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Abstract—The automotive industry has recently emphasized
reducing the number of Electronic Control Units (ECUs) installed
in vehicles for economic and ecological reasons. This reduction
means that the design and verification must be independent of
the vehicle’s final choice of (MC)SoCs, knowing they will evolve
as time passes. To that end, dataflow Models of Computation
and Communication (MoCCs) are powerful tools for maintaining
this independence. A subclass of dataflow MoCCs –deterministic
dataflow MoCCs– is of particular interest since it allows designers
to derive safety and security properties at compile-time. This
work proposes a short survey of the existing deterministic
dataflow MoCCs. We describe the properties of each dataflow
MoCC and present an expressiveness hierarchy of dataflow
MoCCs adjustable to designers’ needs.

Index Terms—MoCC, CPS design, dataflow graph, survey

I. INTRODUCTION

The current trend in automotive, avionics, and aeronautics
embedded systems is to accelerate the transition from several
dozen or hundreds of Electronic Control Units (ECUs) to a few
Multi -and Many- core SoCs (MC-SoCs). ECUs are simple
and generally low-profile processors and Systems-on-Chip
(SoC). MC-SoCs provide a software-dominated integration of
functions and are usually partially redundant for safety. A
transition is also occurring for communication systems in the
automotive industry. The constraints in data communications
(e.g., several high-resolution cameras, radars, even lidars) have
led to the evolution of the old-fashioned CAN bus to Ethernet
and PCI buses. Several factors have driven this evolution,
such as new functionalities (e.g., ADAS –Advanced Driver
Assistance System– or semi-autonomous vehicles), low-cost
high-profile MC-SoCs available on mass-market smartphones,
and a higher conscience of the ecological impact of embedded
electronics. The current supply chain crisis in electronics has
also contributed to this evolution.

Embedded systems are now referred to as Cyber-Physical
System (CPS). Mathematically sound methods enable an agile
and versatile evolution of CPS design without compromis-
ing safety, security, and cost (particularly concerning time-
constrained CPSs). A mathematically grounded approach to
CPS design allows a system to be adapted to a new line of MC-
SoC components without re-qualifying the whole software
architecture. A mathematical software architecture model is
sometimes called a Model of Computation and Communica-
tion (MoCC). MoCCs rank from “simple” ones, e.g., the Von
Neumann model, to higher-level models on which we focus
in this paper.

CPSs must fulfill various constraints such as scheduling
order, latency, throughput, memory footprint, and deadline.
Some dataflow (DF) Models of Computation and Communica-
tion (dataflow MoCCs/DF MoCCs) ensure the satisfiability of
those constraints at compile-time if no run-time fault occurs.
A MoCC applied to a CPS functions as a set of rules that
defines the behavior of the CPS’s entities, individually and
collectively. This work surveys many DF MoCCs in the liter-
ature. Each DF MoCC provides different degrees of freedom
to abstract a real-life system.

The paper is organized as follows: section II presents the
benefits of designing a CPS with a subclass of DF MoCCs,
the deterministic DF MoCCs. Section III presents the standard
foundations of all DF MoCCs. We refine those foundations and
submit a short survey in section IV. Throughout this survey,
DF MoCCs are described according to features, which are
elements that describe the system’s behavior and functioning.
In section V, we evaluate those features resulting in an
expressiveness hierarchy. We conclude the paper in section
VI.

II. DETERMINISTIC DATAFLOW MOCC-BASED SYSTEM
DESIGN

Deterministic DF MoCCs is an interesting subclass of DF
MoCCs. Static analyses and safety properties of a CPS can
be derived through the prism of such MoCCs. They allow
designers to ensure critical safety criteria of an embedded
system at compile-time. Deterministic DF MoCCs permit the
prediction of the run-time system’s behavior, static sizing of
data buffers, communication channels process, some schedul-
ing aspects, and proof of the system’s correctness.

The need to closely model various real-life systems has led
to the development of many DF MoCCs. A trade-off must be
found between three aspects that characterize a MoCC:

• The expressiveness and compactness define which system
can be modeled and how cumbersome the model can be.

• The implementation efficiency is influenced by the code
size or the complexity of the run-time scheduling issues.

• The analyzability is the ability to derive safety and
security properties from the model.

III. SHARED BACKGROUND FOR DATAFLOW MOCCS

The wide variety of DF MoCCs shares the same back-
ground, as they all represent CPSs with a directed graph called
the Dataflow Graph (DFG). The DFG models the CPS, and the
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Fig. 1. A generic dataflow graph denoted G. The letters at both channels’
endpoints model the production/consumption rate between the actors. Rates
of 1 are omitted for clarity. Rates a to d take their value in the range rate of
the DF MoCC that rule the DFG. Optional initial tokens –between brackets–
might be in the channel, as for channel c5: there is one initial token for the
self-loop of actor D. Actor C has a firing frequency of 20 Hz, and actor E
has both frequency and phase constraints: it must fire at 10 Hz after a delay
of 50 ms. Frequencies and phases are optional.

DF MoCC interprets the behavior of the CPS through the DFG.
The nodes of a DFG are actors that perform computations,
and the arcs are channels through which the actors at both
endpoints communicate by exchanging data tokens. A token
is the atomic data object. The internal functioning of the actors
is usually a black box.

A. Formal definition of the Dataflow Graph

An actor a is a tuple (Ia, Oa) with Ia (resp. Oa) the set
of input (resp. output) ports –possibly empty– of a such that
Ia ∩Oa = ∅. A channel c is a tuple (ap, ac, prod, cons, init)
that connects an output port of a producer actor ap to an input
port of a consumer actor ac. A DFG denoted G is a tuple
(A,C) where A is a set of actors, and C is a set of channels
such that G is not the union of disjoint graphs.

Actors of DFGs usually share standard rules as follows. Let
us consider a channel c that connects a producer actor to a
consumer actor. Whenever the producer (resp. consumer) fires
(i.e., is invoked), it writes (resp. reads) an amount of prod
(resp. cons) tokens to (resp. from) the buffer of c that usually
has a bounded FIFO structure. An actor fires by executing an
execution function. Some initial tokens init might be in the
buffer before any fire. An actor is enabled to fire if a set of
firing rules is fulfilled. A necessary condition (but not always
sufficient) for an actor to be enabled is a sufficient number of
tokens in its input channels (i.e., more significant than the
consumption rate). The actor’s firing is an atomic process
unless Best/Worst-Case Execution (BCET/WCET) Time are
provided.

B. Static analyses of the Dataflow Graph

Deterministic DF MoCCs allow designers to derive static
analyses of a CPS. The consistency and liveness analysis
are arguably the most important. Consistency asserts that a
CPS can run indefinitely in finite memory (prevent channel
overflow), and liveness asserts that a CPS does not deadlock
(prevent channel underflow). Valid consistency and liveness
analysis imply that a schedule (i.e., a partial ordering of actors’
firing) can be built at compile-time. Table I summarizes the
properties that define the static analyzability of a CPS.

A static DFG is represented with its topology matrix Γ
where γij is the rate of actor j on the channel i, positive

TABLE I
CPS’S STATIC ANALYSES DERIVED WITH A DETERMINISTIC DATAFLOW

MOCC

Property Acronym Definition

Consistency Co The DF MoCC ensures that there exists at least
one unbounded execution in bounded memory

Liveness Li The DF MoCC ensures that there exists at least
one deadlock-free execution

Memory Me The DF MoCC can statically compute channels’
memory footprint of an execution

Schedule Sc The DF MoCC can statically schedule the DFG
Quasi-static

Schedule QSc The DF MoCC can statically generate a
quasi-static schedule

Determinism De Sequences of data produced in channels do not
depend on the actors’ scheduling

Latency La The DF MoCC can compute the time between two
consecutive firings of an actor

Throughput Th The DF MoCC can compute the number of actor’s
firings during a period

if it represents a production of data tokens and negative
otherwise. Other entries are null, and the self-loop channels
are not written. The topology matrix is crucial for analyzing a
DFG through algebraic manipulations. The following matrix
represents the topology of the DFG in Fig. 1:

ΓG =

A B C D E


a 0 −c 0 0 c1 = (A,C)
1 −b 0 0 0 c2 = (A,B)
0 1 −1 0 0 c3 = (B,C)
0 0 1 −1 0 c4 = (C,D)
0 0 0 d −1 c6 = (D,E)

The consistency is equivalent to the boundedness when the
underlying DF MoCC that interprets the DFG has no paramet-
ric rates. Consistency and boundedness are two interpretations
of whether a DFG executes in bounded memory. An iteration
of a DFG is a set of actors’ fires that keep the distribution
token unchanged. The repetition vector of a DFG is the column
vector that associates the number of times each actor fires
within a single iteration. A DFG is bounded if an iteration
needs a finite amount of memory, and a DFG is consistent if
a non-trivial repetition vector exists (i.e., ΓG has a non-trivial
kernel). BCET and WCET enable the computation of more
refined analyses, such as end-to-end latency or throughput.

C. Timing constraints and Dataflow Graph

The main distinctive property of CPS is timeliness and
enforcing time constraints. This property is especially true
when individual real-time tasks have periodic behaviors, which
is a usual case. Typically, the period and the phase shift
of each task/actor would be part of the specifications and
initial design because they are rooted in physical and hardware
constraints (e.g., maximum speed, inertia, camera frame rate,
lidar, and radar output rates, ADC frequencies, servomotors
or stepper motors sampling, etc.). All the frequencies rarely
match. Even if they would, as sources are different, a small
amount of clock drift should be expected and allowed to have a
robust system. In practice, data-fusion between captors before
calculating decisions for actuators needs to accommodate the



Fig. 2. An ADAS application excerpt with several real-time clocks shows the
necessity of under-sampling on some channels. The PolyGraph DF formalism
model the ADAS application excerpt.

discrepancy between clock rates in some way. Thus, for such
applications, a mechanism is required for sub-sampling some
channels in data-fusion actors. In practice, such sub-sampling
can be modeled by periodically changing rates (e.g., CSDF,
section IV-B) or rational rates (e.g., PolyGraph, section IV-C).

A typical excerpt of an ADAS application is shown in
Fig. 2. It presents several captors with their own clocks and
two actuators (Speed control and Information Display). Speed
Control is a fusion actor with several input channels. Thus,
some sub-sampling is required either at its input channel or
upstream.

D. Features of deterministic dataflow MoCCs

The DFG is the basic brick of systems modeled with
a dataflow perspective. A DF MoCC interprets the system
behavior through its DFG. Each DF MoCC emphasizes a set of
elements called features. A feature is an element that describes
the system’s behavior and functioning. The proposed survey
evaluates the static analyzability (defined in table I) and the
features (defined in table II) of the main DF MoCCs.

IV. CLASSIFICATION OF DATAFLOW MOCCS

We propose to classify the main DF MoCCs into nine cate-
gories as follows: the Synchronous Dataflow and its extensions
(section IV-A and table III), the Phase-based DF MoCCs
(section IV-B and table IV), the DF MoCCs with timing
constraints (section IV-C and table V), the Boolean-based DF
MoCCs (Section IV-D and table VI), the Scenario-based DF
MoCCs (section IV-E and table VII), the DF MoCCs with
Enable and Invoke capabilities (section IV-F and table VIII),
the DF MoCCs with unique features (section IV-G and table
IX), the process network-based dataflow MoCCs (section IV-H
and table X) and the meta-models for DF MoCCs (section IV-I
and table XI).

A. Synchronous Dataflow and its extension

1) SDF: The principles of dataflow models first appeared in
[1]. However, the analyzability of that first model is limited,

TABLE II
FEATURES EMPHASIZED BY DATAFLOW MOCCS

Feature
(Acronym) Definition Evaluation

Auto-concurrency
(AC) Actors can have multiple firings simultaneously

Presence
or

absence

Phases
(Ph)

Actors can have rates with a cyclic pattern.
An element of such a cycle is a phase.

Initial and Steady
Sequences (IniSteS) Actors can have initialization phases

Parameters
(Pa)

Actors and channels can have
parametric rates

Hierarchy
(Hi)

The DF MoCC can describe an actor
with a DFG ruled with the same

DF MoCC as its parent DFG

Meta-Model
(MM)

A meta-model DF MoCC adds additional
rules on top of a DFG modeled with a

non-meta-model DF MoCC
Initial Tokens

(IT)
Tokens can be present in the channels’
buffer before the start of an execution

Global State (GS) Shared data for actors of the DFG
Multi-Dimensional

FIFO (MDF)
The DF MoCC can describe the channels’

FIFO as multi-dimensional lattices
Timing Constraints

(TiCons) Actors can have delay/frequency constraints

Consumption
Threshold

(CT)

A necessary condition for an actor’s firings
is a number of tokens in their input channels

above a threshold
Multiple Execution

Modes (MEM)
A mechanism that may affect an actor’s

behavior without necessarily affecting its rates
Sliding Window

(SWi) Token consumption with a sliding window

Initialization and
discard of initial
token (IniDisIT)

A mechanism that control the
initialization/discard of initial tokens

at the start/end of each iteration of the DFG

Range rate The domain in which rates attain their values
{1},N∗,N,

N∗ × ...× N∗,
Q∗,Ω

Rate and topology

Periodicity of rates/topology updates.
Rates/topology are dynamic if the MoCC’s
rules and/or internal actor actions allow an

update of rates/topology at run-time.

{fix,
between,
within}

iterations

and Synchronous Dataflow ([2]) has laid the foundations of
the dataflow paradigm we use today. SDF models a CPS with
a DFG where the rates belong to N∗. Reference [3] provides
consistency and liveness checking.

Despite its low expressiveness, SDF and its variants have
been extensively studied because they can model many appli-
cations. Besides, researchers have created implementations of
SDF. Thus, many works have previously researched memory
consumption but with notably distinct techniques. For exam-
ple, a shared buffer memory model is studied in [4]. A trade-
off between buffer requirements and throughput constraints
with a non-shared buffer model is explored in [5]. The
authors of [6] provide arithmetic manipulations to compute
minimum buffers size that yield a deadlock-free schedule. The
authors of [7] chose a model-checking approach. In [8], a
linear programming formulation computes the buffer size with
optimal throughput without degrading storage constraints.

The latency is an important performance indicator explored
in [9]. Regarding implementation efficiency, Scalable Syn-
chronous Dataflow (SSDF, [10]) is a specific SDF implemen-
tation that minimizes code size and context-switch overhead.

2) HSDF: The restriction of rates’ values of SDF to
{1} yields Homogeneous Synchronous Dataflow (HSDF, [2]).
Many static analyses of SDF apply to HSDF.

3) HSDFa: Homogeneous Synchronous Dataflow with
auto-concurrency (HSDFa, [11]) determines the consumption
order of tokens with static indices independently of the pro-



duction order, dismissing the channels’ FIFO policy. HSDFa

provides an end-to-end latency using a timed automata model.
4) BDDF: Bounded Dynamic Dataflow (BDDF, [12]) ex-

tends SSDF by allowing a set of actors to have dynamic
and upper-bounded ports. The topology of the network might
change at run-time. A Finite State Machine (FSM) models
topology updates. Each state defines a set of connected actors.

5) CG: The Computation Graphs (CGs, [13]) are more
general than SDF. The CGs associate a consumption threshold
with each channel of the DFG. Thus, an actor can fire if
the number of tokens in its input channel is more significant
than that threshold. The authors of [13] develop properties
that structure the determinism of the CG and provide a set of
conditions that deadlock a CG.

6) SPDF: Schedulable Parametric Dataflow (SPDF, [14])
is a parametric extension of SDF. The parameters range
in N∗ and are communicated through a dedicated network
inserted at the top of the DFG. The parameters are allowed
to change within an iteration. SPDF can statically analyze a
DFG concerning boundedness and liveness and computes a
quasi-static schedule (i.e., a schedule made at compile-time
that depends on parameter values known at run-time).

7) MDSDF: Multi-Dimensional Synchronous Dataflow
(MDSDF, [15]) specifies the number of tokens pro-
duced/consumed as a multi-dimensional lattice. Thus, MDSDF
is suitable to model signal processing applications (e.g., image
processing). MDSDF can schedule a DFG at compile-time.
Reference [15] gives a method to compute the repetition
matrix (i.e., the repetition vector with many dimensions) and
conditions to ensure deadlock-freeness.

8) WSDF: Windowed Synchronous Dataflow (WSDF, [16])
extends MDSDF by allowing token consumption with sliding
windows. A token is consumed with a specific sampling
pattern through a set of windows of predefined size. WSDF
provides a boundedness checking.

9) IBSDF: Interface-Based Synchronous Dataflow (IBSDF,
[17]) is a hierarchical extension of SDF. A source and sink
node surround the DFG. They both behave as an interface to
the environment. Each level of the hierarchy is analyzable.

10) ILDF: Interval-rate, Locally-static Dataflow (ILDF,
[18]) models DFG’s rates as a finite natural integers interval
and fixes the value at the beginning of the execution. ILDF
statically analyzes the DFG regarding consistency, buffer siz-
ing, and latency, assuming a valid schedule is possible.

B. Phase-based dataflow MoCCs

1) CSDF: Cyclo-Static Dataflow (CSDF, [19]) models ac-
tors’ execution function, production, and consumption rates
as cyclic patterns defined at compile-time. The value changes
periodically following that cycle. An element of such a cycle is
a phase. The rates take their values in N. Thus, some channels
may be disabled for a few phases. CSDF provides consistency
and liveness checkings using a conversion algorithm from
CSDF to HSDF. The authors of [20] provide a trade-off
between throughput and buffer size for the CSDF.

TABLE III
FEATURES AND STATIC ANALYZABILITY OF SYNCHRONOUS DATAFLOW

AND ITS EXTENSIONS.

MoCC Rate Topology Range rate Features Static
Analyzability

Turing
Complete

SDF [2]–[9] fix fix N∗ Co, Li, Me, Sc, La, Th ◦
HSDF [2] fix fix {1} Co, Li, Me, Sc ◦

HSDFa [11] fix fix {1} AC La ◦

BDDF [12] within
iterations

within
iterations N∗ Me ◦

CG [13] fix fix N∗ CT Li, De ◦

SPDF [14] within
iterations fix N∗ Pa Co, Li, QSc ◦

MDSDF [15] fix fix N∗ MDF Co, Li, Sc ◦
WSDF [16] fix fix N∗ MDF, SWi Co ◦
IBSDF [17] fix fix N∗ Hi Co, Li, Sc ◦
ILDF [18] fix fix N∗ × ...× N∗ Co, Me, La ◦

2) CSDFa: Cyclo-Static Dataflow with Auto-concurrency
(CSDFa, [21]) allows the auto-concurrency in CSDF with a
static token order; as in HSDFa, the channels consequently no
longer have a FIFO policy. The authors provide a buffer sizing
computation. A set of mechanisms maintain the overhead
independent of the replication factor (i.e., the number of
simultaneous execution of an actor), e.g., predefined buffer’s
accesses pattern for read/write operations.

3) CDDF: Cyclo-Dynamic Dataflow (CDDF, [22]) is a dy-
namic version of CSDF. The execution function, token ratios,
and firing sequence length can vary at run-time. The needed
information of a previous actor execution for subsequent
ones must be conveyed through a self-edge: a control token
containing all firings information is read at each fire, including
the code segment executed by the actor. Thus, CDDF has
the feature “multiple execution modes”. The data-dependent
behavior of CDDF limits the static analyzability and implies
run-time scheduling depending on the control token values.

4) PCG: The Phased Computation Graphs (PCGs, [23])
extend CSDF with consumption thresholds. The rates of PCGs
are divided into initial and steady sequences. The initial
sequence is performed at the beginning of the execution. The
steady sequence, which is cyclic, takes over for the rest of the
execution. The authors of [24] create a PCG generator and
provide consistency and liveness checking and a lower bound
for buffer sizing.

5) FRDF: Fractional Rate Dataflow (FRDF, [25]) is the
first DF MoCC with rational rates. The semantic of rational
rates is the following. An actor produces/consumes either
a fraction p

q of a token every firing or p tokens every q
firings. In contrast with other DF MoCCs studied in this paper,
FRDF does not have initial tokens and cannot derive a rate
into a unique sequence of firings. Thus, the same rate may
imply multiple production/execution patterns of data tokens.
Therefore, rates may vary within iterations.

6) VPDF: Variable-rate Phased Dataflow (VPDF, [26]) ex-
tends VRDF, described further in section IV-G. VPDF inherits
the structural constraints of VRDF, e.g., every parameter
defines a single phase of a single actor. Actors’ phases have
two parameters: the number of repetitions and the rate of that
phase. VPDF provides a buffer capacity computation for a
throughput-constrained DFG.



TABLE IV
FEATURES AND STATIC ANALYZABILITY OF THE PHASE-BASED DATAFLOW

MOCCS.

MoCC Rate Topology Range rate Features Static
Analyzability

Turing
Complete

CSDF [19], [20] fix fix N Ph Co, Li, Me, Sc, Th ◦
CSDFa [21] fix fix N AC, Ph Me ◦

CDDF [22] within
iterations

within
iterations N MEM, Ph ◦

PCG [23], [24] fix fix N CT, IniSteS, Ph Co, Li, Me, Sc ◦

FRDF [25] within
iterations fix Q∗ Absence of IT, Ph Co ◦

VPDF [26] within
iterations

within
iterations N Pa, Ph Me ◦

TABLE V
FEATURES AND STATIC ANALYZABILITY OF THE DATAFLOW MOCCS WITH

TIMING CONSTRAINTS.

MoCC Rate Topology Range rate Features Static
Analyzability

Turing
Complete

TPDF [27] within
iterations

within
iterations N MEM, Pa, Ph, TiCons Co, Li, Sc ◦

PolyGraph [28], [29] within
iterations

within
iterations Q∗ MEM, Ph, TiCons Co, Li, Sc ◦

C. Dataflow MoCCs with timing constraints

1) TPDF: Transaction Parameterized Dataflow (TPDF,
[27]) variously extends CSDF. Rates can be parametric. TPDF
has a select-duplicate and a transaction actor. Select-duplicate
actor replicates its single entry into any combinations of its
outputs, and the transaction actor is the symmetric process.
Besides, TPDF provides clock constraints and actors’ execu-
tion modes. A clock actor sends a control token periodically
to (an)other actor(s). The control token defines the execution
mode of the actor which consumes that control token, e.g.,
waiting for all input data to be available before fires or
selecting the data with the highest priority. TPDF provides
consistency, liveness checking, and a scheduling strategy.

2) PolyGraph: PolyGraph ([28]) enhances the semantic
of rational rates of FRDF. A rate of p

q means p tokens
are produced/consumed every q firings. An actor’s fire in-
creases/decreases by p

q the fractional number of tokens in the
channels involved. The natural number of tokens in a channel
is the fractional number of tokens rounded down. In contrast
with FRDF, initials tokens permit to derive a unique firing
sequence from a rational rate. An actor may have a frequency
constraint and a delay. Thus, it must fire at that frequency, and
its first fire occurs after the delay.

Reference [29] present a dynamic extension of PolyGraph.
Actors of dynamic Polygraph label tokens with a mode. The
mode of tokens consumed by an actor defines its behavior, e.g.,
modifying the algorithm that processes the tokens. PolyGraph
and dynamic Polygraph both have a high expressiveness and
are analyzable regarding consistency and liveness.

D. Boolean-based dataflow MoCCs

1) BDF and IDF: Boolean-controlled Dataflow (BDF, [30])
is the first dataflow MoCC focusing on topological modi-
fications. BDF provides an if-then-else structure using two
actors. The switch (resp. select) actor has one (resp. two) input
port(s) and two (resp. one) output port(s). A boolean control
token decides which port is used. BDF is Turing complete

TABLE VI
FEATURES AND STATIC ANALYZABILITY OF THE BOOLEAN-BASED

DATAFLOW MOCCS.

MoCC Rate Topology Range rate Features Static
Analyzability

Turing
Complete

BDF [30] fix within
iterations N∗ MEM •

IDF [31] fix within
iterations N∗ MEM •

BPDF [32] between
iterations

within
iterations N∗ Pa Co, Li, Sc ◦

and weakly analyzable. A consistency analysis based on the
proportion of true tokens provides only a probabilistic analysis.

Integer-controlled Dataflow (IDF, [31]) is a generalization
of BDF where control tokens are any integer. Thus, the switch
and select actors become case and end-case actors with many
output/input ports. The behavior of switch/select and case/end-
case actors induce the feature “multiple execution modes”.

2) BPDF: Boolean Parametric Dataflow (BPDF, [32]) com-
bines two types of parameters. Integer parameters express
dynamic rates and boolean parameters on the channel of the
DFG. Those latter dynamically (des)activate the channels.
BPDF provides boundedness and liveness static checking.

E. Scenario-based dataflow MoCCs

1) SADF and SADFT : Scenario-Aware Dataflow (SADF,
[33]) models a system with a set of scenarios. A scenario is
an assignation to parameterized rates. Some actors broadcast
the current scenario to their followers. Scenarios are known at
compile-time with a stochastic execution time distribution.

SADF has the determinism property. The behavior of a DFG
model with SADF only depends on the probabilistic choices
that determine the sequence of scenarios successively detected
by each detector and not on the non-deterministic choices
originating from the concurrency in the model.

SADF’s scenarios can model complex control structures,
including switch/select of the BDF model. Thus, SADF is
Turing complete. SADF might be restricted to be non-Turing
complete. In that case, SADF provides conditions for con-
sistency, liveness, and determinism. We denote SADFT as
the non-restricted version of SADF, i.e., the Turing complete
version.

2) FSM-SADF: Finite State Machine-based - Scenario-
Aware Dataflow (FSM-SADF, [34]) restricts SADF. A set
of scenarios captures the dynamic behavior. Each scenario
is modeled with SDF. An FSM specifies the order in which
the scenarios occur and the rates of the current scenario. The
SDF graphs, together with the FSM, model the application. In
contrast with SADF, the execution time of a scenario is fixed,
and the auto-concurrency is enabled. FSM-SADF provides
throughput, latency, and buffer size analyses.

3) FSM-PSADF: The Finite State Machine-based - Param-
eterized Scenario-Aware Dataflow (FSM-PSADF, [35]) uses
parameters to improve the compactness of FSM-SADF. The
scenario and the parameter configuration in that scenario are
both non-deterministically chosen at the end of an iteration.
FSM-PSADF develops latency and throughput analysis.



TABLE VII
FEATURES AND STATIC ANALYZABILITY OF THE SCENARIO-BASED

DATAFLOW MOCCS.

MoCC Rate Topology Range rate Features Static
Analyzability

Turing
Complete

SADF [33] within
iterations

within
iterations N Pa Co, De, Li ◦

SADFT [33] within
iterations

within
iterations N Pa •

FSM-SADF [34] between
iterations

between
iterations N∗ AC Co, Li, Me, La, Th ◦

PFSM-SADF [35] between
iterations

between
iterations N∗ AC, Pa La, Th ◦

F. Dataflow MoCCs with Enable & Invoke capabilities

1) EIDF and CFDF: Enable-Invoke Dataflow (EIDF, [36])
endows actors with two capabilities and a set of modes. A
mode defines the number of tokens consumed and produced.
The enable capability asserts if an actor can fire in a given
mode while the invoke capability performs a fire in that mode.
The mode used for a fire is called the execution mode.

The invoke capability results in both the output tokens and
the set of enabled modes for the subsequent firing. The Core
Functional Dataflow (CFDF, [36]) behaves the same as EIDF,
except that the invoke capability returns a single mode. The
following mode description of EIDF is available for CFDF.

In contrast with PolyGraph’s deciding mode procedure,
EIDF’s mode choice relies on a function, not token labeling.
Besides, a mode in PolyGraph is finer-grained, e.g., it may
influence the produced data type or the algorithm used.

The enable and invoke capabilities can be formulated to de-
scribe switch/select actors of BDF. Thus, EIDF and CFDF are
Turing-complete. We classify enable and invoke capabilities
as the “multiple execution modes” feature.

2) PSM-CFDF: Parameterized Set of Modes - Core Func-
tional Dataflow (PSM-CFDF, [37]) is tailored for CFDF when
the number of modes grows significantly. Actors have a set
of parameters, and a configuration is an assignation to those
parameters. Modes with related functionalities are clustered
together and denoted as Parameterized Set of Modes (PSM).
The active PSM and the active configuration uniquely deter-
mine the mode for the actor firing.

3) CF-PSDF: Core Functional - Parameterized Syn-
chronous Dataflow (CF-PSDF, [38]) is a mix between PSDF
(described further in section IV-I) and CFDF. A CF-PSDF
actor has a set of modes and three graphs: the ctrl graph, the
subctrl graph, and the body graph. The ctrl and subctrl graphs
have the same role as the init and subinit graphs of PSDF.
The ctrl graph decides the execution mode and transmits the
mode information to the ctrl graph of subsequent CF-PSDF
actors. Two distinct actors can control a CF-PSDF actor. The
first sends mode information to the ctrl graph, and the second
sends data to the body graph.

4) HCFDF: Hierarchical Core Functional Dataflow
(HCFDF, [39]) views its actors as CFDF actors with a set of
nested DFGs. Let H be an HCFDF actor. The nested DFGs
match a subset of ports of H . A firing of H might be an
invocation of a subset of the nested graphs, given that the
dataflow interface defined by the mode is unchanged.

TABLE VIII
FEATURES OF THE DATAFLOW MOCCS WITH ENABLE & INVOKE

CAPABILITIES.

MoCC Rate Topology Range rate Features Turing Complete

EIDF [36] within
iterations

within
iterations N MEM •

CFDF [36] within
iterations

within
iterations N MEM •

PSM-CFDF [37] within
iterations

within
iterations N Pa, MEM •

CF-PSDF [38] within
iterations

within
iterations N Hi, MEM, Pa •

HCFDF [39] within
iterations

within
iterations N Hi, MEM •

TABLE IX
FEATURES AND STATIC ANALYZABILITY OF THE DATAFLOW MOCCS WITH

UNIQUE FEATURES.

MoCC Rate Topology Range rate Features Static
Analyzability

Turing
Complete

SPBDF [40] fix fix N∗ GS Co ◦

HDF [41] between
iterations fix N∗ Hi Co, Li, Sc ◦

VRDF [42] within
iterations

within
iterations N Pa Me ◦

G. Dataflow MoCCs with unique features

1) SPBDF: Synchronous PiggyBacked Dataflow (SPBDF,
[40]) provides a global state for the DFG. SPBDF provides a
method for the memory requirements and consistency of the
global state. In this context, consistency applies to paths of
the DFG. A path is state-consistent if, for each firing of every
actor on that path, consumed (resp. produced) tokens from
(resp. in) the global table have the same value.

2) HDF: Heterochronous Dataflow (HDF, [41]) studied
the combination between FSM and DF MoCC. For instance,
an SDF actor can be an FSM, and conversely. The au-
thors have also studied the combination of FSM with syn-
chronous/reactive model and discrete events models. The live-
ness, consistency, and schedulability are decidable at compile-
time.

3) VRDF: Variable Rate Dataflow (VRDF, [42]) is a para-
metric dataflow model which imposes many restrictions on
parameter usage and strong structural constraint. For instance,
the repetition vector solution for two actors using the same
parameter must be equal. VRDF presents an algorithm for
computing the required memory capacity.

H. Process network-based dataflow MoCCs

Actors of dataflow MoCCs we studied previously are func-
tional. The output tokens of a firing are purely a function of
the input tokens of that firing. Besides, the firing rules are
sequential, i.e., they can be tested in a predefined order using
only blocking reads ([43]). A sequence of actors’ firings is a
dataflow process, and a network of such processes is a dataflow
process network.

1) KPN: The dataflow process networks are a particular
case of Kahn Process Networks (KPNs, [44]). An actor of a
KPN is a process that maps one or more (possibly infinite)
input sequences to one or more output sequences. In contrast
with the dataflow process network, actors of a KPN may have
a state.



TABLE X
FEATURES OF THE PROCESS NETWORK-BASED DATAFLOW MOCCS.

MoCC Rate Topology Range rate Turing Complete

KPN [44] within
iterations

within
iterations Ω •

RPN [45] within
iterations

within
iterations Ω •

2) RPN: Reactive Process Networks (RPNs, [45]) is an
extension of KPNs where the active configuration (i.e., the
set of active processes and channels) may change at run-time.
An RPN presents a static interface to the outside world that
receives events and data tokens.

KPNs and RPNs have dynamic rates, dynamic topology,
and a rage rate of Ω. Our semantic of Ω is any data, e.g.,
integer, boolean, pointer, etc. KPNs and RPNs do not have
any previously studied features, and in their most general form,
they are not statically analyzable.

I. Meta-models dataflow MoCCs

1) PSDF: Parameterized Synchronous Dataflow (PSDF,
[46]) is a parametric meta-model applied to SDF. An actor
is either primitive or hierarchical. A primitive actor is a PSDF
subsystem composed of three graphs:

• The init graph handles the parameters’ update that affects
the body graph’s rates (i.e., the dataflow interface) and
handles parameters’ modification of the subinit graph.

• The subinit graph modifies the body graph parameters
that leave the dataflow interface unchanged.

• The body graph models the actor’s behavior.
The reconfiguration capability of the subinit graph is more
restricted than the init graph but occurs more often.

An actor is hierarchical if its body graph is itself a PSDF
subsystem. The init graph performs modifications at the
boundaries of an iteration of the PSDF subsystem to which
it belongs. The subinit graph updates parameters within an
iteration of its PSDF subsystem. Hence, a PSDF subsystem
embedded in a hierarchical actor can change some rates of its
parent subsystem within an iteration of that parent subsystem.

2) PCSDF: The authors of [46] apply their method to
CSDF and yield the Parameterized Cyclo-Static Dataflow
(PCSDF). The parameterization of PCSDF is less expressive
than VPDF: phases’ ratios and sequence fire length are pa-
rameterized, while in VPDF, an additional parameter to each
phase permits to repeat it a parametric number of times.

3) HPDF: Homogeneous Parameterized Dataflow (HPDF,
[47]) is a DF MoCC that refines a top-level actor of the DFG
using any dataflow semantic with a well-defined notion of
iteration (e.g., SDF, CSDF).

4) PIMM: Parameterized and Interfaced Meta-Model
(PIMM, [48]) extends the semantics of any deterministic DF
MoCC. To that end, PIMM uses an interface-based hierarchy
and a set of parameters. The application of PIMM to SDF
yields the Parameterized and Interfaced Synchronous Dataflow
(PISDF), which can be seen as an extension of IBSDF.

TABLE XI
FEATURES AND STATIC ANALYZABILITY OF THE META-MODEL DATAFLOW

MOCCS.

MoCC Rate Topology Range rate Features Static Analyzability

PSDF [46] within
iterations fix N∗ Hi, MM, Pa QSc

(for a subclass of PSDF)

PCSDF [46] within
iterations fix N Hi, MM, Pa, Ph QSc

(for a subclass of PCSDF)

HPDF [47] between
iterations fix N∗ MM, Pa QSc

PIMM [48]
(PISDF)

within
iterations

within
iterations N Hi, MM, Pa QSc

(for a subclass of PISDF)

RDF [49] between
iterations

between
iterations N∗ MM Co, Li

SAD [50] fix fix N∗ IniDisIT, MM Co, Li, Sc

5) RDF: Reconfigurable Dataflow (RDF, [49]) is a DFG
with a controller that specifies how and when the DFG may
be reconfigured. Graph rewrite rules are applied if specific con-
ditions are fulfilled. RDF verifies liveness and consistency for
the initial DFG configuration and all possible transformations.

6) SAD: State-Aware Dataflow (SAD, [50]) tackles the
memory persistence of initial tokens across the DFG’s itera-
tions. SAD extends the semantics of the initial tokens with an
explicit initialization/discard at the start/end of each iteration.

V. EXPRESSIVENESS HIERARCHY FOR DATAFLOW MOCCS

A. Protocol to create an expressiveness hierarchy
The expressiveness hierarchy we propose can be seen as an

extension of the DF MoCCs comparison in [34]. The protocol
to create an expressiveness hierarchy is the following:

1) Characterize each DF MoCC according to the features
described in table II.

2) Assign a score for each feature, then normalize it,
i.e., divide it by the maximum possible score. The
normalization allows features with a maximum score
above 1 to be comparable with others.

3) Classify the features by order of interest in categories
and assign a coefficient to each category (a category
may be reduced to a single feature). The coefficient
assignation allows a designer to increase or reduce the
importance of features according to its need.

4) Compute the expressiveness score for each DF MoCC by
summing the normalized features’ score with the correct
weighting, then sort DF MoCCs with respect to their
expressiveness score.

B. Features evaluation of dataflow MoCCs
We evaluate the range rate feature as follows. Singletons

{1} have a score of 0. The score is incremented by 1 –
representing an increase in expressiveness– in the following
the order: {1},N∗,N,N∗ × ...× N∗,Q∗,Ω.

We assume a DF MoCC with both dynamic rates and
dynamic topology can model more systems than the union
of the systems modeled by a DF MoCC with only dynamic
topology and those modeled by a DF MoCC with only
dynamic rate. This latter assumption is represented in table
XII. For instance, we evaluate a DF MoCC with topology
and rate updates between iterations with 3, not 2. All other
feature is single-choice properties evaluated as 1 if present
and 0 otherwise.



TABLE XII
EVALUATION OF RATES AND TOPOLOGY UPDATES.

Rate & topology updates
across DFG iterations

Topology
Fix Between Within

Rate
Fix 0 1 2

Between 1 3 4
Within 2 4 5

TABLE XIII
FEATURES CLASSIFICATION TO CHOOSE THE MOST SUITABLE MOCC TO

DEVELOP A RUNTIME ADAPTATION TOOL FOR TIMED-CONSTRAINED CPS.

Coefficient 2 1 0

Features
TiCons, MEM,

Range rate,
Rate & topology, IT

Ph, IniSteS, Pa,
Hi, AC, CT

MM, MDF,
GS, IniDisIT, SWi

C. Features classification and expressiveness score

In future work, we want to develop a tool that provides a
run-time fault mitigation capability for time-constrained CPS
modeled by a DF MoCC (a typical use case is the ADAS, as
shown in Fig. 2). For that purpose, we classify the features in
table XIII to choose the most suitable DF MoCC. We choose
coefficient 2 for crucial features, coefficient 1 for interesting
features yet not mandatory, and the null coefficient for un-
needed features. Fig. 3 shows the expressiveness score for the
DF MoCCs studied in our survey using those coefficients.

HSDF2

SDF, MDSDF, SPBDF, WSDF2,4

HSDFa
3

ILDF3,2

FRDF, CG, IBSDF3,4

CSDF, HDF3,8

SPDF4,2

BDDF4,4

FSM-SADF4,6

CSDFa
4,8

BPDF5

FSM-PSADF5,6

PCG, VRDF, SADF5,8

VPDF6,8

CDDF7,8

PolyGraph10,6

TPDF10,8

BDF, IDF3,2

SADFT
5,8

KPN, RPN6

CFDF, EIDF6,8

HCFDF, PSM-CFDF7,8

CF-PSDF8,8

SAD2,4

RDF3,6

HPDF3,8

PSDF5,2

PCSDF6,6

PISDF6,8

Fig. 3. The expressiveness hierarchy with the expressiveness score (computed
with the coefficients of table XIII) shows as a subscript. The Turing complete
dataflow MoCCs are on the left, the non-Turing complete ones are in the
middle, and the meta-models MoCCs are on the right.

D. Discussion about the expressiveness hierarchy

As shown in Fig. 3, TPDF and PolyGraph are the most suit-
able DF MoCCs for our needs in modeling CPS: deterministic,
statically schedulable, and sizable MoCCs.

The hierarchy methodology we propose has limits. Some
features may overlap, e.g., parameters and multiple execution
modes, since both may update rates. However, we focus on
what features a MoCC has and not how it is modeled or imple-
mented. The hierarchy presents the state of the art knowledge

and straightforward claims. We assume that some MoCCs can
be enhanced and thus be more expressive. However, it requires
significant work and is out of this survey’s scope.

Also, we consider auto-concurrency disabled by default
since, without a dedicated mechanism, e.g., static token in-
dices, we cannot ensure the non-overlapping of tokens because
of different actors’ execution times.

The expressiveness hierarchy is extensible. On the one hand,
to introduce a new feature, the designer must define how to
evaluate it and apply the preferred coefficient. On the other
hand, a DF MoCC is added to the hierarchy with an evaluation
according to the feature list.

VI. CONCLUSION AND FUTURE WORKS

This work surveys the main dataflow MoCCs, focusing on
a highly interesting subclass –deterministic dataflow MoCCs–
since they can derive a system’s static analyses and safety
properties at compile-time. We classify dataflow MoCCs into
nine categories with a description of the elements that make
each dataflow MoCC unique, as well as their analyzability.

We propose a flexible and extensible expressiveness hier-
archy to help system designers to choose the most suitable
MoCC for their needs. The hierarchy gives a reliable intuition
rather than a strict claim of expressiveness because each
dataflow MoCC has unique features.

The validity of the properties derived from static analysis
incorrectly assumes that there is never a run-time fault in the
system. In future work, we want to develop a tool that performs
runtime verification to ensure that static analyses made with
dataflow MoCCs are valid. Thus, we could ensure consistency
between dataflow application models and their implementa-
tion running on MC-SoCs. The runtime verification process
would improve the system’s safety and security and could be
incorporated into the Quality Assurance process during CPS
validations.
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