
HAL Id: cea-03956677
https://cea.hal.science/cea-03956677

Submitted on 25 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical modelling of neural networks in
gamma-spectrometry applications

Vincent Vigneron, Jean Morel, Marie-Christine Lépy, Jean-Marc Martinez

To cite this version:
Vincent Vigneron, Jean Morel, Marie-Christine Lépy, Jean-Marc Martinez. Statistical modelling
of neural networks in gamma-spectrometry applications. ICRM 95 - International Conference on
Radionuclide Metrology and its applications, Commissariat à l’Energie Atomique; Bureau National
de la Métrologie, May 1995, Paris, France. �cea-03956677�

https://cea.hal.science/cea-03956677
https://hal.archives-ouvertes.fr


uuecnon des Réacteurs Nucléaires '
Oépartement de Mécanique & de Technologie

net. : DMT/SEIM^™

FR9601559

DEMANDE D'AUTORISATION
DE COMMUNICATION OU DE PUBLICATION

PUBLICATION - TITRE :

Auteur (s) : V
Nature de la Publication :
Editeurs (CEA, AJEA, OCDE,...) : /Л/^/^^-^1

COMMUNICATION - TITRE : ST*TKT.CAL Or *igr*/<.vucs
Auteur (s) : V. J.11. ¿SiOAfL

Titre de la Conférence : x сЯи' 55

Lieu et Date :

ORGANISATEURS :

/ • - •

9 У a

Date de remise des textes :
Commentaires :

Ce texte a-t-il été déjà publié ? :
Si OUI : Référence de la publication dntérieure :
Cette publication contient-elle, à votre avis, des informations brevetables 0OUI ( NON

DATE oe LA DEMANDE : Ю З

Chef de laboratoire : J . h

Chef de Service : fV.

DEMANDE D'AVIS (éventuellement) :
) - C.P.I./Saclay
) - Chargé de Mission pour les affaires industrielles
)-SYFRA
) • Partenaires concernés (EDF, FRA, Dpts de la DRN) :

(Joindre photocopie)
i - Autres unités opérationnelles :

(joindre photocopie)
- Autres avis demandés par le Chef du D.M.T. :

OUI NON
OUI NON
OUI NON

Date de la Demande
Date de la Demande

vvis du : (le cas échéant)

)ate
avis sont à envoyer au DMT/DIR

ate d' .Arrivée au D.M.T. Décision D.M.T. n°

Un texte complet -
le :

Copie autorisation • Résumé + Texte à I.N.S.T N./V
02MAI98 | 00300?

Citr



We regret that
some of the pages
in this report may

not be up to the
proper legibility
standards, even
though the best

possible copy was
used for scanning



o

STATISTICAL MODELLING OF NEURAL a 7 )

NETWORKS IN 7-SPECTROMETRY

APPLICATIONS

V. Vigneron1-3 , J . Morel2 , M.C. Lépy2 , J .M. Mar t inez 1

^ E A Saclay 3CREL 2CEA Saclay

DRN/DMT/SERMA 161, rue de Versailles DAMRI/LPRI, BP 52

91191 Gif-sur-Yvette 78180 Le Chesnay 91193 Gif-sur-Yvette cedex

FRANCE FRANCE FRANCE

vvigneQsolei l . serma. cea. f r íucheíDcrel. f dn. org LEPYOBABAORUM. cea. f r

j mm (Ds ole i l . serma.cea. f r

Abstract

Layered Neural Networks, which are a class of models based on neural computa-

tion , are applied to the measurement of uranium enrichment, i.e. the isotope ratio

335f/j.236f/+238f/ • The usual methods considere a limited number of f-ray and X-ray

peaks, and require previously calibrated instrumentation for each sample. But, in prac-

tice, the source-detector ensemble geometry conditions are critically different, thus a

means of improving the above conventional methods is to reduce the region of interest:

this is possible by focusing on the KaX region where the three elementary components

are present. The measurement of these components in mixtures leads to the desired ra-

tio. Real data are used to study the performance of neural networks. Training is done

with a Maximum Likelihood method. We show the encoding of data by Neural Networks

is a promising method to measure uranium 23bU and23*U quantities in infinitely thick

samples.

K e y WOrds NEURAL NETWORKS, MACHINE LEARNING, URANIUM ENRICHMENT, GENER-

ALIZED LINEAR MODELS

1 Introduction

In the past, few years, the topic of neural computing has generated widespread interest and

popularity. The popularity of this technique is due in part to the analogy between Artificial
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Neural Networks (ANNs) and biological neural networks. Numerous applications have been

investigated using ANNs, we demonstrate how they can be used to model spectra of mixtures

to produce quantitative estimates of the concentrations of the components in the mixtures.

Indeed, with modern sensor and high technology, spectral data are collected with ever finer

sampling and with ever large precision. This leads to a perpetual need for more efficient

methods of interpreting spectral data, namely for uranium enrichment measurement. The

objective of uranium enrichment measurement methods is to determine the 335.f 33^ 23g,r

isotopic ratio.

If these are non-destructive methods, the determination uses several A'-ray and 7-ray

peaks, mainly in the 60 to 200 keV region. These methods, which were developed more than

20 years ago, are based on measurements of the full energy peak at 185,7 keV ([1], [2], [3],

[4])-

They require a prior calibration of the system and imply that the measurement conditions

are constant. Frequently, the matrix effects are avoided by measuring only samples said to

be infinitely thick : these are samples whose thickness is such that any further increase has

no effect on the fraction of the 185,7 keV 7-ray emitted. Other methods have been developed

using several 7-ray peaks [5], [6], [7]. In fact, these latter methods requires a self-calibration

with a limited number of peaks, making them difficult to implement.

A means of overcoming calibration-related difficulties is to reduce the region of interest

of the spectrum so that the variation in the detector efficiency is limited. This is possible by

considering only the relatively complex KaX region, which extends from 83 to 103 keV where

numerous 7-ray (Gaussian distribution) and X-ray (Voigt profile) peaks are superimposed.

The processing of this region requires taking account of 3 elemental images corresponding

to the presence of 235f/ and its daughters, to 238(J and to A'-ray fluorescence. These images

are now represented by mathematical expressions taking account of the shapes of the A'-ray

and 7-ray peaks, their energies, intensities and a slight variation in detector efficiency. The

determination is then carried out conventionally with the least squares method, this is the

case of the MGA-U code [8]. This approach requires that all the parameters for constituting

each elemental image are well-known and is based on the use of external data contained in

the spectrum for the region considered.

It is precisely in this context that a Neural Network appears to be a useful tool for

the characterization of so-called infinitely thick samples. In fact the training by ANNs can

be considered as a search procedure for an "optimum" regression function among a set of

acceptable functions using a set of training examples. From the staticticians point of view

(Ripley, 1992), ANNs belong to evaluation techniques for non-parametric models, still called

tabula rasa *.

ANNs, like most statistical methods, are capable of processing vast amounts of data

and making predictions that are sometimes surprisingly accurate : this does not make them
1 In other words, the set of methods developed without providing a "true ' model, as opposed to para-

metric models where the response to predictive values is not known. This point of view is in contradiction

with that of numerous connectionists.



intelligent in the usual sense of the word. ANNs learn in much the same way that many

statistical algorithms do estimation. But in contrast to usual automatic spectra analysis

methods, ANNs use full parallel computing, are simple to implement, not very sensitive to

outliers and contain nonlinearities.

In the following, we describe the identification method based on neural networks to quan-

tify uranium quantities. Section II covers the experimental procedure and neural networks

technique is explained in section III. Finally, Section IV gives the outlook and conclusion.

2 Experimental Aspect

2.1 Preliminaries

From the similarity to plutonium isotope measurement procedures, it should be possible to

use all the spectral region to determine the enrichment. To do this, it would be necessary to

establish, relatively, the detector efficiency for the considered sample. This overall efficiency

is the product of 4 factors:

• detector response for a point source,

• transfer of this response to the sample,

• attenuation by the material between the detector and the nuclear material,

• sample self-absorption.

This overall efficiency is critically dependent on the energy. It is a function of several

parameters, some of which are not known, as, for example, the exact dimensions of the

sample and its container and the precise composition of the material. Also for uranium, this

response is to establish due to the insufficient number of peaks that can be used to define the

efficiency. This difficulty is overcome by using only the A'aA
r region which extends from 83

to 100 keV (figure 2). This region contains enough information to allow the determination

of 235U and 238U and is sufficiently limited that the efficiency can be, initially, considered

as constant. It is however very complex to analyze due to several interfering A'- and 7-rays.

These can be grouped as follows :

• 235U and daughters : 84,21 keV ( r 3 1 T h ) , 89.95 keV (T231Th), (ThKa,X), 92,28 keV

(Pa A'^Y), 93,35 keV (ThKOlX), 95.86 keV (PaKaiX)

• 238U and daughters : 83,30 keV (7234Th), 92,28 keV (PaA«2A'), 92,38 keV (7234Th),

92.79 keV (7234Th), 94,65 keV {UKQ2X), 95.86 keV (PaAQlA
r), 98,43 keV (UKaiX).

99,85 keV (7234Pa)

• Uranium X-ray fluorescence : 94.65 keV {UKa2X), 98,43 (UKQlX).

In the standard approach, the processing of the considered region taking account of th<>

3 elemental images, the first corresponding to 235U and his daughters, the second to that
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of 2%iS\] and its daughters and the third to the uranium A'-ray fluoresence spectrum. The

determination of these components in the complex spectrum leads to the 23&V+L&V (see

table 1). The final enrichment is obtained by making allowance for the prescience of 236U.

a correction can thus be made by using the 120,9 keV.

The litterature concerned in calculation of uranium enrichment is vast and is expending

rapidely. We found the texts by Kull k, Gunaven [2], and Neuilly [9] of particular interest.

They propose a method based on an ordinary linear regression with the enrichment E, as

the dependent variable, but they do not give any evaluation of their results. Liggett [10]

provides an informal and readable account of the possible future direction of the field :

namely Maximum Likelihood Estimators. In all cases, analysis are carried out in respecting

two limitations : a constant variance over the random error and the normality of these

errors.

2.2 Samples measurement

Six uranium oxide standards with different enrichments and infinite thickness were counted

several times by 7-ray spectrometry to test the neural procedure. These were bare cylindrical

pellets, with certified enrichments and the following characteristics [3] :

The Ge(HP) planar detector used in the measurement system had the following charac-

teristics 1: surface, 2.00 cm2 ; thickness, 1.00 cm ; resolution, 190 eV at 6 keV and 480 eV at

122 keV. All the measurements were made under the same conditions, i.e. with 0,05 keV per

channel and a source-detector window distance of 11 cm. Ten 20.000-seconds counts were

made for each standard pellet and each of the obtained spectra was processed by our analy-

sis procedure. The 234U concentration is relatively low, however , a -^^ relative mass ratio

varying from 0,5 to 1,1%, depending on the pellet was determined by 7-ray spectrometry

by using both the 53,2 and 120,9 keV peaks for ™U and the 185,7 keV peak for l'235tr.

In short, 65 sets of experimental data from real-life calibration experiment were prepared

using the concentrations illustrated in table (1), i.e. five 235[/-pure idealized spectra, and

ten of each standard from 0,711 to 9,548%.

3 Layered Neural Network and Training method

3.1 Using Neural Networks

In this section, our aim is not the presentation of the neural network theory. Our purpose

is to present the place of the connectionnist approach in 7-spectrometry problems. Most

details and basic concepts are clearly described in a paper to be published [11]. ANN

consists of a large number of neurons, i.e. simple linear or nonlinear computing elements,

interconnected in complex ways and often organized into layers [12]. The collective or

parallel behaviour of the network is determined by the way in which the nodes are connected

and the relative type and strengh (excitory or inhibitory) of the interaction amongst them.



ANNs are used by engineers, physicists, neurophysiologists, or computer scientists in three

main ways: as models of biological nervous systems and intelligence, as real-time adaptative

signal processors or controllers for applications such as robots or nuclear plants [13] and as

data analysis methods.

The objective of ANNs is to construct a suitable model which, when subjected to a
235U enrichment spectrum, produces an output y which approximates the exact uranium

enrichment ratio. The principal idea of the connextionist approach is to substitute a neural

model and the learning procedure of the network for classical fitting algorithms. "Classical"

solutions to the automatic spectrum analysis problem make use of complex mathematical

algorithms, generally based on the separation of a given curve, associated to each individual

peak plus a background.

An exemple of multi-layer network is given in figure 3. The notational convention is that

the square represents a computational unit into which the Xj's are fed and multiplied by

the respective utj's. The fundamental processing element of an ANN is a node (figure 3).

Nodes are analogous to neurons in biological systems. Each node has a series of weighted

inputs, uji which may be either external signal or output from other nodes. The inputs of the

nodes are analogous to synapses, and the weights corresponds to the strengh of the synaptic

connection. The sum of the weighted inputs is transformed with a linear or a non-linear

transformation function. The most popular one is the sigmoid function f(x) — •^--•». This

function has an output in the range 0 to 1, where x is the weighted sum of the inputs. Other

transfer functions have been investigated including the hyperbolic tangent, and simple linear

functions. We create a representation of a standard Neural Network called Multi-Layered

Perceptron (MLP), which is a very familiar statistical construct : the Multivariate Multiple

Nonlinear Regression.

Transmission of information between units of two neighboring layers is performed through

oriented links. These links are level-headed by connection weights. The essence of the con-

struction is as follows :

• input layer : this layer contains input units. Each unit receives input-variables, selected

through a free parameters reduction procedure.

• hidden layer : this layer acts as an array of feature detectors picking up features

without regard to position, the information coming to the input units is recoded on

the hidden layer into an internal representation Thus, the input-layer units contribute

to the input of each second-layer unit. It is fully-connected to the output.

• output layer : it applies a sigmoid activation fonction to the weighted sum of the

hidden outputs.

The role of the hidden layer is fundamental. A network without hidden units will be unable

to perform the necessary multi-input multi-output mappings, in particular with non-linear

problems.



Input pattern can always be encoded, if there are enough hidden units, in a form so that

the appropriate output pattern can be generated from the corresponding input pattern.

The training data are denoted by \ = (*,y )£Li where x is the feature vector corre-

sponding to the tih observation. The expected response y = (yi,J/2i • • -VM) is related to

the inputs x = (xi, £2, • • • XN) according to :

y = ^(x,w), (1)

where u> are called connection weights.

From the \ set of examples, the learning of the network consists in the modification

of the synaptic weights in order to minimize an objective function in relation to the set of

examples that will be presented to the network. Cost function represents the discrepancy

between desired output, say y , and predicted output y of the model, e.g. the square form:

. P

-y^-y), (2)

where p is the number of the units of the output layer, The Backpropagation (BP)

training algorithm [14] compares the actual and desired output of the network and adjusts

the weights of the network in order to reduce the bias according to the iterative step :

ujj <— uij + Aujj, (3)

where

Q T

^J=V.^ = V.S.xJ. (4)

In equation (4), r}(> 0) is called the learning rate, and the learning rule the Generalized

Delta rule. Clearly, 6 denotes the vector of sensitivities at layer k of the network.

The practical difference between this device and the statistical version lies in the way the

training data are used to dictate the values for u>. It turns out that there are 2 mains aspects

to the processing : (1) specifying the architecture of a suitable network, (2) training the

network to perform well with reference to a training set. Clearly, the connectionist and the

statistician approaches differ in the way to handle with (1) and (2). The connectionist will

resolve (1) by constructing a network of nodes and links from which a regression function can

be written down, whereas the statistician will usually use general techniques as Maximum

Likelihood Estimation (MLE), Mallow's Cp, Bayesian inference, . . .

3.2 Training of the ANN

To check that this method was general and reliable, we have applied it to 65 sets of experi-

mental data from real-life calibration experiment : five 235{/-pure idealized spectra, and ten

of each standard precited (see table 1). Each spectrum contains 4096 points. The enrich-

ment values were discretly distributed from 0 to 9.548 %. The computation of the spectra



are compared on two regressions models : MLP MODELE (depicted in figure 3), where the

input are spectral data and MIXTURES OF EXPERTS MODELE (figure 4) where the input

are the enrichment values. The specifications for the networks created for the calibration

of the simulated data are listed in table 3. They were found to be optimal according the

rigourous methodology describe in [11], for low prediction bias.

The choice of the right architecture is mainly intuitive and implies arbitrary decisions.

But an attempt to apply ANN directly falls victim to the curse of dimensionability. Ock-

ham's razor applies to supervised learning and ANN. This (parcimony) principle states that

"what can be done with less is done in vain with more". In acccordance with this, the dimen-

sion of the input vector has been reduced dramatically by Principle Components Analysis,

leading to the adequat reduction of weights emerging from the first layer of the ANN. The

aim is to embrace the maximum amount of useful information in a small number of princi-

pal component scores (taken in the A'aA' region) without overly reducing the computational

power of the network2.

Each input variable should be sifted so that its mean (averaged over the training set) is

close to 0 because correlations between input variables introduce "preferred directions for

weight changes" [16]. Decorrelation was performed by a PC A (Karhunen-Loeve expansion).

This transformation preserves the form of the data base.

The MLP MODELE depicted in figure 3), consists of an input layer of 6 or 3 units leading

up through one layer of hidden units to an output layer of a single unit that corresponds

to the desired enrichment. This network represents a poor parametrized model, but the

training dataset (x\y^\t ~ 1...65) was small. The network is initialized with random

weights and trained. For each pattern, the bias (2) is evaluated. This quantity decreases

rapidly (figure 5.a) in the beginning. The training is stopped when the network reaches

a minimum error on the training set, because this is an efficient way to avoid overfitting.

After 32.000 successful training passes, the bias rate range from -0.05 to 0.04% for the 6-3-1

net (from -0.031 to 0.061% for the 3-5-1 net).

The aim of the second proposition is to attenuate these bias fluctuations.

In the case of MIXTURES OF EXPERTS MODELE (MEX)(i7], each item is associated with

a vector of measurable features, and a target y d which represents the enrichment. The

network receives the input x and creates the output vector y as a predicted value of the

unknown y . This model consists of 210 independant fully-connected networks (figure 4) :

One expert is put for one channel of the I\aX region.

Each expert is an observator, trying to find a "signal" due to radioactive decay in a

large amount of noise, the variance of each count being proportional to the level and thus

depending on the enrichment of a particular sample and on the background level of the
2The connectionist must deal with overfitting effects : indeed, when the net is overparametrized, con-

vergence makes no sense : the net has learned the function and the interferences, he will tend to generalize

poorly. In this discrimination, the supressed variables reduce the —a"" ratio [15].



particular observation. A cooperation-competition procedure driven by a supervisor between

the expert's outputs leads to the choice of the most appropriate concentration. The basic

idea is that competition leads to specialization.

Let y i , y 2 i •• • denote the output vectors of the experts, and <7i, 02, •• • the supervisor

output units, then the output of the entire architecture, y, is y = YliL°i 9iYi- The supervisor

decides whether expert i is currently applicable or nor. The winning expert is the network

with the smallest bias ( y d — yj). The learning algorithm describe in [17] is inspired from

an other paradigm called the Maximum Likelihood Method.

3.3 Discussion of the Results using ANN

As the initial base included only 65 examples, we wanted to keep a maximum of examples

for the training base.

Redundances in the data-set enrichments present one main advantage : as we measure

more than one response for each case, information from all the measured responses can be

combined to provide more precise parameter estimation and to determine a more realistic

models.

In all simulations, the measure of the system's performance is the Mean Square Error.

The bias rates are compared in table 3 and on figure 5.a and 6. The figure 5.a shows the

learning curves (i.e. the learning performances) for the two MLP networks using BP random

training procedure. The horizontal axis gives the number of epochs ; the vertical axis gives

the Mean Square Errors value (MSE). Clearly, the 6-3-1 network learned significantly faster

than the 3-5-1. This difference can be explained by the information gain of the six-inputs

network vs the 3-inputs network.

Figure 6 compares the results of the three models. The bias between the predicted

and the desired enrichments is plotted for each of the 65 samples. The darkest line is

put for the MEX. The results suggest that the strong dispersion of the bias with MLP is

significantly attenuated when MEX is applied. This judgement must be moderated for the

6,122-enrichment-ratio samples.

The figure 5.b is concerned with the Multi-Expert model. The plotted points are pre-

dicted enrichment value (one for each of the 210 experts) when a 5, 785% — 235U spectrum is

presented to the MEX model. The credit assignement procedure on these 210 contributions

is supervised to produce a final estimation. In the most right column of table (3) can be

seen the final predicted values of the simulations with MEX. Compared with the MLPs.

this shows that MEX method is really reliable : for example the bias between the predicted

and the calculated 2J85% enrichments range from 2,784 to 2.790%. As noted above, after

32.000 successful training passes, the larger bias happen for 5,111 and 6,122% enrichments.

The relative lack of precision can be ascribed to the small size of the training dataset.

A comparison of the absolute bias curves suggest that of the three system studied, t he

Mixtures of Experts is capable of showing the most robust performance.



In fact, the modular approach presents three main advantages on the MLP models: it is

able to model behavior, it learns faster than a global model and representation is easier to

interpret : the modular architecture takes advantage of task decomposition, but the learner

must decide which variables to allocate to the networks.

This method is at the same time very general and very specific. It is very general in the

sense that no hypothesis is made on the aspect of the spectra : it does not depend if the

spectra are well resolved or not, if they are very likely or not, if you select most significative

areas of spectrum only (MLP models) or a global part of the spectrum (MEX model). No

physical model is required whereas "classical" procedures may use three Lorentzians for

example. But, at the same time, the method is very specific because the ANN must learn

representative spectra of the family spectra to identify. Furthermore, other tests proved to

us that ANNs are resistant to noise Presently, we must put the blame on the excessively

short size of the training dataset.

4 Conclusions

We have studied the feasability of applying ANNs to uranium enrichment measurement. On

data with a non-linear relationship between spectral response and analyte concentration, a

neural network is shown to be able to predict 235U concentrations. The results of the

simulations which are presented in table (3) show the interest of the ANN method : it

remains reliable in the general case. The ANN calibration results are especially interesting

because of the presence of non-linear instrumental artefacts.

Our results appear to be at the state of art in automated quantifying methods for isotopes

in a mixture of components. The basic principle is to use input and output data to provide

information on how to set the parameters where no definite mathematical model can be

assigned a priori. Thus we have adaptative prediction. This requires that the network

parameters be set correctly for the work to be carried out as desired. This method has

been demonstrated as a reliable tool for dealing with data from low resolution detectors

even in under adverse conditions and has been already successfully used by [18] in a X-ray

fluorescence application. Final network with connections and weighting functions could be

easily implemented using commercial digital processing hardware.

But, there is no single learning procedure which is appropriate for all tasks. It is of

fundamental importance that special requirements of each task are analyzed and that ap-

propriate training algorithms are developed for families of tasks. However an efficient use

of the networks requires as careful as possible analysis of the problem, an analysis that is

often ignored by impatient users.
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Figure 1: Principal useful X- and 7-rays in the spectral analysis of the KaX region.

Diameter(cm) x

Height (cm)
l,30x 2,00

l,30x 1,90

0,80x 1,10

0,80x 1,02

0,80x 1,00

0.92 x 1,35

% ratio (g/g%)

88,00

88,00

88,00

87,96

87,98

87.90

Stated enrichment

(10-VfiT1)

0,7112 ±0,00004

1,416 ±0,001

2,785 ±0,004

5,111 ±0,015

6,222 ±0,018

9,548 ±0,04

23Srr .

do-^,9-1)
0,7112

1,416

2,786

5,112

6,225

9,558

Table 1: Percentage Enrichments of UO2 standards
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Figure 2: 3D-Representation of the UOi spectra set.
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Figure 3: MLP 3-5-1 with nonlinear threshold and schematic representation of a node in an

ANN.
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Figure 4: Mixtures of Experts model.
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Figure 5: (a) Sum of squares of bias on the training set for MLP architectures (b) Example

of enrichment value (at 5,785 %) predicted by the Mixtures of Experts
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Figure 6: Absolute bias in the enrichment estimation
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parameter

Type of input

input nodes

hidden node

output node

learning rule

input layer transfer function

hidden layer transfer function

output layer transfer function

MLP 6-3-1

spectral data

6

3

1

BP

linear

sigmoidal

linear

MLP 3-5-1

spectral data

3

5

1

BP

linear

sigmo'idal

linear

Mixtures of Experts

enrichment value

1

1050

210

Maximum Likelihood

linear

sigmoidal

exponential

Table 2: ANNs specifications and parameters

Declared

piTirirhmftTit

0,711%

1,416%

2,785%

5,111%

6,-122%

9,548%

MLP 3-5-1

0.691-0.723

1.394-1.426

2.732-2.822

5.066-5.148

6.105-6.162

9.531-9.570

MLP 6-3-1

0.700-0.720

1.406-1.435

2.762-2.799

5.089-5.132

6.117-6.133

9.541-9.550

MEXs /?= 10

0.702-0.710

1.406-1.416

2.784-2.790

5.112-5.136

6.088-6.112

9.542-9.552

Table 3: Min-Max of calculated Enrichments with MLP and MEX
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