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Résumé
Ces travaux visent à étudier le comportement effectif d’un matériau composite de type matrice inclu-
sions, libre de contraintes sur sa surface extérieure et dont les inclusions sont soumises à un gonflement
différentiel isotrope monotone. La matrice de ce composite est élastique fragile. Les conditions d’appari-
tion de l’endommagement (phase d’amorçage) sont tout d’abord étudiées, ce qui conduit à la proposition
d’un critère, fondé sur un bilan d’énergie, dépendant de la taille et de la fraction volumique des inclu-
sions ainsi que de l’énergie à rupture de la matrice. Pour une dilatation évoluant de façon monotone
avec le temps, nous étudions l’amorçage et la propagation de l’endommagement en nous appuyant sur
une formulation variationnelle de type champ de phase et en utilisant dans ce cadre une approximation
« champ moyen ». La longueur caractéristique du modèle champ de phase est choisie en cohérence avec
le critère d’amorçage défini auparavant. L’approximation champ moyen permet ainsi de construire une
borne supérieure dont les prédictions sont comparées à des résultats de calculs à champ complet.

Abstract :

This work aims at studying the effective behavior of a particulate composite material (matrix -inclusions
type). The composite is stress free at its outer boundary but the inclusions are subjected to a monotoni-
cally increasing isotropic differential swelling. The matrix of this composite is brittle elastic. The onset
of the damage of the matrix is first studied, which leads to the proposal of a criterion based on an energy
balance, depending on the size and the volume fraction of the inclusions as well as the fracture energy
of the matrix. For a dilatation increasing monotonously with time, we study the onset and the propaga-
tion of the damage by relying on a variational formulation (phase field approach) and by using in this
framework a "mean field" approximation. The characteristic length of the phase field model is chosen
accordingly to the onset of damage criterion defined previously. An upper bound is then constructed and
its predictions are compared to the results of full field calculations.

Mots clefs : Two-phases composite, Swelling, Brittle behavior, Phase field,
Variational principle, Hashin-Shtrikman bound.



25ème Congrès Français de Mécanique Nantes, 29 août au 2 septembre 2022

1 Introduction
Many works have already been carried out to model and study the damage of structures. Several ap-
proaches have been proposed, such as the linear fracture mechanics or the damage mechanics.

In parallel, in order to yield the effective behavior of a heterogeneous material, meaning taking into ac-
count the microstructural properties of the material, two complementary approaches may be followed.
On the one hand, it is possible to perform full field computations that consist in running numerical si-
mulations based mainly either on the finite element ([1, 2]) or on the FFT method ([3]). Computation of
the average of the mechanical fields over the volume gives the effective behavior. On the other hand, ra-
ther than performing numerical computations, it may be preferred to carry out a semi-analytical analysis
to derive the effective behavior. Those approaches are referred to as mean field computations methods
and encompass the homogenization techniques that establish estimations of the effective behavior, for
instance the well-known Mori-Tanaka scheme [4] or the Hashin-Shtrikman bounds [5] in the case of an
elastic behavior. A huge literature exists on that subject.

This work seeks to determine the effective behavior of a two phases matrix/inclusions composite with a
brittle matrix and a swelling prescribed to the inclusions. For that loading, a micromechanical approach
is required to study the whole stress relaxation process. In contrast with the work realized in [6], where
the stress relaxation comes from a viscous behavior, in the present case the damage is the only source
of stress relaxation.

The article is divided into three parts. The first part is devoted to the description of the studied mechanical
problem as well as the phase field approach ([7, 8]) adopted to model the damage evolution.

The second part is focused on the definition of the onset of damage in the considered two-phase matrix-
inclusions microstructure submitted to a differential dilatation. A methodology, based on an energy
balance over the matrix, is then proposed to estimate the loading conditions that must be met to satisfy
the damage onset criterion.

In a third part, we conjugate the variational principle attached to the phase field approach with mean
field homogenization techniques to yield estimates of the effective behavior.

2 The mechanical problem
In this work we consider a two phases microstructure occupying a domain V , made up of an inclusion
phase, denoted (2) and a matrix, denoted (1). Both have the same young modulus E = 200 GPa and
the same Poisson ratio ν = 0, 3 (κ and µ denote the bulk and shear moduli in the sequel while the
fourth-order tensor of moduli is denoted by C). The inclusions are subjected to an isotropic monotonic
increasing swelling ε

(2)
0 = ε

(2)
0 δ (δ the identity for the symmetric second-order tensors) which gene-

rates an heterogeneity inside the microstructure. In addition, the boundary of the composite is stress free
σ̄ = 0 where σ̄ denotes the macroscopic stress.

The matrix is the phase that displays a brittle elastic behavior. Thus, its critical energy release rate
is the following Gc = 1 J/m2 [9]. For a later use, the volume fraction of each phase is denoted by
c(j) (hereafter, c(2) = 18%), the mean radius of the inclusions is denoted by a (hereafter, a = 30µm)
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and the volume average of a quantity over the volume V (j) occupied by the phase (j) is denoted by

q(j) =
〈
q
〉(j)

= 1
V (j)

∫
V (j)

q dx, with j ∈ 1; 2.

2.1 Phase field model
This work makes use of a phase field approach for damage whose principle was first introduced in [7]
and consists in minimizing the potential energy of a structure. For implementation on numerical codes,
regularizations have been later proposed, in [8]. More details about this regularization may be found in
[10, 11]. The main feature of those models is the replacement of the crack surface by a smooth scalar
field, called the phase field, and denoted d.
For further developments, one defines the sets of admissible fields for a given instant tn :

Vn = {u∗(tn) ∈ H1,u∗(tn) = un on ∂Vd}
Dn = {d∗(tn) ∈ H1, d∗(tn) ≥ d(tn−1), inV }

(1)

where H1 is a Sobolev space, ∂Vd is the fraction of the boundary where a displacement is prescribed.
In addition d∗(tn) : V → [0, 1]. It is noteworthy that the two fields u∗ and d∗ depend on the spatial
variable x which is omitted here. Similarly, the time dependency of those two fields is omitted in next
expressions, for convenience.
The problem to solve is the following :

min
(u∗,d∗)∈(Vn×Dn)

W
(
ε
(2)
0 , ε(u∗), d∗

)
(2)

with the functional W defined by the relation :

W (ε
(2)
0 , ε(u∗), d∗) =

1

2

∫
V
χ(1)(x)

[
g(d∗)ε(u∗) : C : ε(u∗)

]
dx

+

∫
V
χ(1)(x)

[
Gc

cw

(Θ(d∗)

lc
+ lc∇d∗∇d∗

)]
dx

+
1

2

∫
V
χ(2)(x)

(
ε(u∗)− ε

(2)
0

)
: C :

(
ε(u∗)− ε

(2)
0

)
dx

(3)

(with χ(j) the characteristic function of phase j = 1, 2 : χ(j)(x) = 1 if x ∈ V (j), zero otherwise). In
this work, the choice is made to make use of the Ambrosio-Tortorelli 2 [10] model :

g(d∗) = (1− d∗ + kc)
2

Θ(d∗) = d∗2

cw = 2

(4)

The solutions of the problem (2) are denoted (u, d).
In the expression of the phase field model, three parameters are introduced : the critical energy release
rate Gc (already defined as a matrix property above), the characteristic length lc and the kc parameter.
The characteristic length corresponds to the thickness of the process zone and can be assigned either a
material [12, 9] (related to the failure stress) or a regularization (related to the Griffith case) definition.
In parallel, the kc parameters corresponds to the residual stiffness of a totally damaged element, in order
to make the convergence easier.
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An implementation making use of a staggered scheme under the finite element software CAST3M have
been proposed in [13, 14] and was further adapted in [9] for the case of the composite studied in this
article and will be further developed in section 4.3.

2.2 Expected effective behavior
Due to the swelling prescribed to the inclusions, the matrix experiences tensile stresses while the inclu-
sions are under compression. For low values of this swelling, the matrix remains elastic. As the elastic
moduli are uniform, the overall macroscopic strain is simply given by the volume average of the swelling,
namely : ε(t) = c(2) ε

(2)
0 (t) δ.

Conversely, when the matrix phase is fully damaged, the stress field in the matrix phase vanishes, na-
mely :

∀x ∈ V (1) σ(x) = 0 (5)

In fact, the nil stress fieldσ = 0 and the homogeneous displacement fieldu(x) = ε
(2)
0 .x are respectively

statically admissible and kinematically admissible. In addition, they satisfy the constitutive laws :
— in the inclusions : σ = 0 = C(2) : (ε− ε

(2)
0 ) = 0

— and in the fully damaged matrix : σ = 0.
As a result, these particular admissible fields :

x ∈ V σ(x) = 0 and u(x) = ε
(2)
0 .x

are solutions so that the macroscopic strain in the fully damaged regime reads : ε̄m = ε
(2)
0

3 Definition of the onset of damage
In [1], a dispersion of pressurized voids in a ceramic matrix was considered. In order to describe properly
the onset of damage, the geometry of the bubbles had first to be defined ; each bubble featuring a defect.
Then, thanks to a Griffith criterion (making use of the energy release rate G), the critical pressure pc to
prescribe to the bubbles was given, with the relation :

Gθ(pc) = Gc (6)

It was then possible to determine the failure stress by approximating the bubble geometry by a sphere.
The critical stress was given by the hoop stress on its periphery which is equal to pc

2 . Although this
approach is appealing, it is not completely suitable for this study since numerical computations are
required to determine G. In addition, the shape of the defect remains arbitrary. This is the reason why it
is chosen to simplify the problem in order to dispose of a problem that can be solved analytically.

The simplification must take into account that the onset of damage appears in the vicinity of each in-
clusion, each inclusion being considered isolated but in interaction with the surrounding matrix. This is
why the composite sphere structure is kept, where a matrix phase, with a radius denoted by b embeds
an inclusion phase with the radius a ; the radii being related to the volume fraction c(2) of the inclusions
phase with the expression : b = a

(
c(2)

)−1/3. Furthermore, the defect, initially present in [1], is removed
in this situation and replaced by the final crack surface (matrix totally broken in one of its hemispheric
plane). The situation is depicted in figure 1.
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Figure 1 – Situation considered for the sphere composite criterion, the red line embodies the crack
surface around the inclusion [9]

Finally, an energy balance inspired from the Griffith criterion [9] is proposed :(
Uel − 2Uh

el

) 4π

3
(b3 − a3) = Gc π (b2 − a2) (7)

Uel being the density of elastic energy stored in the matrix phase at the onset of fracture while Uh
el

denotes the same quantity stored in each part of the composite sphere, once separated by the crack. This
last term will be neglected in the sequel Uh

el ≈ 0. However, the left-hand term of equation (7) can be
easily computed as the displacement field respects the spherical symmetry in that particular situation,
namely :

4π

3
(b3 − a3)Uel =

24πκe µe(ε
(2)
g )2

(3κe + 4µe)2
a3c(1)(4µec

(2) + 3κe) (8)

Injecting the expression (8) into the energy balance (7), the critical value of the loading ε
(2)
0c is the

following :

ε
(2)
0c =

√√√√Gc

a

(3κ+ 4µ)2

24κµ (4µ c(2) + 3κ)

(1− (c(2))
2
3 )

c(1)(c(2))
2
3

(9)

In conclusion, the onset of damage criterion yields a value for the critical swelling to prescribe which
depends only on microstructural parameters like the mean size of the inclusions and their volume frac-
tion, the elastic moduli of both phases as well as the critical energy release rate Gc of the matrix phase.
For the considered data, the critical loading is ε(2)0c = 5, 76× 10−4.

4 Mean field estimate of the damage propagation
The goal of this section is to take advantage of the variational principle (2) from which phase field
equations are derived to establish an upper bound for the elastic energy of the damaged microstructure.
The corresponding effective behavior will then be estimated with linear homogenization schemes, and
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in particular the upper bound of Hashin-Shtrikman.

4.1 An upper bound derived from the variational principle (2)
First of all, a macroscopic strain ε̄ is prescribed to the outer surface of V (∂Vd = ∂V in (1)) so that this
macroscopic strain loading appears explicitly in the expression of the functional W denoted hereafter by
W (ε̄, ε

(2)
0 , ε(u∗), d∗). In addition, it is more convenient for next developments to rewrite the functional

(3) in the following way :

W (ε̄, ε
(2)
0 , ε(u∗), d∗) =

∫
V
wFM (ε

(2)
0 , ε(u∗), d∗) dx (10)

where a potential wFM (ε
(2)
0 , ε(u∗), d∗) has been introduced and is defined by :

wFM (ε
(2)
0 , ε(u∗), d∗) = χ(1)(x)w(1)(ε(u∗), d∗) + χ(2)(x)w(2)(ε(u∗), ε

(2)
0 ) (11)

+χ(1)(x)

[
Gc
cw

(Θ(d∗)
lc

+ lc∇d∗∇d∗
)]

the strain potentials (w(1), w(2)) being defined by :
w(1)(ε(u∗), d∗) = 1

2g(d
∗)ε(u∗) : C : ε(u∗)

w(2)(ε(u∗), ε
(2)
0 ) = 1

2

(
ε(u∗)− ε

(2)
0

)
: C :

(
ε(u∗)− ε

(2)
0

) (12)

It is possible to build an upper bound from the expression of the functional (10). The method may be
split into two steps. The first steps consists in making assumptions on the form of the damage field in the
matrix. The second step consists in the use of the variational principle on which the Francfort-Marigo
[7] and the phase field model is based [11, 15]. As a consequence, an inequality will be obtained and
studied, thus establishing the upper bound. The two steps are laid out in the rest of the subsection.

As previously told, it is required to make assumptions on the form of the admissible damage field.
As a matter of fact, one has to bear in mind that homogenization techniques required a finite number of
phases to be able to estimate effective values (average stress, average strain, elastic energy). This cannot
be achieved with a damage field that takes an infinite number of values in the interval [0; 1]. The latter
amounts to considering an infinite number of phases throughout V . It is possible to diminish the number
of phases by assuming that the damage field is uniform over specific areas, likewise the TFA [16] or the
NTFA method [17]. This work goes further by assuming that the damage field is uniform over the matrix
phase.
Thus, the admissible set of damage field is now D′

n defined by :

D
′
n ⊂ Dn with D

′
n = {d∗ ∈ Dn such as d∗(x, tn) = d(1)(tn),∀x ∈ V (1)} (13)

with Dn being the set of admissible damage fields defined in subsection 2.1

In parallel, it is possible to make use of the variational principle introduced in equation (2) with the
expression of the functional adapted for this work (10). The admissible fields u∗ and d∗ that minimize
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the functional W being denoted u and d, the minimization process is equivalent to :

∀u∗ ∈ Vn et ∀d∗ ∈ Dn,

〈
wFM

(
ε
(2)
0 , ε(u), d

)〉
≤

〈
wFM

(
ε
(2)
0 , ε(u∗), d∗

)〉
(14)

In particular, it is possible to write, for a uniform damage field, considered in this work :

∀u∗ ∈ Vn et ∀d(1) ∈ D′
n,

〈
wFM

(
ε
(2)
0 , ε(u), d

)〉
≤

〈
wFM

(
ε
(2)
0 , ε(u∗), d(1)

)〉
(15)

The equation (15) above being true whatever the admissible fields (u∗, d(1)), it remains valid in parti-
cular : 〈

wFM

(
ε
(2)
0 , ε(u), d

)〉
≤ min

d(1)∈D′
n

min
u∗∈Vn

〈
wFM

(
ε
(2)
0 , ε(u∗), d(1)

)〉
(16)

The right term in equation (16) can be re written with the help of equation (11) and remarking that
∇ d(1) = 0 as d(1) is homogeneous in the matrix phase :〈

wFM

(
ε
(2)
0 , ε(u), d

)〉
≤ min

d(1)∈D′
n

[
W̃L(ε̄, ε

(2)
0 , d(1)) + c(1)

Gc

cw

(
Θ(d(1))

lc

)
︸ ︷︷ ︸

Γ(ε̄,ε
(2)
0 ,d(1))

]
(17)

In (17), one can notice the appearance of the effective elastic energy term W̃L of a linear heterogeneous
material, referred to as L. The spatial distribution of phases in this linear media is identical to the one
of the real microstructure. This linear solid whose phase moduli are g(d(1))C in the matrix and C in
the inclusions respectively, is subjected to the same loading (ε̄, ε

(2)
0 ). The effective strain energy of this

linear elastic material is estimated with the upper bound of Hashin-Shtrikman [5].
If the value of d(1) that minimizes Γ, denoted ď(1), is also a stationary point of Γ, then, the effective
behavior corresponding to the upper bound defined in equation (17) is given by the common relation
[9] :

ε̄ = S̃L(ď
(1)) : σ̄ + ε̃0 (18)

with S̃L being the effective compliance of the linear media L and ε̃0 its effective (stress-free) swelling
(identical to the macroscopic strain when the macroscopic stress vanishes).

4.2 Computation of the mean field solution
Prior the establishment of the effective behavior corresponding to the upper bound, the minimum point of
the right hand term of inequation (17) has to be determined. As a matter of fact, the functionΓ(ε̄, ε(2)0 , d(1))

is not convex with respect to d(1). That is to say that the number of stationary points within the domain
D′

n can be different from one. Moreover, the domain D′
n can be identified with the interval [0; 1] which

is compact. So the minimum on [0; 1] may be attained either on the boundary or at a stationary point
within ]0; 1[, if any. This is why, the first thing to do, is to determine the point where the minimum is
reached.
The analytical expression of Γ is the following for the loadings prescribed [9] :

Γ(ε̄ = ε̃0, ε
(2)
0 , d(1)) =

18c(1)c(2)g(d(1))µκ
(
ε
(2)
0

)2(
3κ+ 4c(1)µ

)
g(d(1)) + 4c(2)µ

+
c(1)Gc

cw lc
(d(1))2 (19)
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where the constraint ε̄ = ε̃0 indicates that the macroscopic strain is chosen such that the macroscopic
stress is zero (according to the relation (18) above). The minimum point is then looked for. In figure (2),
the procedure is laid out for three loadings in particular.

0 0.2 0.4 0.6 0.8 1
0.55

0.6

0.65

0.7
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0.8

d(1)

Γ
/D

0 0.2 0.4 0.6 0.8 1
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0.8
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0.84

d(1)

Γ
/D
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0.8

0.9

1
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1.2

d(1)

Γ
/D

Figure 2 – Graphic representation of Γ(ε̄ = ε̃0, d
(1), ε

(2)
0 )/D , with D = Gc

cwlc
= 7.32 × 106 J/m3,

versus d(1), for several loadings prescribed : left 1, 07 ε(2)0c ; middle 1, 27 ε(2)0c ; right : 1, 60 ε(2)0c [9]

The most particular feature of the function Γ is that there exists a specific swelling prescribed for which
there are two points of minimum. This critical behavior is of some importance for the computation of
the effective behavior. The graph below underlines the presence of the discrepancy when the prescribed
swelling reaches 1, 27 ε(2)0c . Finally, the effective response of the considered heterogeneous material can

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

ε
(2)
0 /ε

(2)
0c

d
(1

)

Upper bound

Figure 3 – Damage evolution versus the swelling prescribed to the inclusions.

be derived. As the macroscopic stress is zero, the effective response boils down to the determination of
the macroscopic strain (identical to the effective stress-free strain in that situation) as a function of the
swelling of the inclusions. Denoting the spherical part of the macroscopic strain by ε̄m, the macroscopic
strain is given by the following expression :

ε̄m = c(2)B
(2)
m (ď(1)) ε

(2)
0

B
(2)
m (ď(1)) = 3κ g(ď(1))+4µ(

3κ+4c(1)µ
)
g(ď(1))+4c(2)µ

(20)

where :
— the optimal damage state ď(1) is a function of the swelling (Figure 3).
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— B
(2)
m denotes the average over phase (2) (inclusions) of the hydrostatic component of the stress lo-

calization tensor in the linear composite (L) as estimated by the Hashin-Shtrikman upper bound.

4.3 Comparisons with full-field computations
In [12], the characteristic length lc is viewed as a material parameter and related to the onset of damage.
In this work, this interpretation is preferred over the definition of lc as a regularization parameter. As a
consequence, the choice for lc to obtain a critical loading consistent with the one defined in the previous
section 3 and denoted by ε

(2)
0c . With this definition, the following value for lc is obtained : lc = 18µm

(see [9] for details). The kc parameter has been chosen such that its value does not affect the effective
response (kc = 10−6).

For the full-field computations, the RVE size is about 170µm. The inclusions are randomly dispersed
within the matrix phase with the RSA algorithm [18]. The minimal distance between the inclusions is
4µm. The RVE has been meshed with about 46 104 linear tetrahedral elements (mesh size ≈ 5µm).
More details about these calculations are given in [9]. The effective behavior is plotted in figure (4)
versus the prescribed swelling divided by the critical swelling. The following remarks can be made. First,

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

ε
(2)
0 /ε

(2)
0c

ε̄ m
/ε

(2
)

0
c

Phase field

Upper bound

Figure 4 – Comparison between the effective behavior obtained by full field computations and the upper
bound.

a discrepancy exists for a prescribed swelling of 1, 27 ε(2)0c in accordance with the damage jump shown in
figure (3). In more physical terms, when the "critical" loading is reached, that the matrix softens suddenly.
This discrepancy still needs to be addressed but is probably due the choice of an homogeneous damage
field in the matrix and is reminiscent of the unstable propagation of a crack. Extra full field computations
with a single inclusion embedded in a matrix may be ran in order to enhance the understanding of the
origin of this discrepancy.

Nevertheless, the slope of the graph plotting the macroscopic strain versus the loading prescribed is well
described by the upper bound for the elastic behavior, when the loadings prescribed are low
( ˙̄εm = c(2) ε̇

(2)
0 ). A similar conclusion can be drawn for the case where the matrix is almost totally

damaged when higher swellings are prescribed ( ˙̄εm ≈ ε̇
(2)
0 ).
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5 Conclusions
The objective of this work was to simulate the damage of a two-phases material (matrix-inclusions
microstructure). As the elastic moduli of the two phases are identical, the unique source of heterogeneity
is the dilatation prescribed only to the inclusions phase and the damage of the matrix phase. A phase
field approach have been adopted to perform these simulations.

The main results are :
— an onset damage criterion is proposed, which gives the conditions that have to be met for the

damage to appear in the matrix. The criterion depends only on the microstructural and material
parameters.

— by taking advantage of the variational principle attached to the phase field model, an upper bound
has been derived.

— this bound sticks well to results derived by full field computations (reported in [9]).
— this upper bound leads to a discontinuous effective behavior.

In order to get rid of the jump of the effective behavior at the transition between the elastic state and
the totally damage state, NTFA techniques may be used in the future to introduce a more sophisticated
damage fields. In addition, more general loadings should be considered, such as a traction or a shear
prescribed to the boundary of the microstructure.
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