

IRESNE

FROM RESEARCH TO INDUSTRY

Temperature ramps for severe accident instrumentation in nuclear reactor cavity concrete

Christophe Journeau, Viviane Bouyer, Arthur Denoix, Jean-François Haquet, Anne Boulin, Quentin Souquet, Laurent Maurin, Gwenaël Jouvin and Hamid Makil

SAMMI Conference, Dec. 8th 2020

IRESNE | DTN | SMTA

Research institute on nuclear systems for low-carbon energy production

- ■Context Objectives
- ■Numerical simulation of concrete heat-up
- Experimental simulation of heatup due to Molten Core Concrete Interaction
- Conclusion

The ANR RSNR DISCOMS project

- <u>Distributed Sensing for Corium Monitoring and Safety DISCOMS</u>
- Post-Fukushima Daiichi accident project
 - Total loss of electrical power sources following tsunami, TEPCO operator with almost no data about accident status and its evolution
- Aimed at providing innovative solutions based on passive sensors operated from a remote and safe place, in order to:

 vessel core meltdown
 - Monitor the normal operation of the reactor during 60⁺ years
 - Monitor the Severe Accident to apply on time appropriate mitigation strategies
 & keep informed nuclear safety authorities about:
 - Vessel breakthrough detection
 - Corium interaction with concrete monitoring until its prospective breakthrough
 - Long term corium cooling monitoring

- 2 technologies: long length SPNDs-TC & Distributed Optical Fiber Sensors
 - ex-core measurements designed for Gen II & Gen III (EPR)
- 7 partners (Public R&D, Academic R&D, Industrials)
- Ended in Dec. 2018

• ex-vessel candidate positions (reactor pit, melt discharge channel & spreading compartment) for long length SPNDs-TC & OFS cables

- currents generated under radiations battery operated capable monitoring system
- long (several meters) lengths SPNDs to get the adequate sensitivity for ex-core detection

- rely on the properties of the backscattered light in optical fibers and reflectometry
- passive sensors with remote measurement systems up to several km away from the NPP area

Information, remotely obtained, even in case of total loss of power supplies:

- to increase the nuclear safety,
- to **reduce** operator **exposition** to ionizing radiations,
- to avoid the breach of last containment barrier & environmental **consequences** with on-time & appropriate mitigation strategies

MOLTEN CORE CONCRETE INTERACTION

Interaction of hot and heated corium with basemat concrete

- ■Thermal ablation of concrete
- Mixing of melted concrete with oxidic corium pool
- Sparging of concrete decomposition gases in corium pool
- Concrete thermal diffusivity is small: a few 10⁻⁷ m²/s

Issue:

■Temperature ramp that will be experienced by a sensor embedded in basemat concrete to monitor its ablation?

NUMERICAL SIMULATION

IRESNE | DTN/SMTA

Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone

TOLBIAC ICB CALCULATIONS

Typical scenarios computed for a generic 900 MWe PWR

Lines correspond to ablation profiles after 0.5, 1, 2, 3, 4, 5, 6 and 7 days

HEAT CONDUCTION VS. ABLATION

- Low thermal diffusivity
- It is possible to compute heat conduction pseudo-velocity
 - ☐ Conduction is always slower than ablation
 - ☐ For 10 cm depth, characteristic diffusion time is ~5hrs
 - ☐ Concrete will not be significantly preheated before the ablation front approaches
- Sensors will not be submitted to a long-term high temperature rise before they are close to ablation.
- Finally, small-scale experiments are representative of the temperature transient that would be experienced by a sensor inside the concrete.

After 4 1/3 days of interaction, +200 K at 20 cm from front only 1 K heat up at 60 cm from front!

EXPERIMENTAL SIMULATION VULCANO VB-U10

IRESNE | DTN/SMTA

Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone

VULCANO VB-U10 – JUNE 26 2018

Objective: Test in prototypic conditions DISCOMS sensors and provide data on temperature ramps

- Corium with chemical composition close to what is expected for a severe accident but with different isotopic composition (depleted uranium, no Fission Products)
- Radioactive decay heat simulated by induction heating
- Limestone-Common Sand concrete, typical of some Gen2 plants maximizes oxidizing gas releases

o Test device

- Concrete crucible Ø250 mm x 300 mm
- 50 kg corium
 - Chemical melting
 - 2100°C in 1 minute
- Inductive heating
 - 1h30 interaction
 - Representative heat fluxes (100-200 kW/m²)
 - After 3'40" at high power

5 distributed Optical Fiber Sensors

- ■Telecom OTDR
- photon-counting OTDR,
- ■Rayleigh OFDR,
- Raman DTS
- Brillouin B-OFDA reflectometers,

onnected to the winded OFS cables installed in the concrete test section

Concrete had been poured over the optical fiber sensor cables

PROGRESSION OF ABLATION DEPTH

■Winded Raman DTS sensor: Radial ablation

- ☐ Stepwise ablation process
- ☐ Average radial ablation rate ~1mm/min
- Winded Optical Time-Domain Reflectometer: Axial ablation
 - ☐Stepwise ~0.4 mm/min

Winded Raman DTS fiber

- Example of thermal gradients after 2400 s
 - 2.10⁴ K/m in top 2 cm (near the melt)
 - 2.5.10³ K/m 5 cm deeper...

TIME EVOLUTION OF TEMPERATURES

- Temperature has been measured in concrete by thermocouples and Raman DTS Optical Fiber sensors at various locations.
 - ☐ Heating rates of ~ 200 K/min have been observed by TCs when temperatures over 700°C are reached.
 - □Optical fibers are destroyed at lower temperatures.
 - Steady temperature ramps of the order of 10 K/min observed in the 100-300°C range

Due to the low thermal diffusivity of concrete compared to expected ablation rates, concrete heat-up would affect only a limited depth close to the moving ablation front.
☐This justifies the use of small scale experiments to simulate the reactor case.
■Thanks to VULCANO VB-U10 test, Optical Fiber Sensors have been successfully tested.
☐They withstood 2.10 ⁴ K/m thermal gradients
☐and heat-ups of about 10 K/min until damages starts in the 200-300°C range
☐This is satisfactory for accident progression monitoring purposes.

This work (reference no. <u>ANR-11-RSNR-0007</u>), was carried out within the framework of the RSNR (research on nuclear safety and radiation protection) research program launched after the Fukushima Daiichi accident, co-funded by the French Program of Investments for the Future (PIA), and managed by the French National Research Agency ANR.

IRESNE | DTN/SMTA

Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone