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Micro-drone ego-velocity and height estimation
in GPS-denied environments using a FMCW

MIMO Radar
Jeremy Barra1,3, Thierry Creuzet1, Suzanne Lesecq2, Gerard Scorletti3, Eric Blanco3, Mykhailo Zarudniev2

Abstract— In the context of autonomous navigation, the vehicle
trajectory estimation and the detection of surrounding obstacles
are two critical functionalities that must be robust to difficult
environmental conditions (e.g. fog, dust, snow) and the unavail-
ability of infrastructure signals (e.g. GPS). With the advantage of
remaining operable in low-visibility conditions, radar sensors are
good candidates to detect obstacles in an autonomous navigation
context. In this paper, we show that radars can also be successfully
used for real-time trajectory estimation. We address the case of an
autonomous micro-drone intended for the exploration of piping net-
works and embedding a Frequency Modulated Continuous Waves
(FMCW) MIMO radar. We show that using a beamforming technique
to virtually steer the radar field-of-view, we can simultaneously
estimate the horizontal and vertical velocity of the drone as well
as its height. These results are first validated through simulations
based on experimental drone flight data and a radar simulator. Then,
using an Infineon 77GHz FMCW radar, we show through real-world
experiments the high performance attainable with our solution.

Index Terms— MIMO radar, FMCW, ego-velocity estimation, GPS-
denied, Doppler matrix, autonomous navigation.

I. INTRODUCTION

The purpose of an autonomous navigation system is to allow
mobile agents such as robots [1], vehicles [2], people [3],
[4] to navigate to their objective without colliding into ob-
stacles. This requires several functionalities, such as obstacles
detection, trajectory estimation, control. In this article, we
focus on the autonomous navigation of mobile agents in an
unknown environment and without any infrastructure signals
(e.g. GPS). This corresponds for example to robots navigating
underground for mapping [5] or leak detection [6]. More
specifically, we consider the use-case of the mapping of piping
networks using a small unmanned aerial vehicle (UAV) such
as the BitCraze Crazyflie [7]. This particularly small micro-
drone (7cm between rotors) is well-suited to the navigation
in confined spaces. However, due to its limited payload and
computational capacity, the autonomous navigation software
and sensors must be as light as possible in terms of weight
and computations in order to be embedded on the micro-drone
and to maximize battery life.

In an unknown environment denied from any infrastructure
signals, the only measurements available to the autonomous
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agent are the ones provided by its embedded sensors. These
sensors must provide information needed in order to estimate
the agent’s trajectory and detect surrounding obstacles. These
sensors can be of two kinds: proprioceptive sensors such as
inertial sensors and exteroceptive sensors such as cameras,
sonars, lidars, radars. While proprioceptive sensors measure
internal parameters of the agent’s state (e.g. angular velocity),
exteroceptive sensors get information on the agent’s environ-
ment (e.g. distance to an obstacle). A common approach in an
infrastructure signal denied context is to realize the fusion of
the information from multiple sensors in order to estimate the
agent’s trajectory [8].

In the literature on drone navigation, there are numerous
successful solutions based on the fusion of inertial sensors
with exteroceptive sensors based on the visible or infrared
spectra such as monocular cameras [9], [10], stereo cameras
[11], [12], or lidars [13]. This comes however with some
disadvantages, such as the computational cost for extracting
features with cameras requiring the images to be processed
off-board on a computer station or on-board using a dedi-
cated integrated circuit [9], [14], and the obstruction of the
sensors in case of difficult environmental conditions (dust,
fog, varying ambient light). These solutions are thus not
adapted to our use-case of the pipings mapping with a micro-
drone, which requires a low computational cost in order to
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maximize battery life and the ability to work in a potentially
visually-obstructed environment. Another type of sensor that
has recently gained attention in the literature on autonomous
navigation is radar, because of its high accuracy and robustness
to visually degraded conditions [15]. The main disadvantages
of radar are its high power consumption and bulkiness which
makes it difficult to embark on a micro-drone. However, due to
recent technological advances, compact radars commercially
available with a low power consumption (about 1W [16], [17])
exist and could be integrated on small UAVs [18].

In this article, we consider the use of Frequency-Modulated
Continuous Waves (FMCW) radar, allowing to simultaneously
measure the distance and velocity of targets. This type of
radar is particularly interesting for autonomous navigation, as
it can provide a lot of information on the UAV environment
in order to detect and track obstacles [19]. Here, we show that
additionally from this obstacle detection functionality, we can
also use this sensor to estimate the ego-velocity and distance-
to-ground of the UAV.

The contributions of this paper are twofold. First, we show
that a Single Input Single Output (SISO) FMCW radar can
be used to estimate the horizontal translation velocity of the
drone, assuming that its height and attitude are known (e.g.
measured respectively by a distance-to-ground sensor and an
inertial sensors unit). Then, we show that if instead of a SISO
radar, we have a Multi Input Multi Output (MIMO) radar,
we can get rid of the hypothesis of the known height, and
thus of the distance-to-ground sensor, and extend the velocity
estimation to the other motion dimensions. We use advanced
digital beamforming techniques to virtually steer the radar’s
field-of-view (FOV) to particular areas of the environment
in order to simultaneously estimate the drone velocity and
height, which are both critical parameters of any autonomous
navigation system.

The paper is organised as follows. We first give in section
II some background about radar sensors measurements and
the beamforming technique for MIMO radars that will be
used later on. Then, we formalize the problem of velocity
estimation with a radar and review the existing solutions in
the radar literature in section III. In section IV, we present
our contribution in two subsections: the first one corresponds
to the algorithm for estimating the UAV horizontal velocity
using a SISO radar assuming its attitude and height are
known, then the second subsection presents an extension of
this work to include the height and the vertical velocity
estimation using a MIMO radar. In section V, we validate our
estimation algorithm using experimental data gathered using
a micro-drone BitCraze Crazyflie and a proprietary FMCW
radar simulator. Finally, in section VI, we perform real-world
experiments using an Infineon 77GHz MIMO FMCW radar
to validate the ego-velocity and height estimation algorithm.

II. BACKGROUND ON RADAR SIGNAL PROCESSING

We first introduce some basic ideas about radar sensors that
will be used later on.

A. Radar measurements

FMCW radars can be used to measure simultaneously the
distance and the velocity of obstacles. The distance informa-
tion can be obtained by measuring the round trip time τ of an
electromagnetic wave emitted by the radar and reflected by an
obstacle. Since the celerity of the wave is known, the distance
to the obstacle is deduced from the formula:

R =
c · τ
2

(1)

where c = 3 · 108m · s−1 is the celerity of an electromagnetic
wave, τ is the round-trip time, R is the distance to the obstacle.

The measurement of an obstacle velocity is based on the
Doppler effect. It gives a relation between the frequency f0
of a wave emitted by a radar and the frequency f of the
wave reflected by a moving obstacle according to their relative
velocity v cos(θ) [20]:

∆f = f − f0 =
2v cos(θ)

c
f0 (2)

where ∆f is called Doppler shift, v is the obstacle velocity
magnitude and θ is the angle between the obstacle velocity
direction and the radar line of sight.

The algorithm that we will present in the following makes
use of both distance and velocity measurements to estimate
vehicle ego-velocity. In our work, these measurements are pro-
vided by a Multi-Input Multi-Output (MIMO) FMCW radar
which further allows us to use the beamforming techniques
presented next.

B. MIMO Beamforming

MIMO radars employ an antenna array of transceivers
and receiver which makes it possible to use beamforming to
digitally orient the radar’s line of sight and field-of-view in
a specific area of its environment. In figure 1, we represent
a simple MIMO1 radar with a linear array consisting in one
transmitting antenna (TX) and two receiving antennas (RX1
and RX2). The wave emitted by the TX antenna will be
reflected by the ground and returned to the RX antennas with
an incident angle θ. Because of the distance between the RX
antennas, the signal received by the RX2 antenna must travel
an additional distance d sin(θ) compared to the one received
on the RX1 antenna. This implies a phase shift between the
two received signals which is ϕd(θ) =

2π
λ d sin(θ). For a linear

antenna array consisting of NTX transmitting antennas and
NRX receiving antennas, there are n = NTX ×NRX virtual
channels sk(t) with k = 1, .., n for which the relative phase
shift is [ϕd(θ); 2ϕd(θ); ... ;nϕd(θ)].

Fig. 1. MIMO radar with 1 transmitting and 2 receiving antennas

1More precisely, SIMO in this case.
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We call beamforming the fact to virtually orient the line of
sight of the radar in order to obtain a signal sθ(t) correspond-
ing to the signal received by the radar for an incident angle θ.
To do this, we sum the sk(t) signals received on each channel
of the radar with a correction term pk(θ) corresponding to the
phase shift induced by the angle θ [23]:

sθ(t) =

n∑
k=1

sk(t)pk(θ) =

n∑
k=1

sk(t)e
j(k−1) 2π

λ d sin(θ) (3)

where:

pk(θ) = ej(k−1) 2πλ d sin(θ) = ej(k−1)ϕd(θ), k ∈ [1 . . . n] (4)

We will apply this principle in the following to measure si-
multaneously the height and the velocity of an UAV according
to the axes x⃗ and z⃗ using the signals received on the channels
of a single MIMO radar.

III. PROBLEM STATEMENT AND RELATED WORK

Consider a radar fixed on an UAV, itself at a height h and
a velocity v with respect to the ground along the x⃗ axis. A
radar mounted on the drone has a FOV whose line of sight
intersects the ground, assumed horizontal, at a distance R and
with an angle θ0 as represented on figure 2.

Fig. 2. Configuration UAV-mounted radar and corresponding Doppler
spectrum

The radar emits a wave of carrier frequency f0 which is
reflected by the random asperities of the ground. The signal
received by the radar has a frequency f which is related to
the velocity v of the UAV by equation (2). The received
signal is then demodulated to form a new signal called the
beat signal, noted sb, whose carrier frequency corresponds to
the Doppler shift ∆f = f − f0, [24]–[26]. The objective
of a ground velocity measurement algorithm is to correctly
determine the frequency ∆f from the signal sb. This can
be done by calculating the power spectral density Ssb(f) of
the signal sb and by detecting its maximum which should
be located at ∆f . However, the problem is that this power
spectral density Ssb(f) does not only contain a peak at ∆f ,
but is spread out in frequencies. This is due both to the noise
contained in the sb(t) signal and to the large number of echos
due to the antenna aperture angle noted γ (figure 2).

Related contributions on velocity estimation from radar
measurements are focused on the use of continuous waves
(CW) radars, which do not provide a distance measurement.
These works from the literature can be broken down into two
types of approaches. The first one consists in determining ∆f
under the assumption that Ssb(f) follows a Gaussian distri-
bution of expectation ∆f and that the power will therefore
be maximal at this frequency [20], [21], [27]. However, as

the signal is noisy, extracting directly the frequency ∆f from
the spectrum may not be very accurate [27]. The second
approach consists in comparing Ssb(f) to several power
spectral densities pre-computed as a function of the antenna
aperture γ and for several velocities v, in order to search
for the best correlation [28], [29]. This method gives better
results with respect to the previous one, but its computational
cost is higher [21]. There are other related works based on
FMCW radar such as [31] and [30]. The approach from [31]
consists in averaging the values of ∆f obtained along the radar
field-of-view using a threshold, which can easily fail when
there is a low signal over noise ratio. The authors from [30]
propose an approach based on an omnidirectional radar and
synthetic aperture array (SAR) method which performs well
both in simulation and experimentally, although it requires
a significant amount of computations which would make it
difficult to embark on a micro-UAV processor such as the one
of the BitCraze Crazyflie.

Our approach is related to the work of [28] in the sense
that we exploit the antenna aperture γ to calculate the velocity
of the UAV. However, rather than calculating intercorrelations
which is computationally costly, our approach is based on the
slicing of the radar FOV into a set of rays from which we
can obtain several redundant measurements of v simultane-
ously, and then average them to smooth errors related to the
measurement noise.

IV. EGO-VELOCITY ESTIMATION ALGORITHM

In this section, we present our algorithm for estimating the
horizontal velocity of an UAV equipped with a radar as shown
on figure 2. We first present a solution for the case where
the radar height h is known. Then, we present a solution to
estimate simultaneously v and h. In both cases, we consider
that the geometric parameter θ0, the radar angle of sight, is
known. Indeed, we can consider this hypothesis valid since
we know the angle with which the radar is fixed on the UAV
by construction and since the angle of inclination of the UAV
itself can be obtained with its inertial measurement unit (IMU).
Under the hypothesis of a horizontal ground, the radar angle
of sight θ0 is thus the sum of these two angles.

A. Horizontal velocity estimation with known radar height

We first consider a situation of a known radar height h. This
corresponds for example to the case in which a distance-to-
ground sensor is mounted on the UAV. Note that the algorithm
from this subsection works both for SISO and MIMO FMCW
radars, hence we will not specify the radar type in the
following.

As stated previously, we use a radar which has a FOV with
a beam angle noted γ. The radar outputs a matrix M(∆f,R)
which gives the Doppler shift ∆f perceived in the FOV as a
function of the radial distance R between the radar and the
ground. We show in figure 3 the typical shape of a matrix
M(∆f,R) obtained when the radar is translating horizontally
with respect to the ground, with the Doppler shift ∆f of the
received signal showed on the vertical axis, the radial distance
R on the horizontal axis and the power on the third component
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(in color). This matrix M(∆f,R) will be used to estimate the
velocity v as explained below.

Fig. 3. Example M(∆f,R) matrix from FMCW radar measurement

1) Slicing the FOV: As shown on the upper part of figure
3, we slice the FOV of the radar into a set of N rays which
intersect the ground with an angle θRi

∈ [θ0 − γ
2 , θ0 +

γ
2 ] at

a distance Ri given by:

Ri =
h

sin(θRi
)
, i = {1, ..., N} (5)

From (2), we can express the Doppler shift ∆fRi perceived
on each ray of length Ri as:

∆fRi
=

2v cos(θRi
)

c
f0 (6)

After selecting N rays of length Ri, our ego-vehicle velocity
estimation algorithm uses the output of the radar M(∆f,R)
combined with the equation (6) to obtain N measurements of
v by extracting N values of ∆fRi

as explained hereafter.
2) Extracting ∆fRi

from M(∆f,R): As we can see on figure
2, the Doppler frequencies are spread along the vertical axis
which implies that we do not obtain a unique value of ∆fRi

for a given ray length Ri. The reason for this spread is the
opening angle γ of the FOV which is represented on figure 4
in the (O; x⃗; y⃗) plane. Indeed, we observe in figure 4 that
the velocity vector v⃗ is projected along several directions for
the same distance Ri. At point A, the norm of the projected
velocity vector reaches a maximum and corresponds to the
value ∆fRi

given by the equation (6), while the norm of
the velocity projected at point B will be lower. The value
∆fRi interesting us is the one located at point A, i.e. the one
located on the upper contour of the power spectrum at distance
Ri, noted SRi

(f). To obtain ∆fRi
, we need to calculate the

derivative of SRi
(f) with respect to f and to take the index

of the maximum of the result, a basic technique for contour
detection which is sufficient here [32].

3) Final algorithm: The complete algorithm for estimating
the horizontal velocity of the radar with respect to ground is
given in algorithm 1. Firstly, for i = {1, ..., N}, knowing the
FOV aperture angle γ and the inclination angle θ0 of the radar,

Fig. 4. Bird’s eye view of the radar’s FOV

we compute the incidence angle θRi
of the ray i. Secondly,

knowing h, we compute its length Ri. Thirdly, we detect the
contour of the Doppler spectrum at the distance Ri to obtain
∆fRi , and then we obtain the velocity measurement along ray
i noted vRi using equation (6). Finally, we average the vRi

from each ray i in order to smooth measurement noise and to
obtain the final velocity v estimation. More advanced fusion
methods, such as least-squares approximation, could be used
in order to enhance the noise smoothing process.

Algorithm 1 : Horizontal ground velocity estimation

for i ∈ {1, ..., N} do
θRi

= θ0 + 2i−N
2N .γ ▷ Compute angle between ground and ray i

Ri =
h

sin(θRi
)

▷ Find associated ray length

∆fRi
= arg(maxf (

dSRi
(f)

df )) ▷ Detect Doppler spectrum contour

vRi
=

c∆fRi
2f0 cos(θRi

)
▷ Find associated radial velocity

end for
v = average (vRi

) for i ∈ {1, ...N} ▷ Final velocity estimation

Note that the previous algorithm is based on the assumption
that the ground is flat. If this does not hold true, then the
velocity obtained from the algorithm will be biased, because
the Doppler shift ∆f will be evaluated at the wrong range
Ri. To mitigate this error on the ray length, θ0 should be
high enough (we used θ0 = 45◦) so small angle variations of
the ground have a limited effect in equation 5. Moreover, the
fact that we average the velocities obtained from virtual rays
intersecting the ground at different places also helps to reduce
the effects of local ground angle variations.

B. Both horizontal velocity and radar height estimation
In the previous section, we presented an algorithm to

estimate the horizontal velocity of an UAV equipped with a
radar along x⃗, assuming that the radar height h is known. Here,
we extend the previous work by relying on a MIMO FMCW
radar to get free from the assumption that h is known. Indeed,
we show that it is possible to estimate with a single MIMO
radar both the velocity along x⃗ and the height h using the
beamforming technique. Note, that we will also show that the
same idea could be used to determine the vertical velocity
along the axis z⃗. This contribution is of particular interest in
the case of an UAV application where we wish to limit the
number of sensors, and therefore we wish to avoid the need
for a dedicated distance-to-ground sensor.

The outputs of a MIMO radar at each time step are n
Doppler matrices Mk(∆f,R) with k = {1, ..., n}, correspond-
ing to the signal received on the n virtual channels associated
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with a pair of TX and RX antennas, as explained in subsection
II-B. Using these n matrices and the beamforming technique,
we can apply equation (3) with sk = Mk(∆f,R) to obtain
a single matrix Mθ(∆f,R) which corresponds to the radar
measurement along the angular line of sight θ.

To estimate the radar height h and horizontal velocity v,
we need 2 virtual beams as shown on figure 5. One beam is
virtually oriented to the vertical to the ground, and another
beam is oriented to an angle θ0 with respect to the ground.
Let θUAV and θmount be respectively the inclination angle of
the UAV given by its inertial unit and the angle with which
the radar is fixed on the UAV by construction. The inclination
angle of the radar line of sight θLOS is then

θLOS = θUAV + θmount. (7)

Note that when the UAV is hovering stationary as on figure 5,
we have θUAV = 0◦ and the radar mount on the UAV is such
that θLOS = θ0. The estimation of h and v is then explained
below.

Fig. 5. Virtual beam orientations for simultaneous measurement of
height and velocity. Example of resulting Doppler matrices

1) Height estimation: The first beam is oriented vertically to
have an angle of the radar line of sight of 90◦ with the ground.
To counter the motion of the UAV and the inclination angle
of the radar mount, we obtain the vertical beam by applying a
phase shift of 90◦−θLOS to the n virtual channels of the radar.
This gives a matrix M(90◦−θLOS)(∆f,R) shown at the bottom
left corner of figure 5. Then, the estimation of h consists in
extracting the index of the maximum power value of matrix
M(90◦−θLOS)(∆f,R) at ∆f = 0Hz.

Note that it is also possible to estimate vertical velocity
along z⃗ at this point, by detecting the contour of the Doppler
spectrum SR=h for the range R = h to find ∆fR=h which
gives the vertical velocity vz⃗ = c

2.f0
.∆fR=h.

2) Velocity estimation: The horizontal velocity v can be es-
timated similarly as in subsection IV, through the virtual beam
having an angle θ0 between the line of sight of the radar and
ground. To this end, we obtain this virtual beam by applying a

phase shift of −θUAV to the n virtual channels of the radar to
have θLOS = θ0. This gives a matrix M−θUAV

(∆f,R) shown
on the bottom right corner of figure 5, which is then used to
estimate horizontal velocity with the algorithm 1 of subsection
IV. These contributions will be illustrated below by simulation
results and real-world experiments.

V. SIMULATIONS

In this section, we show a validation of our approach
based on a simulation framework combining both real-world
measurements and a dedicated radar simulator.

A. Simulation framework
Our objective is to build a simulation framework to validate

our algorithms in an environment including both real-world
and simulated data. The simulation environment is a complete
radar system simulator which has already been tested and used
to design new radar systems and signal processing algorithms,
see e.g. [33]. The internal functional blocks of the radar and
the interaction of the emitted waves with the external environ-
ment are modeled mathematically. To initialize the simulator,
the characteristics of the radar must be specified including
bandwidth B, carrier frequency f0 and the number of antennas.
Our simulation protocol then includes the following steps.

Step 1: The first step consists in conducting real-world tests
flight with an UAV Crazyflie from BitCraze [7] equipped with
an inertial unit able to estimate the drone’s attitude and a
V icon motion capture system recording the drone’s altitude
and velocity in 3D.

Step 2: We build a simulation model of an UAV equipped
with two MIMO FMCW radars shown on figure 6, to be able,
later on, to estimate the drone’s altitude and velocity in 3D
using the proposed radar signal processing algorithms. The
attitude, altitude and 3D velocity parameters of this model are
those obtained in step 1.

Step 3: This model is injected in our proprietary radar sim-
ulation environment to obtain simulated radar data, emulating
those that would have been recorded had these radars been
mounted on the drone. The output of the simulator are the n
virtual channels Doppler matrices from each radar.

Step 4: Our velocity and height estimation algorithms are
applied to the simulated Doppler matrices and the resulting
estimates are compared to those recorded in step 1.

B. Simulation parameters
We consider the use of two radars on the drone, as repre-

sented on figure 6. Radar 1 is used to simultaneously estimate
velocity along the axes x⃗ and z⃗ as well as the elevation h by
applying the beamforming principle to generate two virtual
beams, as explained in subsection IV-B. Radar 2 is used to
estimate the velocity along y⃗, again with the beamforming
technique which allows to counteract the varying attitude of
the UAV to generate an oblique virtual beam.

We provide the simulator with the specifications of the radar
which will be used in the real-world experiments of section
VI: f0 = 77GHz, B = 4GHz, 2TX, 4RX, γ = 60◦, and
which correspond to the radar [34]. The simulator generates
the n = 2 × 4 = 8 Doppler matrices corresponding to the 8
virtual channels of each radar at a rate of 500Hz.
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Fig. 6. Configuration of virtually oriented radar beams. The figure on
the left shows the two virtual beams generated by Radar 1

Fig. 7. Estimation of h and ∆fRi
on Doppler matrices from radar 1

C. Simulation results
We show on figure 7 the Doppler matrices obtained at an

arbitrary simulation time step after the beamforming with radar
1. The red circles on the matrix represent the contour of the
spectrum, i.e. the ∆fRi

detected for each Ri ray. The number
of rays Ri to consider is set to N = 20 which is sufficient
considering the range resolution of the radar and the maximum
distance R of the Doppler matrix fixed at 4m. Indeed, for the
maximum value of h which is 1.3m here, some rays from
the field of view are not assigned because they correspond to
distances R which exceed the maximum distance. A mech-
anism of exclusion of measurements associated with these
unassigned rays is provided in addition to algorithm 1 in order
not to bias the final velocity estimate. Figure 8 shows that
the resulting estimated velocity and height obtained using the
simulated radar data coincide well with the reference signals
obtained from the motion capture system.

VI. EXPERIMENTAL RESULTS

We now perform experiments to validate the velocity and
height estimation algorithm with a real radar. It was not pos-
sible to directly mount the radar on the Crazyflie micro-drone
because of the complexity of powering and interfacing the
radar on such a small platform. Experiments were performed
with an automotive grade millimeter-wave MIMO FMCW
radar [34] with a carrier frequency of 77GHz (2TX, 4RX).
The radar is interfaced with a computer through its debugging
environment in order to record the Doppler matrices from the 8

Fig. 8. Estimated velocity and height compared to reference

virtual channels to perform velocity and height estimation off-
line. We connect to an Arduino board an IMU Bosch BNO055
which estimates its attitude using a Madgwick filter [35]. The
IMU axes y⃗IMU and z⃗IMU coincide with the radar antenna
plane, and x⃗IMU is aligned with the line of sight of the radar,
so the attitude returned by the IMU corresponds to the one of
the radar. The data logged to the computer through the Arduino
board for the IMU and through the debugging interface for the
radar are then recorded simultaneously at a frequency of 10Hz,
which is the maximum that can be obtained through the radar
debugging environment interface not intended for this purpose.
The sensors are shown on the right-hand side of figure 9.

Fig. 9. Experimental setup including MIMO radar and IMU

During the experiments, a person is walking while holding
the radar in front of herself, keeping it in a relatively stable
position, and following a straight line of 30m identified by
a mark on the ground. The time-stamped position of the
person is recorded via a smartphone GPS with the ©Android
©GeoTracker application, and the velocity is obtained be
deriving these position points. Note that the IMU and radar
measurements are recorded at the same time on the computer
and are therefore synchronized, while the GPS data is recorded
on the smartphone and is desynchronized from the sensor data.
It will be possible to compare the sensors data with the GPS
data by synchronizing them using a detection of the rising edge
of the velocity and the timestamps. However, this comparison
will be only visual because of this temporal uncertainty and
the fact that the GPS points are recorded by the smartphone
very sporadically over time.

We set up 3 types of experiments to validate the velocity and
height radar-based estimations. Each experiment starts with an
initial period lasting from 15 to 20 seconds in which there is
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no movement. Then the person walks at constant velocity and
holding the radar at a constant height, with a sudden change in
velocity in experiment B and a sudden change in elevation in
experiment C. In addition to the visual validation through su-
perimposition of the velocity estimation with the GPS velocity
measurement, the horizontal displacement velocity obtained
with the radar is integrated over time to compare the distance
obtained at the end of the experiment with the theoretical
distance of 30m. We observe the results of experiments A,
B and C respectively on figures 10, 11, 12.

Fig. 10. Experiment A: Constant velocity, h ≈ 1.2m

TABLE I
FINAL DISTANCE DURING EXPERIMENT A

Test 1 2 3 4 5
Final 31.92 30.46 29.36 28.64 29.30
distance (m)
Test 6 7 8 9 10
Final 29.59 28.76 30.07 29.62 28.29
distance (m)

Average m̄(m) Standard dev. σ(m)
29.61 1.01

Fig. 11. Experiment B: Low then high velocity after 15m, h ≈ 1.2m

From these results, we can make the following observations.
First, concerning the velocity estimation, figure 10 shows a
good match with the GPS measurements. One can also observe
on figure 11 that the change of pace at 15m is well perceived
by the radar velocity estimation algorithm.

On figure 12, we note that the velocity measurement is
noisier with h ≈ 1, 8m than when h ≈ 1, 2m. This can be

Fig. 12. Experiment C: Constant velocity, h ≈ 1.8m then h ≈ 1.2m
after 15m

explained by the fact that part of the field of view of the radar
is not exploited in the first case. Indeed, because of the limited
communication interface bandwidth in our experimental setup,
the Doppler arrays are transmitted to the computer for radial
distances only up to 4m. However, when the radar is held
at an elevation of h = 2m and for an angle θ0 of 30◦,
we have R = 2/sin(π6 ) = 4m. Thus, half of the field of
view corresponding to θRi

∈ [θ0; θ0 +
γ
2 ] is not used by the

algorithm, which causes a noisier final velocity estimation. We
can note that this height limitation would be problematic for an
UAV application requiring the drone to fly at altitudes higher
than 2m. However, this is due to our scarce experimental setup
ressources, and a dedicated radar-UAV interface allowing the
transmission of Doppler arrays for radial distances higher than
4m would solve the problem.

From the point of view of the distance traveled, we can
observe on the middle sub-figure of figures 10, 11, 12, the
one obtained by integrating the velocity measurement of the
radar corresponds well to the theoretical distance of 30m,
for all three experiments. To verify this, 10 experiments of
type A were performed. We gather the final distance values
obtained on these 10 experiments in Table I. The values
obtained are close to the expected 30m, with an average
distance of 29.61m and a standard deviation of 1.01m. If
we also consider the fact that there is an uncertainty due to
the experimental set-up concerning the exact start and finish
locations, we can conclude that the velocity measurement via
the radar is accurate.

Concerning the elevation estimation, we can see on figures
10 and 11 that we obtain in average 1.3m, which was the
height at which we tried to maintain the radar while walking.
On the figure 12, the height difference is well marked and we
can observe the first value of 1.8m, then the second at 1.3m
corresponding correctly to the experiment C.

Finally, all three figures 10, 11 and 12 show an important
benefit of radar-based speed estimation which is the absence of
bias in the speed estimation, and more precisely the good de-
tection of immobile phases such as before and after the person
is moving. This contrasts well with the speed which would be
obtained through the time integration of accelerometer data,
which would be increasingly biased due to the accumulation
of erroneous data such as noise.
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VII. CONCLUSIONS

This work presents an algorithm to estimate the ego-velocity
of an UAV with respect to the ground using an FMCW radar.
We then extend this algorithm thanks to the use of a MIMO
FMCW radar which allows to apply a beamforming technique
to simultaneously estimate the UAV height, and velocity in
both the horizontal and vertical directions.

These algorithms were first validated in a radar environ-
ment simulation platform fed with real-world measurements
which served both as model inputs and ground truths. These
simulations confirmed the accuracy of the velocity and height
estimation and the validity of the approach. Finally, real-world
experiments were conducted using an Infineon 77GHz
FMCW MIMO radar. These experiments not only demon-
strated the validity of the approach but showed excellent
performance of the velocity estimation, on the order of 3cm
per meter travelled.

Further work will consist in the integration of a MIMO
FMCW radar on the Crazyflie UAV, to validate the approach
experimentally with in-flight data. Moreover, in our approach,
we use a MIMO radar with a linear antenna array which make
it possible apply the principle of digital beamforming in a
plane. This work could be extended to the use of a MIMO
radar with a 2D planar antenna array which would allow to
carry out the beamforming in a 3D space [36], allowing the
simultaneous estimation of the UAV velocity in 3 dimensions.
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