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Abstract

Ductile fracture through growth and coalescence of intergranular cavities is a failure mode observed experimentally
in many metallic alloys used in industrial applications. Simulation of this fracture process in polycristalline aggregates
requires modeling of the plastic yielding of porous boundaries. However, classical yield criteria for porous materials
such as the Gurson–Tvergaard–Needleman model and its current extensions cannot account for the complex coupling
between loading state, crystallographic orientations, void shape and material behavior at grain boundaries. In order
to bridge this modeling gap, two yield criteria for intergranular ductile void growth are proposed. The first one is a
GTN-like model derived from limit-analysis which, once calibrated, accounts for spherical voids at the interface of rate-
independent crystals. The second one is developed from a variational approach and predicts yielding in viscoplastic
crystals containing intergranular ellipsoidal cavities. Both models are validated against a wide database of numerical limit-
analysis of porous bi-crystals using a FFT solver. Satisfying agreements are obtained, paving the way to microstructure-
informed intergranular ductile fracture simulation. The interplay between plastic yielding inside grains and along grain
boundaries is finally studied based on the proposed yield criterion.

Keywords: Ductile fracture, Intergranular fracture, Porous grain boundary, Homogenization, Crystal plasticity,
Fast-Fourier transform

1. Introduction

Void nucleation, growth and coalescence is among the dominant ductile failure modes in metallic alloys and can be
transgranular as well as intergranular. In the latter, the phenomenon of void growth and coalescence happens at grain
boundaries due to intense intergranular plastic flow (Hornbogen and Kreye, 1982; Vasudévan and Doherty, 1987). In
that case, fracture surfaces display intergranular facets covered in fine dimples. Reliable physical observations of ductile5

intergranular fracture date back more than fifty years (Plateau et al., 1957) and span a large class of metallic alloys and
loading conditions. However, due to insufficient magnification, these facets may appear flat at first glance and can be
mistakenly identified as proof of intergranular brittle fracture, impairing comprehensive identification of intergranular
ductile fracture occurrences (Lynch, 1991).

Precipitation-hardened alloys are specially prone to dimpled intergranular fracture at low homologous temperature,10

regardless of crystal lattice structures (Table 1). First and foremost, aluminum alloys are the class of material for which
this fracture mode was first undoubtedly highlighted (Varley et al., 1957; Thomas and Nutting, 1957, 1959; Unwin and
Smith, 1969). Among the most cited alloys: Al-Zn-Mg (Vasudévan and Doherty, 1987), Al-Zn-Mg-Cu (Kuramoto et al.,
1996) and Al-Mg-Si (Poole et al., 2019; Ringdalen et al., 2021). Aluminum alloys containing lithium, divided in three
successive generations, form a whole class of materials vulnerable to intergranular fracture by growth and coalescence15

of cavities (Suresh et al., 1987; Vasudévan and Doherty, 1987; Lynch et al., 2002; Pasang et al., 2012; Decreus et al.,
2013). All precipitation-hardened aluminum alloys display precipitate-free zones (PFZ) around grain boundaries; softer
than grain interiors, they play an important role in the localization of plasticity (Gräf and Hornbogen, 1977; Vasudévan
and Doherty, 1987). The second most common occurrence of intergranular ductile fracture is in nickel superalloys: for
instance, Inconel X-750 (Mills, 1980), MAR-M200 (Vasudévan and Doherty, 1987) and Inconel 718 (Chang et al., 2014;20

Lin et al., 2017). The absence of PFZ in some of these alloys uncovers another elementary phenomenon in which grain
boundary precipitation is so detrimental that intergranular soft zones are not needed to foster grain boundary cavity growth
(Vasudévan and Doherty, 1987). Similar behaviors are observed in other metallic materials: magnesium alloyed with rare
earth elements (e.g. Mg-11Gd-2Nd-0.4Zr) experiences this failure mode at specific precipitation aging (Zheng et al.,
2008); metastable β-titanium alloys exhibit dimpled intergranular fracture due to grain boundary precipitates of phase α,25

which is a hurdle to their wider use in aerospace field (Foltz et al., 2011).
Leaving precipitation aging aside, overheating of sulfur-rich steels during austenitization favors intergranular ductile

fracture by enhancing grain boundary MnS precipitation (Tsun, 1953; Schulz and McMahon, 1973). Besides, intergran-
ular ductile fracture may be promoted by neutron irradiation (Hojná, 2017), especially when helium bubbles form at
grain boundaries, as reported in austenitic steels (Miura et al., 2015) and Nickel-based alloys (Judge et al., 2012, 2015;30

Demkowicz, 2020). Finally, for the sake of completeness, it should be noted that intergranular fracture at high homologous
temperature can also be classified as ductile fracture when purely plastic contributions exceed the intensity of diffusion
phenomena associated with creep (Pavinich and Raj, 1977; Riedel, 1987; Kassner and Hayes, 2003). Examples of such
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situations may be the high strain rate deformation (Fu and Zhang, 2020) and stress-relief cracking (Hornbogen and Kreye,
1982; Chabaud-Reytier et al., 2003) of austenitic steels and the fracture of Inconel X-750 (Venkiteswaran and Taplin,35

1974; Mills, 1980).

Table 1: Typical literature observations of low homologous temperature dimpled intergranular fracture in precipitation-hardened alloys for different
crystal structures: face-centered cubic (FCC), body-centered cubic (BCC) and hexagonal close-packed (HCP). fp is the volume fraction of grain
boundary precipitates in an inter-crystalline layer of half-width equal to the mean distance between grain boundary precipitates.

Crystal
lattice

FCC: peak-aged Al-4.5Mn-
1.5Cu (Kuramoto et al., 1996)

BCC: lamellar Ti-5Al-5Mo-5V-
3Cr-0.5Fe (Foltz et al., 2011)

HCP: aged Mg-11Gd-2Nd-
0.4Zr (Zheng et al., 2008)

Grain
boundary

Fracture
surface

fp 0.05 0.1 0.5

Since the seminal works of Rice and Tracey (1969), Gurson (1977) and Thomason (1985), considerable efforts have
been made to model ductile failure through homogenization of the mechanical behavior of porous materials, and exten-
sive reviews were published on the matter (Besson, 2010; Benzerga and Leblond, 2010; Pineau et al., 2016). Results
contained therein, which mainly concern voids in isotropic or Hill materials, have been extended to single crystals with40

internal cavities in the last decade (Han et al., 2013; Paux et al., 2015; Mbiakop et al., 2015a; Ling et al., 2016; Song and
Ponte-Castañeda, 2017a; Hure, 2019; Khavasad and Keralavarma, 2021). All these studies consider homogeneous matrix
materials and are thus designed to model transgranular fracture. Nevertheless, GTN model, relevant for isotropic porous
materials, was used to conduct finite element computations of intergranular ductile fracture in precipitation-hardened
alloys, either with void-nucleating boundaries and pristine grains (Becker et al., 1989; Molkeri et al., 2020), or with dif-45

ferent material parameters in the PFZ and in the grain interior (Pardoen et al., 2003, 2010; Fourmeau et al., 2015) to study
competition between fracture modes. Use of this yield function was also made in the context of metastable β-titanium
alloys (Osovski et al., 2015; Li et al., 2017). These models rely on volume homogenization, but grain boundaries are
two-dimensional domains; Becker et al. (1989) recommend setting the width of the homogenized microstructure to grain
boundary precipitate spacing: conventional precipitate volume fraction fp is reported in Table 1 for alloys taken as exam-50

ples. The outcomes of these first studies are valuable but show some limitation. First, numerical homogenization have
shown that macroscopic yield surfaces of macroscopically isotropic polycristalline aggregates with intergranular voids
are quite distinct from the ones obtained by supposing that voids are in a von Mises isotropic matrix (Lebensohn et al.,
2011; Nervi and Idiart, 2015). Then, at the mesoscale of the porous boundaries, all isotropic models previously mentioned
are intrinsically not adapted to model complex effects coupling crystallographic orientations, material non-linearity and55

void size/shape. The isotropic ductile modeling approach is therefore challenged for both macroscopic and mesoscopic
applications.

From the earliest times of porous materials homogenization, unit-cell computations have accompanied analytic de-
velopments by providing numerical evaluations of yield surfaces (Koplik and Needleman, 1988), which is of paramount
importance for the calibration and validation of models. Following their successful application to isotropic and monocrys-60

talline matrices, finite strain unit-cell simulations were only performed on voided bi-crystals in a handful of studies. The
majority of these works focused on the void growth stage, i.e. deformation situations where plasticity is diffuse and
cavities do not not significantly interact with each other in the periodic void lattice; face-centered cubic (FCC) crystals
were mostly considered (Wen and Yue, 2007; Zhang et al., 2008; Liu et al., 2009; Li et al., 2015; Dakshinamurthy et al.,
2021) except for one study which conducted simulations on a body-centered cubic (BCC) material (Jeong et al., 2018).65

Void coalescence — i.e. the stage in which plasticity localizes in ligaments between cavities — was considered in FCC
bi-crystals in Liu et al. (2010). The main conclusion to be drawn is the fact that void growth at grain boundaries is not
reducible to void growth in single crystals, all the more to void growth in an isotropic matrix.
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Both unit-cell computations and homogenized modeling of ductile intergranular fracture have focused on (initially)
spherical voids. However, void shape is known to play an important role when voids significantly differ from ideal spheres70

(Mbiakop et al., 2015a; Song and Ponte-Castañeda, 2017b), i.e. approximately when one of the void axes ratios exceed 2.
For smaller deviations from sphericity, the effect on yield surfaces is deemed negligible and yield criteria developed for
spherical cavities keep their validity (Hure, 2021). Experimental observations of intergranular void shapes during grain
boundary ductile fracture is tricky and, to the knowing of the authors, has never been conducted. Dimples seen on fracture
surfaces are usually quite round (see Table 1), which may advocate for spheroidal cavities of symmetry axis perpendicular75

to the grain boundary. The fact that precipitates responsible for intergranular void nucleation are usually elongated along
grain boundaries (Vasudévan and Doherty, 1987; Kuramoto et al., 1996) also suggest such void shapes. On the other hand,
helium bubbles involved in the intergranular ductile fracture of irradiated metals are spherical (Miura et al., 2015).

It is therefore concluded that in order to enhance understanding and simulation of intergranular ductile fracture, there
is a need for models predicting the yield surface of porous grain boundaries, with both spherical and ellipsoidal cavities;80

this is the goal set to the present study.
The paper is organized as follows: in a first part, a database of porous bi-crystal unit-cell limit-analysis simulations is

gathered and described for a FCC material, including a larger set of crystallographic orientation couples and microstruc-
ture parameters than currently available in the literature. In a second part, a Gurson-type yield criterion for the growth
of intergranular spherical voids is derived through limit-analysis, along with heuristic corrections of the hydrostatic and85

the deviatoric terms. In the last part, a gauge surface accounting for intergranular ellipsoidal void shapes is obtained
using a variational method. The results of the two yield functions are assessed against numerical homogenization results
obtained in the first part. Finally, the implications of those models regarding the competition between intergranular and
transgranular failure are briefly discussed.

2. Numerical homogenization90

In the following, vectors are shown as a of norm a, second-order tensors as a and fourth-order tensors as A, although
R and Z still respectively refer to the set of real numbers and the set of integers — they shall be superscripted with a
star if 0 is excluded from the set. Numerical limit-analysis simulations are performed in order to assess yield surfaces
of porous grain boundaries (Madou and Leblond, 2012); small strain assumption is thus used. Such kind of simulations
differ from those existing in the porous bi-crystal literature (e.g. Dakshinamurthy et al. (2021)) as the idea is to evaluate95

yield stress for fixed parameters, either geometrical or material-based (perfect plasticity). Crystal plasticity constitutive
laws modeling the grains are first described, then the unit-cells considered are detailed. σ stands as the (Cauchy) stress
tensor.

2.1. Crystal plasticity constitutive laws
Additive decomposition of the total strain into elastic and plastic parts ε = εel + εp is considered, and elasticity obeys

an isotropic Hooke law of Young modulus Y = 103 MPa and Poisson ratio ν = 0.49. Plasticity is assumed to be related to
the glide of dislocations, that can happen in a limited number of directions, called crystallographic slip systems, defined by
a slip plane (whose normal is along unit vector ms) and a slip direction (of unit vector ns), and represented by the following
symmetric Schmid tensor : µs =

1
2 (ms ⊗ ns + ns ⊗ ms). Other plasticity mechanisms such as twinning are disregarded. A

face-centered cubic (FCC) material is considered for numerical homogenization, with K = 12 independent slips systems
— the {111}⟨110⟩ family. Using viscoplastic regularization, the plastic strain rate writes (Hutchinson, 1976):

ε̇p =

K∑
s=1

γ̇0


∣∣∣σ : µs

∣∣∣
τc

s

n

sgn(σ : µs)

µs =

K∑
s=1

γ̇sµs (1)

where τc
s is the critical resolved shear stress of the sth system, γ̇0 a reference slip-rate (set to 1 s−1) and γ̇s the slip rate of100

system s.
(
τc

s
)

are fixed to the same value of τc = 88 MPa. n denotes the Norton exponent: the case n→ +∞ corresponds
to rate-independent plasticity while n = 1 represents linear Maxwell-type viscoelasticity. In the following, the value
n = 100 will be chosen to stand for rate-independence.

2.2. Unit-cell computations
In order to study the mechanical behavior of porous grain boundaries, different periodic unit-cells can be chosen.105

Note that grain boundaries are not perfectly periodic structures, but this assumption is required by the FFT solver used.
A microstructure composed of two single crystals of different crystallographic orientations (phases 1 and 2) regularly
laminated along direction e1 and with periodic square arrays of cavities (phase 0) at (e2, e3)-grain boundaries is considered.
Porosity — i.e. void volume fraction — is denoted f . Perfect bounding is assumed between the crystals. Such a periodic
distribution corresponds to the configuration shown in Fig. 1b, the width of crystal layers taken equal to the spatial period110

of cavities along e2 and e3. A simple way of alleviating computational burden consists in inserting cavities at every other
boundary, leading to the cubical geometry of Fig. 1a and dividing the unit-cell volume by two, provided that the two
configurations approximately lead to the same predictions; such an assumption will be discussed in the following. Other
configurations shown on Figs. 1c,d,e will be studied later. Single crystals behavior is the one presented in Section 2.1
while cavities are modeled as an elastic material of vanishing stiffness tensor.115

Simulations are performed in the fast Fourier transform-based AMITEX FFTP code (CEA, 2022) using periodical
boundary conditions. Unit-cells are discretized using cubical voxels. A unique material behavior (void, crystal 1 and
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e1

e2

e3

(a) (b) (c) (d) (e)

Figure 1: Periodic unit-cell configurations considered in the numerical limit analysis: (a) porous boundary; (b) symmetric porous boundary, (c) porous
single crystal, (d) elongated porous boundary and (e) porous laminate. Single crystals are shown in red/blue and cavities in black. All are pictured with
1% porosity and spherical voids.

crystal 2) is assigned to each of the voxels. Application and validation of FFT numerical methods for (porous) crys-
tals can be found in previous studies (Barrioz, 2019; Barrioz et al., 2019). Unit-cells are subjected to the macroscopic
(volume-average) stress tensor Σ whose principal axes are aligned with unit-cell lattice directions and whose main stress
component1 is along e1:

Σ = Σ11Σ
(0)(T, θ) =

Σ11

cos θ + 3
2 T


cos θ + 3

2 T 0 0
0 − cos

(
θ + π3

)
+ 3

2 T 0
0 0 − cos

(
θ − π3

)
+ 3

2 T

 (2)

where T is the stress triaxiality — e.g. the ratio between hydrostatic stress Σm and von Mises equivalent stress ΣvM
eq — and

θ is the Lode angle defined as (Danas and Ponte Castañeda, 2012):

cos 3θ =
27
2

det (Σ − ΣmI)(
ΣvM

eq

)3 (3)

with θ ∈ {0, π/3} corresponding to axisymmetric loadings and θ = π/6 to in-plane shear loadings. The loading is controlled by
the linear increase of (volume-average) strain component E11 until small strain yielding of the unit-cell, which manifests
by the saturation of Σ to values corresponding to the yield stress of the unit-cell (see Fig. 2a). The macroscopic strain
rate component D11 is set to 0.05 s−1. In the limit n = +∞, yield surfaces do not depend on this strain rate. Note that the
elastic behavior of the crystals have no influence on the plastic yielding —- i.e. on the saturated value of Σ. In that sense,120

these unit-cell simulations are consistent with the theoretical framework of limit-analysis (Leblond et al., 2018).
Upon saturation, von Mises equivalent stress ΣVM

eq and mean stress Σm are computed to draw the yield surface in
the

(
Σm,Σ

VM
eq

)
meridian plane. The typical numerical yield surface of a porous material is shown in Fig. 2b. Unit-cell

simulations can be divided in two groups according to the deformation mode they display. Low stress triaxiality ratios
correspond to diffuse plasticity (see Appendix B, Fig. B.15a) whereas localized plasticity occurs at high triaxiality ratios125

(see Appendix B, Fig. B.15c). The first deformation mode is referred to as void growth while the second is called
void coalescence (Pineau et al., 2016): on Fig. 2b, the relevant mode is indicated for each numerical simulation — from
now on, simulations involving coalescence will be identified as hollowed-out symbols. Details on the determination
of the deformation mode of a given unit-cell simulation are given in Appendix B. In most studies in the literature,
separate yield criteria are proposed to describe them; within a multi-surface plasticity framework, these yield criteria are130

considered simultaneously (Benzerga and Leblond, 2010; Keralavarma, 2017). Coalescence criteria are usually variations
over Thomason’s model (Thomason, 1985) which sets a limit value to the main principal macroscopic stress ΣI. Thus,
these models manifest as straight lines2 in the meridian place (see Fig 2b). Since the objective of this study is to provide
a void growth model, the analytical yield surface will be checked to reproduce simulations displaying growth (full points)
but special care will also be taken that the criterion is exterior to simulations displaying coalescence (hollowed-out points)135

in order for the multi-surface plasticity approach to be effective.

2.3. Simulation database
As in the case of porous single crystals (Sénac et al., 2022), yield surfaces are expected to significantly depend

on crystallographic orientations. Therefore, forty random orientations gathered in twenty couples are studied here; see

1In the cases considered below, cos θ + 3
2 T never vanish; such a situation would mean that the loading should be controlled using another principal

axis.
2Taking the equivalent von Mises stress of Eq. 2 brings ΣvM

eq

(
cos θ + 3

2
Σm
ΣvM

eq

)
= 3

2Σ11, which is a straight-line in a meridian plane, i.e. at fixed Lode

angle θ.
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Figure 2: (a) Stress saturation of Σ11 occurring during small strain yielding of a porous boundary with orientation couple #1 at T = 1, θ = 0 and f = 0.01;
(b) Sketch of a typical numerical yield surface (points) in a meridian half-plane (fixed θ), along with multi-surface plasticity modeling approach (lines).

Table 2 for their definition and colors with which they will be represented in all subsequent graphs. For fixed Lode140

angle θ, visualization of yield surfaces will be made in the plane (Σm,Σ
vM
eq ), i.e. by considering various stress triaxialities.

This corresponds to yield surfaces meridian half-planes. Since the matrix material behaves similarly under tension and
compression, the macroscopic yield surface is centrally symmetric (i.e. the yield stress for (T, θ) is equal to that at
(−T, π/3 − θ)) so that it is enough to study the set of loadings for which T > 0 and θ ∈ [0, π/3]. To cover the range from
deviatoric stress-state to hydrostatic loading, T takes the following values: 0, 1/3, 1, 2, 3, 6, 10, 40.145

Table 2: Euler angles (Bunge convention) of the 20 couples of random crystallographic orientations.

# Crystal 1 Crystal 2
ϕ1 (◦) Φ (◦) ϕ2 (◦) ϕ1 (◦) Φ (◦) ϕ2 (◦)

• 1 93.48 53.17 315.41 40.96 84.69 136.94
• 2 65.60 112.22 83.99 166.48 40.56 139.94
• 3 109.49 111.84 171.00 124.35 34.17 267.58
• 4 117.83 107.35 66.79 141.70 100.97 29.13
• 5 16.78 55.01 63.50 142.68 53.37 29.46

6 11.08 98.29 28.20 303.92 75.55 149.39
7 134.39 133.33 7.13 266.58 63.38 310.06
8 306.96 149.84 66.68 243.19 117.06 258.27

• 9 229.38 96.02 323.86 102.10 81.67 264.81
• 10 145.96 121.95 3.42 103.35 82.43 137.59

11 73.67 120.61 85.47 302.65 57.31 202.39
12 18.40 105.32 226.75 268.41 94.25 240.26

• 13 80.74 111.44 185.63 192.59 45.76 0.65
14 352.79 112.15 125.60 228.63 93.54 261.97
15 70.28 56.03 22.94 70.74 76.48 243.32

• 16 81.82 113.92 64.02 80.34 65.46 267.16
17 120.04 67.52 178.16 328.21 119.29 201.63
18 129.85 49.16 99.07 296.23 120.50 328.96
19 230.74 161.52 140.50 81.97 64.24 149.44
20 345.16 129.65 267.30 154.50 61.95 181.57

The equivalence of unit-cell configurations displayed in Fig. 1a,b was checked on representative cases: no noticeable
difference was seen on yield surfaces. This finding is no surprise: as long as cavities do not interact with each other
between distinct (e2, e3)-planes (e.g. by necklace coalescence or out-of-plane shear-banding), the upper part of Fig. 1b is
independent from the lower part, thus both will have the same behavior as Fig. 1a.

Before studying extensively porous bi-crystals, it is useful to assess differences between a porous grain boundary150

(Fig. 1a) and porous single crystals (Fig. 1c) of crystallographic orientations corresponding to the two constitutive grains
of the bi-crystal. This was performed with spherical cavities considering all orientation couples with Norton exponents
n = 1, 3, 10 and 100. Only data for n = 100 are shown on Fig. 3 as other n displayed similar tendencies. An obvious
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remark is that a porous bi-crystal yield surface is reducible to neither of its crystal constituents’ individual behaviour,
justifying the present study. Such a finding was already reported by Jeong et al. (2018) and Dakshinamurthy et al.155

(2021) who described porous bi-crystals showing intermediate yield stress compared to the two individual porous grains,
corresponding to Fig. 3a. However, due the small number of orientation couples and triaxiality ratios studied in the
existing literature, other possible bi-crystal behaviors were overlooked: in Fig. 3b, the yield stress of the porous bi-crystal
is greater than yield stresses of both porous single crystals from low to medium stress triaxialities and smaller at high
triaxialities. However, in no instance was the porous bi-crystal yield stress smaller than both porous grain yield stresses160

for deviatoric loadings. This property shall be demonstrated in the limit of small porosities in Appendix C. Overall,
for random orientations, spherical voids, axisymmetric loading conditions and triaxialities ranging from T = 0 to T = 3,
plastic yielding seems to occur for lower stress in at least one of the porous single crystal compared to the porous boundary.
Such a general rule hints at the fact that a material with homogeneous porosity is more susceptible to transgranular ductile
fracture than to intergranular ductile fracture; in order for such a failure mode to arise, boundaries have to be weakened165

compared to grain interiors: for instance greater porosity, different void shape, softer behavior, lower hardening capacity
(see Pardoen et al. (2003) on that subject).
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Figure 3: Yield surfaces of porous bi-crystals (Fig. 1a) and corresponding porous constitutive single crystals (Fig. 1c) at f = 0.005, n = 100 and θ = 0:
(a) crystal orientation couple #3; (b) crystal orientation couple #2. Hollowed-out symbols mark simulations in which the deformation mode has been
identified as void coalescence.

Since void growth yield criteria for single crystals are available, a legitimate question is whether such models could
account for porous boundaries by delocalizing the cavity from either side of the interface. Instead of a unique void of
volume f – the unit-cell has a volume of 1 – set at mid-height, voids of volume f /2 are located at mid-width of each170

crystal, effectively turning Fig. 1a into Fig. 1e. As shown in Fig. 4a, the porous laminate unit-cell (Fig. 1e) yield surface
diverges significantly at high triaxialities from the porous boundary (Fig. 1a) yield surface. The wider stress reversibility
domain of the former makes it impossible to invoke earlier coalescence to explain such a discrepancy: unit-cells do have
a different void growth behavior, with voids located at grain boundaries being more damaging than voids inside grains3.
For lower Norton exponents n (Eq. 1), discrepancies are smaller but still noticeable.175

Finally, a necessary verification is to quantify the effect of unit-cell aspect ratio at fixed porosity: if this effect is
negligible, simulations can be restricted to cubic cells. This is done by comparing Fig. 1b,d unit-cell yield surfaces in
Fig. 4b. No noticeable discrepancy is seen from low to intermediate triaxialities between the two configurations. However,
as the cavities are closer in the plane (e2, e3) in the configuration Fig. 1d, coalescence is more intense, leading to a strong
contraction of the yield surface near the hydrostatic point. Since this deformation mode is not the subject of this study, it180

shall be considered in the following that unit-cell height — and more generally unit-cell geometry, see the discussion in
Danas and Castañeda (2009) — has no effect on void growth plastic yielding.

Given the preliminary results gathered in this section, Fig. 1a unit-cell configuration is chosen to assess void growth
yield surfaces of porous grain boundaries. Using this unit-cell, three batches of simulations were conducted with the
aforementioned set of crystal orientations and triaxiality ratios: a first set of computations was carried out with spherical185

voids at porosities f ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3} and θ = 0; a second considered spherical voids at fixed
porosity f = 0.01 but with a larger set of loadings: on the one hand θ ∈ {π/6, π/3} and on the other hand θ = 0 with Σ
subjected to rotations around e2 of α = π/4 (main stress axis along e1 + e3) and π/2 (main stress axis along e3). Finally,
simulations of ellipsoidal cavities were conducted at θ = 0 and f = 0.01; more details on these geometries will be given
in Section 4. The ensuing database holds 800 simulations to validate the models. The results of the simulations will be190

presented when compared to theoretical results in the next sections.

3Note that is not in contradiction to what have been said earlier about porous single crystals: voids in Fig. 1e crystals are smaller so that both
unit-cells Fig. 1a,e have equal void volume fractions.
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Figure 4: Yield surfaces for different unit-cell configurations at f = 0.005, n = 100 and θ = 0: (a) effect of void location (Fig. 1a versus Fig. 1e); (b)
effect of unit-cell aspect ratio (Fig. 1a versus Fig. 1d). Hollowed-out symbols mark simulations in which the deformation mode has been identified as
void coalescence.

Since spherical cavities are discretized into cubic voxels, mesh convergence has to be checked. Cube edge discretiza-
tion of N = 300 at f = 0.01 (which corresponds approximately to a cavity radius r of 30 voxel length) is taken as the
converged value. Comparisons with N = 45 (6 voxels), 85 (10 voxels) and 150 (20 voxels) uncover respective maximum
relative errors of 1.9%, 1.1%, and 0.5%. Given these findings, values N = 85 ( f ≥ 0.01), 95 ( f = 0.005) and 162195

( f = 0.001) are chosen for unit-cell containing spherical cavities4; similar considerations about minimum semi-axis drive
the choice of mesh discretization for ellipsoidal cavities.

A first model is developed in the next section to predict yield surfaces of porous bi-crystals with spherical voids in the
rate-independent limit.

3. Plastic yield criterion for spherical voids200

In this section, an approximate yield criterion is proposed for rate-independent (n → +∞) porous bi-crystals with
spherical voids using limit analysis. The yield function of a perfect crystal is regularized according to Arminjon (1991)
and Gambin (1991):

F mono
m (σ) =

 K∑
s=1


∣∣∣σ : µs

∣∣∣
τc

s

m2/m

− 1 (4)

In the limit m → +∞, Schmid law is recovered. As stated in Paux et al. (2015), taking m = 2 in Eq. 4 amounts to
approximating the perfect crystal with a Hill-type material (Hill, 1948). This reduction is likely to be crude, but adopting
it will allow to derive a yield criterion in Section 3.1. Then, following a suitable heuristic, this yield surface will be
adapted to the case m→ +∞ in Section 3.2.

In the analyses conducted in this section and the following one, the hypothesis that (τc
s) are close to their mean τc is205

made; this will allow substitution of τc
s by τc and vice-versa whenever it is necessary in the calculations. This assumption

seems acceptable in FCC materials but may be an issue in some HCP materials (Song and Ponte-Castañeda, 2017b).

3.1. Limit-analysis on porous Hill bi-materials
Following the limit-analysis framework used by Gurson (1977) for porous isotropic materials and specialized to porous

Hill materials by Benzerga and Besson (2001), we consider a representative volume element of a material containing
three phases i occupying volumes Ωi, as pictured in Fig 5. Phase 0 is a cavity of vanishing stiffness and volume fraction
f = (a/b)3 and phases 1 and 2 are perfectly plastic Hill materials of yield functions:

F
(i)

2 (σ) =
(
σH

eq

)2
− 1 =

3
2
σ : Hi : σ − 1 (5)

where Hi are Hill stress anisotropy tensors — notice that contrary to the common formulation, they are not dimensionless.
Matrix materials are incompressible, thus J : Hi = Hi : J = 0 with J = 1

3 I ⊗ I. For each material i, the associated210

equivalent strain rate is deq =

√
2
3 d : H∗i : d with H∗ a tensor verifying H∗ : H = H : H∗ = K, where K = I − J. In a base

of orthotropy, the components of H∗ can be obtained from the components of Hi following the formulas given in Morin
(2012) (Appendix A.2). More fundamentally, H∗ is linked to H through linear algebra, as shown in Appendix A of the
present work.

4To be compared with 3, 16 and 32 voxels per cavity radius used respectively in Hure (2021), Vincent et al. (2014) and Wojtacki et al. (2020).
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Figure 5: Spherical unit-cell with spherical cavity, used for the limit-analysis.

The unit-cell being subjected to prescribed uniform strain rate D on its boundary, the set K (D) of incompressible
microscopic strain rate fields which are kinematically admissible with D is considered. The microscopic plastic dissipation
associated to such a strain rate field ε̇ is :

ϖ
(
ε̇
(
x
))
≡ sup
σ̂∈C(x)

(
σ̂ : ε̇

(
x
))

=

√
2
3
ε̇
(
x
)

: H∗
(
x
)

: ε̇
(
x
) (6)

where C
(
x
)

is the microscopic elasticity domain at point x.215

In the framework of limit analysis, any trial field ε̇ ∈ K (D) gives an upper bound for the effective dissipation Π,
defined as:

Π(D) = inf
ε̇∈K(D)

〈
ϖ

(
ε̇
(
x
))〉⋃

i Ωi
=

1 − f
2

inf
ε̇∈K(D)

 2∑
i=1

〈
ϖ

(
ε̇
(
x
))〉
Ωi

 (7)

where < · > denotes volume averaging. From that upper bound Π+, an approximate yield criterion is obtained since
for a given strain rate D0, the macroscopic yield stress Σ is defined as the tangent vector to surface Π+(D) at point D0
(Suquet, 1982). Walking the footsteps of Benzerga and Besson (2001), the following strain rate field — which was already
employed in Gurson (1977) — is chosen and expressed in spherical coordinates (r, θ, ϕ):

ε̇ = ε̇A + ε̇B with

ε̇A

(
x
)
=

Tr(D)
3

(
b
r

)3 [
−2er ⊗ er + eθ ⊗ eθ + eϕ ⊗ eϕ

]
ε̇B = K : D

(8)

Approximation of Eq. 6 used in Benzerga and Besson (2001) relies on the computation of the mean square microscopic
plastic dissipation over a sphere S(r) of radius r:

〈
ϖ (ε̇)2

〉
S(r)
=

1
3

2∑
i=1

[
ε̇B : H∗i : ε̇B + 2 ⟨ε̇A⟩S(r)∩Ωi

: H∗i : ε̇B +
〈
ε̇A : H∗i : ε̇A

〉
S(r)∩Ωi

]
(9)

It is useful to remark that for a point x1 located on demi-sphere S(r) ∩ Ω1 and its symmetrical with respect to the origin
x2 located on complementary demi-sphere S(r) ∩ Ω2, the local spherical frames are related: (e2

r , e
2
θ , e

2
ϕ) = (−e1

r , e
1
θ ,−e1

ϕ).
Given the specific form of ε̇A, the following relations are obtained:

⟨ε̇A⟩S(r)∩Ω1
= ⟨ε̇A⟩S(r)∩Ω2

= ⟨ε̇A⟩S(r) (10)

Furthermore, it can be verified that:

∀i ∈ {1, 2},
〈
ε̇A : H∗i : ε̇A

〉
S(r)∩Ωi

=
〈
ε̇A : H∗i : ε̇A

〉
S(r) (11)

Substitution of the present expressions into the development of Benzerga and Besson (2001) leads to the following yield
criterion: (

3
2
Σ :

[
1
2
H
∗
1 +

1
2
H
∗
2

]∗
: Σ

)
+ 2q f cosh

 3
√

2√
χ
(
H∗1

)
+ χ

(
H∗2

)Σm

 − 1 − (q f )2 = 0 (12)

χ(H∗) =
8
15

(
h∗11 + h∗22 + h∗33 − h∗23 − h∗31 − h∗12

)
+

4
5

(
h∗44 + h∗55 + h∗66

)
(13)
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where q is Tvergaard’s adjustment parameter (Tvergaard, 1982) and h∗i j are components of tensor H∗ in the Voigt-Mandel
notation, regardless the chosen geometric frame. Eq. 13 is obtained from the lengthy yet straightforward calculation of〈
ε̇A : H∗i : ε̇A

〉
S(r)

which involves the recasting of H∗i from the bi-crystal frame of reference to the local spherical frame
of reference. Note that Eq. 13 is not directly found in Benzerga and Besson (2001) since this reference expressed χ as
a function of eigenvalues of H whereas, in the present work, χ is a function of coefficients of H in an arbitrary basis.220

Equivalence of the two expressions can be obtained using Eq. A.3 presented in Appendix A. Therefore, in the limit where
phase 1 and phase 2 are identical,

(
H∗1

)∗
= H1 and the criterion of Benzerga and Besson (2001) for porous Hill materials

is recovered.

3.2. Porous bi-crystal correction

In the context of Eq. 4 with the approximation m = 2, the results of Section 3.1 can be specialized to perfectly-plastic
crystals by setting the following stress anisotropy tensors:

Hi =
2
3
Si with Si =

K∑
s=1

1(
τ(i),c

s

)2

[
µ(i)

k ⊗ µ
(i)
k

]
(14)

As stated in Paux et al. (2015), in the case of cubic crystal lattices with equivalent critical resolved shear stresses (τc
s = τ

c),
S is a linear combination of deviatoric cubic projectors5 K′ and K′′ defined in Walpole (1981) with coefficients (α′, α′′):

K
′ = G − J , K

′′ = I − G where G = (δi jδ jkδkl)i jkl (15)

written in the frame of orthotropy. Then, S∗ can be obtained simply as its decomposition coefficients are (1/α′, 1/α′′).225

However, crystal 1 and 2 orthotropy axes are not the same so the deviatoric term of Eq. 12 cannot be expressed simply
according to cubic projectors. Still, for a FCC crystal with τc

s = τ
c, (τc)2α′ = 2 and (τc)2α′′ = 2/3 so that Eq. 13 writes

χ = 33 (τc)2 /5.
As expected, Eq. 12 is in poor agreement with porous bi-crystal unit-cell computations conducted in Section 2.3 for

quasi-rate independent behavior (n = 100). Following Paux et al. (2015), independent corrections of hydrostatic and230

deviatoric terms are conducted.
Hydrostatic point: In the case of a FCC single crystal hollow sphere, Paux et al. (2018) determined that the value

κ′ ≡ 3τc/
√
χ ≈ 0.49 was needed to recover the plastic dissipation associated with microscopic strain rate ε̇ = ε̇B. A

similar result (κ′ ≈ 0.489) was obtained in Hure (2019) using a simplified derivation. Eq. 16 of the latter reference,
specialized to a voided bi-crystal, leads to:

κ′ =
3〈

M1

(
x, ε̇B

)〉
Ω1
+

〈
M2

(
x, ε̇B

)〉
Ω2

with Mi

(
x, ε̇

)
=

∑K
s=1 γ̇

(i)
k

[
ε̇
(
x
)]

√
2
3 ε̇

(
x
)

: ε̇
(
x
) (16)

Noticing that Mi

(
−x, ε̇B

)
= Mi

(
x, ε̇B

)
, we obtain that

〈
Mi

(
x, ε̇B

)〉
Ωi
=

〈
Mi

(
x, ε̇B

)〉
Ω1∪Ω2

; therefore κ ≈ 0.489 as in the
case of the single crystal. It means that monocrystalline and bi-crystalline hollow spheres subjected to the hydrostatic
microscopic field of Rice and Tracey (1969) have the same yield limit.

Deviatoric point: Under deviatoric stress Σ and in the limit f → 0, Eq. 12 should recover the exact yield function of
a pristine bi-crystal. As detailed in Appendix C, it writes:

F bi
∞ (Σ) =

min
∆∞

max
s∈J1,KK


∣∣∣(Σ + ∆∞) : µ(1)

s

∣∣∣
τ(1),c

s

,

∣∣∣(Σ − ∆∞) : µ(2)
s

∣∣∣
τ(2),c

s


2

− 1 (17)

where ∆∞ follows the stress continuity condition at the planar interface between the two crystals, parallel to (e2, e3):235

∆∞ = E : ∆∞ with E =
(
I − e1 ⊗ e1

)
⊗

(
I − e1 ⊗ e1

)
and

[
A⊗ B

]
i jkl
= (AikB jl + AilB jk)/2 (Dormieux and Kondo, 2010).

Having corrected the deviatoric and the hydrostatic points, the final yield surface is defined by the following Gurson-
like criterion:

F (Σ) =

min
∆∞

max
s∈J1,KK


∣∣∣(Σ + ∆∞) : µ(1)

s

∣∣∣
τ(1),c

s

,

∣∣∣(Σ − ∆∞) : µ(2)
s

∣∣∣
τ(2),c

s


2

+ 2q f cosh
(
κ′
Σm

τc

)
− 1 − (q f )2 = 0 (18)

When crystal 1 and crystal 2 have the same orientation, Eq. 18 reduces to the porous single crystal criterion of Paux et al.
(2015) (Eq. 43), as shown in Appendix C.

3.3. Assessment of yield surfaces

The assessment of the proposed yield criterion (Eq. 18) is performed using the numerical homogenization results240

described in Section 2. Whereas the limit analysis was carried out on a hollow sphere geometry (see Fig. 5), FFT

5δi j stands for Kronecker delta.
9
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Figure 6: Comparison of yield surfaces predicted by the GTN-like criterion (lines) and unit-cell computations conducted at n = 100 with spherical
cavities (points) : (a) porous boundary at θ = 0 and porosities f ∈ {0.001, 0.01, 0.1}; (b) porous boundary at θ = 0 and porosities f ∈ {0.005, 0.05}; (c)
porous boundary at f = 0.01 and various Lode angles; (d) porous boundary at f = 0.01 and θ = 0 with loading rotations of α around e2. Hollowed-out
symbols mark simulations in which the deformation mode has been identified as void coalescence.

simulations could only be conducted on cuboids due to conjunction of cubic voxels and the requirement of periodic
boundary conditions. As the criterion accounts for rate-independent crystals with spherical voids, only the unit-cell
computations with n = 100 and spherical cavities are considered. As stated in the previous section, q requires calibration.
Following Fritzen et al. (2012), it is supposed to depend on porosity f . Since the competitive deformation modes known245

as void growth and void coalescence are accounted for by multi-yield surface plasticity, it is of paramount importance that
void coalescence points are within the yield domain predicted by the void growth criterion (see Section 2.2 and Fig. 2b).
Therefore, q( f ) is set as the maximal q such as the simulations at porosity f , θ = 0 and α = 0 displaying void coalescence
are within the yield domain and not outside. Only orientation couples that are not displayed in the graphs below were used
in the calibration; therefore, the yield surfaces presented in Fig. 6 serve as validation. Fitted values of q( f ) are presented250

in Table 3; calibrated values follow the approximate relation q( f ) ≈ ( f + 0.005)−0.15. By comparison, q have been set by
previous studies on porous single crystals to 2.2 (Paux et al., 2015), 2 (Paux et al., 2018) and 1.66 (Sénac et al., 2022).

Table 3: Calibrated values of Tvergaard’s parameter q at various porosities f .

f 0.001 0.005 0.01 0.05 0.1 0.2 0.3
q( f ) 2.14 1.97 1.85 1.57 1.45 1.24 1.17

Yield surfaces are shown in Fig. 6. A good agreement is observed between the GTN-like model and simulations
displaying void growth. In Fig. 6a,b, it is shown that the influence of crystal orientation couples and porosity are captured
well enough. In particular, the deviatoric point estimation based on the pristine bi-crystal yields excellent results for255

porosities f ≤ 0.01; for higher porosities, increasing discrepancies are seen but good prediction quality is retained. In
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Fig. 6c, the effect of the Lode angle θ on yield stresses is seen to be significant, especially for deviatoric loadings; this
behavior is well-predicted by the model. However, some additional discussion is needed as, generally, Lode-angle effects
on homogeneous yielding are believed to be two-fold:

• if the sound material has a Lode-dependent behavior, as in the case of crystals, then its influence on the yield locus260

of the corresponding porous material will be significant (Benallal, 2018);

• as seen in the case of von Mises matrix, homogeneous yielding of porous Lode-independent materials also display
Lode-dependence that can be incorporated into models (Danas et al., 2008; Cazacu et al., 2013; Benallal et al.,
2014; Leblond and Morin, 2014; Cheng et al., 2015).

In the present case, only the first contribution, which is the dominant one, is accounted for by the model. However, the sec-265

ond contribution, despite being negligible regarding the stress values, may significantly influence yield surface normality
and thus the porosity rate (Leblond and Morin, 2014) and then the failure locus (Vishwakarma and Keralavarma, 2019).
There is no reason to believe that these findings, stated for von Mises materials, may differ for crystals; nevertheless, such
considerations are neglected in this work — q is calibrated for θ = 0 and expected to hold for other values of θ — and
left for future research. Finally, in Fig. 6d, it can be inferred that the model can account for main loading axes different270

from e1 (α = π/4 and π/2), and applied stresses with shear components (α = π/4). However, since GTN-like criteria have
uncoupled deviatoric and hydrostatic terms, two configurations in which the deviatoric and hydrostatic points are similar
are indistinguishable by the model, as seen with orientation couple #13 (plotted in pink) loaded with α = π/4 and π/2; yet,
unit-cell computations clearly show that these two configurations have distinct yield stresses at intermediate triaxialities.

Due to the calibration procedure, simulations displaying void coalescence are within yield surfaces of the void growth275

criterion. This way, a void coalescence criterion for porous boundaries can be used simultaneously with the GTN-like
model without inconsistency (see Fig. 2b).

In summary, the yield criterion presented in this section can predict satisfactorily void growth yield stresses for porous
boundaries with spherical voids in the rate-independent limit. Improvement of the Gurson-like model to account for more
general shapes could possibly be carried out following the lines of Monchiet et al. (2008), Keralavarma and Benzerga280

(2010) and Morin et al. (2015) that extended the yield locus of Benzerga and Besson (2001) to Hill materials containing
spheroidal or ellipsoidal cavities.

4. Viscoplastic potentials for porous bi-crystals with ellipsoidal voids

In order to obtain a criterion for porous grain boundaries with ellipsoidal voids, a variational approach is adopted in
the following. Indeed, variational methods provide a homogenization alternative to limit analysis that has proven fruitful285

for the study of voided viscoplastic single crystals (Han et al., 2013; Mbiakop et al., 2015a; Song and Ponte-Castañeda,
2017a) and polycrystals (Lebensohn et al., 2011; Nervi and Idiart, 2015; Song and Ponte Castañeda, 2018). In particular,
they are expected to yield viscoplastic potentials and to be more convenient to introduce void shape effects.

In that section, pristine single crystal mechanical behavior is assumed to derive from the following viscoplastic stress
potential:

un(σ) =
K∑

s=1

γ̇0τ
c
s

n + 1


∣∣∣σ : µs

∣∣∣
τc

s

n+1

, ε̇ =
∂un

∂σ
(19)

The constitutive equation Eq. 19b linking the stress potential and the plastic rate of deformation is the same as Eq. 1. Note
that the Stokes-Rayleigh analogy (Hoff, 1954) enables an alternative interpretation of Eq. 19 to viscoplasticity if the strain290

ε is substituted to the strain rate in Eq. 19b: when n = 1 the described material has a linear elastic behavior while n > 1
corresponds to non-linear elasticity. This is usually the paradigm that is adopted in variational approaches (Hashin and
Shtrikman, 1963; Willis, 1977; Nemat-Nasser et al., 1993).

The concept of yield surface is extended for finite n by the gauge domain G introduced by Leblond et al. (1994):

G =

{
σ, un(σ) ≤

γ̇0τ
c

n + 1

}
(20)

In this convenient framework, the normality rule is kept (Benzerga and Leblond, 2010) and viscoplastic yielding is studied
through the description of the gauge surface ∂G: gauge factor λ(σ) is defined as the scalar such as λ(σ) · σ ∈ ∂G. In the295

limit n→ +∞, ∂G recovers the classical concept of yield surface.
The potential U of the porous material represented by the unit-cell Ω writes:

U(Σ) = min
σ∈S(Σ)

〈
un(σ, x)

〉
Ω

(21)

where S(Σ) is the set of statically admissible microscopic stress fields. Since potentials u for both void and single crystals
are positively homogeneous of degree n + 1, U inherits this property. Then, according to Euler’s homogeneous function
theorem combined with the macroscopic constitutive equation, Σ : D = (n + 1)U(Σ), enabling to compute U at yielding
from macroscopic tensors. Therefore, when the unit-cell is subjected to the loading described in Section 2.2, it can be
obtained that:

λ (Σ0) =
(
Σ0 : D0

γ̇0τc

) −1
n+1

(22)
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where Σ0 and D0 are the final converged values of the FFT computation. Eq. 22 is used in the post-processing of
viscoplastic numerical limit-analysis of Section 2 and subsequent plotting of gauge surfaces: indeed, the numerical gauge
stress is Σ = Σ∗ (Σ0) · Σ0 ∈ δG. Note that when n → +∞, Eq. 22 reduces to λ (Σ0) = 1 i.e. the numerical saturated stress
is the sought yield stress.300

4.1. Case n = 1: Hashin-Strikman estimates for periodical porous bi-crystals
The Hashin-Shtrikman bounds (Hashin and Shtrikman, 1963) on elastic moduli have been thoroughly used to study

linear porous materials through the generalization of Willis (1977) who considered composites with random microstruc-
ture characterized by two-point correlation functions. Symmetries that allow analytic expressions are reviewed in Walpole
(1981) and Torquato (1991). None of them are suited to the case of porous grain boundaries in which the three phases305

(cavity, grain 1 and grain 2) are such that cavities are always located at the interface between grains. Bi-crystals with
porous boundaries have thus to be studied as periodical composites. A general framework to get bounds on elastic moduli
of composites with periodical microstructure is provided by Nemat-Nasser et al. (1993) along with an explicit solution
for two-phase composites. This section is devoted to obtain such a solution for three-phase composites, and that estimate
will be assessed in the case of linear porous bi-crystals (n = 1) in Section 4.2.310

l1

l2

l3

r1

r2
r3

Ω1

Ω2

Ω0

Figure 7: Rectangular prismatic unit-cell with centered ellipsoidal cavity; void axes are aligned with unit-cell axes.

We consider a three-phase periodical composite characterized by the unit-cell of Fig. 7 in which phase i occupies set
Ωi. Ω0 is an ellipsoid of axes r1, r2 and r3; void aspect ratios are defined as such: w2 = r1/r2 and w3 = r1/r3. The volume
of the unit-cell is taken as unity and volume of phase i will be referred as fi. Each phase i is viscous linear material of
pseudo-compliance6 tensor Si > 0 so that ε̇ = γ̇0 (Si : σ) /τc. According to Hashin-Strikman variational principle, every
S, rationalized as the pseudo-compliance tensor of an homogeneous comparison material, such as Si − S > 0 (minimality
condition) provide a lower bound for the macroscopic potential of the composite (Eq. 2.11 of Willis (1977) or Eq. 4.5a of
Nemat-Nasser et al. (1993)):

U(Σ) ≥
γ̇0τ

c

2
Σ : S : Σ with S = S +

2∑
i=0

fiS(i) (23)

According to Nemat-Nasser et al. (1993), tensors S(i) are given by the following linear system within the space of sym-
metric fourth-order tensors:

∀i ∈ J0, 2K, (Si − S)−1 : S(i) +

2∑
j=0

f j �i j : S( j) − I = 0 (24)

where correlation tensors (or Eshelby sums) �i j account for the interactions between phases and thus hold the microstruc-
ture information of the linear composite:

�i j(S) =
∑

ξ= (2n1π/l1, 2n2π/l2, 2n3π/l3)

(n1,n2,n3)∈(Z3)∗

Re
[
gi

(
ξ
)

g j

(
−ξ

)] (
S
−1 − S−1 : sym

[
ξ ⊗ (ξ · S−1 · ξ)−1 ⊗ ξ

]
: S−1

)︸                                                        ︷︷                                                        ︸
�

(
ξ,S

) (25)

with g j

(
ξ
)
=

1
f j

∫
x∈Ω j

eiξ·x (26)

where gi is the Fourier transform of the characteristic function of Ωi. Eq. 25 differs from Nemat-Nasser et al. (1993) in
that only the real part of �i j is considered. Indeed, it is safely assumed that components of S(i) are real-valued, allowing

6This terminology is motivated by Stokes-Rayleigh analogy.
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to focus attention on the real part of Eq. 24. For conciseness, expressions of g-functions are provided in Appendix D
for ellipsoidal cavities as well as elliptic-cylindrical cavities. However, explicit forms are not necessary to verify the
following relations:

�01 = �02 , ∀(i, j) ∈ J0, 2K2, �i j = � ji

�11 = �22 , f�00 + (1 − f )�01 = 0

f�01 +
1
2 (1 − f )�11 +

1
2 (1 − f )�12 = 0

(27)

the last two deriving from the fact that f0g0 + f1g1 + f2g2 = 0. Eq. 27 implies that all correlation tensors can be expressed
from �01 and �12. In order to solve the set of Eqs. 24, it is convenient to introduce tensors Bi:

∀i ∈ J0, 2K, Bi =
f
2
�01 +

1 − f
2

�12 − (Si − S)−1 (28)

Non-commutative algebra finally yield the following expressions:

S
(0) = −

1
1 − f

{
�
−1
01 +

1
2

[(
B1 − B0B

−1
2 B0

)−1 (
I + B0B

−1
2

)
+

(
B2 − B0B

−1
1 B0

)−1 (
I + B0B

−1
1

)]}
S

(1) = −
1

1 − f

(
B1 − B0B

−1
2 B0

)−1 (
I + B0B

−1
2

)
S

(2) = −
1

1 − f

(
B2 − B0B

−1
1 B0

)−1 (
I + B0B

−1
1

) (29)

In the case of the porous linear bi-crystal, S0 = ∞ and S1 and S2 are given by Eq. 14, corrected by a parameter κ → +∞
to regain inversibility:

Si =

K∑
s=1

1(
τ(i),c

s

)2

[
µ(i)

s ⊗ µ
(i)
s

]
+

1(
τ(i),c)2

1
3κ
J (30)

Since no obvious choice of S respecting the minimality condition exists, this condition is dropped and the homogeneous
material is chosen to be the pristine bi-crystal: S is given by Eq. C.4. The left-hand expression of Eq. 23 thus loses its
bounding character and becomes an estimate of U(Σ). Some degenerate cases are worth commenting. On the one hand,
when grain 1 and grain 2 have the same crystal orientation, S = S1 = S2 and the modulus estimate reduces to:

S = S1 + �00 (S1)−1 (31)

which was already presented by Nemat-Nasser et al. (1993) (Eq. 6.5a). This approximated modulus is the periodical twin
to the expression given by Willis (1977) (Eq. 3.16) in the context of random cavities and involving Eshelby inclusion
integral:

S = S1 +
f

1 − f

[〈
�

(
ξ,S1

)〉
∂Ω0

]−1
(32)

The absence of factor f /(1− f ) in Eq. 31 may seem surprising, but it is simply hidden in �00 as will be shown in Appendix
E. On the other hand, when f → 0, �12 → −�

(
e1,S

)
. Changing gear to S = S1, the approximated pseudo-compliance

becomes:

S = S1 +
[
2 (S2 − S1)−1 + �

(
e1,S1

)]−1
(33)

which is the result of Francfort and Murat (1986) (see Norris (1990) for a simplified presentation) for a pristine laminate.
A similar agreement is found choosing S = S2. Therefore, setting S according to Eq. C.4 (or equivalently Eq. 33) may
yield S = S; due to the intricate expressions it was not possible to derive equality but this conjecture was at least checked
numerically on a few examples. In summary, the expressions are consistent in both extreme cases of pristine bi-crystals
and porous single crystals.315

4.2. Case n = 1: Assessment of gauge surfaces
In the previous section, a complete set of equations gives an estimate for the pseudo-compliance of the linear porous

bi-crystal and therefore an approximate for its potential. Analytical gauge surfaces are determined by the conjunction of
Eq. 23 and Eq. 20:

Σ ∈ ∂G ⇔ Σ : S : Σ = 1 (34)

κ = 106 is chosen in Eq. 30, as higher values may cause instabilities when inverting tensors. �i j series (Eq. 27) are trun-
cated from (n1, n2, n3) ∈

(
Z3

)∗
to

(
J−100, 100K3

)∗
to ensure maximal accuracy; fewer terms would also lead to satisfying

estimates, but such an investigation is outside the scope of this study. In order to assess this model, gauge surfaces are
plotted in Fig 8 and compared to numerical surfaces obtained using Eq. 22 on unit-cell simulations.320

As seen in Fig. 8a, the estimates achieve very satisfying precision: variations of gauge stress according to crystal
orientations are perfectly accounted for, while the softening effect of porosity is correctly predicted in a wide range of f

13



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25

Σ
vM
eq

τ
c

Σm

τ
c

Porosity

f = 0.001
f = 0.01
f = 0.1

Σ
vM
eq

τ
c

Σm

τ
c

Σ
vM
eq

τ
c

Σm

τ
c

Σ
vM
eq

τ
c

Σm

τ
c

Σ
vM
eq

τ
c

Σm

τ
c

Σ
vM
eq

τ
c

Σm

τ
c

Σ
vM
eq

τ
c

Σm

τ
c

Σ
vM
eq

τ
c

Σm

τ
c

Σ
vM
eq

τ
c

Σm

τ
c

Σ
vM
eq

τ
c

Σm

τ
c

(a)

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

Σ
vM
eq

τ
c

Σm

τ
c

Void shape

w2 = w3 = 1

w2 = w3 = 0.25

w2 = w3 = 4

w2 = 0.5, w3 = 2

w2 = 2, w3 = 0.5

Σ
vM
eq

τ
c

Σm

τ
c

Σ
vM
eq

τ
c

Σm

τ
c

Σ
vM
eq

τ
c

Σm

τ
c

Σ
vM
eq

τ
c

Σm

τ
c

Σ
vM
eq

τ
c

Σm

τ
c

(b)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8

Σ
vM
eq

τ
c

Σm

τ
c

Lode angle

θ = 0

θ = π/6
θ = π/3

Σ
vM
eq

τ
c

Σm

τ
c

Σ
vM
eq

τ
c

Σm

τ
c

Σ
vM
eq

τ
c

Σm

τ
c

Σ
vM
eq

τ
c

Σm

τ
c

Σ
vM
eq

τ
c

Σm

τ
c

Σ
vM
eq

τ
c

Σm

τ
c

(c)

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

Σ
vM
eq

τ
c

Σm

τ
c

Stress rotation angle

α = 0

α = π/4
α = π/2

Σ
vM
eq

τ
c

Σm

τ
c

Σ
vM
eq

τ
c

Σm

τ
c

Σ
vM
eq

τ
c

Σm

τ
c

Σ
vM
eq

τ
c

Σm

τ
c

Σ
vM
eq

τ
c

Σm

τ
c

Σ
vM
eq

τ
c

Σm

τ
c

(d)

Figure 8: Comparison of gauge surfaces predicted by variational estimates (lines) and unit-cell computations (points) at n = 1: (a) porous boundary at
θ = 0 and various spherical porosities; (b) porous boundary at f = 0.01 and θ = 0 with ellipsoidal cavities of various shapes; (c) porous boundary with
spherical cavity at f = 0.01 and various Lode angles; (d) porous boundary with spherical cavity at f = 0.01 and θ = 0 with loading rotations of α around
e2. Hollowed-out symbols mark simulations in which the deformation mode has been identified as void coalescence.

(in fact for all the values considered in the unit-cell database: i.e from f = 0.001 to f = 0.3). As in the case of single
crystals, it can be noticed that porosity has a greater effect on the hydrostatic point than on the deviatoric point. Fig. 8b
assesses the impact of void shape; again, it is underlined that the proposed estimates are in agreement with unit-cell325

computations for all ellipsoidal geometries considered. For a given porosity, oblate cavities in the plane (e2, e3) are found
more damaging than prolate cavities, both of them displaying softer behavior than spherical cavities. Ellipsoidal cavities
with w2 = 0.5 and w3 = 2 (and vice-versa) have intermediate gauge stresses between the two spheroidal void geometries.
Lode angle influence is shown in Fig. 8c: as in the case of single crystals (Paux et al., 2018), no general rule can be stated
on the angle θmax at which the maximum yield stress is reached. Orientations displayed on the graph were chosen because330

of the important effect of θ, but for other orientations this influence was noticed to be less important. All these trends are
quantitatively reflected in the model. All these findings do not depend on crystallographic orientations as they were seen
on all couples present in the database. Finally, stress rotations were investigated in Fig. 8d: α = π/2 is a loading whose
principal stress axis is along e3 while α = π/4 have shear components since the main loading axis is along e1 + e3. Due to
the complex interplay between loading directions and crystallographic orientations, the effect of α vary greatly according335

to the grain boundary that is considered. This is in contradiction with the findings of Wen and Yue (2007), Zhang et al.
(2008) and Liu et al. (2009) who considered too few orientation couples to notice their influence. This conclusion will be
seen to hold for other values of n (see Section 4.4).

As explained in Appendix B, void coalescence was identified in a handful of simulations (see Fig 8b,c,d). Although
the predictions of the model are not too far from these points, they are the computations where the discrepancy is the340

highest. Such a finding is no surprise as the derivation conducted in the previous section is only supposed to account for
voided boundaries where plasticity is diffuse.
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4.3. Case n > 1: Heuristical variational extension

Variational methods of non-linear composite homogenization based on linear comparison materials have been widely
used; see Castañeda and Suquet (1997) for a synthesis. In the aforementioned framework, the shear stresses on slip
systems s are supposed to be homogeneous in each crystal i, i.e. τ(i)

s

(
x
)
= τ(i)

s . Injecting this hypothesis in Eq. 21 means
that the homogenized potential of a porous polycrystal of M grains (Song and Ponte-Castañeda, 2017a; Song and Ponte
Castañeda, 2018) is sought in the form:

ULC(Σ) =
M∑

i=1

fi

 K∑
s=1

γ̇0τ
(i),c
s

n + 1

 τ(i)
s

τ(i),c
s

n+1 (35)

In our study, only the cases M = 1 and M = 2 shall be considered. Note that there is M + 1 phases due to the presence of
a cavity of volume fraction f0 = f , but the corresponding term does not appear in Eq. 35 since the local stress potential of
the void is 0. When M = 1, f1 = 1 − f and when M = 2, f1 = f2 = (1 − f )/2. The homogenized resolved shear stresses
τ(i)

s should be chosen in order to minimize the macroscopic potential and to fulfill the stress admissibility conditions.
In linear comparison methods,

(
τ(i)

s

)
are solutions of a set of non-linear equations in which the pseudo-compliance S

of a well-chosen porous linear comparison material intervenes. Determining U require solving a set of m × M × K
non-linear equations — integer m is contingent on the exact linear comparison method (e.g. variational method, second-
order method). Therefore, Eq. 35 is not analytic and may be too computationally expensive to implement in numerical
simulations of ductile fracture, prompting the development of simpler expressions. In the case M = 1, Mbiakop et al.
(2015a) has suggested the following analytic form for

(
τ(i)

s

)
:

τ(i)
s =

1
1 − f

√(
τ(i)

s

)2
+ Σ :

[
A +

(
qJ(n, f )2 − 1

)
J : A : J

]
: Σ with A =

(τc)2

K

[
(1 − f )S − S

]
(36)

where τ(i)
s is the resolved shear stress of the pristine crystal, A is linked to the pseudo-compliance S of the linear porous

crystal and qJ is a scalar depending on n and f . Since the work of Mbiakop et al. (2015a) focused on single crystal with
random cavities, τ(i)

s = µs : Σ, S is set by Eq. 14b and S is set by Eq. 32. The substitution of Eq. 36 into Eq. 35 thus yields:

ULC
mono(Σ) =

1
(1 − f )n

K∑
s=1

γ̇0τ
c
s

n + 1

 √
Σ :

(
µs ⊗ µs + A +

(
qJ(n, f )2 − 1

)
J : A : J

)
: Σ

τc
s

n+1

(37)

which is exactly Eq. 40 of Mbiakop et al. (2015a). In the limit where f goes to 0, A = 0 so this expression reduces
to the pristine single crystal potential (Eq. 19). When n = 1, if qJ(1, f ) is taken equal to 1 then Eq. 37 reduces to the
Hashin-Strikman estimate for linear porous single crystal (Eq. 23a with S given by Eq. 32):

ULC
mono(Σ) =

γ̇0τ
c

2(1 − f )

Σ :
(

K
(τc)2A

)
: Σ +

K∑
s=1

Σ :
(

1
(τc

s)2µs ⊗ µs

)
: Σ

 = γ0τ
c

2
Σ : S : Σ (38)

Therefore, the expression of Mbiakop et al. (2015a) exhibits satisfying behavior in the limiting cases of a linear porous
single crystal and a pristine non-linear single crystal. Next, Eq. 36 is applied to the porous bicrystal case (M = 2).
From Appendix C, it is obtained that τ(i)

s = µ
(i)
s :

(
Σ ± ∆̃n(Σ)

)
with ∆̃n defined in Eq. C.2. As in Section 4.1, S is set by

Eq. 33 (or equivalently Eq. C.4) and S is set by Eq. 23b. Therefore, substitution of Eq. 36 into Eq. 35 yields:

ULC
bi (Σ) =

1
2(1 − f )n

2∑
i=1

K∑
s=1

γ̇0τ
(i),c
s

n + 1


√(
µ(i)

s :
(
Σ ± ∆̃n

))2
+ Σ :

(
A +

(
qJ(n, f )2 − 1

)
J : A : J

)
: Σ

τ(i),c
s


n+1

(39)

In the limit where f goes to 0, A = 0 so this expression reduces to the crystalline laminate potential (Eq. C.2). When n = 1
and qJ(1, f ) is taken equal to 1, Eq. 39 recovers the Hashin-Strikman estimate for the linear porous bi-crystal (Eq. 23):

ULC
bi (Σ) =

γ̇0τ
c

2(1 − f )

Σ :
(

K
(τc)2A

)
: Σ +

1
2

K∑
s=1

µ(1)
s :

(
Σ + ∆̃1

)
τ(1),c

s


2

+

µ(2)
s :

(
Σ − ∆̃1

)
τ(2),c

s


2

=
γ̇0τ

c

2(1 − f )

[
Σ :

(
(1 − f )S − S

)
: Σ + Σ : S : Σ

]
(see Eq. C.4)

=
γ̇0τ

c

2
Σ : S : Σ

(40)

Therefore, the heuristic homogenized potential proposed here (Eq. 39) is coherent with previous results in the limiting
cases of a linear porous bi-crystal and a non-linear pristine bi-crystal. Until now, the value of qJ was not discussed and
supposed to be 1. In that case, use of Eq. 37 and Eq. 39 to predict gauge surfaces reveal that estimated potential are
too small at high trixialities, as is usually the case with variational estimates. qJ could be chosen to recover exact results
for the hydrotatic behavior of porous crystals but unfortunately no such result is known. Instead, following Mbiakop
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et al. (2015a), the limiting case of crystals with an infinite number of equiangular equivalent slip systems (K → +∞
and τ(i),c

s = τc) and spherical voids is considered and qJ is fixed so that this behavior is correctly predicted under pure
hydrostatic loading. It is shown in Appendix E that this coherency condition writes:

qJ(n, f ) = agn

√
20
3 f

(
1 − f

n( f −1/n − 1)

) n
n+1

(41)

where a = 3/2 for spherical voids and gn is a constant that only depend on n. Note that:

qJ(1, f ) = 1 ⇔ g1 =
1
a

√
3
20

(42)

Eq. 41 can be qualitatively related to the hydrostatic behavior of Gurson-type yield criteria (see Paux et al. (2015) and
Eq. 18): under pure hydrostatic loading, the dependence on crystallographic orientations is thought to vanish, at least at345

the first order.
In summary, the heuristic variational model developed for viscoplastic bi-crystals with ellipsoidal voids is constituted

by the conjunction of Eqs. 39 and 41.

4.4. Case n > 1: Assessment of gauge surfaces
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Figure 9: Comparison of gauge surfaces predicted by variational estimates (lines) and unit-cell computations (points) at n = 3: (a) porous boundary at
θ = 0 and various spherical porosities; (b) porous boundary at f = 0.01 and θ = 0 with ellipsoidal cavities of various shapes. Hollowed-out symbols
mark simulations in which the deformation mode has been identified as void coalescence.
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Figure 10: Comparison of gauge surfaces predicted by variational estimates (lines) and unit-cell computations (points) at n = 10: (a) porous boundary
at θ = 0 and various spherical porosities; (b) porous boundary at f = 0.01 and θ = 0 with ellipsoidal cavities of various shapes. Hollowed-out symbols
mark simulations in which the deformation mode has been identified as void coalescence.
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Before carrying assessment of gauge surfaces, some additional discussion on gn is needed. In Mbiakop et al. (2015a)350

as well as in Appendix E, an approximate argument based on a study of porous materials with Lode-dependent yield
criteria (Benallal, 2018) lead to Eq. E.21, which gives an explicit value for gn. Values from Eq. E.21 and those given
in Mbiakop et al. (2015a) are compared in Table 4: they are very close for n ∈ J1, 10K but quite distinct7 for n = 100.
Unfortunately, when n > 1, using the value of gn given by Eq. E.21 to predict gauge surfaces lead to gauge stresses at
high triaxiality ratios that are significantly below the numerical gauge stresses provided by unit-cell simulations. For that355

reason, Eq. E.21 is discarded and gn is set as a calibration parameter for n > 1. Note that the approximate nature of
Eq. E.21 allow for such emancipation (see Appendix E). For a given n, gn is chosen to minimize the mean square error
in the prediction of gauge surfaces for porous boundaries with spherical voids and subjected to loadings with θ = 0 and
α = 0. Only simulations which display void growth were considered; values obtained through this optimization procedure
are reported in Table 4 and shall be used in the graphs shown hereafter.360
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Figure 11: Comparison of gauge surfaces predicted by variational estimates (lines) and unit-cell computations (points) at n = 100: (a) porous boundary
at θ = 0 and various spherical porosities; (b) porous boundary at f = 0.01 and θ = 0 with ellipsoidal cavities of various shapes; (c) porous boundary
with spherical cavity at f = 0.01 and various Lode angles; (d) porous boundary with spherical cavity at f = 0.01 and θ = 0 with loading rotations of α
around e2. Hollowed-out symbols mark simulations in which the deformation mode has been identified as void coalescence.

In order to assess the heuristical extension presented in the previous section, gauge surfaces for n = 3, n = 10 and
n = 100 are respectively shown in Fig. 9, Fig. 10 and Fig. 11. Even if the predictions are satisfying on the range of n
considered, it can be seen that agreement diminishes when n increases. This was expected since the rigorous estimate was
only obtained for n = 1 and further extension to n > 1 is likely to become cruder as non-linearity grows. Thus, Fig. 9
(n = 3) displays a better agreement than Fig. 10 (n = 10) which itself shows better predictions than Fig. 11 (n = 100).365

Nevertheless, the variational model at n = 100 compares well with the Gurson-like locus (Fig 6). For all values of n, the
combined effects of porosity and crystal orientation couples are well predicted (Figs. 9-11a), as well as the influence of

7This is no surprise since Mbiakop et al. (2015a) computed gn for n ∈ J1, 10K from a formula akin to Eq. E.21 (although not explicitly given) and
then extrapolated the numerical trend found in that interval to obtain g100.
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Table 4: Values of gn obtained by various methods.

n 1 3 10 100

gn

Theoretical (Eq. E.9b) 0.26 0.31 0.39 0.48
Mbiakop et al. (2015a) 0.26 0.32 0.38 0.40

Calibration 0.26 0.26 0.31 0.31

Lode angle and principal axes, which are only shown in the more challenging case (n = 100, see Fig. 11c,d) for brevity.
From these assessments, it can be inferred that gauge surfaces are correctly predicted for arbitrary loading configurations
and that the model is fit for use in finite-element simulations. Furthermore, the results for ellipsoidal cavities presented in370

Figs. 9-11b are quite satisfying as far as the void growth stage is concerned. The effect of oblate cavities along the grain
boundary (w2 = w3 = 0.25) is particularly well predicted. The only disappointment come from the asymmetry of the
gauge surface for prolate cavities (w2 = w3 = 4.0) that is insufficiently marked in the model predictions, a discrepancy
that increases with n and make prolate cavities detrimental to material strength (similarly to the case n = 1, from which
the heuristical extension is drawn) whereas they are beneficial to it. It can be seen in Mbiakop et al. (2015a) that the375

introduction of an additional parameter α2 increased the influence of the microstructural tensor A on resolved shear
stresses (Eq. 36), enabling the reproduction of such effects at the cost of additional calibration.

It can be seen that increasing n foster void coalescence (see also Fig. 8), so that smaller sections of gauge surfaces
belongs to void growth stage. A sharp transition can be seen (especially at n = 100) in the surfaces obtained by numerical
homogenization: a first section with a high curvature at low triaxialities is supplemented by a straight-lined section at high380

triaxialities. This finding justifies the choice to model gauge surfaces with a multi-surface criterion (e.g. Keralavarma
(2017)), only the void growth criterion being discussed here. This contrasts with other studies in which a unique yield
criteria obtained in the dilute porosity regime is expected to account for all possible deformation modes: in Lebensohn
et al. (2011), the estimations presented are naturally too stiff near the hydrostatic point due to the neglect of plastic local-
ization, whereas the model presented in Mbiakop et al. (2015a) and Mbiakop et al. (2015b) displays degraded agreement385

at intermediate triaxialities in an effort to recover the hydrostatic point; remark that additional calibration parameters α1
and α2 that were needed at n = 100 (Mbiakop et al., 2015a) are not used here.

Finally, it is noted that the effect of choosing square periodicity of cavities in the plane (e2, e3) has not been evaluated,
but is believed to be minor given the fact that interactions between cavities are weak in the void growth stage. Nevertheless,
Hashin-Strikman estimates for porous bi-crystals with planar randomness of cavities may be achieved by combining the390

derivations of Willis (1977) and Nemat-Nasser et al. (1993).
Even if it is not in the scope of this study, some considerations on computational efficiency may be stated. The GTN-

like yield criterion is quite efficient provided that the value of ∆∞ is known. Since the normalized value of this tensor only
depends on the Lode angle and stress principal axes that may evolve slowly in ductile fracture simulations, optimization
of Eq. C.2 will not be needed at every time step. Alternatively, the use of a surrogate model for ∆∞ would also accelerate395

simulations. Variational estimates (Eq. 36) are more computation intensive with the determination of both S and ∆n, the
latter being negligible compared to the former. Since S only depends on porosity and void shape, its updates can be
reduced to significant geometric evolutions, and accelerated by determining an optimal truncation for series �01 and �12
(Eq. 25). It is also worthy to note that computations can be alleviated by using a surrogate model for g1 (Eq. D.4) or by
considering elliptic-cylindrical voids for which function g1 possesses a closed-form (see Appendix D).400

5. Application to the competition between intergranular and transgranular void growth

The yield criteria proposed in the previous sections allow for a discussion of the competition between transgranular
and intergranular ductile fracture. Since polycrystal ductile failure is an intricate phenomenon in which work hardening,
texture evolution and strain localization play an important role, definitive predictions of the dominant fracture mechanism
are outside the scope of this study. However, the two criteria derived in this study can predict, given a microstructure with405

pre-existing cavities and a loading state, the location — grain interiors or grain boundaries — where void growth will first
occur.

As a first work example, let us consider a porous bi-crystal with a random distribution of spherical cavities, both at the
grain boundary and within the grains, corresponding to the microstructure shown in Fig. 12. Constant void volume fraction
is assumed at the grain boundary and inside grains. Since Gurson-like criteria have been noticed to account for periodic
arrays of voids as well as random distributions without additional calibration (Hure, 2021), Eq. 18 is used to describe
intergranular void growth and the following yield function (Paux et al., 2015) is chosen to account for transgranular void
growth:

lim
m→∞

 K∑
s=1


∣∣∣Σ : µs

∣∣∣
τc

s

m2/m

+ 2q f cosh
(
κ′
Σm

τc

)
− 1 − (q f )2 = 0 (43)

with κ′ = 0.489 and q given by Table 3. Since yield functions only differ due to the deviatoric term, f and T have
no influence on which of the grain boundary or grain interiors will experience plasticity first. In fact, it was proven
in Appendix C that at constant porosity and loading state, the porous boundary (modeled by Eq. 18) will always be410

harder than at least one of the two grain interiors (modeled by Eq. 43). Hence plasticity will first occur inside grains.
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Figure 12: Porous bi-crystal with a random distribution of spherical cavities.

This general prediction is in agreement with the experimental evidence that transgranular fracture is more common than
intergranular ductile fracture, the latter being triggered by specific weakening of grain boundaries.
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Figure 13: Effect of crystal orientation and Lode angle θ on void growth inside a porous rate-independent bi-crystal with a soft precipitate-free zone
(PFZ): (a) microstructure considered; (b) orientation mismatch ϕ between crystal 1 of orthotropy axes (o(1)

i ) and crystal 2 of orthotropy axes (o(2)
i ); (c)

threshold τcGB/τ
c
GI below which plasticity occur first at grain boundaries as a function of ϕ and θ, at T = 1/3 and f = 0.01.

One of these weaknesses is the existence of a precipitate-free zone (PFZ) around grain boundaries of many precipitation-
hardened alloys (see Fig. 13a), which results in a significant decrease of the mean critical shear stress at grain boundaries.415

This critical shear stress is denoted τc
GB (Eq. 18 is used with τ(1), c

s = τ(1), c
s = τc = τc

GB) while the grain interior critical
shear stress is τc

GI (Eq. 43 is used with τc
s = τ

c = τc
GI). Restricting the analysis to a particular case of bi-crystals whose

first crystal has orthotropy axes aligned with the frame of reference and whose second crystal has been rotated by an
angle ϕ around e1 (see Fig. 13b) — note that ϕ and ϕ + π/2 result in the same crystal — , Fig. 13c shows the critical
shear stress mismatch required to trigger void growth at grain boundaries at T = 1/3 (simple tension) and f = 0.01. The420

axial symmetry in ϕ relatively to ϕ = π/4 was expected because exchanging crystal 1 with crystal 2 do not influence the
result. Remark that for ϕ ∈ {0, π/2} or θ = 0, the two crystals are indistinguishable so yielding will occur both at the
grain boundary and at grain interiors at τc

GB = τ
c
GI; decreasing τc

GB under this threshold will localize plasticity at grain
boundaries. In all other situations, crystals have different behaviors under the prescribed loading so the threshold τc

GB/τ
c
GI

displayed on Fig. 13c will be below 1. Lode angle θ and crystal orientation mismatch ϕ have an influence on the threshold425

– although no influence of θ is reported when it exceeds a value of π/6. Identical trends exist for other stress triaxiality ra-
tios T and void volume fractions f — even if these results need to be interpreted carefully due to the potential occurrence
of void coalescence at high T and f . This is coherent with experimental results which show that some grain boundaries
are more prone to intergranular fracture than others and provide a rationale to the existence of fracture surface exhibiting
both transgranular and intergranular fracture (Deshpande et al., 1998). Note that inhomogeneities in the microstructure430

(Pommier et al., 2016) and grain boundary tilt angle relative the loading (Gräf and Hornbogen, 1977) have also been put
forward to justify such findings. Since PFZ usually have a higher work-hardening rate than grain interiors, occurrence of
plasticity at grain boundaries can be followed by grain interior plasticity once the PFZ has hardened (Thomas and Nutting,
1959). Therefore, the threshold given is an upper bound for the occurrence of ductile grain boundary failure, since τc

GB
may be required to be much lower to account for subsequent fostered work-hardening; a full analysis of this effect was435

conducted by Pardoen et al. (2003) using isotropic GTN models.
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Figure 14: Effect of intergranular void aspect ratio w, triaxiality T and Lode angle θ on void growth inside a porous rate-independent polycrystal of
fixed orientation couple #10: (a) microstructure considered; (b) normalized yield stress Σ0/τ

c at grain interiors and at the grain boundary as a function
of θ for various w and T , computed either with Eq. 18 (G) or Eq. 36 (V).

Another weakness of grain boundaries that could enhance the occurrence of intergranular ductile fracture at constant
void volume fraction is a different void aspect ratio. Indeed, elongated precipitates are common at grain boundaries
(Kawabata and Izumi, 1976) and may lead to oblate intergranular voids. Thus, as a second example, microstructure
shown in Fig. 14a is considered, with spheroidal cavities of void aspect ratio w = w2 = w3 at the grain interface (see440

Section 4.1 for the definition of these parameters), their volume being equal to the one of spherical voids located at grain
interiors. The same crystal orientation couple as Fig. 11b is chosen. Normalized yield stresses of grain interiors as well
as the grain boundary are plotted in Fig. 14b for w = 1 and w = 0.25 at two different triaxialities. Porous single crystals
are still modeled with Eq. 43 but Gurson-like and variational criteria (Eqs. 18 and 36) are plotted for the porous boundary
with w = 1; they are very close at T = 1 but the discrepancy increase with triaxiality — note that the two criteria coincide445

at the deviatoric point, at least when f → 0. Despite this small inconsistency, the dependence in Lode angle θ is identical
for the two criteria. Note that the brutal change in the slope of grain interior yield stress is not surprising; as pointed in
Paux et al. (2018), it is related to a different set of slip systems being activated; no such vertexes are observed on grain
boundary yield stress curves but no general rule can be stated on their absence as Eq. 43 is a special case of Eq. 18. As
seen in Fig. 14b, transgranular yielding is favored at T = 1 for both w = 1 and w = 0.25, despite the expected softening450

effect of void aspect ratio reduction (see Fig. 11b). At T = 2 and w = 1, the same conclusion holds when using Eq. 18,
as already pointed out in the previous case study. Due to the discrepancy between void growth criteria, this conclusion is
challenged for θ > π/6 when using the variational criterion, which underlines the paramount importance of quantitative
prediction of yield stresses as small errors can influence the failure mode. Finally, since void shape softening increases
with T , it is no surprise that intergranular yielding is favored over transgranular yielding at T = 2 and w = 0.25.455

6. Conclusion and perspectives

Large-scale simulation of intergranular ductile fracture requires the development of yield criteria for porous grain
boundaries. This study focused on the void growth stage, i.e. the regime in which plastic deformation is not yet local-
ized at void scale. Using analytical homogenization techniques, two void growth yield criteria were derived for porous
bi-crystal unit-cells. The first yield locus (Eq. 18), suited for rate-independent crystals with spherical voids, was obtained460

through limit-analysis of Hill plastic materials followed by heuristical corrections of the deviatoric and hydrostatic terms.
This criterion is a Gurson-like expression, meaning that it can be easily implemented in mechanical solvers (FEM or
FFT) that already hold similar models. Following a variational approach, an alternative criterion was derived for vis-
coplastic crystals of Norton exponent n: Hashin-Strikman estimates are obtained rigorously for n = 1 (Eqs. 23, 29), and
a heuristical extension to n > 1 is proposed (Eq. 36). Using a database of small strain unit-cell computations of porous465

grain boundaries, the agreement of models with respect to simulations was checked. Both criteria make satisfying predic-
tions of yield surfaces for arbitrary macroscopic stress tensors (Fig. 6c,d; Figs. 8-11c,d) and crystal orientation couples
(Fig. 6a,b, Figs. 8-11a). The span of porosities in which the models are validated is quite large ( f ∈ [0.001, 0.3]), and the
variational criterion predicts correctly gauge surfaces for ellipsoidal voids shapes whose axes are aligned with unit-cell
axes (Figs. 8-11b), which exclude the modeling of void rotation effects.470

The derivation of intergranular void growth criteria, as performed in this paper, is an important milestone to simulate
grain boundary ductile fracture. To describe the full yield/gauge surfaces of voided grain boundaries, a void coalescence
criterion should also be obtained, as performed in Hure (2019) for voided single crystals. Once the multi-surface criterion
is complete, the addition of suitable evolution laws for microstructural parameters, such as porosity and void shape,
will constitute a full homogenized model, as was collected in Sénac et al. (2022) for porous single crystals. Thus,475

microstructure-informed simulations of the competition between transgranular and intergranular ductile fracture could be
20



envisioned, as pioneered in Pardoen et al. (2003) for a given material, using isotropic models. Concomitantly, reference
experiments are needed in order to assess theoretical models: namely, the hypothesis of perfect bonding between crystals
made in crystal plasticity simulations and analytical homogenization have to be assessed. Such confrontations at the bi-
crystal scale are scarce (e.g. Zaefferer et al. (2003)) and were never performed in presence of a voided boundary. Besides,480

if the material of interest display intergranular voids of radius lower than the plasticity characteristic length, extension
of these criteria to account for size effects may be needed — see Khavasad and Keralavarma (2021) on that subject.
Finally, at a different scale, it is of paramount importance to compare porous polycrystal fracture predictions with actual
experiments in the case of small aggregates so that the homogenization of crystallographic effects is validated.

485

CRediT authorship contribution statement

Cédric Sénac: Conceptualization, Methodology, Software, Validation, Formal analysis, Data curation, Writing - orig-
inal draft, Writing - review & editing, Visualization. Jérémy Hure: Conceptualization, Methodology, Formal analysis,490
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Appendix A. Definition and properties of Hill strain anisotropy tensor H∗

For every orthonormal basis (e1, e2, e3), the following set of vectors is a basis of the space of deviatoric symmetric
second-order tensors D2(R) (i.e. symmetric tensors A such that J : A = 0): √3 + 1

2
e2 ⊗ e2 +

√
3 − 1
2

e3 ⊗ e3,

√
3 − 1
2

e2 ⊗ e2 +

√
3 + 1
2

e3 ⊗ e3,
√

2e2 ⊗ e3,
√

2e3 ⊗ e1,
√

2e1 ⊗ e2

 (A.1)

Since D2(R) is stabilized by Hi, it is legitimate to consider its restriction Hi to that subspace. The hypothesis that matrix
materials can accommodate arbitrary isochoric deformation is made, i.e. Hi admits an inverse tensor H

∗

i . Tensors H
∗

i are495

then extended over the full space of symmetric second-order tensors S2(R) = D2(R) ⊕ R I by prescribing their value to 0
over the second set of the direct sum, yielding Hill strain anisotropy tensors H∗i that verify H∗ : H = H : H∗ = K.

The Voigt-Mandel condensation of H∗ associated with an orthonormal basis of orthotropy (eI, eII, eIII) writes:

H
∗ =



h∗11 h∗12 h∗31 0 0 0
h∗12 h∗22 h∗23 0 0 0
h∗31 h∗23 h∗33 0 0 0
0 0 0 h∗44 0 0
0 0 0 0 h∗55 0
0 0 0 0 0 h∗66


(A.2)

and it can be checked that this matrix admits an arrangement (h∗i )i∈J1,6K of its eigenvalues verifying the following relations:

h∗11 =
1
9

(
4h∗1 + h∗2 + h∗3

)
h∗23 =

1
9

(
h∗1 − 2h∗2 − 2h∗3

)
h∗44 = h∗4

h∗22 =
1
9

(
h∗1 + 4h∗2 + h∗3

)
h∗31 =

1
9

(
−2h∗1 + h∗2 − 2h∗3

)
h∗55 = h∗5

h∗33 =
1
9

(
h∗1 + h∗2 + 4h∗3

)
h∗12 =

1
9

(
−2h∗1 − 2h∗2 + h∗3

)
h∗66 = h∗6

(A.3)

Appendix B. Coalescence micromechanical indicator

The range of stress triaxialities and porosities covered in Section 2 makes it likely that some unit-cells undergo void
coalescence instead of void growth. Therefore, an indicator is needed to filter out simulations that display deformation500

modes that are outside the scope of this study. Two main macroscopic coalescence indicators have been proposed. First,
coalescence by internal necking can be indicated by vanishing transverse strain rates D22, D33 compared to D11. However,
this indicator cannot account for coalescence outside the (e2, e3)-plane such as shear-assisted coalescence (Hure, 2019) or
coalescence in columns (Gologanu et al., 2001). The extension proposed by Cadet et al. (2021) is based on the decrease
rate of det(Ḟ) — where F is the deformation gradient at the scale of the unit-cell — which experiences a drastic change505

when plasticity localizes. Unfortunately, in small strain simulations, unit-cells are not expected to experience successive
void growth and coalescence but rather a unique deformation mode, making this extension unsuitable. Second, Rice
criterion for plastic localization (Rice, 1976) is an alternative way of detecting the onset of coalescence, as discussed
in Vishwakarma and Keralavarma (2019) and Cadet et al. (2022). However, the start of inhomogeneous yielding under
shear-dominated loadings is not detected by this criterion (Torki et al., 2021) and the fourth-order elasto-plastic tangent510

stiffness tensor is not computed during FFT mechanical solving and thus cannot be obtained from unit-cell simulations.
In order to break this stalemate, advantage is taken from microscopic slip activity Γ̇ =

∑
s |γ̇s| fields that are available

upon plastic yielding for all simulations (Fig. B.15a,c). Statistical analysis of Γ̇ values in voxels belonging to crystalline
phases unveils different distributions according to the activated deformation mode, as shown in Fig. B.15b,d. In void
growth situations (Fig. B.15a,b), plasticity is homogeneous around mean slip activity

〈
Γ̇
〉

with very few voxels experienc-515

ing no yielding; this is in agreement with classical terminology of ”diffuse plasticity”. On the contrary, void coalescence
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Figure B.15: Microscopic field (a,c) and corresponding histograms (c,d) of Γ̇ at macroscopic plastic yielding for orientation couple #9, θ = 0, n = 100
and f = 0.05: (a,b) T = 0; (b,c) T = 10.

is associated with large elastic zones in the unit-cell (Fig. B.15c,d), leading to a distribution strongly weighted around
0 while mean slip activity

〈
Γ̇
〉

is driven by voxels located in ligaments where plasticity localizes. Between these two
well-identified extremes, few simulations remain ambiguous.

Based on the previous findings, the following coalescence indicator is proposed:

Ξ ≥ δ where Ξ =

〈
Γ̇
〉

median
(
Γ̇
) ∈ [0,+∞] (B.1)

Ξ indicates the level of localization in the matrix and δ is an adjustable threshold. If Ξ ≥ δ, it means that the strain520

rate field deviates too much from a normal distribution, i.e. plasticity is no longer diffuse. For this study, a careful
examination of the database ensured that the choice of δ = 1.5 was satisfying for n = 100 and δ = 1.35 for lower n.
On Fig. B.16 are shown a few interesting properties of this indicator. First, Ξ is an increasing function of T from low to
high triaxialities – as expected given the transition from growth to coalescence – but often exhibits a drop at very high
triaxialities due to the transition from internal necking coalescence to multi-directional coalescence, a deformation mode525

in which localization takes place in a greater proportion of the unit-cell (this issue was briefly mentioned in Keralavarma
(2017) and Keralavarma et al. (2020)). Second, when porosity increases, coalescence takes place at lower triaxialities.
Finally, mesh discretization N has only a marginal effect on Ξ: indeed, in porous unit-cells, strain localization is mainly
controlled by the cavity size and not much by mesh refinement. Note that Chouksey et al. (2019) did propose another
micromechanical indicator, but with less marked trends.530

Appendix C. Crystalline laminate mechanical analysis

Considering a unit-cell containing a crystalline laminate subjected to periodic boundary conditions, Hill-Mandel
lemma Σ : D = ⟨σ : d⟩Ω is verified with macroscopic stress Σ being the volume-average of the deviatoric microscopic
field: Σ = ⟨σ⟩Ω = 1

2

(
⟨σ⟩Ω1

+ ⟨σ⟩Ω2

)
. Stress fields σ that are constant in each crystal are statistically admissible as long

as σ(1) = Σ + ∆n and σ(2) = Σ − ∆n with ∆n an element of the space C2(R) of symmetric second-order tensors satisfying
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Figure B.16: Coalescence indicator Ξ as a function of triaxiality T at θ = 0 and n = 100 for various porosities, mesh discretizations and crystal
orientations.

the stress continuity condition at the planar interface. Then, every statically admissible field σ is such that:

⟨u (σ)⟩Ω =
1
2

[〈
u(1)

n (σ)
〉
Ω1
+

〈
u(2)

n (σ)
〉
Ω2

]
≥

1
2

[
u(1)

n

(
⟨σ⟩Ω1

)
+ u(2)

n

(
⟨σ⟩Ω2

)]
=

1
2

[
u(1)

n (Σ + ∆n) + u(2)
n (Σ − ∆n)

]
(C.1)

due to the convexity of u(1)
n and u(2)

n in σ (potentials u are defined and discussed at the beginning of Section 4). Therefore,
minimizing the macroscopic stress potential over statically admissible stress fields (Eq. 21) amounts to a minimization
over crystal-wise constant fields, i.e. finding ∆n = ∆̃n so that U is minimal:

U(Σ) = min
∆n∈C2(R)

1
2

[
u(1)

n (Σ + ∆n) + u(2)
n (Σ − ∆n)

]
(C.2)

In the rate-independent limit, n → +∞ so Eq. 17 is obtained. From Eq. C.2, it can be easily shown that the potential of
the bi-crystal is lower than at least one of the corresponding single crystals: U(Σ) ≤ U(Σ,∆n = 0) ≤ max(U1(Σ),U2(Σ))
which proves that in the limit f → 0, the porous bi-crystal will always be less prone to yielding at deviatoric loadings than
one of the constitutive single crystals (see Section 2.3). Note that when crystal 1 and crystal 2 are equal, u(1)

n = u(2)
n = un535

and using the convexity of un on Eq. C.1 yield U(Σ) = un(σ), i.e. the unnecessary stress continuity equation vanishes
through the choice ∆̃n = 0.

For n = 1, an explicit resolution can be conducted. Indeed, Eq. C.2 can be rewritten using tensor E enforcing continuity
at the planar interface (Hill, 1972), which enables to perform the minimization over the space of symmetric tensors:

U(Σ) = min
∆∈S2(R)

γ̇0τ
c

4
[(Σ + E : ∆) : S1 : (Σ + E : ∆) + (Σ − E : ∆) : S2 : (Σ − E : ∆)] (C.3)

∆-derivation and an inversion in the subspace of fourth order tensors invariable by left or right double contraction with E
(whose multiplicative identity is E : I : E) yield:

∆̃1 = D : Σ with D = E : [E : (S1 + S2) : E]−1 : [E : (S2 − S1)]

U(Σ) =
γ̇0τ

c

2
Σ : S : Σ with S =

1
2
K : [(I + D) : S1 : (I + D) + (I − D) : S2 : (I − D)] : K

(C.4)

However, when n > 1, minimization amounts to finding the roots of high degree polynomials of three variables, which
seems to forbid explicit resolution. Thus, it must be resorted to numerical optimization to find ∆̃n. Nelder-Mead algo-
rithm (Nelder and Mead, 1965) with multiple random starting points was found to be an efficient method to conduct this540

minimization.
Note that the constant character of microscopic stress fields in crystals is not retained when a cavity is present or when

grain boundaries are not planar; indeed, stress continuity conditions at these interfaces applied to constant stress fields
yield σ = 0.

Appendix D. Analytic expressions of g-functions545

In this section are provided expressions of g0 and g1 for both ellipsoidal and elliptic-cylindrical voids with one axis
along e1. g2 is obtained immediately from g1 by noticing that g2

(
ξ
)
= g1

(
−ξ

)
. The following notations, where ⊙ is the

Hadamard product, are introduced:

ϕ =
∥∥∥∥ξ ⊙ r1e1

∥∥∥∥
2
, ζ =

∥∥∥∥ξ ⊙ (
r2e2 + r3e3

)∥∥∥∥
2
, η =

∥∥∥∥ξ ⊙ (
r1e1 + r2e2 + r3e3

)∥∥∥∥
2

(D.1)

Voids without an axis along e1 do not follow the formulas given below and use must be made of the general expression
Eq. 26.
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Appendix D.1. Ellipsoidal voids
The unit-cell configuration corresponding to ellipsoidal cavities is shown on Fig. D.17. After a variable substitution

and the choice of the spherical coordinates of main axis along ξ, g0 can be expressed as:

g0

(
ξ
)
=

3
4π

∫ 1

r=0

(∫ π

θ=0

(∫ 2π

ϕ=0
eiηr cos θr2 sin θ dϕ

)
dθ

)
dr = 3

sin η − η cos η
η3 (D.2)

g1, on its part, require the computation of the Fourier transform of the characteristic function of a cube and of a demi-ball:

g1

(
ξ
)
=

2
1 − f

 i
n1π

sin
(n1π

2

)2
δn2,0δn3,0 −

∫
x∈Ω+0

eiξ·x
 (D.3)

withΩ+0 =
{
x ∈ Ω0 , x · e1 > 0

}
. Unfortunately, to the knowing of the authors, the latter do not possess a closed-form, even

if its real part is known. However, it can be expressed for (n2, n3) , (0, 0) as a one-dimensional integral (Eq. D.4b) or as a
series (Eq. D.4e), the latter being numerically more efficient by two orders of magnitude:∫

x∈Ω+0

eiξ·x = r1r2r3

∫ 1

0

∫
√

1−x2
3

0

(∫ 2π

0
eiζr cos θeiϕx3 rdθ

)
dr

 dx3

=
3 f
2ζ

∫ 1

0
eiϕx3

√
1 − x2

3 J1

(
ζ
√

1 − x2
3

)
dx3

=
f
2

[
g0

(
ξ
)
+

3
ζ

Im
(∫ 1

0
eiϕ
√

1−t2 t2

√
1 − t2

J1(ζt)dt
)]

=
f
2

g0

(
ξ
)
+ i

3
ζ

+∞∑
n=0

(−1)n ϕ
2n+1

(2n + 1)!

∫ 1

0
t2

(
1 − t2

)n
J1(ζt)dt


=

f
2

g0

(
ξ
)
+ i

3ϕ
ζ2

+∞∑
n=0

(
−

2ϕ2

ζ

)n n!
(2n + 1)!

Jn+2(ζ)



(D.4)

where Jn is the nth Bessel function. For (n2, n3) = 0, the following value is obtained:∫
x∈Ω+0

eiξ·x =
f
2

[
g0

(
ξ
)
+ i

3
ϕ3

(
1 − cos ϕ − ϕ sin ϕ +

1
2
ϕ2

)]
(D.5)

Appendix D.2. Elliptic-cylindrical voids

l1

l2

l3

r1

r2r3

Ω1

Ω2

Ω0

Figure D.17: Rectangular prismatic unit-cell with centered elliptic-cylindrical cavity; void axes are aligned with unit-cell axes.

Given the additional computation time brought by g1 evaluation for ellipsoidal cavities, it may be more convenient to
consider a laminate with elliptic cylindrical voids, shown in Fig. D.17. In that case, g-functions are Fourier transforms of
characteristic functions of elliptic cylinders (or complementary of those for g1 and g2) and formulas are found below:

g0

(
ξ
)
= 2

sin(ϕ)
ϕ

J1(ζ)
ζ

g1

(
ξ
)
=

2
1 − f

 i
n1π

sin
(n1π

2

)2
δn2,0δn3,0 − 2 f

sin
(
ϕ
2

)
ϕ

J1(ζ)
ζ

ei ϕ2

 (D.6)
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keeping in mind that J1(ζ)
ζ
−→ 1

2 when ζ → 0. All equations given in Sections 4.1 and 4.3 in the context of ellipsoidal550

voids are still valid for elliptic-cylindrical voids, except Eq. 41 in which a =
√

3 for circular-cylindrical voids.
Given an ellipsoidal void of demi-axes (r1, r2, r3), an equivalent elliptic-cylindrical void with dimensions (r1, r2, r̂3)

can be defined, with similar section in the plane (e2, e3) and r̂3 chosen so that porosity f is kept constant between the two
unit-cells. Comparisons of gauge surfaces of spherical cavities and equivalent cylindrical cavities are shown in Fig. D.18
for n = 1 and n = 100 at fixed Lode angle θ = 0. At n = 1, the reversibility domain increases when the void shape is555

changed from spherical to cylindrical; this property is not retained at n = 100 due to different values of a in the heuristic
extension. Regardless of n, a good agreement is reported when f < 0.01 for stress triaxialities ratios ranging from low to
moderate — i.e. the part where void growth is active. However, this assessment should be pursued with other void shapes
and more diverse loadings.
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Figure D.18: Comparison of gauge surfaces predicted by variational estimates for spherical voids (lines) and equivalent cylindrical voids (points) at
θ = 0: (a) n = 1; (b) n = 100.

Appendix E. Porous crystal with infinite equivalent equiangular slip systems560

Appendix E.1. Pristine crystal
In the principal frame (eI , eII , eIII) of the Cauchy stress σ, the following relation is verified:

σ = σmI +
2
3
σvM

eq σ
(0) with σ(0) =


cos θ 0 0

0 − cos
(
θ + π3

)
0

0 0 − cos
(
θ − π3

)
 (E.1)

which means that when slip systems are equivalent, the plastic potential (Eq. 19) writes as:

un(σ) =
γ̇0 (τc)−n

n + 1

(
2
3
σvM

eq

)n+1 K∑
s=1

∣∣∣µs : σ(0)
∣∣∣n+1

(E.2)

In the limit of K equiangular slip systems with K → +∞, the Riemann summation theorem yields:

1
K

K∑
s=1

∣∣∣µs : σ(0)
∣∣∣n+1
−→

〈∣∣∣µ : σ(0)(θ)
∣∣∣n+1

〉
S

(E.3)

where S is the set of all possible slip systems. Any slip system can be obtained by rotating an arbitrary slip system, e.g.
s0 = eI , m0 = eII and µ0 = sym

[
eI ⊗ eII

]
. Therefore, the right-hand side of Eq. E.3 can be calculated by performing

the following integration over the set SO3(R) of three-dimensional rotations with the (uniform and unit-normalized) Haar
measure λ (Naimark, 1964): 〈∣∣∣µ : σ(0)(θ)

∣∣∣n+1
〉
S

=

∫
SO3(R)

∣∣∣(R⊺ · µ0 · R
)

: σ(0)
∣∣∣n+1

dλ(R) (E.4)

Recalling that SO3(R) can be parametrized with Euler angles (α1, α2, α3) ∈ [0, 2π] × [0, π] × [0, 2π] with

R(α1, α2, α3) =

cosα1 − sinα1 0
sinα1 cosα1 0

0 0 1

 ·
1 0 0
0 cosα3 − sinα3
0 sinα3 cosα3

 ·
cosα3 − sinα3 0
sinα3 cosα3 0

0 0 1

 (E.5)
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in the frame (eI , eII , eIII), the integral can be recast as:〈∣∣∣µ : σ(0)(θ)
∣∣∣n+1

〉
S

=
1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0

∣∣∣[R(α1, α2, α3)⊺ · µ0 · R(α1, α2, α3)
]

: σ(0)
∣∣∣n+1

sinα2 dα3dα2dα1 (E.6)

Restricting the analysis to odd n, a general form for this integral can be obtained using a formal computation tool:

〈∣∣∣µ : σ(0)(θ)
∣∣∣n+1

〉
S

= an −

⌊ n+1
6 ⌋∑

k=1

bk,n cos(6kθ) with an, bk,n > 0 (E.7)

For instance:

a1 =
3

20
; a3 =

27
560

; a5 =
1269

64064
, b1,5 =

27
32032

; a7 =
5751

622336
, b1,7 =

81
77792

(E.8)

In the limit K → +∞, the sum over k in Eq. E.2 will contain an infinity of terms. In order for the potential un to remain
finite, τc must decrease with K at a rate suggested by Eq. E.3. Therefore, the pristine single crystal is considered with
renormalized CRSS τc = K1/nσc, so that:

un(σ) −→
K→+∞

u∞(σ) =
γ̇0 (σc)−n

n + 1

(
gn(θ)σvM

eq

)n+1
where gn(θ) =

2
3

〈∣∣∣µ : σ(0)(θ)
∣∣∣n+1

〉 1
n+1

S

(E.9)

Thus, in the limit K → +∞, the pristine single crystal becomes an isotropic material of Lode angle-dependent potential.
Using the analytical form Eq. E.7, it can be shown that gn

(
π
3

)
= gn(0), g′n (0) = g′n

(
π
3

)
= 0 and gn(θ) + g′′n (θ) ≥ 0, which

will be useful in what follows. Note that in the limit in which n → +∞, the single crystal becomes a perfectly plastic
Tresca material, as already pointed out by other studies (Cailletaud, 2009; Mbiakop et al., 2016), which means that:

g∞(θ) ∝
1

cos
(
θ − π6 −

⌊
3θ
π

⌋
π
3

) (E.10)

Functions g1 and and g∞ are plotted in Fig. E.19; all other gn for odd n lie in between in a continuum from g1 to g∞ as n
increases.

0 0.5 1 1.5
0

π

2

π

3π

2

g1(θ)
g∞(θ)

Figure E.19: Polar plot of normalized functions gn(θ)/gn(0) where θ is the angular coordinate. This representation corresponds to the π-plane of gauge
surfaces.

Appendix E.2. Hollow sphere under hydrostatic loading

It is recalled that Benallal (2018) demonstrated that a hollow sphere with an isotropic perfect-plastic matrix following
a yield function expressed as:

F (σ) =

σvM
eq

σc g (θ)

2

− 1 (E.11)
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with g a smooth function verifying g(θ) + g′′(θ) ≥ 0 and subjected to pure hydrostatic tension has the same yield strength
as a hollow sphere made of a perfectly plastic von Mises material of uniaxial tension yield limit σ0:

σ0 =
1√

g
(
π
3

)2
+ g′

(
π
3

)2
σc (E.12)

while under pure hydrostatic compression, this result becomes:

σ0 =
1√

g (0)2 + g′ (0)2
σc (E.13)

Mbiakop et al. (2015a) made the (unstated) hypothesis that a similar equivalence was true for viscoplastic materials. If565

such a result is at least approximately verified, Eqs. E.12 and E.13 can be used with gn instead of g. Since gn is π3 -periodic,
Eqs. E.12 and E.13 are identical. This means that a hollow sphere of viscoplastic single crystal with K → +∞ would then
have the same plastic potential under pure hydrostatic loading as a hollow sphere of viscoplastic von Mises material of
parameters (ε̇0, σ0) = (γ̇0, σ

c/gn(0)) in the case where n is finite (in the case n = +∞, Tresca yield function is not smooth).
On the one hand, the plastic potential of a hollow sphere in a viscoplastic von Mises matrix of reference stress σc

subjected to hydrostatic loading, as found in Leblond et al. (1994), writes:

U(Σm) =
γ̇0

n + 1
(agn(0)Σm)n+1[
σc n

(
f −

1
n − 1

)]n with a =
3
2

(spherical void) (E.14)

On the other hand, when τc
s = K1/nσc and K → +∞, Eq. 35 becomes:

U(Σm) =
γ̇0

n + 1
(qJΣm)n+1[
σc (1 − f )

]n


√

lim
K→+∞

[
(1 − f )

(τc)2

K
I : S : I

]
n+1

(E.15)

Thus, using the hollow sphere equivalence discussed previously, Eq. E.14 and Eq. E.15 can be equated. However, before
proceeding, the quantity I :

(
S/K

)
: I of Eq. E.15 should be evaluated in the limit K → +∞. First, according to Böhlke

and Bertram (2001), the pseudo-compliance tensor of a pristine crystal with infinite equiangular slip systems8 becomes
isotropic:

(τc)2

K
Si −→

K→+∞
Siso with Siso =

1
3κ
J +

1
2µ0

K where µ0 = 5 (E.16)

Then, following Nemat-Nasser et al. (1993), � associated with an isotropic matrix is such that:

1
µ

[
�

(
ξ,

1
3κ
J +

1
2µ
K

)]
i jkl
= δikδ jl + δilδ jk −

1
ξ2

(δikξ jξl + δilξ jξk + δ jkξiξl + δ jlξiξk)

+
6κ − 4µ
3κ + 4µ

[
δi jδkl −

1
ξ2

(δi jξkξl + δklξiξ j)
]
+

4
ξ4

3κ + µ
3κ + 4µ

ξiξ jξkξl (E.17)

which yields, in the case of a random distribution of spherical voids:〈
�

(
1
3κ
J +

1
2µ
K

)〉
Ω0

=
12κµ

3κ + 4µ
J + h(κ, µ)K (E.18)

where h is a coefficient depending on κ and µ that do not need to be detailed here. Alternatively, if the voids are distributed
periodically with a cubic unit-cell, Eq. E.17 provides the following result:

�00

(
1
3κ
J +

1
2µ
K

)
=

12κµ
3κ + 4µ

∑
ξ

∣∣∣∣g0

(
ξ
)∣∣∣∣2

J + h′(κ, µ)K′ + h′′(κ, µ)K′′ with
∑
ξ

∣∣∣∣g0

(
ξ
)∣∣∣∣2 = 1 − f

f
(E.19)

with h′ and h′′ are coefficients depending on κ and µ and where the last equality is obtained using three-dimensional
Parseval identity. Note that the factor f /(1 − f ), whose absence may have surprised in Eq. 31, is recovered as a normal-
ization factor. Finally, considering Eq. E.18 (respectively Eq. E.19) in the limit (κ, µ)→ (+∞, 5) and injecting it in Eq. 32
(respectively Eq. 31) that defines S brings:

(τc)2

K
I : S : I −→

K→+∞

3
20

f
1 − f

(E.20)

Equating Eq. E.14 and Eq. E.15 thus leads to:

qJ = a gn(0)

√
20
3 f

(
1 − f

n( f −1/n − 1)

) n
n+1

(E.21)

which is the condition on qJ that is necessary to recover the exact potential in the limit K → +∞. Note that this result570

does not depend on the number of crystals in the matrix (since they all become the same isotropic material in the limit
K → +∞) nor on the distribution of cavities — i.e. random or with cubic periodicity.

8Remember that in the limit K → +∞, (τc)2
Si goes to infinity and needs renormalization by K to yield a finite value.
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Danas, K., Idiart, M., Castañeda, P.P., 2008. A homogenization-based constitutive model for isotropic viscoplastic porous media. International Journal

of Solids and Structures 45, 3392–3409.610
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Gräf, M., Hornbogen, E., 1977. Observation of ductile intercrystalline fracture of an Al-Zn-Mg alloy. Acta Metallurgica 25, 883–889.
Gurson, A., 1977. Continuum theory of ductile rupture by void nucleation and growth: Part I - Yield criteria and flow rules for porous ductile media.

Journal of Engineering Materials and Technology 99, 2–15.635

Han, X., Besson, J., Forest, S., Tanguy, B., Bugat, S., 2013. A yield function for single crystals containing voids. International Journal of Solids and
Structures 50, 2115–2131.

Hashin, Z., Shtrikman, S., 1963. A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and
Physics of Solids 11, 127–140.

Hill, R., 1948. A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. A 193, 281–297.640

Hill, R., 1972. Continuum Mechanics and Related Problems of Analysis (Muskhelishvili 80th Anniversary Volume). chapter An invariant treatment of
interfacial discontinuities in elastic composites. pp. 597–604.

Hoff, N.J., 1954. Approximate analysis of structures in the presence of moderately large creep deformations. Quarterly of Applied Mathematics 12,
49–55.
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