 eV.

distributions are fitted with a M-B model as presented
in equation (81). The fitted parameter is the thermody-
namic temperature of material, which is 294 K for both H
and O.
µj representing the cosine of the angle between the

z components Vj,z and the velocities Vj for oxygen and
hydrogen atoms, is calculated by:

µj =
Vj,z
Vj

. (85)

µj is shown in the right hand plot of Figure 17, which is
nearly an uniform distribution in [−1;1].

The velocities Vj and the corresponding cosine of angle
µj are sampled from the MD trajectory files by using the
SVT module. The scattered neutron energy distributions
for H and O are compared with the results obtained with
the velocities sampled from a M-B distribution at 294 K,
as presented in Figure 18. Excellent agreement is obtained,
which validates the sampling of the velocities from the MD
trajectory files implemented in the SVT module.
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Fig. 17. Left hand plot presents the distributions of velocities of H and O and their M-B fitting curves. The fitted temperatures
for H and O are both 294 K. Right hand plot is the distribution of µj .

Compared to a M-B distribution, velocities in the
MD trajectories are strongly correlated between nearby
time steps. These correlations can be illustrated with the
velocity auto-correlation function (VACF), as shown in
reference [56]. While the correlations between the veloc-
ities in the trajectories cannot be directly taken into
account by the SVT algorithm. We have tried to incor-
porate these correlations into the SVT algorithm but our
attempts did not succeed.

5.4 Discussions on rejection option to improve the
neutron up-scattering

The free gas model or SVT treatment for neutron-nucleus
scattering at thermodynamic temperature T are not able
to take into account the vibration dynamics or atom bind-
ing effects of materials, but the effective temperature Teff
must be involved, as discussed in the literature [60–63]. In
this work, special attentions are given to the neutron up-
scattering: when neutron energy lies below a few eV, the
neutron-nucleus scattering may lead to an energy gain for
the incident neutron. Based on the short collision approxi-
mation (SCT), after introducing the effective temperature
Teff to the DDXS of free gas materials (Eq. (83)), the up-
scattering part of the DDXS must be further corrected to
fulfill the principle of detailed balance [62]. The obtained
DDXS involving T and Teff is given by:

d2σSCT

dµdE′
=

σb
2kBT

√
E′

E

1√
4παTeff/T

× exp

(
− (|β| − α)2

4αTeff/T
− β + |β|

2

) (86)

where Teff is calculated from the PDOS [13,61]:

Teff = wdT +
~

2kBwv

∫ ∞
0

ωρvib(ω) coth(
~ω

2kBT
)dω. (87)

Compared to the DDXS obtained by using the free
gas model at Teff, the DDXS based on the SCT can be
regarded as multiplying a factor for the up-scattering part
(when E < E′):

d2σSCT

dµdE′
=

d2σFGM

dµdE′
(Teff)× exp

(
E − E′

kB
(

1

T
− 1

Teff
)

)
.

(88)

It is confirmed in Section 5.2 that the SVT algorithm
is equivalent to the analytical free gas model for large
incident neutron energies. Based on the relation in equa-
tion (88), the SCT can be introduced in the SVT module
by implementing an additional rejection step in case of
neutron up-scattering:

� when E < E′, a variable R is sampled uniformly in
[0;1];

� by comparing R and exp

(
E − E′

kB
(

1

T
− 1

Teff
)

)
, if R

is larger, the scattered neutron will be rejected.

To validate the rejection step implemented in the SVT
module, neutron scattering with 1H in 1H2O and 16O in
U16O2 are investigated in this work. The first step consists
of calculating their effective temperatures from the PDOS
of the CAB model [58] and the PDOS reported in refer-
ence [59], respectively. The second step is to employ these
effective temperatures in the SVT module and use the
rejection option for the up-scattering part. The final step
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Table 4. Simulations performed by using the Monte-Carlo neutron transport code Tripoli-4® and the SVT module
of CINEL for 1H in 1H2O and 16O in UO2. The effective temperature Teff of 1H in 1H2O is computed via the PDOS of
the CAB model [58]. Teff of 16O in UO2 is obtained via the PDOS of [59].

Target nucleus E (eV) T (K) Teff (K) Scattering treatments

1H in 1H2O 5 294 1184 SVT at Teff

SVT at Teff with rejection
16O in UO2 6.67 298 381 Tripoli-4® with S(α, β)

Fig. 18. Comparison of the scattered neutron energy distribu-
tions of 16O obtained by sampling the velocities of MD trajectory
files and M-B distribution with incident neutron energies E = 5
and 6.67 eV for H and O, respectively.

is to perform Monte-Carlo simulations with the Tripoli-4®
code by using the S(α, β) tables. This step is able to pro-
vide accurate scattered neutron energy distributions for
comparison. Tested models are summarized in Table 4.

The comparison of results obtained by using the SVT
module and the Tripoli-4® code for 1H in 1H2O is illus-
trated in the top plot of Figure 19. At small scattering
angle (θ′ = 10◦), the SVT at Teff with/without the rejec-
tion both fail to reproduce the quasi-elastic peak and the
associated structures. However, the SVT treatment with

rejection (green curve) reproduces better the scattered
neutron distribution related to the up-scattering part.
At large θ′, the neutron up-scattering can be neglected.
Therefore, these two SVT treatments produce the same
distributions.

Same comparisons are performed in the case of 16O
in U16O2. The obtained results are presented in the bot-
tom plot of Figure 19. At small θ′, both SVT treatments
are incapable of reproducing the structures related to the
atomic motions of the oxygen atoms bound in UO2. This
result is in consistency with the case of 1H in 1H2O. The
effective temperature of 16O in U16O2 (Teff = 381 K) is
close to T = 298 K. Therefore, the up-scattering part pro-
duced by using the SVT algorithm with rejection does
not show significant improvements compared to the SVT
treatment at Teff.

These results show interest to add a new rejection
option in the Tripoli-4® code that allows to correct the
up-scattering by taking into account T and Teff in the
simulation. This new option will be of great interest to
test the impact of different scattering models on integral
benchmarks.

6 Conclusions and prospectives

In this work we present a new code CINEL dedicated to
generate the thermal scattering files in ENDF-6 format for
solid crystalline, free gas materials and liquid water. The
low-energy neutron scattering theory is reviewed by pre-
senting the involved approximations and the equations to
calculate the elastic (coherent and incoherent) scattering
cross section and S(α, β). The implementation of the three
modules of CINEL (Cubic, INELastic and SVT) is pre-
sented. The Cubic and INELastic modules are validated
by comparing the CINEL results with the ENDF/B-VIII.0
database and the NJOY+NCrystal library. Examples are
given to illustrate the automatic generation of α and β
grids, mixed elastic format, anharmonicity and texture
in CINEL. The SVT module is validated by comparing
the scattered neutron distributions with analytical and
Monte-Carlo simulations for free target nuclei such as
hydrogen and oxygen.

Though CINEL presents improvements compared to
the LEAPR module of the NJOY code, the incoherent
approximation adopted in the CINEL code is reported
to be inadequate for strongly coherent crystalline mate-
rials such as pyrolytic graphite. Therefore, the coherent
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Fig. 19. Comparison of scattered neutron energy distributions of 1H in 1H2O and 16O in U16O2, obtained by using the SVT module
of CINEL at Teff with rejection, and Tripoli-4® with S(α, β) for incident neutron energy E = 5 eV and 6.67 eV, respectively.

one-phonon correction will be implemented in the future
version of CINEL to improve the incoherent approxima-
tion. The cubic approximation used in the current version
of CINEL will also be eliminated. CINEL will also be
extended to calculate the thermal scattering files for liquid
materials other than water.
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