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Abstract 

Background 

Heating and cooling in buildings represents a significant amount of 

the energy demand in the EU, but the market penetration of 

renewable solutions is still marginal. The SunHorizon project aims at 

proving the viability and benefits of innovative coupling between heat 

pumps and various advanced solar panels. 

Methods 

This study focuses on the optimal operation strategies of a 

technological package located in Latvia, and composed of hybrid 

photovoltaic thermal (PVT) panels, a gas driven heat pump and a hot 

water storage tank. In this work, a model predictive control is 

developed, based on mixed integer linear programming (MILP) 

optimization. This model uses innovative elements compared to 

traditional model predictive control (MPC), with environmental 

indicators for the Latvian electricity grid accounting for imports, co- 

simulation with TRNSYS using the transmission control protocol (TCP) 

and modelling of long-term storage for long and short-term decisions. 

The usual minimization of costs is compared to two new optimization 

approaches, which aim to minimize greenhouse gas (GHG) emissions 

or maximize renewable use and self-consumption. 

Results and conclusions 

The results of the optimization of costs and GHG emissions show that 

gains can be found within the variations in time series related to the 

electricity grid, but the overall operation strategies remain similar. 

Optimization of renewable share and self-consumption is another 

path for control strategy, but with less economic and environmental 

performance. 

https://open-research-europe.ec.europa.eu/articles/3-17/v2
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1 Introduction 
Heating and cooling (H&C) for buildings represents 32% of the EU energy demand, of which only 13% comes 

from renewable energies (HeatRoadMap EU, 2017). In order to comply with the targets of the Paris agreement, 

new technological solutions for H&C in buildings must be implemented, with a reduced environmental impact as 

well as financial savings compared to conventional solutions. 

 

The SunHorizon project aims at demonstrating such solutions, with innovative and reliable heat pumps (thermal 

compression, adsorption, reversible) which, properly coupled and managed with advanced solar panels (thermal, 

photovoltaic [PV], photovoltaic thermal [PVT]), provide H&C to residential and tertiary buildings with lower 

emissions, energy bills and fossil fuel dependency. Four different technological packages (TPs) are being devel- 

oped and demonstrated across EU climates (i.e. Germany, Spain, Belgium and Latvia) and building typologies 

(small and large-scale residential and tertiary buildings). 

 

This paper is focused on the smart control algorithms that are demonstrated in virtual environment in the Sunisi 

demo site context: a residential house located near Riga in Latvia, equipped with DUALSUN PVT panels, a 

BOOSTHEAT gas fired thermal compression heat pump and RATIOTHERM thermal storage (TP2 concept). The 

control tools aim at finding decision-making strategies that guarantee to cover the energy demand while minimizing 

costs or environmental impact and complying with comfort constraints. 

 

Many works investigate the influence of control algorithms on the actual performance of building energy systems, 

like the article « Ten questions concerning model predictive control for energy efficient buildings »1 that summarizes 

well the benefits and issues with MPC for building systems. In many cases, the model-predictive control (MPC) 

approach makes it possible to reach superior performance, especially thanks to a better anticipation of future 

conditions and optimized use of energy storage units. As an example, Ghilardi et al.2 report up to 80% gains for 

cooling a building. 

 

As illustrated by Figure 1, MPC uses an optimization algorithm to compute optimal control setpoints by mini- 

mizing an objective function while accounting for predictions of time series such as electricity prices or inter- 

mittent solar energy production. The optimization often relies on the MILP formalism, which is particularly 

well suited as it offers good modelling capabilities, guarantees optimality and is supported by efficient solvers3,4. 

 

 

Figure 1. Model predictive control general concept. MILP: mixed integer linear programming. 



Open Research Europe 2023, 3:17 Last updated: 07 MAR 2024 

Page 4 of 30 

 

 

2 

 

 
One of the difficulties for MPC is that significant effort may be required for designing and evaluating the 

optimization model depending on the controlled systems. Some studies have been performed on similar systems. 

For instance Herrera et al.5 studies a solar absorption cooling system, Chen et al.6 studies a heat pump coupled 

with a PV/T system. In our case, we consider a hybrid system, solar PVT coupled gas fired heat pump and 

thermal storage, which can provide benefits when the electricity mix has a high carbon content. Hence, the pre- 

cise setup of the system differs from the previous studies and has different characteristics. In particular, in our 

case, the large storage tanks allows for storage of thermal energy over several weeks. In order to handle longer 

optimization horizon in reasonable computational times, previous work7 has proposed a formulation with variable 

time steps, which we use in this paper to evaluate its performance in another context. 

 

Most of the time the MPC optimization is performed to find the best ways to minimize the operational costs of a 

system. Environmental impacts of the system like GHG emissions and the use of renewable energy are often 

considered external to the problem and do not represent the focus of the optimization problem. A key contribution 

of this paper is to propose a comparison of traditional cost minimization with two other control strategies: a 

GHG emissions minimization strategy and a strategy for the maximization of the use of renewable energy and self- 

consumption, in order to find what differences in operation these three types of control would induce. In order to 

do so, precise environmental indicators of the electricity grid need to be calculated. 

 

As the studied demosite is not installed at the time of this study, the controlled system of the MPC is a non- 

linear modelling of the technological package, modelled using the software TRNSYS. Due to techni- cal 

constraints, TRNSYS and the software used for MILP modelling and co-simulation are not using the same computer 

architecture (32-bits versus 64-bits). An alternative method to traditional functional mock-up (FMU) interface 

standards needs to be implemented. 

 

In this paper, we therefore demonstrate the application of MPC with MILP methodology on the TP2 innovative 

technological package at the residential building scale. This requires developments regarding environmental 

indicators of the electricity grid, an alternative method to functional mock-up (FMU) interface standards for co- 

simulation and the modelling of long-term energy storage. 

 

The development of the methods is described in Section 2, and the results are discussed in Section 3. 

 

2 Methods 

2.1 Test case presentation 
This study focuses on the Riga demo site of the SunHorizon project where the building on which the new techno- 

logical package will be installed is a residential individual house located in Sunisi, near Riga, Latvia. The house 

was previously equipped with a gas boiler to cover the heating demand. 

 

The objective of the project in Riga is to demonstrate the performance of a hybrid system relying on inte- 

grated installation of solar, heat pump, thermal storage and controls components as shown in Figure 2, overall 

energy system layout: 

• 50 m² of DualSun solar hybrid PVT uninsulated panels will be carried out on the premises, for a total 
installed peak power of 9.6 kWp. 

• 20kW BoostHeat CO heat pump in replacement of the current boiler. The indoor unit consists in the 

brine-to-water heat pump which compressor is thermally driven and gas fired (unlike conventional elec- 

tric vapor compression heat pumps), for space heating supply, and a secondary gas burner to prepare 

DHW in compact DHW tank inside the indoor unit. The secondary gas burner is complementing 

the heat pump’s space heating supply to reach desired temperature flow set point. Details about the 

thermodynamic working principles of the Boostheat innovative heat pump are given in 8. The lab meas- 

urement of Boostheat unit’s Gas Utilization Efficiency (GUE) achieves 2.0 in A7/W35 conditions 

when connected to the Boostheat outdoor fan coil unit. 

• These heat sources components will integrate in the building with hot water storage tank, cold glycol 

buffer tank and SmartHeater, under the global supervision of controller developed by Ratiotherm technol- 

ogy provider. The SmartHeater component is an electric resistive heater that is switching several resis- 

tors in real time to consume up to 15kW. It aims usually at photovoltaic electricity self-consumption 

objective with regard to the entire building consumption, therefore reducing the amount of electricity fed 

into the grid as much as can be stored as heat in to the hot water tank, up to 85°C. 
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Figure 2. Layout of considered demo site. DHW: domestic hot water; PVT: photovoltaic thermal. 
 

 

The preliminary performance study of the innovative technological package TP2 was performed by SunHorizon 

partners through TRNSYS9 modelling and simulations together with models of the building, users’ specific 

electricity and DHW consumptions, Riga climate, and reported in Chèze et al.10 together with three other solar 

and heat pump systems analyzed in SunHorizon project. The main parameter values from TRNSYS components 

for the current test case TP2 are summarized in Table 1. 

 

Table 1. Outlook of the main TRNSYS components from the TP2 test case. 

 

Type Name Type 
identifier 

Type description 

Dualsun PVT Solar 
collector 

Type 816, 
custom 

30 pieces from elementary panel : 1.6 m², 320 Wp ; thermal coefficients 
following EN ISO 9806 test : a0=55,9% a1= 15,8W/K/m² a2=0W/K²/m² 

Hot water tank Type 340, 
commercial 

1.3 m3, 2 m high, 1.27 W/K loss coefficient 

glycol tank Type 4 0.2 m3, 1.5m high, 1.83 W/K loss coefficient 

DHW BH water tank Type 4 0.065 m3, 50 cm high, 0.74 W/K loss coefficient 

Annual specific electricy 
user consumption profile 

Type 9 Annual total consumption of 10.7MWh, calculated from building model 
in 11 

Building Type 56 Single-family residential house built in 2015, 108 m² living area, 20.2MWh 
annual heat supply through heating floor and radiators and DHW 

BoostHeat unit Type 5837, 
custom 

Continuous interpolation from the steady state performance tables 
shared by Boostheat from internal tests of the BH20 unit, for both 
thermodynamic core and secondary gas burner operation. GUE and 
electricity consumption are varying according to temperature at the cold 
(-10 to 20 °C) and hot (30-55°C in Space Heating (SH) operation, 10-85°C 
in DHW operation) sides of the heat pump, full or part load operation 
request (25-100% of 20kW-nominal heating capacity in SH operation). 

 

 

The parametric study revealed a low influence of the storage tanks sizes on the Key Performance Indicators (KPI) 

like savings of Green House Gas emissions, non-renewable primary Energy consumptions, or cost bills reduction 

when considering the current electricity Net metering regulation in Latvia. Thus, the decision to incorporate 
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a quite large capacity hot water tank was mainly assuming probable evolution of the renewable electricity feed- 

in scheme towards self-consumption incentives. 

 

A prototype of this solar and heat pump technology package was built by technology manufacturers in 2021, 

then tested by CEA following hardware-in-the-loop methodology, so-called Typical Short Sequences (TYPSS). 

In 12 the overall behavior and control of the real TP2 prototype are compared to previous detailed simulation 

results. It emphasized the need to set carefully the control parameters of this TP2 to achieve expected energy 

performance level on such real dynamic system. 

 

Indeed, in order to maximize the solar heat collection efficiency of PVT panels, the reference control strategy in 

the Riga demo case intends to store solar heat either in the hot water storage or in glycol storage tank according 

to the coldest tank, which depends on the solar loop temperature grade and heat pump activation rate. The con- 

nection of the heat pump’s evaporator to solar heated glycol tank is activated against connection to the out- 

door air fan coil, according to the highest temperature level to maximize the current GUE efficiency of the 

heat pump. After solar thermal heat from PVT panels potentially preheats SH return loop or fresh water in the 

hot water storage, the Boostheat unit is activated complementary to grant the heat supply to the users at the 

desired temperature. 

 

In addition, the simulations accounted for the grid net metering mechanism in Latvia. It allows the user to 

feed into the grid the PV electricity that is not self-consumed by the building and, the following year, to buy the 

equivalent amount of energy for discounted price where only distribution fees are paid (in average 35% of 

the actual grid price). It is a kind of electricity storage on the grid. 

 

From the application on TP2 test case detailed TRNSYS simulation, the objective of this work is to analyze 

the influence on the performance figures of the control decisions relying on MPC upgraded control approach. 

 

2.2 MPC implementation 
MPC is based on MILP optimization. In this type of control, the considered system is modelled as a MILP, taking 

various time series as inputs and calculating the optimized trajectories of a set of control variables in order 

to minimize an objective function. During the successive optimizations, the controller is given feedback 

from a TRNSYS digital twin, in order to update the initial state of the MILP with actual information on the 

controlled system. The detailed structure of MPC is presented in Figure 3. MILP was chosen for the 

optimization as it provides computation times that are suitable for future live implementation on demosite. 

 

 

Figure 3. Detailed structure of MPC. DHW: domestic hot water; MILP: mixed integer linear programming; MPC: 

model predictive control. 
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The input time series for the MILP model are weather data, heating and electricity demand and electricity 

related data such as variable price and CO2 intensity. Demands are detailed in Section 2.3.1 and electricity 

indicators in Section 2.3.2. 

 

The MILP model of the considered energy system on which relies the optimization part of the MPC is detailed 

in Section 2.4. 

 

The optimizer sends to the TRNSYS model optimized control variables, the smart heater power, and gets as 

feedback from the simulation the actual level of the Ratiotherm storage. Due to technical constraints of the 

demosite, only the smart heater in the technological package can be controlled by external control algorithms, 

therefore it represents our main control variable. Other variables could have been implemented in simulation 

but it was not representative of the actual controlled system. The tool implemented to perform this data 

exchange is described in Section 2.5. 

 

The MPC is using the rolling horizon methodology (Figure 4). For a one-year simulation, the forecasted 

horizon of each optimization is limited, and optimizations are solved successively with a 1h time-shift between 

them. The initial state of each optimization is set both by the results of the previous optimization and the 

feedback from the TRNSYS model. 

 

 

Figure 4. Rolling horizon methodology. 
 

 

The grid net metering measure in Riga behaves similarly to long-term storage. With a typical 48h horizon, 

the behavior of such storage cannot be forecast, as electricity can be stored in the grid for more than a few days 

and used later. In order to optimize its use, a longer horizon would be required to forecast long-term changes. 

With a 1h time step and an 8760h horizon, this will induce a high number of constraints that will increase the 

complexity of the problem and make the computation time skyrocket. 

 

A new methodology is implemented in this paper, proposed by Cuisinier et al.7. It uses a horizon with a 

variable time step, which allows the optimization of long-term decisions as well as short-term decisions. 

 

With this methodology, a control horizon of 58 days (1392 hours) with only 56 time steps is proposed. This 

global control horizon is the combination of a short-term and a long-term horizon, that have different time 

steps, as presented in Figure 5. In addition to a short-term 48h horizon (with a 1h time step), a long-term hori- 

zon covering 8 weeks is also included (this time with a time step of 168h, hence a week). Thus, the actual 

number of time steps on which the optimization needs to be performed is only of 56, but the total period covered 

by the horizon is 2 months and 2 days. With a traditional approach, 1392 time steps would be needed to 

cover the same period. 
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Figure 5. MPC horizon with variable time step. 
 

 

2.3 Time series development 
2.3.1 Load profiles. Demand profiles for 2018 were calculated within the project. It uses a detailed building 

model of the house in Sunisi and weather data measured in Riga in 2018. The details for these loads calculation 

can be found in 11. 

 

Heating load is the aggregated demand of radiators on both floors of the building and of domestic heating water. 

The electricity load covers the demand of all basic appliances and the use of a chiller in summer (not modelled 

in our optimization problem as it will not be replaced within the project). 

 

Typical loads for winter and summer are presented in Figure 6. 

 

 

Figure 6. Load profiles for a typical week in winter and in summer. 
 

 

2.3.2 Electricity related data. In order to optimize the system, external indicators regarding the electricity grid 

need to be calculated. In addition to the variable electricity costs for costs minimization, indicators such as 

CO2 intensity and renewable share are needed for environmental impact minimization. 

 

This electricity related data is obtained from the European Network of Transmission System Operators 

(ENTSOE) platform, where “Augstsprieguma tīkls AS”, the Latvian transmission system operator, shares 

historical data. 

 

Spot prices for the year 2018 in Latvia were used. In addition to these variable costs, a fixed part is added, which 

corresponds to distribution fees from the TSO (49.3 €/MWh) and subsidies for the development of renewable 

energies and cogeneration (17.9 €/MWh). The final electricity prices are shown on Figure 7. 
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Figure 7. Latvian electricity prices. 
 

 

Regarding the environmental indicators, CO2 intensity for generated electricity is calculated using actual gen- 

eration per production type in Latvia and CO2 intensity factors from the Intergovernmental Panel on Climate 

Change (IPCC) guidelines13, shown in Table 2. 

 

 

Table 2. CO2 intensity by 

production technology. 

 

Production CO2 intensity 

technology (gCO2/kWh) 

Biomass 230 

Coal 820 

Gas 490 

Oil shale 1455 

Hydro 24 

Nuclear 12 

Solar 48 

Waste 230 

Wind offshore 12 

Wind onshore 11 

Other 700 

 

As shown in Figure 8, base load in Latvia comes mostly from biomass, hydro represents a high share of 

electricity production but with high seasonal variability and most of the variable load is covered with natural gas. 
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Figure 8. Electricity generation in Latvia (2018). 
 

 

The mean CO2 intensity of produced electricity in Latvia is therefore around 346 gC02eq/kWh, with 43.7% 

of the renewable share. 

 

However, when accounting for CO2 emissions of electricity, there are important differences between produced 

and consumed electricity as mentioned by Tranberg et al.14. 

 

In Latvia, 11% of the consumed electricity in 2018 came from imports and 68% of these imports came from Estonia 

(28% from Russia and 3% from Lithuania), as can be seen in Figure 9. Because of this high import share, 

CO2 intensity for consumed electricity is underestimated if only national electricity generation is considered. 

 

 

Figure 9. Electricity trade in Latvia (2018). 
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Electricity in Estonia is mainly produced from oil shale, which has a very high CO2 intensity. Oil shale repre- 

sented 81% of electricity production in 2018, therefore the average CO2 intensity of its electricity production 

is 1209 gC02eq/kWh). 

 

A new calculation of these indicators is proposed in this paper (Equation (1)), which accounts more precisely 

for the part due to imports in the final consumed electricity. 

For each time t , 
 if exportst  importst : COt

  CO 
t
  t t 2cons 2 prod 

t t t 

 t t t 
CO  El   % imp  Balance  CO2 (1) 

if exports  imports : CO  2 prod prod jneighbours j prod j 

 2cons 




t 
prod 

 Balancet
 

 

With,  for  each  time  t, 
t 
2cons [gCO2eq/kWh]  the  CO2  intensity  of  consumed  electricity,  COt

 

[gCO2eq/kWh] the CO2 intensity of produced electrticity, exportst [kWh] the amount of exported energy, 
importst [kWh] the amount of imported energy, El 

% impt 
prod 

[kWh] the total of electricity produced in Latvia, 
t [kWh] the net total of import and CO

t
 

j 
the share of imports coming from neighbor j, Balance 2 prod 

[gCO2eq/kWh] the CO2 intensity of produced electricity from neighbor j. 
j
 

 

The difference between produced electricity and final consumption is plotted in Figure 10. On average, the 

final CO2 intensity for the Latvian grid is 468 gCO2eq/kWh, with a renewable share of 39.5 %. 

 

 

Figure 10. Environmental indicators for the electricity grid in Latvia (2018). 
 

 

This MPC uses perfect forecast for the above-mentioned electricity and weather time series. In live imple- 

mentation of the controller, time series forecasting algorithms (with machine learning for example) could 

be implemented for better accuracy in the results, but it is outside the scope of this study. Prediction of vari- 

ables such as CO2 intensity of electricity could prove rather complex as it seems to require a great amount of 

explanatory variables, as well as reliable forecasts for market, power generation and weather data15. 

 

2.4 System MILP modelling 
The optimization model of the Riga technological package, described in Section 2.1, is based on MILP for- 
malism. The objective of a MILP problem is to find the vector of decision variables xT = (x ,…,x ,x  ,…,x ) 

1 

solution of system (2), where x is composed of k continuous variables and (n – k) integer variables. 
k  k+1 n 

El 

CO 2 prod 
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x 

 

 

min fcosts  CT  x 

LHS  A  x  RHS 
(2)

 
with l  x  u 

 b b 

Where c [n] is the vector of costs, A [m × n] is the matrix of linear constraints and LHS [m] and RHS[m] are the 
vectors of linear constraints. lb [n] and ub [n] are the lower and upper bounds vector of the decision variables, 

respectively. 

 

The optimization problem was modelled on PERSEE16, a modelling software developed internally in 

CEA (The French Alternative Energies and Atomic Energy Commission) dedicated to optimization and techno- 

economical assessment of energy systems with multiple energy carriers. PERSEE allows modelling of 

complex energy system by assembling individual MILP model contributions into a larger problem. The optimization 

problem is then solved by a CPLEX solver. 

 

Figure 11 gives an overview of the SunHorizon problem architecture as it was implemented inside PERSEE. 

 

 

Figure 11. MILP model architecture as implemented in the modelling software. DHW: domestic hot water; 

MILP: mixed integer linear programming. 

 

 

The MILP model is based on the following component types: 

- Buses: each bus performs a balance of energy flux of its specific energy carrier. 

 P t  dt   Pt 
 dt 

ini out j (3) 
i j 

With, for each time t, P t 
in i 

the i input power to the bus and Pt
 
out j 

the j output powers from the bus 
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in 

in 

E  E 



 

 

- Energy converters: Smart Heater, BoostHeat heat pump and back-up boiler are energy converters, 

converting one type of energy carrier to the other with a fixed efficiency. 

 
t 

out  P 
t 
 η 

 
converter 

 

(4) 

With, for each time t, 
t 

out the produced output power of the converter, P
t the input power for the 

converter and ηconverter the efficiency of the converter. 

- Storages: Ratiotherm Storage and Grid Net Metering are energy storages that charge and discharge 

energy to the buses. 

t t 1 

 stored stored  Pt  Pt
  K  E t 

 
(5) 

dt charge discharge loss stored 

With, for each time t, 

storage, t 

t 
stored the energy stored in the storage, t 

charge the charging power of the 

storage. 
Pdischarge 

the discharge power of the storage and Kloss an aggregated loss coefficient of the 

- Loads and productions: loads and production are imposed time series on a bus. 

- Grids: grids offers an infinite source of energy that can be purchased by the system. 

 

In this paper, three objectives functions are compared, the first one on costs minimization in Equation (6) 

(referred to as MPC on costs), and the second one on GHG emissions minimization in Equation (7) (referred to as 

MPC on GHG). The last objective function is designed to maximize both self-consumption of the building (which 

is 100% renewable) and renewable energy use, and is detailed in Equation (8) (referred to as MPC on SELF). 

This is done by minimizing the gas consumption as well as the non-renewable part of electricity bought from the 

grid. 

f Pt  Grid t  dt  Gast  Gas 

obj costs 
grid  price consumption price (6) t 

t PNetMetering  NetMeteringprice  dt 

f   P t  Grid t  dt  Gast  Gas 

objGHG t 
grid CO2intensity consumption CO2intensity (7) 

f   P t  Grid t  dt  Gast (8) 
objM PC 

t  
grid FFshare consumption 

With, for each time t, P t [kW] the power extracted from the electricity grid, Grid 
t [€/kWh] the instan- 

grid  
t 

price 

taneous electricity price, Gasconsumption [kWh] the instantaneous gas consumption of the heat pump, Gasprice 

[€kWh] the price of gas in Latvia, P t [kW] the power drawn from net metering, NetMetering [€/kWh] 

the fixed fee for grid net metering u
N

s
e
e

tM
, 

e
G

te
r

ri
i
n
d

g t 
[gCO2eq/kWh] the instantaneous CO2 intens

p

i
r

t
ic

y
e 

of elec- 
tricity from the grid, Gas CO2intensity  Grid 

t 
[%] the 

CO2intensity [gCO2eq/kWh] the CO2 intensity of natural gas and 
instantaneous fossil fuel share of electricity from the grid. 

FFshare 

 

2.5 Co-simulation with TRNSYS 
As part of the MPC methodology, in order to account for the non-linear phenomenon that cannot be modelled 

through MILP, feedback from the actual system or detailed simulation model are needed at each timestep to 

update the state of the system. As the Riga building site with real technology package is not operational yet, co- 

simulation is implemented with the detailed TRNSYS simulation model that was developed in the early stage of 

the project on sizing purpose10. Co-simulation is implemented on PEGASE, a platform developed at CEA17 

that provides a framework for the design and deployment of advanced control strategies 

 

Co-simulation is usually done through FMU. Even if an open source project for an FMU tool for TRNSYS is 

available online, compatibility issues between 32 bits TRNSYS model and 64 bits optimization software made 

the use of standard FMU impossible. 

 

An alternative method was developed in this paper, using a local TCP (Transmission Control Protocol) server and 

sockets. TCP is a protocol of the Internet Protocol suite, that provides communication services at a lower level 

than an application program. It relies on a connection between a server and a client. A module was developed 

in PEGASE to launch a TCP server and a newly developed TRNSYS type is working as the client side. 

P 

P 

E P 
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In actual operation, both models are running in parallel and at the end of each time step, both pause until data 

through the TCP socket is received. 

 

3 Results 
In this section, results obtained by the MPC for a yearly simulation for the three objective functions are compared18. 

Yearly operation of the smart heater is presented on Figure 12. 

 

 

Figure 12. Use of smart heater. GHG: greenhouse gas; MPC: model predictive control; REN: renewable energy use. 
 

 

In the MPC on costs and MPC on GHG scenarios, the operation of the smart heater shows similar trends. The 

smart heater is mostly used when PV production increases from March to July, In November and December, the 

control is the same as before March, where the smart heater is not used and heat production is covered with the 

heat pump only. 

 

For the MPC on SELF, the smart heater has a more predominant role. It is used as soon as PV electricity is 

produced. This allows for less use of the heat pump and therefore of natural gas. Consumption from the grid is 

however increased, as it has a higher renewable share than the fossil gas used by the heat pump. 

 

The energy stored in the Ratiotherm storage and the grid net metering are plotted in Figure 13 and Figure 14. 

 

 

Figure 13. Use of thermal energy storage. GHG: greenhouse gas; MPC: model predictive control; SELF: 

self-consumption. 



Open Research Europe 2023, 3:17 Last updated: 07 MAR 2024 

Page 15 of 30 

 

 

 

 
 

Figure 14. Use of grid metering mechanism. GHG: greenhouse gas; MPC: model predictive control; SELF: 

self-consumption. 

 

 

The thermal storage is used in winter on a daily basis but for small amount of energy as the heating demand is 

high and PVT production low. During summer, the excess of solar thermal production is stored in the water 

tank, which is use as a buffer before the increase of demand in winter. In summer, the thermal production of 

PVT panels is indeed higher than the daily heating demand, so despite the heat losses, this production is stored 

in the tank so it can be used for free at the end of summer when PVT production decreases and heating demand 

increases. 

 

The main differences between the scenarios lie in the energy stored between November and March. With the 

MPC on SELF, because of the high use of the smart heater, the thermal energy storage has higher use during 

this period. Even when heating demand is high, most of the PV production is converted into heat in order to 

decrease the use of fossil fuel. 

 

Regarding the net metering, for all scenarios electricity is stored mostly at the end of summer, in order to lower 

the extraction from grid when PV production decreases. However, because more PV production is converted 

into heat with the MPC on SELF, the cumulative energy stored in net metering is lower. Energy stored through 

grid metering in SELF scenario drops as soon as the heating demand starts after the summer, so the electricity 

produced by the PVT panels can be used by the smart heater, in order to minimize the gas consumption. 

 

The total energy balances for heat and electricity are summed up in Figure 15 and Figure 16. 

 

 

Figure 15. Heat balance per month. GHG: greenhouse gas; MPC: model predictive control; SELF: self-consumption. 
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Figure 16. Electricity balance per month. GHG: greenhouse gas; MPC: model predictive control; PV: photovoltaic; 

SELF: self-consumption. 

 

 

It can be seen in these energy balances that MPC on costs and MPC on GHG have similar behaviors. In all sce- 

narios most of the heat demand is covered by the use of the heat pump. However, as mentioned beforehand, 

the total heat pump production is lower with the MPC on SELF as the smart heater covers some of the demand 

outside of summer. 

 

For the electricity balance, the impact of the higher use of smart heater shows a lower use of net metering 

and higher grid consumption with the MPC on SELF than the two others. 

 

Main indicators for the two control types can be found in Table 3. 

 

Table 3. Main indicators for the three control types. 

 
 

MPC on 
costs 

MPC on GHG 
emissions 

MPC on SELF 
consumption 

OPEX (€) 1293 1313 1430 

GHG emissions (tCO2eq) 6.63 6.59 6.86 

Electricity self-consumption (%) 40.3 39.2 46.1 

Renewable energy ratio (%) 38.6 39 41.4 

GHG: greenhouse gas; MPC: model predictive control; OPEX: operating expenses 
 
 

 

The optimization of costs is 1.5% cheaper than the optimization of GHG, and the emission are almost 1% lower 

in the second scenario. The two first control types offer gains on either costs or GHG emissions differences 

in the final indicators, however, are small. 

 

This comes from the low level of flexibility of the system, the only control variable being the use of the smart 

heater. The high CO2 intensity of electricity in Latvia and the low cost of natural gas makes the use of the heat 

pump an inevitable choice in terms of both costs and GHG emissions. 

 

MPC is however able to profit from the variations in electricity prices or CO2 intensity, to highlight potential 

gains depending of the chosen control strategy. 
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The scenario for self-consumption and renewable share results in an increase of both the electricity self- 

consumption and the renewable energy share. However, this comes with a notable increase in both costs and GHG 

emissions of the overall system. In this scenario, the smart heater is more used, therefore less gas is bought for 

heating and more electricity is bought from the grid. As electricity from the Latvian grid has, in average, 

higher CO2 intensity than natural gas (467 gCO2eq/kWh in average for the grid and 244 gCO2eq/kWh for 

natural gas), GHG emissions are higher in the scenario. However, as gas is 100% fossil and grid electricity is 

always partly renewable, the overall renewable share is therefore higher. This control provides interesting results 

in the case where self-consumption is an important issue, but its economic and environmental interests are low. 

 

4 Conclusion 
This paper investigates the application of MPC-MILP methodology on an innovative technological package for 

residential building following possible developments of Latvian context. To proceed with the optimal control, the 

environmental impacts of the electricity grid are calculated, accounting for imports from neighboring countries. Co- 

simulation is performed outside of the FMU standard by using TCP protocol. Finally, long-term energy storage is 

modelled thanks to an optimization problem with variable time step. 

 

Three control strategies were compared in this paper. Optimal control on costs and GHG show that gains can be 

found within the variations in time series related to the electricity grid, but the overall operation strategies remain 

similar. Optimal control of renewable share and self-consumption shows another path for control strategy but 

economic and environmental performances are lower. 

 

These control strategies could be improved by performing internally multi-criteria optimization. Tradeoffs 

between the three objectives tested in this paper could then be found, but these calculations usually require high 

computation times. It would also be interesting to test this technological package in other European countries, 

as lower CO2 intensity in electricity could induce major variations in control between the cost and GHG 

minimization scenarios. In parallel, further investigations in simulation for such kind of solar and heat pump 

system are needed to establish the relationships between the size of the thermal storage, its thermal losses 

and the optimal control’s time horizon. Finally, time series forecasting of weather and electricity related data 

could be investigated to improve reliability of the results in live implementation. 

 

Data availability 

Underlying data 
Harvard Dataverse: Model Predictive Control of sun-coupled innovative heat pumps: a comparison of economic 

and environmental optimizations. https://doi.org/10.7910/DVN/3O1RTO18 

 

This project contains the following underlying data: 

 MPC_outputs_costs_scenario.tab 

 MPC_outputs_ghg_scenario.tab 

 MPC_outputs_renshare_scenario.tab 

 

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 

Public domain dedication). 

 

Software availability 
The MPC model was developed on PERSEE and PEGASE, which are proprietary software of CEA. These soft- 

ware programs are used to produce innovative studies for European projects as well as industrial partners. The 

intellectual property of these programs belongs to CEA, which can sell these studies to companies interested 

in research and prospective works. Sharing this software cannot be considered as it will deny the added value of 

CEA in future projects. 

 

Under the ‘obligation to protect results because of legitimate interests or other constraints’ exception of Open 

Research Europe data policy, we are therefore unable to share the source code associated to this model. 

https://doi.org/10.7910/DVN/3O1RTO
https://doi.org/10.7910/DVN/3O1RTO
https://creativecommons.org/publicdomain/zero/1.0/
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However, in order to replicate the results presented in this article, below is a list of alternative open-source software that can be used 

as replacements: 

- OpenModelica (https://openmodelica.org/): based on the modeling language Modelica, it offers a freeenvironment to model 

and analyze complex dynamic systems (alternative to TRNSYS) 

- Pyomo (http://www.pyomo.org/installation) / PulP (https://pypi.org/project/PuLP/): these Python librariesare used to formulate 

and solve MILP optimization problems (alternative to PERSEE) 

- PyFMI (https://pypi.org/project/PyFMI/) : this Python library can be used to perform co-simulation withFunctional Mock- 

up Interface standards (alternative to PEGASE) 

- Cbc (https://github.com/coin-or/Cbc) or GLPK (https://www.gnu.org/software/glpk/) : are free MILP solver(alternative to 

CPLEX) 
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