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Abstract

The elastic interactions between dislocations and lattice point defects (PDs) control the rate of PD elimination at
dislocations, and thereby the PD spatial distribution within the microstructure. By relying on the Onsager formalism,
we introduce a new partition of the PD diffusion driving force in a strain field. We present DFT-based calculations of
straight and loop-form edge dislocation absorption efficiencies and the resulting biases of vacancy and self-interstitial
elimination in pure Fe, Ni, and Al metals. We highlight the effects of the dislocation density, the temperature and the
dislocation orientation on the elastodiffusion behavior and the resulting PD redistribution near dislocations. Based on
a detailed study of the sensitivity of absorption efficiencies to the boundary conditions, i.e., the capture radius and the
associated PD concentrations, we introduce the notion of asymptotic absorption efficiencies and bias.
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1. Introduction

Microstructure evolution of materials under irradiation
is a consequence of the transport of point defects (PDs).
They are created in radiation–induced displacement cas-
cades, then diffuse to eliminate at various PD sinks. Sinks
can be structural extended pre-existing defects such as
grain-boundaries, dislocation lines, surfaces, and PD clus-
ters formed under irradiation such as dislocation loops or
voids. These extended defects generate long-range stress-
strain fields in the material, leading to long-range elastic
interactions with the lattice PDs [1]. These elastic interac-
tions modify the PD diffusion and elimination rate [1, 2, 3].
The specific action of the sink strain field on lattice PDs
such as vacancies and self-interstitial atoms (SIA) leads
to a sink bias, i.e., a preferential absorption of SIAs or
vacancies. Each class of sink is typically assigned a par-
tial sink strength with an absorption efficiency specific to
each kind of PD, hence an absorption bias specific to each
sink. Both the sink-dependent bias, and the difference of
sink strengths between the different classes of sinks, are re-
sponsible for the partition of vacancy and SIAs elimination
reactions that drive most of the microstructure changes.
The preferential elimination of SIAs at dislocations leads
to dislocation climb [1, 4]. Another by-product of the pref-
erential absorption of SIA by dislocations is the formation
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of voids so that the overall elimination rate of PDs obeys a
matter balance at steady state [5]. The formation of voids
is the primary mechanism for swelling [5, 6]. Therefore,
to understand radiation-induced phenomena, it is essential
to obtain an estimation of the various sink biases.

Experimentally, the sink bias of a dislocation population
is deduced from the measure of the growth rate of voids,
or the macroscopic swelling rate of the irradiated sample.
Unfortunately, this type of measurement is not very accu-
rate. It is indeed difficult to extract a dislocation bias from
experiments [7, 8], because the swelling rate is sensitive to
the change of density and bias of all classes of sinks and to
the fraction of mobile defects produced within cascades [9],
which are not always precisely known.

A direct calculation of sink bias consists in solving the
PD diffusion equation including the elastic drift force, and
deducing the sink bias from the difference between the va-
cancy and interstitial fluxes towards the sink. It is now
possible to compute a sink bias from DFT calculations
of PD formation and migration energies, and PD elastic
dipoles. From the elastic dipole formulation, one obtains
the variation of jump frequencies with strain. The latter
are then used as input parameters of either an object ki-
netic Monte Carlo method—to simulate and measure the
PD flux towards ideal sinks, as for example in Al [10]—or
a statistical physics diffusion method yielding the elasto-
diffusion driving forces and transport coefficients of a PD
diffusion equation, which can be solved by means of a
phase field method [11]. The PD diffusion driving force
in a strain field was first given by Weertman [12] and later
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by Lothe and Hirth [4] from an analytical calculation of the
vacancy chemical potential gradient. The first formulation
of the PD diffusion coefficient including the elastic dipoles
was from Dederichs [13]. Up to now, the chemical poten-
tial gradient of the substitutional atoms was missing in the
derivations of the PD diffusion driving force. Yet, accord-
ing to the thermodynamics of irreversible processes and
its application to diffusion by Onsager, the flux of PD is a
linear combination of both the PD and the atom chemical
potential gradients [14, 15]. Surprisingly, the previous con-
tinuous diffusion methods, which were ignoring the varia-
tion of the atom chemical potential with strain, yielded PD
absorption efficiencies very close to the exact direct Monte
Carlo simulations [10, 11]. Furthermore, in both stochas-
tic and continuous kinetic methods, diffusion in the close
vicinity of sinks is not tackled, because near sinks such as
dislocations, the lattice is strongly distorted. When the
connectivity between lattice sites is partially lost, diffu-
sion cannot be modeled as a series of on-lattice thermally
activated events anymore. To overcome this technical dif-
ficulty, these methods systematically introduce a capture
radius delimiting the surface across which PD jumps are
treated as irreversible processes, as if PDs crossing the
surface were instantaneously absorbed by the sink. Ev-
ery study has its own justification for the chosen capture
radius value, but very few of them have investigated the
impact of their choice on PD absorption efficiencies.

The first aim of this work is to clarify the formulation of
a diffusion-controlled phenomenon in a strain-stress het-
erogeneous field, in particular the PD and atom relative
contributions to the diffusion driving force. Then, we in-
vestigate the impact of the boundary conditions at the
capture radius on PD absorption efficiency and on the
resulting bias. For this purpose, we rely on the general
Onsager’s expression of PD and atom fluxes, and deduce
from it the PD diffusion coefficient and the diffusion driv-
ing force together with the elastic drift force. We apply
it to a DFT-based calculation of straight and loop edge
dislocations biases in Fe body-centered cubic (bcc) and Ni
and Al face-centered cubic (fcc) metals. We first inves-
tigate the effects of temperature and dislocation density,
and the less-known effect of the dislocation orientation on
sink bias. A detailed sensitivity study is also performed
to highlight the impact of the capture radius and the PD
concentration at the capture radius on the absorption ef-
ficiencies of a dislocation line. Based on this sensitivity
study, we introduce a method to deduce asymptotic val-
ues of the absorption efficiencies and the resulting bias.

This article is organized as follows. Section 2 is ded-
icated to the PD diffusion model. Then we present in
Section 3 the simulation setup, the chosen boundary con-
ditions, and the method to calculate the dislocation biases.
Biases in Fe, Ni, and Al are calculated in Section 4 and we
discuss the effects of dislocation density, temperature and
dislocation orientations. Then the impact of the choice of
capture radius and PD concentration at the capture radius
is investigated in Section 5. Finally a summary, concluding

remarks, and perspectives are given in Section 6.

2. Point-defect diffusion model

The absorption efficiency of a PD (d ≡ I or V) on a
given sink is obtained by calculating the flux of d towards
the sink. The difference between the SIA and vacancy
absorption efficiencies yields the sink bias. Following the
Onsager’s formalism [14, 16], we express the flux Jd of PD
d in metal A and the flux Jd

A of atom A mediated by d,
as products of phenomenological transport coefficients and
chemical potential gradients (CPG) acting as isothermal
driving forces of diffusion,

Jd = − 1

kBT
(Ldd∇µd + LdA∇µA) , (1)

Jd
A = − 1

kBT

(
LAd∇µd + Ld

AA∇µA

)
, (2)

where the phenomenological transport coefficients Ldd,
LdA, LAd, and Ld

AA are symmetric second-rank tensors in-
cluding the elastic contribution to diffusion [13, 17]. ∇µA

and ∇µd are chemical potentials of respectively atom A
and point defect. By construction of the PD mechanism,
we have the following constraint on fluxes:

Jd = −sdJd
A, (3)

where sd is equal to

sd =

{
+1, for d = V,

−1, for d = I.
(4)

Because the PD and atomic driving forces are indepen-
dent, Eq. (3) yields −sd LdA = Ldd These relationships
lead to PD diffusion driving forces depending on the atom
chemical potential

Jd = − 1

kBT
Ldd (∇µd − sd∇µA) . (5)

2.1. Thermodynamics of diffusion including elasticity

The elimination of PDs at sinks necessarily entails the
non-conservative nature of PDs. The creation or removal
of PDs makes the number of lattice sites vary. For in-
stance, an atom displaced from its original bulk lattice
site to the surface or at a kink of the dislocation, creates
both a vacancy at the original lattice site and an extra
lattice site at the structural defect. If we assume no exter-
nal stress at the surface or at the dislocation kink, putting
the atom at the dislocation or at the stress-free surface is
then equivalent. In presence of an internal stress gener-
ated by the dislocation, the elastic work associated with
the exchange of atom between a stress-free reservoir and
the solid at site x, is non zero. To account for this local
stress at site x, we rely on a local equilibrium assumption.
The elastic work is calculated as the one associated with
the exchange of atom between the reservoir and an infinite
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crystal under a uniform applied stress equal to the local
stress at site x [18]. Since we treat the elastic work as
a reversible work only depending on the final and initial
states of the exchange path, we may deduce from it the
PD formation enthalpy,

HF
d (x) = HF

d,0 − Ωd
F : σ(x). (6)

In this equation, HF
d,0 is the PD enthalpy of formation in

a stress-free crystal (σ = 0). σ(x) is the local stress tensor
at site x. The second term of the RHS corresponds to the
work of inserting the PD (d) of volume Ωd

F under the local
stress σ(x). Ωd

F is the formation volume of d which can be
expressed as:

Ωd
F =

1

3
sd Ωat I + Ωd

R, (7)

where Ωat is the atomic volume, I is the identity tensor,
and Ωd

R is the relaxation volume induced by d. Note that
Ωd

R is a second-rank tensor because the relaxation volume
of a PD is not necessarily isotropic. Note that, in Ap-
pendix A, we provide an alternative approach to derive
the same expression of PD formation enthalpy as Eq. (6)
in an NVT-ensemble.

We treat PD as an infinitely dilute species (no interac-
tion between PD). The corresponding PD chemical poten-
tial is then written as follows

µd = kBT ln

(
Cd

Ceq
d

)
, (8)

where Cd is the atomic fraction of d in the system, and Ceq
d

is the equilibrium atomic fraction of d. Such an approach
yields PD chemical potentials locally depending on the
internal strain/stress field generated by a dislocation. Note
that, when PD is at local equilibrium, the corresponding
local chemical potential is zero.

The equilibrium PD concentration, Ceq
d , is equal to the

standard stress-free equilibrium concentration, Ceq,0
d , mul-

tiplied by a strain/stress field enthalpy contribution

Ceq
d = Ceq,0

d exp

(
− H

el
d

kBT

)
, (9)

where Hel
d is the elastic contribution to the formation en-

thalpy of PD under the internal strain field ε.

Hel
d = −sd Ωat σv − Ωd

R : σ, (10)

where σv is the volumetric component of the local stress:
σv = Tr[σ]/3. By combining Eqs. (8)–(10), the PD chemi-
cal potential can be rewritten as:

µd = µ0
d +Hel

d , (11)

where µ0
d = kBT ln

(
Cd/C

eq,0
d

)
is the PD chemical poten-

tial in a stress-free system.

We assume that the internal strain of the solid is solely
generated by the dislocation. A strain tensor ε, having six
independent components e1 through e6, can be written as

ε = evI+

e1 − ev 0 0
0 e2 − ev 0
0 0 e3 − ev

+

 0 1
2e6

1
2e5

1
2e6 0 1

2e4
1
2e5

1
2e4 0

 ,
(12)

where ev = 1
3 Tr[ε] = 1

3 (e1 +e2 +e3).The volumetric strain
is defined as εv = evI; the tetragonal strain εt and the
shear strain εs are the final two tensors in Eq. (12). By re-
lying on the first-order linear approximation of the Hooke’s
law, we assume that the stress is proportional to the strain
generated by the dislocation:

σij = Cijklεkl, (13)

where C is the elastic tensor. Eq. (10) can therefore be
rewritten as:

Hel
d =− 1

3
sdΩat Ciikl εkl − Ωd

R,ij Cijkl εkl,

=− 3K evsdΩat − P sta,d : ε,

=− 3K ev(Ωd
R + sdΩat)− P sta,d : (εt + εs), (14)

where P sta,d is the elastic dipole tensor [2, 3] of PD (d) at
the stable position with

P sta,d
kl = Ωd

R,ij Cijkl, (15)

K = (C11 +2C12)/3 is the bulk modulus (Voigt notation),
and

Ωd
R = Tr

[
Ωd

R

]
=

Tr
[
P sta,d

]
3K

. (16)

Note that most modeling studies of sink biases solely
account for the volumetric strain contribution, εv, of the
PD diffusion driving force [i.e., the first term of the RHS
in Eq. (14)] because it is in general the main contribution
to the PD formation energy [19]. In this case, the prefer-
ential creation site of a PD is determined by its formation
volume Ωd

F = Ωd
R + sdΩat rather than its relaxation vol-

ume (cf. Tab. 1). In the investigated metals, the absolute
value of the vacancy relaxation volume is smaller than the
atomic volume. Therefore, the formation volumes of the
vacancy and the SIA are both positive. Hence, they are
preferentially created at sites of local tension (ev > 0)
because more space is needed to insert the PDs into the
system. Note that, in the present study, we also keep the
non-volumetric contributions [i.e., the second term of the
RHS in Eq. (14)], which are shown to be non-negligible in
Refs. [20, 11] for the investigated metals.

Even though we assume that PDs are moving in a frozen
dislocation microstructure, we must not ignore the atomic
contribution to the diffusion driving force of a PD. As
shown by Eq. (5), a chemical potential gradient of atoms
generates a flux of PDs. Through the atom-PD exchanges
and our definition of the local diffusion driving forces, we

3



include the elastic work of the moving atom exchanging its
position with the PD in a non-homogeneous strain field.
The elastic contribution to the formation enthalpy of an
atom (A) of volume Ωat corresponds to the reversible elas-
tic work to insert this atom into the system under the local
stress σ:

Hel
A = −Ωat σv = −3K Ωat ev, (17)

The chemical potential of this atom is given by

µA = µ0
A +Hel

A = µ0
A − 3K Ωat ev, (18)

where µ0
A is the chemical potential of A in an undeformed

lattice. A non-zero strain gradient thus yields a non-zero
gradient of the atom chemical potential

∇µA = −3K Ωat∇ev. (19)

Interestingly, sinks with a heterogeneous volumetric
strain/stress field cannot be at steady state whenever PDs
are at local equilibrium (with their gradient of chemical
potential equal to zero). After Eq. (5) and (19), the atom
chemical potential gradient would induce a net flux of PDs
towards sinks. PD annihilation reactions at sinks would
then either lead to the transformation or the motion of
sinks. For instance, as long as there are dislocations, in
thermal and irradiation conditions we expect net fluxes of
PDs towards the dislocations together with the climbing
motion of the dislocations. The higher the atomic volume
and the internal strain gradient arising from the disloca-
tion itself, the higher the PD flow and the resulting dislo-
cation climbing rate. The climbing of the edge dislocation
only stops if ∇µd = sd∇µA. This specific steady state
may be reached when the interaction of PDs with the PDs
sources and sinks including the dislocation itself is weak,
or the PD diffusion coefficient is very small. These are
situations where the equilibrium of PDs with respect to a
free-stress surface or dislocation may not be established in
the entire volume of the solid.

After Eqs. (5), (10) and (17), the elastic contribution to
the total diffusion driving force of PD is thus equal to the
gradient of the difference, (Hel

d − sdHel
A ), leading to

∇Hel
dA = −3K Ωd

R∇ev − P sta,d : (∇εt +∇εs), (20)

= −P sta,d :∇ε. (21)

There is a direct compensation between the atomic volume
elastic terms of PD and atom A, which leads to a diffusion
driving force depending on the PD relaxation volume only.
Note that, though the final driving force is similar to the
one introduced by the seminal works of Weertman[12] and
Hirth and Lothe [4], our definition of the PD formation
enthalpy disagrees. A PD chemical potential of a solid
with no applied stress does include an atomic volume en-
ergy contribution proportional to the internal pressure.
As mentioned before, we predict that both vacancies and
interstitial atoms tend to form in tensile or less compres-
sive regions. The preferential vacancy formation in the

tensile region is counter-intuitive. However, if now the va-
cancy is already in the solid, during its diffusion it will
exchange its position with a neighboring atom. Therefore,
the Gibbs free energy change associated with exchanging
the vacancy at site x1 with local pressure p1 = −σv(x1)
with a neighboring atom initially located at site x2 with
internal pressure p2 = −σv(x1) reads:

∆G = (p2ΩV
F + p1Ωat)− (p1ΩV

F + p2Ωat) = (p2 − p1)ΩV
R.

(22)
Following the same reasoning, the change in Gibbs free
energy corresponding to the diffusion of a SIA from site
x1 to site x2 writes:

∆G = (p2ΩI
F + p2Ωat)− (p1ΩI

F + p1Ωat) = (p2 − p1)ΩI
R.

(23)
The above two equations show that it is thermodynami-
cally favored to have vacancies diffuse toward compressive
regions and SIAs diffuse toward tensile regions, in agree-
ment with previous literature works. Therefore, the equi-
librium state of the system will indeed be with vacancies in
compressive regions and SIAs in tensile regions, as it stems
from the optimization of both atoms and point-defect en-
ergies: in other—admittedly qualitative—words, vacancies
alone are preferentially created in the tensile regions but
having vacancies in tensile regions necessarily means that
atoms are in the compressive regions which is not energet-
ically favorable, and therefore the system prefers to have
vacancies in compressive regions and atoms in tensile re-
gions to lower the global energy of the system.

From Eq. (11) and Eq. (19), we write the PD diffusion
driving force as

∇(µd − µA) = kBT
∇Cd

Cd
+∇Hel

dA. (24)

The second term of the RHS, the gradient of the elastic
energy, corresponds to the so-called elastic drift force of
the diffusion equation. This definition of the elastic drift
force is in line with the previous elasto-diffusion studies
(e.g., in Refs. [12, 4, 21, 22, 23, 10]).

2.2. Elasto-diffusion

Elastic interactions between PDs and extended defects
modify the migration barriers of PDs. For a PD initially
located at r, jumping in a direction h, we write the mi-
gration enthalpy as

Hmig(r,h) = Hmig, 0(r,h) +Hsad
el (r,h)−Hsta

el (r). (25)

Hmig, 0(r,h) corresponds to the PD migration enthalpy in
the system free of strain. Hsad

el (r,h) and Hsta
el (r) are the

elastic contributions to the enthalpies at the saddle-point
and stable configurations, respectively. They are deduced
from the PD elastic dipoles at stable and saddle points,
and their difference is equal to

Hsad
el (r,h)−Hsta

el (r) = −
[
P sad(r,h)− P sta(r)

]
: ε(r),

(26)
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where P sta
ij and P sad

ij are the elastic dipoles of PD at the
stable and saddle-point configurations, respectively.

The variation of the migration barriers with strain de-
termines the change of the PD jump frequencies, thereby
the variation of the transport coefficients. From the
DFT migration barriers and elastic dipoles, we calculate
the strain-dependent transport coefficient tensors Ldd us-
ing the KineCluE code [24]. Note that our calculated
Ldd is in line with the expressions from Dederichs and
Schroeder [13], and Trinkle [17], but the formalism from
Dederichs and Schroeder is only valid for uncorrelated sys-
tems.

3. Sink bias calculation method

We consider two types of sinks: the straight edge dislo-
cation and the edge dislocation loop. Their geometries
and coordinate systems are shown in Fig. 1 and 2, re-
spectively. The dislocation density (ρ) fixes the outer ra-
dius of the simulation domain (rout): rout = 1/

√
πρ for

a straight dislocation and rout = 3
√

3/(4πρ) for a dislo-
cation loop. The dislocation capture radius, rc, delimits
the area within which the elimination of PD is treated
as an irreversible process. Ideally, the capture radius
should be the one that produces a bias leading to the right
climbing rate. An experimental investigation of the lat-
ter or atomic-scale simulations of the dislocation climbing,
would facilitate the determination of the capture radius.
Unfortunately, there is such data for pure iron only [25].
Here, we consider the capture radius as a variable of
the model. Previous studies suggest that the dislocation
capture radius, rc, is of the order of the Burgers vector
(bv = ||bv||) [26, 27, 28, 29, 30, 31]. If the PD-dislocation
core distance is within rc, the lattice deformation is in gen-
eral so high that PDs are absorbed by the dislocation by
a diffusion-less mechanism in an extremely short period.
However, PDs are emitted from the dislocation to maintain
the PD concentration close to its equilibrium value near
the dislocation core, at rc ≈ bv. The standard approach
is to set the PD concentration at the capture radius equal
to its equilibrium value, whatever the value of the capture
radius. As it will be shown in Section 5, such approach
leads to sink biases which are strongly dependent on the
capture radius.

PDs are steadily created by irradiation, then they diffuse
and eliminate at sinks of the microstructure, leading to a
stationary concentration of PDs at the outer radius and a
net flux of PDs towards the investigated sink. We ignore
the other reactions of PDs such as mutual recombination
reactions between SIA and vacancy, or the agglomeration
reactions of PDs. Diffusion of PDs in the vicinity of the
investigated sink (beyond rc) is described by the following
diffusion equation:

∂Cd

∂t
= −∇ · Jd. (27)

The latter is solved in steady-state conditions (i.e., the
time derivative of the PD concentration is set to zero:
∂Cd/∂t = 0). We solve the equation ∇ · (Ldd∇µd) = 0
by means of a finite-difference numerical scheme. We treat
the dislocations as perfect sinks and assume that the con-
centration of PDs at the inner boundary surface, (Σin)
of radius rc, is equal to its local equilibrium value. PDs
are massively produced under irradiation. Thus, we set
the PD concentration at the outer boundary (Σout) to be
much larger than its equilibrium value. Note that, in this
case, the sink efficiencies and resulting bias parameters do
not depend on the PD concentration at the outer bound-
ary [32, 31].

The absorption efficiencies of d (Zd) are evaluated by
the current of d (Id) entering the sink across the inner
surface [32]:

Zd =
Id

D0
d(Cbulk

d − C in
d )
, (28)

where D0
d is the diffusion coefficient of d in the unstrained

system, Cbulk
d and C in

d are respectively the PD concentra-
tions at the outer and inner boundaries, and

Id = −
∫∫

Σin

Jd · ndΣ, (29)

with n the vector normal to surface Σin. We define the
bias factor as the relative difference between the sink ab-
sorption efficiencies

B =
ZI − ZV

ZI
. (30)

Figure 1: Geometry used to determine the point-defect absorption ef-
ficiency of a straight edge dislocation. At the outer boundary (Σout),
the concentration is set to the bulk concentration Cbulk

d , whereas at
the inner boundary (Σin) the concentration is set to the equilibrium
one, Ceq

d .

3.1. Straight edge dislocation

Since a straight edge dislocation together with its
boundary conditions has a translation symmetry along the
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Figure 2: Geometry used to determine the point-defect absorption
efficiency of an edge dislocation loop. At the outer boundary (Σout),
the concentration is set to the bulk concentration Cbulk

d , whereas at
the inner boundary (Σin) the concentration is set to the equilibrium
one, Ceq

d . The point-defect fluxes across the surfaces delimited by
the black boundary lines are equal to zero for symmetry reasons.

dislocation line, we ignore the diffusion of PDs and solute
atoms along the dislocation line. We reduce the 3D calcu-
lation to a 2D calculation, by solving the problem of dif-
fusion in the plane perpendicular to the dislocation. We
introduce a polar coordinate system centered on the dis-
location (cf. Fig. 1). Hence, the PDs diffusion zone is an
annular region delimited by the capture radius of the dis-
location (inner radius rc), and the outer radius rout. We
rely on the planar strain approximation to compute the
strain/stress field generated by a straight edge dislocation
based on the analytical expressions given in Ref. [33, 34].
In this calculation, the anisotropic elasticity of the inves-
tigated metals has been systematically considered.

3.2. Edge dislocation loop

In the case of a dislocation loop, a full PD absorption
study including elasto-diffusion requires to solve PD dif-
fusion equations in three dimensions, which is computa-
tionally demanding. In the present work, to avoid the full
3D numerical integration, we neglect the elastodiffusion
contribution to the PD absorption efficiency. The elastic
strain of the dislocation loop enters the diffusion driving
force only. This approximation allows us to model the
dislocation loop as a torus of revolution. Since the torus
geometry is invariant to rotation around its axis of revo-
lution (the z-axis in Fig. 2), we reduce the 3D calculation
to a 2D calculation. We solve the diffusion problem in
the cross section plane of the torus (i.e., the z-r plane
that contains the axis of revolution and is perpendicular
to the circle of the torus, as shown in Fig. 2). Note that all
such planes are equivalent because the effect of strain on
PD jumps between planes is neglected. Furthermore, we
rely on an isotropic approximation of the elastic field to
compute the strain/stress field generated by an edge dis-
location loop [35]. This allows us to calculate Hel

tot,d from

available analytical formulae [31], namely:

Hel
tot,d = − sgn(Ωd

R) kB T Ld√
(r + rl)2 + z2

[
r2
l − r2 − z2

(rl − r)2 + z2
E(k) + K(k)

]
,

(31)
where sgn(Ωd

R) is the sign of the PD relaxation volume,
rl is the loop radius, E and K are respectively the elliptic
integrals of the first and second kind,

k =

√
4 r rl

(rl + r)2 + z2
, (32)

and

Ld =
1 + ν

3π(1− ν)
µ bv
|Ωd

R|
kBT

, (33)

with ν the Poisson’s ratio and µ the shear modulus. Since
only the volumetric strain is considered here, the results for
a dislocation loop are independent of the loop orientation.

3.3. Orientation of the edge dislocation

In order to highlight the effect of the dislocation ori-
entation on the point-defect absorption efficiency, we will
compare simulation results for dislocations of different ori-
entations.

First, we consider dislocations of energetically favorable
orientations (orientation 1), which are characterized by:

• its normal vector to the glide plane: n
(1)
g = 1√

2
[1 1 0]

(Fe), 1√
3
[1 1 1] (Ni, Al);

• its Burgers vector: b
(1)
v = a0

2 [1 1 1] (Fe), a0

2 [1 1 0] (Ni,
Al);

• its unit line vector: u
(1)
l = 1√

6
[1 1 2] (Fe), 1√

6
[1 1 2]

(Ni, Al).

Second, we consider the simplest edge dislocation, the
〈100〉{010}-dislocation (orientation 2), even though it is
less favorable energetically. This dislocation is character-
ized by:

• its normal vector to the glide plane: n
(2)
g = [1 0 0] ;

• its Burgers vector: b
(2)
v = a0[0 1 0];

• its unit line vector: u
(2)
l = [0 0 1].

4. Simulation results

We apply the method presented in Section 2 and 3, to
compute the PD absorption efficiencies and the elastic bias
of dislocations in Fe, Ni, and Al. The physical parameters
(e.g., the elastic dipoles, the elastic constants, etc.) of
these metals are listed in Tab. 1. The elastic dipoles of PDs
in Ni and Al are found in Refs. [11] and [10], respectively;
those in Fe are calculated in the present study following
the same DFT-based approach as presented in Ref. [40].
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Table 1: Physical parameters of Fe, Ni and Al that are used in the simulations. h is the migration direction of PD. Ω is the atomic volume.
The relaxation volume is obtained from the trace of the stable-point elastic dipole tensor.

Materials bcc-Fe Ni Al

Lattice parameter [Å] 2.831 [36] 3.524 [37] 4.050 [10]

Burgers vector b
(1)
v (Orientation 1) [Å] 2.45 2.49 2.86

Burgers vector b
(2)
v (Orientation 2) [Å] 2.83 3.52 4.05

Capture radius r
(1)
c (Orientation 1) [nm] 0.98 (' 4b

(1)
v ) 1.00 (' 4b

(1)
v ) 1.43 (' 5b

(1)
v )

Capture radius r
(2)
c (Orientation 2) [nm] 1.70 (' 6b

(2)
v ) 1.76 (' 5b

(2)
v ) 1.62 (' 4b

(2)
v )

Elastic constants [GPa] (C11, C12, C44) 243, 145, 116 [38] 251, 150, 124 [39] 106, 60, 28 [10]

Formation enthalpy [eV] (vacancy, SIA) 2.18 [36], 4.08 [40] 1.65 [37], 4.07 [37] 0.76 [41], 2.00 [41]

Formation entropy [kB] (vacancy, SIA) 4.10 [36], 0.05 [40] 1.82 [37], 12.7 [37] 2.40 [41], 16.0 [41]

Migration energy [eV] (vacancy, SIA) 0.70 [36], 0.34 [40] 1.09 [37], 0.14 [37] 0.605 [10], 0.105 [10]

Elastic dipole tensor [eV]

Vacancy, stable point


−2.839 0 0

0 −2.839 0

0 0 −2.839



−5.448 0 0

0 −5.448 0

0 0 −5.448

 [11]


−3.238 0 0

0 −3.238 0

0 0 −3.238

 [10]

Vacancy, saddle point (h = [111] for Fe
and [110] for Ni and Al)


−2.217 −1.641 −1.641

−1.641 −2.217 −1.641

−1.641 −1.641 −2.217



−5.255 −0.213 0

−0.213 −5.255 0

0 0 2.554

 [11]


−2.866 −0.080 0

−0.080 −2.866 0

0 0 1.000

 [10]

Dumbbell, stable point ([110] for Fe and
[100] for Ni and Al)


23.752 4.728 0

4.728 23.752 0

0 0 27.906




25 0 0

0 24.792 0

0 0 24.792

 [11]


19.652 0 0

0 18.518 0

0 0 18.518

 [10]

Dumbbell, saddle point (h = [111] from
[110] to [101] for Fe; and h = [110] from
[100] to [010] for Ni and Al)


23.838 2.845 −0.696

2.845 22.529 2.845

−0.696 2.845 23.838




25.438 1.492 0

1.492 25.678 0

0 0 25.411

 [11]


19.498 1.133 0

1.133 19.498 0

0 0 19.034

 [10]

Formation volumes (ΩV
F , ΩI

F) +0.75 Ω, +1.17 Ω +0.57 Ω, +0.98 Ω +0.60 Ω, +1.50 Ω

Relaxation volumes (ΩV
R, ΩI

R) −0.25 Ω, +2.17 Ω −0.43 Ω, +1.98 Ω −0.40 Ω, +2.50 Ω

To begin with, we investigate the impact of a change
of dislocation microstructure (dislocation density) on the
dislocation bias for two orientations of the straight edge
dislocation and edge dislocation loop. Then we show the
effect of temperature on dislocation bias, and finally we
discuss the effect of the dislocation orientation and the
PD redistribution around the straight dislocation and dis-
location loop.

The capture radius rc of a dislocation is, by convention,
an integer multiple of bv. In the following studies, rc of
the straight dislocation or the dislocation loop is set to the
values listed in Tab. 1 so that all strains generated by the
straight dislocation or dislocation loop are within ±3 %, in
order to be within the usual range of application of linear
elasticity theory [23, 2, 3].

The validation of the numerical approach is given in
Appendix B.

4.1. Effect of dislocation density

In this section, the simulation temperature is set to
600 K, which is close to the working temperature of nu-
clear reactors. In Fig. 3, we present the results of the
elastic bias (B) and the absorption efficiencies of vacan-
cies (ZV) and SIAs (ZI) as functions of the straight dis-

location density ρ = 1/(πr2
out). These calculations were

performed for two orientations and include the full elas-
tic effects on both the elastodiffusion transport coefficient
and the driving force, i.e., the elastic drift. Case 1 consid-
ers dislocations with Orientation 1, while Case 2 includes
dislocations with Orientation 2. In Fig. 4, similar results
are shown for the dislocation loop, again for two different
orientations of the dislocation loop. Note that in this case
elastic effects are only included in the elastic drift part
and not in the transport coefficient, due to computational
limitations. In all of these cases, both the PD absorption
efficiency and the elastic bias show a monotonic increase
as a function of dislocation density.

4.2. Effect of temperature

The bias factor also depends on temperature. In Fig. 5,
we plot the dislocation bias obtained at different tempera-
tures for a straight dislocation and a dislocation loop. The
lower the temperature, the higher is the dislocation bias.
To explain this tendency, we consider the PD absorption
efficiency, Zd. By combining Eqs. (1), (24), (28), and (29),
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Figure 3: PD absorption efficiency and elastic bias of straight edge dislocations of two different orientations in Fe, Ni, and Al. The simulation
temperature is set to 600 K.
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Figure 4: PD absorption efficiency and elastic bias of edge dislocation loops of two different orientations in Fe, Ni, and Al. The simulation
temperature is set to 600 K.

we have

Zd = −
∫∫

Σin

DdCd

D0
d(Cbulk

d − C in
d )

(
∇Cd

Cd
−
∇Hel

tot,d

kBT

)
·n dΣ,

(34)
where Dd = Ldd/Cd. The dislocation bias is non-zero only
when the second term in the parenthesis of Eq. (34), i.e.,
∇Hel

tot,d/(kBT ), is non negligible with respect to the con-
centration gradient contribution (first term). This second
term decreases with temperature by a factor kBT . We

check that the prefactor before the parenthesis in Eq. (34)
is nearly temperature-independent. Therefore, we may
conclude that Zd decreases with temperature, towards the
elasticity-free value (dashed lines in Fig. 5).

4.3. Effect of the orientation of the dislocation

By comparing the results obtained for both orientations
in Fig. 3, we highlight the effect of the dislocation orien-
tation on the PD absorption efficiency. We observe that
ZV and ZI obtained for the dislocations with orientation
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Figure 5: PD absorption efficiency and elastic bias of a straight
edge dislocation (left) and a dislocation loop (right) as functions of
temperature. The dislocation density is set to 3 × 1014 m−2 for the
straight dislocation and to 4×1022 m−3 for the dislocation loop. The
loop radius is set to 10 nm.

2 are higher than those obtained for the dislocations with
orientation 1, leading to a significant change of the elas-
tic bias in Fe and Al. The ratio between the bias factors
of Cases 1 and 2 is about 1.1 in Fe and about 0.5 in Al,
whereas it is almost 1 in Ni.

In Fig. 4, we show the elastic bias for an edge disloca-
tion loop. As for the straight edge dislocation, a significant
modification of the elastic bias is observed when the dis-
location orientation is changed. Here again, ZV and ZI

obtained for the dislocations with orientation 2 are higher
than those obtained for the dislocations with orientation
1. The ratio between the bias factors of Cases 1 and 2 is
about 1.2 in Fe, 1.5 in Ni, and 0.7 in Al.

The difference of elastic bias and point-defect distribu-
tion near dislocations of the two investigated orientations
results from the differences of the elastic fields induced
by these dislocations. The strength of the elastic field is
proportional to the Burgers vector (bv). Since the Burgers

vector of the dislocation with orientation 1 (b
(1)
v ) is smaller

than that with orientation 2 (b
(2)
v ), the magnitude of the

elastic field generated from the latter is larger than that
generated by the former. Therefore, the dislocation/PD
interaction is stronger for orientation 2. This explains
why dislocations with orientation 2 have higher PD ab-
sorption efficiencies (ZV, ZI) than those with orientation
1. However, since the magnitude of this effect is different

for the vacancy and the SIA, the resulting bias is not al-
ways higher for the dislocations with orientation 2. Hence,
we expect the climbing rate of the less stable dislocation
line and loop to be higher in Al and smaller in Fe.

In Figs. 6 and 7, we plot the composition maps of va-
cancies and SIAs around the straight and loop dislocations
for each of the two orientations. In the case of orientation
1, the PD-depleted regions are smaller than those of ori-
entation 2, especially in Ni and Al. Besides, the shapes
of the PD-depleted regions resulting from the PD fluxes
depend as well on the orientation of the dislocation. In
alloys, the PD fluxes towards sinks induce fluxes of atoms
that produce changes of the alloy composition close to
sinks (the so-called radiation-induced segregation). There-
fore, we expect an effect of the dislocation orientation on
radiation-induced segregation. If the effect of orientation
on the PD-depleted regions seems to be more spectacu-
lar for the straight dislocation than for dislocation loop,
it is simply because the elasto-diffusion contribution was
neglected in the present dislocation loop study. We will
see below that the strain effect on PD diffusion and sub-
sequent PD distribution at sinks highly depends on the
dislocation orientation.

The orientation-dependent elastic field produces differ-
ent elastodiffusion behaviors in the vicinity of the straight
edge dislocation. We plot in Figs. 8–10 the deviation be-
tween the PD elastodiffusion coefficients and the elasticity-
free coefficients (∆Dd,ij = Dd,ij −D0

d,ij) around the edge
dislocations, with the two investigated orientations, re-
spectively in Fe, Ni, and Al. Note that for the strain-free
coefficients, we have D0

d,11 = D0
d,22 = D0

d because the non-
deformed crystal is isotropic for PD diffusion. Besides, due
to cubic symmetry, D0

d,12 = 0. A positive ∆Dd,ij entails an
increase of Dd,ij when the effect of the local deformation is
accounted for. According to our calculations, the regions
of positive ∆Dd,ij are strongly related to the dislocation
orientation, especially ∆Dd,11 and ∆Dd,22.

We also notice a different elastodiffusion behavior in the
three investigated metals. Since we observe a higher abso-
lute value of ∆DI,ij/D

0
I in Fe, we may conclude that the

local deformation-induced change of SIA diffusion coeffi-
cient in Fe is more significant than those in Ni and Al.
As for the vacancy diffusion, the effect of strain on DV,ij

is more significant in Ni than in the two other metals.
Overall, the absolute value of ∆Dd,ij/D

0
d is the smallest

in Al, showing that the effect of strain on PD diffusion is
relatively weak in Al.

5. What choice of capture radius?

In the previous section, we have highlighted an effect of
the microstructure (dislocation density), the temperature,
and the orientation of the dislocation, on the bias factor.
In this section, we analyse the sensitivity of the absorption
efficiencies and the resulting bias factor to the capture ra-
dius and PD concentrations at this capture radius.
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Figure 6: SIA and vacancy concentration maps around obtained from straight edge dislocations of two different orientations. The point-defect
concentration (Cd) is normalized by the one at the outer boundary (Cout

d ). The dislocation density is set to 3 × 1014 m−2 (corresponding to
rout = 32 nm) and the temperature is set to 600 K.

Figure 7: SIA and vacancy concentration maps around obtained from edge dislocation loops of two different orientations. The point-defect
concentration (Cd) is normalized by the one at the outer boundary (Cout

d ). The dislocation loop density is set to 1022 m−3 (corresponding to
rout = 29 nm) and the temperature is set to 600 K.
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Figure 8: Deviation between the PD diffusion coefficient (Dd,ij) and the elasticity-free coefficient (D0
d) around edge dislocations of two

different orientations in Fe. The dislocation density is set to 3× 1014 m−2 (corresponding to rout = 32 nm). The temperature is set to 600 K.
The tensor Dd,ij is expressed in polar coordinates.

Figure 9: Deviation between the PD diffusion coefficient (Dd,ij) and the elasticity-free coefficient (D0
d) around edge dislocations of two

different orientations in Ni. The dislocation density is set to 3× 1014 m−2 (corresponding to rout = 32 nm). The temperature is set to 600 K.
The tensor Dd,ij is expressed in polar coordinates.

Figure 10: Deviation between the PD diffusion coefficient (Dd,ij) and the elasticity-free coefficient (D0
d) around edge dislocations of two

different orientations in Al. The dislocation density is set to 3× 1014 m−2 (corresponding to rout = 32 nm). The temperature is set to 600 K.
The tensor Dd,ij is expressed in polar coordinates.
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Figure 11: PD absorption efficiency and elastic bias of a straight
edge dislocation (left) and a dislocation loop (right) in function of
the capture radius. The simulation temperature is set to 600 K and
the dislocation density to 3 × 1014 m−2 for the straight dislocation
and 4 × 1022 m−3 for the dislocation loop. The loop radius is set to
10 nm.

The model of PD absorption efficiency in a strain-free
medium, provides an explicit analytical expression of the
efficiency with respect to the capture radius [32]

Zd =
η

ln(rout/rd
c )
, (35)

where η is a geometric parameter. For an isolated dislo-
cation, its theoretical value is 2π. Zd increases with the
capture radius, and does not depend on the temperature
or the material. As explained in the previous section, the
impact of elastic interactions decreases with temperature.
Therefore, at high temperature, we may expect the elastic
effect to be negligible. In this case, the increase of Zd with
the capture radius, rd

c , can be predicted by Eq. (35).
We study here the most stable dislocations (orientation

1), and we calculate the variation of the dislocation absorp-
tion efficiency and bias factor with the capture radius and
the PD concentrations at the capture radius. The results
are plotted in Fig. 11, both for the straight dislocation and
the dislocation loop. Before going further into the analy-
sis of the simulation results, we would like to emphasize
the very high magnitude of the predicted strain field close
to the dislocation core, which can go up to 10%. Such
a high strain cannot be treated with linear elasticity the-
ory and the elastic dipole formulation [e.g., Eqs. (10) and
(26)], which is usually considered valid up to a few per-

cents only. According to our simulation results, differently
from the strain-free model predictions, the dislocation ab-
sorption efficiency of the self-interstitial, ZI, of both the
straight and loop dislocation does not increase with the
capture radius, whereas ZV does. Since the elastic strain
and its impact on the PD diffusion is higher close to the
dislocation core, the smaller the capture radius, the higher
the elastic contribution to the PD absorption efficiency.
However, the interaction of the strain field with SIAs is
greater than that with vacancies because the lattice dis-
tortion induced by a SIA is stronger than the one induced
by a vacancy. Therefore, the variation of ZI with rc is dif-
ferent from that of ZV. A parabolic fit of the variation of
ZI with rc highlights the non-monotonous variation of ZI

for Al, which cannot be predicted from the analytical law
[Eq. (35)]. The resulting dislocation bias systematically
decreases with the capture radius, for both the straight
dislocation and the dislocation loop. For instance, for a
straight dislocation line, the variation of the capture ra-
dius from 9 bv to 5 bv increases the dislocation bias by a
factor of about 1.5 in Fe, Ni and Al. This increase is too
high to be ignored.

Note that there is no general consensus on the method to
be used to set the value of the capture radius, rc. The crite-
ria that are widely used in the literature, are either related
to the limitations in the strain/stress field of the linear
elasticity theory [23], or to the limitations of a first order
Onsager formulation of the PD flows [42, 43, 28, 44, 31, 45].
Within the former condition, the capture radius has to
be large enough so that the linear elastic theory applies.
Within the latter condition, the diffusion driving forces
should be small enough so that the PD elastic drift force
can still be introduced as a first order correction term of
the diffusion driving force [42, 43]. Within our formula-
tion, the elastic drift force corresponds to the second term
of the RHS of Eq. (1), rc is fixed such that the variation
of Hel

d is of the same order of magnitude as the thermal
energy fluctuations∥∥∇Hel

d

∥∥
r=re

' kBT

bv
, (36)

where the Burger vector, bv, is introduced as the char-
acteristic length of the strain heterogeneity generated by
the dislocation. According to these criteria, one obtains a
bottom value of the capture radius. We choose to call the
latter, the energy cutoff radius, rde , because it determines
the domain of validity of the diffusion equations, but does
not really provide a physical justification for the choice of
the PD capture radius. After Eq. (20), re should depend
on the elastic properties of the material, the nature of the
PDs, and temperature. For instance, for a straight dis-
location, under the assumption of isotropic elasticity and
neglecting the non-volumetric strains, the capture radius
of PD d is obtained from Eqs. (20) and (36) and written
as

rde '

√
µ

3π

1 + ν

1− ν
|Ωd

R|
kBT

bv, (37)
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where µ is the shear modulus and ν is the Poisson’s ratio
of the material. In Fe, Ni, and Al, we obtain that rI

e ' 5 bv
and rV

e ' 3 bv at 600 K.
Another approach consists in relating the PD capture

radius of the dislocation to its climbing rate. For a straight
dislocation, the rate theory predicts that the climbing rate
is related to the difference between the absorption efficien-
cies of SIAs and vacancies (Zd with d = V, I) defined by
Eq. (28) [46, 47, 48, 49]:

vcl =
ZV

bv
D0

V(Cbulk
V − C in

V )− ZI

bv
D0

I (Cbulk
I − C in

I ). (38)

Under irradiation, both vacancies and self-interstitials are
generated. Hence, both their contribution to the disloca-
tion climbing rate have to be accounted for. Since the cap-
ture radii of these PDs are not necessarily equal, Eq. (38)
does not determine the pair of capture radii in a univo-
cal way. However, in thermal conditions, we may neglect
the self-interstitial contribution to the dislocation climbing
because the self-interstitial formation energy in metals is
generally much larger than the vacancy formation energy.
When the climbing of a dislocation results from a super-
saturation of vacancies only, the second term of the RHS
of Eq. (38) is zero. Provided the variation of ZV with the
capture radius is known, we rely on Eq. (38), to deduce the
vacancy capture radius. We may rely on our calculations of
ZV presented in Fig. 11, to deduce the capture radius in Fe,
Al and Ni. The climbing rate can be measured by trans-
mission electron microscopy or deduced from atomic scale
simulations. Note that the surrounding microstructure
and temperature have to be carefully determined because
they govern the bulk concentration of point defects. Such a
multiscale investigation of the capture radius has been per-
formed in Fe [50, 25]. The molecular dynamics simulations
of the dislocation climbing resulting from vacancy elimina-
tion were performed at high temperature [50]. The elastic
interactions were not expected to be prominent at high
temperature and the corresponding absorption efficiency
was deduced from Eq. (35). Yet, due to the interactions be-
tween the dislocations of the simulated dislocation dipole
and their periodic images, the constant η was treated as
a fitting parameter [25]. The best quantitative agreement
with atomistic simulations of Ref. [50] has been obtained
for η = 12.8 ∼ 4π and rV

c ∼ 4 bv in bcc Fe at T > 800 K.
This value happens to be close to the elastic cutoff ra-
dius deduced from a condition of validity of the diffusion
equation based on the linear elasticity theory. However,
we show in Fig. 11 that at the investigated temperature
(600 K) the variation of ZV with the capture radius differs
from the high-temperature/elasticity-free one. Therefore
we expect a low-temperature capture radius which is not
necessarily consistent with the energy cutoff radius. Be-
sides, the elastic interactions between SIAs and disloca-
tions are in general greater than those between vacancies
and dislocations. In all these cases, the absorption efficien-
cies cannot be expressed in the form of Eq. (35). As for
the dislocation loop, very few studies provide a calculation

of the absorption efficiencies with respect to the capture
radius. One usually assumes that Zd is close to the one
of a straight edge dislocation. This hypothesis is not valid
when the loop radius is not large enough with respect to
the capture radius, as shown in Fig. 11. Our calculations
provide a full database of the variation of Zd with respect
to the capture radius, as long as the latter is above the
energy cutoff radius. The Molecular Dynamics method is
the appropriate method to investigate off-lattice diffusion
processes, provided that diffusion is fast enough to be sim-
ulated by a Molecular Dynamics methods with time steps
of a few femtoseconds.

Figure 12: Vacancy (left) and SIA (right) absorption efficiency of a
straight edge dislocation in Ni as a function of the capture radius and
the ratio between the concentrations at the inner (Cin) and the outer
boundaries (Cout). The simulation temperature is set to 600 K.

Unless the annihilation/creation reaction at the disloca-
tion core is the limiting reaction, diffusion near the sink
should not determine the PD absorption efficiency. There-
fore, the PD absorption efficiency should mainly depend
on PD long-range diffusion far from the dislocation, and
should not depend on the choice of the capture radius and
the value of the PD concentration at the capture radius,
Cin = Cd(rc). We should therefore be able to obtain a
robust estimate of the absorption efficiency from a cal-
culation of the long-range diffusion in the diffusion zone
bounded by rc and rout.

We observe in Figs. 11 and 12 that, although PD ab-
sorption efficiencies strongly vary with the capture radius,
there is a range in PD concentration, Cin = Cd(rc), for
which PD absorption efficiencies are constant. We explain
it from the strongly non-linear increase of the PD concen-
trations between the capture radius and the outer radius,
as shown in Figs. 6 and 7. This increase is driven by the
overall reduction of the steady state gradient of chemi-
cal potential between rc and rout. Hence, whatever the
value of Cin at the capture radius, the sharp increase of
Cd insures a constant concentration gradient at a given
capture radius. Therefore, as a preliminary approach, we
may extract from the low-Cin values of ZI and ZV with
the capture radius, the asymptotic variation of ZI and ZV

at low capture radius down to the smallest possible dis-
tance between a PD and the dislocation, which is rc = bv.
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We use results obtained from rc = 7–9 bv as input data
of the fitting (i.e. the training set), and the ones obtained
from rc = 4–6 bv (5–6 bv in Al) as input data to check the
fitting (i.e. the validation set). We have checked that the
variation of ZV for a strain edge dislocation follows the
global tendency as described by Eq. (35), while ZI does
not follow this tendency. In order to choose a hypothesis
function able to describe both ZV and ZI for a straight dis-
location, this function has a similar form to the expression
of Eq. (35) but with two additional correction terms:

h(rc) = θ0 +
θ1

ln(rout/rc)
+ θ2 ln(rout/rc), (39)

with θ0, θ1, and θ2 the fitting parameters. We plot in
Fig. 11 the obtained fitting functions of ZV, ZI, and the
elastic bias. The above functions not only reproduce well
the training data set (rc = 7–9 bv), but their extrapola-
tion is in very good agreement with the validation data
set (rc = 4–6 bv in Fe, Ni and rc = 5–6 bv in Al), with
an error smaller than 1%. The elastic bias of an edge
dislocation thus corresponds to the extrapolated value of
the fitted function, at rc = bv. The resulting bias is found
to be larger than the standard ones calculated at a larger
capture radius. The same approach could be applied to
the computation of the elastic bias of a dislocation loop.
However, the hypothesis function for the dislocation loop
bias is more complex than that for the dislocation line
because it also depends on the ratio between the capture
radius and the loop radius, as well as on the ratio between
the loop radius and the outer radius. To fit such a com-
plex function (with at least two more parameters to be
fitted), more input data would be required. Such study
hence requires further investigations.

6. Conclusions

In this work, we calculate the vacancy and self-
interstitial absorption efficiency and the resulting bias fac-
tor of a straight dislocation and dislocation loop in Fe,
Ni and Al metals, by numerically solving the point-defect
diffusion equations including the elastodiffusion contribu-
tion. The effect of strain on the atomic volume contribu-
tion to the PD formation volume—which results from the
non-conservative nature of PDs—is accounted for, lead-
ing to a new separation of the PD diffusion driving force
between the PD and atom chemical potentials. Let us
emphasize again that the main point of this derivation is
to show that in a strain field, the point defect formation
energy and point defect diffusion are controlled by two
different driving forces, which is rather unusual as the dif-
fusion driving force is generally a thermodynamic driving
force. Here the difference comes from the diffusion mecha-
nism, i.e., point defect diffusion necessarily induces atomic
diffusion and the thermodynamic driving forces for atoms
and point defects are different. We highlight the strong
variation of the dislocation absorption efficiency together

with the resulting bias factor with the dislocation density,
the temperature, the orientation of the dislocation line,
and the capture radius. We summarize below the most
relevant results obtained from our simulation.

• Counter-intuitively, when the atomic volume contri-
bution to the vacancy formation is accounted for, va-
cancies are more likely to form in the compressive re-
gions, even though they tend to diffuse toward the
tensile region of the dislocation.

• The elastodiffusion behavior is sensitive to the dislo-
cation orientation. The difference in dislocation ori-
entation leads to a spectacular modification of the
anisotropic PD trajectories. This should lead to vari-
ations of the radiation induced segregation with the
dislocation orientation in alloys [51]. The investiga-
tion of the solute redistribution in the vicinity of sinks
could provide a confirmation of the present result.

• To be valid, the linear elasticity approximation re-
quires the capture radius to be above a certain value.
An artificial spatial division of the simulation region
using such a cut-off radius results in a strongly cap-
ture radius-dependent absorption efficiency and dislo-
cation bias. The choice of its value should be chosen
in such a way that the absorption efficiency of point
defects leads to the measured climbing rate of the dis-
location. As long as we do not have access to this
property, if we assume that long range diffusion fixes
PD absorption efficiency, we propose an alternative
approach, which consists in relying on the variation
of the absorption efficiency with the capture radius,
and to extrapolate its value at the dislocation core
radius.

Appendix A. Elastic contribution to point-defect
formation

In this appendix, we derive the point-defect formation
energy at constant volume. We choose to consider the va-
cancy formation as an example. The self-interstitial atom
formation energy can be derived in the same way. We start
from system 1 with no vacancy and N atoms A. Hence
the volume tensor of the strain-free system is V 1 = NΩat,
where Ωat = Ωat I/3 is the atomic volume tensor and I
is the identity tensor. By this definition, the scalar form
of the volume of system 1 is V1 = Tr(V 1) = NΩat. We
create a vacancy by extracting an atom from the bulk and
deposing it at the surface, leading to system 2. System
2 is made of N atoms and 1 vacancy, and thereby has a
volume tensor of V 2 = NΩat + ΩV

F , where ΩV
F = Ωat + ΩV

R

is the so-called formation volume of vacancy, and ΩV
R is

the relaxation volume [i.e., derived from Eq. (15)]. For the
sake of simplicity, we assume that the vacancy relaxation
volume to be isotropic (which is true in Fe, Ni, and Al)
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and ΩV
R = ΩV

R I/3. In this case, the scalar volume of sys-
tem 2 is V2 = Tr(V 2) = NΩat + ΩV

F . We apply to system
2, the strain ε. In order to compute the vacancy formation
energy at fixed volume, we apply a strain ε′ to system 1
such that there is no change of volume upon the formation
of vacancy under the applied strain ε:

V1 (I + ε′) = V2 (I + ε). (A.1)

Hence,

ε′ =
V2 − V1

V1
I +

V2

V1
ε, (A.2)

=
ΩV

F

V1
I +

(
1 +

ΩV
F

V1

)
ε. (A.3)

The energy of systems 1 and 2 are given by

E1 = NEcoh +
V1

2
Cijkl ε

′
ij ε
′
kl, (A.4)

E2 = NEcoh + EF
V,0 +

V2

2
Cijkl εij εkl, (A.5)

where Ecoh is the cohesive energy of A, EF
V,0 corresponds

to the vacancy formation energy in a strain-free system. C
is the elastic constant fourth-rank tensor. By definition,
the vacancy formation energy is equal to EF

V = E2 − E1.
Hence, we obtain

EF
V = EF

V,0 +
V2

2
Cijkl εij εkl −

V1

2
Cijkl ε

′
ij ε
′
kl, (A.6)

By relying on Eq. (A.3), we express ε′ in terms of ε and
ratio ΩV

F/V1. Therefore, we get

EF
V = + EF

V,0 +
V2

2
Cijkl εij εkl εij

− V1

2

(
ΩV

F

V1

)2

Cijkl Iij Ikl

− V1

2

(
ΩV

F

V1

)(
1 +

ΩV
F

V1

)
Cijkl Iij εkl

− V1

2

(
ΩV

F

V1

)(
1 +

ΩV
F

V1

)
Cijkl εij Ikl

− V1

2

(
1 +

ΩV
F

V1

)2

Cijkl εij εkl. (A.7)

Note that, in the thermodynamic limit, ΩV
F/V1 tends to 0.

At first order in ε and ΩV
F/V1, Eq. (A.7) reduces to

EF
V = EF

V,0 − ΩV
F Ciiklεkl, (A.8)

= EF
V,0 − Ωat Ciiklεkl − P

sta,V
kl εkl, (A.9)

where P sta,V is the elastic dipole of vacancy V at the stable
position and P sta,V

kl = ΩV
F

∑
i Ciikl. Eq. (A.9) is consistent

with Eqs. (6) and (14).

Appendix B. Validation of the simulation ap-
proach

In this appendix, we validate our numerical approach
by comparing our numerical results to available reference
results of the point-defect absorption efficiencies and the
bias factor. Analytical expressions of the point-defect ab-
sorption efficiencies of a straight edge dislocation are given
by Rauh et al. [21] by an exact solution of the diffusion
equation. However, there is no exact solution of the dis-
location loop bias. An analytical law is provided by Jour-
dan et al. [31] by fitting the results obtained from finite-
element calculation of the elastic bias of an edge dislo-
cation loop. Calculations are performed with the follow-
ing approximations: (i) the material is perfectly isotropic
(C44 = (C11−C12)/2); (ii) PDs are perfectly spherical and
isotropic (spherical inclusion approximation); (iii) PDs re-
laxation energy (elastic dipole contribution) is considered
only; (iv) elasto-diffusion is neglected. In order to as-
sess our numerical approach, we solve the diffusion equa-
tion using the same approximations and boundary con-
ditions. We set the parameters to the following values :
C11 = 150 GPa, C12 = 50 GPa, rC = 2 bv with the norm
of the Burgers vector bv = 0.25 nm. The elastic dipole
tensors are set to 20 I (in eV) for SIAs and −3 I (in eV)
for vacancies, with I the identity tensor. The comparison
between our results and the reference ones are plotted in
Figs. B.13 and B.14. Our numerical solutions are in ex-
cellent agreement with the reference results (the relative
difference is within ±1% with the reference solutions from
Ref. [21] for the straight dislocation and ±4% for the dis-
location loop with the fitted law in Ref. [31]).
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[48] B. Bakó, E. Clouet, L. M. Dupuy, M. Blétry, Dislo-
cation dynamics simulations with climb: kinetics of
dislocation loop coarsening controlled by bulk diffu-
sion, Philosophical Magazine 91 (23) (2011) 3173–3191.
doi:10.1080/14786435.2011.573815.
URL http://www.tandfonline.com/doi/abs/10.1080/

14786435.2011.573815

[49] D. Mordehai, G. Martin, Enhanced annealing of the dislocation
network under irradiation, Physical Review B 84 (1) (2011)
014115. doi:10.1103/PhysRevB.84.014115.
URL https://link.aps.org/doi/10.1103/PhysRevB.84.

014115

[50] M. Kabir, T. T. Lau, D. Rodney, S. Yip, K. J. Van Vliet,
Predicting Dislocation Climb and Creep from Explicit Atom-
istic Details, Physical Review Letters 105 (9) (2010) 095501.
doi:10.1103/PhysRevLett.105.095501.
URL https://link.aps.org/doi/10.1103/PhysRevLett.105.

095501

[51] M. Nastar, F. Soisson, Radiation-induced segregation, Vol. 1,
Elsevier Inc., 2020. doi:10.1016/B978-0-12-803581-8.

00668-8.
URL http://dx.doi.org/10.1016/B978-0-12-803581-8.

00668-8

18

http://www.tandfonline.com/doi/abs/10.1080/14786430801992850
http://www.tandfonline.com/doi/abs/10.1080/14786430801992850
http://www.tandfonline.com/doi/abs/10.1080/14786430801992850
https://doi.org/10.1080/14786430801992850
http://www.tandfonline.com/doi/abs/10.1080/14786430801992850
http://www.tandfonline.com/doi/abs/10.1080/14786430801992850
http://www.tandfonline.com/doi/abs/10.1080/14786435.2011.573815
http://www.tandfonline.com/doi/abs/10.1080/14786435.2011.573815
http://www.tandfonline.com/doi/abs/10.1080/14786435.2011.573815
http://www.tandfonline.com/doi/abs/10.1080/14786435.2011.573815
https://doi.org/10.1080/14786435.2011.573815
http://www.tandfonline.com/doi/abs/10.1080/14786435.2011.573815
http://www.tandfonline.com/doi/abs/10.1080/14786435.2011.573815
https://link.aps.org/doi/10.1103/PhysRevB.84.014115
https://link.aps.org/doi/10.1103/PhysRevB.84.014115
https://doi.org/10.1103/PhysRevB.84.014115
https://link.aps.org/doi/10.1103/PhysRevB.84.014115
https://link.aps.org/doi/10.1103/PhysRevB.84.014115
https://link.aps.org/doi/10.1103/PhysRevLett.105.095501
https://link.aps.org/doi/10.1103/PhysRevLett.105.095501
https://doi.org/10.1103/PhysRevLett.105.095501
https://link.aps.org/doi/10.1103/PhysRevLett.105.095501
https://link.aps.org/doi/10.1103/PhysRevLett.105.095501
http://dx.doi.org/10.1016/B978-0-12-803581-8.00668-8
https://doi.org/10.1016/B978-0-12-803581-8.00668-8
https://doi.org/10.1016/B978-0-12-803581-8.00668-8
http://dx.doi.org/10.1016/B978-0-12-803581-8.00668-8
http://dx.doi.org/10.1016/B978-0-12-803581-8.00668-8

	Introduction
	Point-defect diffusion model
	Thermodynamics of diffusion including elasticity
	Elasto-diffusion

	Sink bias calculation method
	Straight edge dislocation
	Edge dislocation loop
	Orientation of the edge dislocation

	Simulation results
	Effect of dislocation density
	Effect of temperature
	Effect of the orientation of the dislocation

	What choice of capture radius?
	Conclusions 
	Elastic contribution to point-defect formation
	Validation of the simulation approach

