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A Porosity Method to Model the Internal Structures of a Reactor Vessel

To take into account the in uence of a structure net among a uid ow, without modelling exactly the structure shape, a concept of "equivalent porosity method" was developped. The structures are considered as solid pores inside the uid. The method was studied for HCDA in LMFBR, but it can be applied to any problem involving uid ow getting through a solid net.

Introduction

In case of a Hypothetical Core Disruptive Accident (HCDA) in a Liquid Metal Reactor, the interaction between fuel and liquid sodium creates a high pressure gas bubble in the core. The violent expansion of this bubble loads the vessel and the internal structures, whose deformation is important.

During the 70s and 80s, the LMFBR integrity was studied with codes specially devoted to the analysis of transient loads resulting from a HCDA : SURBOUM, PISCES 2DELK, SEURBNUK/EURDYN, ASTARTE, CASSIOPEE, REXCO, SIRIUS... In order to validate these codes, experimental programmes and benchmarks were undertaken by several countries : COVA, APRICOT, WINCON, MARA, STROVA, CONT... The SIRIUS french code 1] 2] was validated on the MARA experimental programme 3] 4]. Based on a 1/30 scale model of the SUPER-PHENIX reactor, this programme involves 10 tests of gradual complexity due to the addition of internal deformable structures : MARA 01/02 5] consider a vessel partially lled with water and closed by a rigid roof, MARA 04 6] represents the main core support structures, MARA 08/09 7] are empty and closed by a exible roof, MARA 10 8] includes the core support structures and a simpli ed representation of the above core structure (ACS). The MARS test 9] rests on a 1/20 scale mock-up including all the signi cant internal components.
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As other codes using a Lagrangian approach, SIRIUS needed rezonings during calculation because the internal structure presence caused high distorsion of the uid meshes. Finite di erences were used for the sodium and the roof and nite elements for the thin vessel. As the argon and the bubble were not meshed, a law related volume to pressure.

At the end of the 80s, it was preferred to add a speci c ADCR sodium-bubble-argon tricomponent constitutive law 10] to the general ALE fast dynamics nite element CASTEM-PLEXUS code 11]. The ADCR constitutive law was quali ed on the CONT benchmark 12] 13].

In order to demonstrate the CASTEM-PLEXUS capability to predict the behaviour of real reactors 14] 15], axisymmetrical computations of the MARA serie were confronted with the experimental results. Whereas the CASTEM-PLEXUS results and the MARA 08 and MARA 10 tests 16] were in a good agreement, the prediction of the MARS structure displacements and strains was overestimated 17].

This conservatism was mainly due to the fact that several MARS non axisymmetrical structures like core elements, pumps and heat exchangers were not represented in the CASTEM-PLEXUS model. These structures, acting as porous barriers, had a protective e ect on the containment by absorbing energy and slowing down the uid impacting the containment.

For these reasons, we developped in CASTEM-PLEXUS a new uid constitutive law taking into account the presence of the internal structures (without meshing them) by means of an equivalent porosity method. This paper is focused on the theoretical bases of the method.

De nitions and hypothesises

Let us consider a xed control volume t cut by an interface A s . This interface divides the control volume into a uid subvolume f and a solid subvolume s . Let us note A t the surface bounding jointly the uid volume and the control volume.

The hypothesises are:

f s A s t A Control volume t Fluid Solid

H1

The issue is dealt with an Eulerian approach, so the control volume is constant and motionless.

H2

The solid is supposed inert, motionless, rigid, of any shape. H3 The uid is supposed homogeneous, isobar, adiabatic and Newtonian. H4 The porosity is time independant. H5 No material exchange between the uid and the solid.
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H6 No mass source. H7 No heat source. H8 The spatial uctuations are much lower than the average values. H9 The volumic viscosity is insigni cant compared to the dynamic viscosity. H10 The gradient of the viscosity (dynamic, volumic and turbulent) is negligible in comparison with the velocity Laplacian.

H11 The dynamic viscosity is negligible against the turbulent viscosity. H12 The turbulent kinetic energy is insigni cant against the (pressure/ uid density) ratio. H13 The energy loss by solid-uid viscous friction is inconsiderable, compared to the energy variation due to the pressure term.

H14 The average value of a variable on the solid surface is supposed equal to the uid average value.

H15 The solid structures are supposed symetric enough to represent the uid-solid friction by a diagonal isotropic tensor.

The porosity method aim consists in substituting an equivalent "porous" uid for two di erent components (solid and uid). The method is broken down into 3 steps:

The uid conservation laws are space-averaged on the control volume to consider the partial occupation of the control volume by the uid. The uid equations are written with both uid, solid and control volume terms. As there is neither spatial nor temporal evolution of the solid (H2), it is pointless studying the solid conservation laws.

The uid equations are modi ed, by introducing a porosity coe cient, in order to replace the control volume terms by uid ones. Except a uid-solid force, the uid conservation laws just depend on uid variables.

An equivalent "porous" uid, with its own properties, is nally de ned on the control volume. The conservation laws of this medium are matched up with the uid equations previously de ned.

Let (x; y; z; t) be a function (scalar, vector or tensor) de ned on the control volume t . (x; y; z; t) is the average value of on the control volume t whereas (x; y; z; t) is the average value of on the uid volume f .

= 1 t Z f d = 1 f Z f d
Let be the porosity, de ned as the uid presence fraction inside the control volume:

= f = t . The average values and are linked by: = .

Consider a function de ned on the uid volume f . It can be separated into a uid average term and a uctuating term 0 , what leads to: = + 0 .
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3 Fluid conservation laws homogenized on the control volume

The local conservation laws 18] of a uid without source terms (H6) (H7) are: mass @ @t f + div ( f ṽf ) = 0 momentum @ @t ( f ṽf ) + d iv ( f ṽf ṽf ) div f f g = 0 total energy @ @t f u f + 1 2 ṽf :ṽ f + div f u f + 1 2 ṽf :ṽ f ṽf div ( f :ṽ f ) f g:ṽ f = 0

The conservation laws are space-averaged 19] on the control volume. For instance, the mass conservation becomes :

1 t Z f " @ @t f + div ( f ṽf ) # d = 0
According to the Leibniz and Gauss theorems 20], the volume integral is split up into:

1 t " d dt Z f f d Z At f ñf :ṽ t dA Z As f ñf :ṽ s dA ! + div Z f f ṽf d + Z As f ñf :ṽ f dA ! # =0
The hypothesises (H1),(H2) and (H5) impose that: ṽt = 0, ṽs = 0, Z As f ñf :ṽ f dA = 0 and

Z f @ @t f d = @ @t Z f f d = d dt Z f f d
After simpli cations, the mass equation becomes: @ @t ( f ) + div f ṽf = 0

On the same way, the momentum and total energy equations can be written: @ @t f ṽf + d iv f ṽf ṽf d iv f f g 1 t Z

As ñf : f dA = 0 @ @t " f u f + 1 2 ṽf :ṽ f # +div " f u f + 1 2 ṽf :ṽ f ṽf # div f :ṽ f f g:ṽ f 1 t Z As ñf : ( f :ṽ f )dA=0

4 Fluid conservation laws homogenized on the uid volume By introducing the porosity , the control volume averaged values can be replaced by uid averaged terms. The porosity is time independent (H4) but space dependent, so can be put out of the time derivatives but not of the space derivatives. The conservation laws can be rewritten in the following form: mass @ @t f + div f ṽf = 0 momentum @ @t f ṽf + div f ṽf ṽf d iv f f g 1 t Z

As ñf : f dA = 0 total energy @ @t " f u f + 1 2 ṽf :ṽ

f # + div " f u f + 1 2 ṽf :ṽ f ṽf # div f :ṽ f f g:ṽ f 1 t Z As ñf : ( f :ṽ f ) dA = 0 II-112
Separating the average and uctuating components of each variable, the mass equation can be transformed into:

@ @t f + f 0 + div f + f 0 ṽf + ṽf 0 = 0
Given and some functions, we have: = 0 = 0 and + = +

The average value of a product of an odd number of uctuating terms is zero. Apart from the ṽf 0 ṽf 0 terms, the average value of a product of an even number of uctuating terms can be disregarded (H8).

Applying these two rules to the mass conservation law, this one simpli es to 21] 22]:

@ @t f + div h f ṽf i = 0
With the same method, we obtain the following expression for the momentum equation:

@ @t f ṽf + div f ṽf ṽf + div f ṽf 0 ṽf 0 div f f g 1 t Z
As ñf : f dA = 0

Using (H3)(H9)(H10), the stress tensor f can be expressed by 23]: As ñf : f dA = p f grad Fs where Fs is the solid-uid interaction force and contains all the stress terms other than this in average pressure.

f = p f I | {z }
According to 26] and with (H15), this force becomes: Fs = 1 2 As t ~ t I : f ṽf ṽf

We then deduce the nal expression of the momentum conservation law:

@ @t f ṽf + div f ṽf ṽf div 2 3 T div ṽf I + T grad ṽf + grad t ṽf + grad p f f g + 1 2 A s t ~ t I : f ṽf ṽf = 0
Let then deal with the total energy equation. Assuming (H2) and (H13), we have the following simplication: Z As ñf : ( f :ṽ f ) dA = 0 Applying the previous method, the total energy equation can be rewritten: @ @t f u f + 1 2 ṽf :ṽ f + div f ṽf u f + 1 2 ṽf :ṽ f + div h p f ṽf i div 2 3 div ṽf I + grad ṽf + grad t ṽf : T ṽf f ṽf : g = 0 II-113 5 Equivalent "porous" uid equations

The initial problem was formulated with conservation laws, de ned on the control volume subdivided into a uid zone and a solid zone, and using variables of both components. The conservation laws averaged on the uid allowed to have only uid equations de ned on the uid subvolume and with uid variables. To return to the initial control volume, we have to consider an equivalent uid de ned on the control volume and whose properties have to be determined. The equivalent "porous" uid can be considered as a single substance taking the whole control volume up. It is governed by the classical conservation laws with an additional force term in the momentum equation. The conservation laws can be presented in the following form: mass @ @t eq + div ( eq ṽeq ) = 0 momentum @ @t ( eq ṽeq ) + div ( eq ṽeq ṽeq ) + grad p eq div 2 3 Teq (div ṽeq ) I + Teq grad ṽeq + grad t ṽeq eq g + Feq = 0 total energy @ @t eq u eq + 1 2 ṽeq : ṽeq + div eq u eq + 1 2 ṽeq : ṽeq ṽeq + div (p eq ṽeq ) div 2 3 (div ṽeq ) I + grad ṽeq + grad t ṽeq : Teq ṽeq eq g: ṽeq = 0

Comparing term by term these equations with the uid conservation laws homogenized on the uid volume, we obtain the value of each equivalent variable: eq = f ṽeq = ṽf p eq = p f u eq = u f

Teq = T Feq = p f grad + 1 2 A s t ~ t I: f ṽf ṽf 6 Conclusion
The concept of "equivalent porosity method" consists in transforming the uid conservation laws so that they become independent of the solid volume and the solid variables. These equations are then transposed to the whole control volume (containing uid and solid), what leads to de ne an equivalent "porous" uid.

Compared with the classical uid conservation laws, these equations have three new parameters: a porosity , a loss of pressure coe cient ~ due to the uid-solid friction and a coe cient A s = t describing the global solid shape.
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Besides the fact the new equations (mass, momentum and total energy) are written with equivalent variables, the momentum equation contains two new forces: a uid-solid interaction force Fs and a force p f grad at the interface between two equivalent media with di erent porosities. This paper presents the mathematic formulation of the homogenization method for any dynamic problem, without high heat uxes, involving a monophasic uid ow through a structure net. This method was implemented in the CASTEM-PLEXUS software 27] to represent easily the LMFBR internal structures among a sodium-argon-bubble uid melt. The model was used to compute a HCDA 28] and to compare the predictions of the new model taking into account the structure in uence and the previous results computed by the model without structures. 

  to Reynolds stresses (turbulent stresses). Eliminating the negligible terms (H11)(H12) between f and Re , we have:f + Re = p f I 2 3 T div ṽf I + T grad ṽf + grad t ṽfUsing (H14) and adapting 25], the surface integral becomes: 1 t Z