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Abstract—Hybrid electrical systems are complex to size be-
cause there is a strong dependence between components design
and power management control law. In order to pre-size a
hybrid rally race car, which uses hydrogen and batteries as
energy sources, an offline power management method, which is
formulated in a combinatorial form, is developed to be readily
incorporated in a bi-level optimization problem. The exponential
growth of memory space as a function of the size of the problem,
in particular for long power profiles, is a well-known problem of
this type of approach. This paper proposes solving techniques,
which consist in using battery state trajectory following and
constraints relaxation. Obtained results show satisfying improve-
ments compared to the state of art. Sensitivity analyses show the
influence of resolution parameters on the optimization problem
solution and its required computation resources.

Index Terms—Optimization, Large-size problems, Power man-
agement, Sizing, Hybrid electric vehicles, Fuel cells, Batteries

I. INTRODUCTION

Electrical sources in hybrid vehicles are an alternative for
ecological transition in transportation sector. To validate the
choice of the size of these system’s components and to
guarantee their optimal operation, optimization techniques are
used. The most widespread are dynamic programming [1],
convex optimization [2], heuristics methods [3], combinatorial
approaches [4] and aim to reduce either fuel consumption or
total cost of ownership based on predefined power profiles that
must be globally satisfied under some constraints.

Common issues encountered when using such methods are
computation time and memory limitations [5], which strongly
depend on the size of the optimization problem. This can either
be related to the number of control variables, the number
of constraints or the length of the power profile. To cope
with issues brought by the length of power profiles, short
driving cycles such as WLTP are used in the literature [6]
as they give an ideal low frequency model of regular cars
usage phases, with a power rise dynamic of about 2.3 kW/s
and a power profile length of 1800 seconds. However, they are
no longer representative of more specific applications such as

racing cars. Buerger et al [7] propose an alternative for such
problems, but often, a simplification of the initial power profile
is used, which leads to a loss of information, and a power
management control not adapted to the problem.

We propose in this paper a linear programming method in-
spired by works achieved in [4] and [8] to optimize the power
management for a racing car application whose architecture is
illustrated in Fig. 1 and a long duration power profile of 6000
seconds that exhibits strong dynamics of more than 150 kW/s,
which we might not neglect. The optimization problem is here
improved in order to be adapted for long driving cycles, as one
drawback of combinatorial approaches is the rapid growth of
the problem dimension.

Fig. 1: Race car electrical architecture

The rest of the paper is organized as follows: after com-
ponents and power profile modelling, the power management
optimization problem is formulated in a combinatorial form.
Solving techniques algorithms to tackle memory issues are
then developed. Finally, obtained results including sensitivity
analysis are discussed.

II. COMPONENTS AND POWER PROFILE MODELLING

A. PEMFC model
The fuel cell system uses a model which is based on the

electrical response of a single cell displayed in Fig.2.
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Fig. 2: Fuel cell electric response

fUFC
is a pseudo-empirical function which depends on the

current density JFC and fixed operating conditions which are
the stoichiometries StH2

and StO2
, the anodic and cathodic

partial pressures PH2
and PO2

, the temperature T and the
relative humidity Hr. The usefull power of the fuel cell system
PFCs

is written below

PFCs
= Pstack − PFCaux

, (1)

where Pstack = Nstack × UFC × IFC is the gross power
of the fuel cell system. Nstack is the number of cells in the
stack, IFC = JFC × AFC is the current, AFC is MEA’s
surface and PFCaux is the compressor power, which depends
on cathodic pressure and is the most consuming component
among auxiliaries. We derive the hydrogen mass equation

mH2
(t) =

∫ t

0

qmH2
(t) dt, (2)

where qmH2(t) = MH2 × StH2 × Nstack ×
IFC

2F
is the

anodic mass flow, MH2
is the hydrogen molar mass and F

is Faraday’s constant. Knowing the hydrogen lower heating
value (LHVH2 ), it is possible to compute the fuel cell system
efficiency using (3)

ηFC(t) =
PFCs

(t)

PFCth
(t)

=
Pstack(t)− PFCaux

(t)

LHVH2 × qmH2(t)
. (3)

Finally, the net power available at the output of the DC-DC
boost converter is

PoutDC
= ηconv × Pstack − PFCaux , (4)

where ηconv is the converter efficiency with respect to its input
power Pstack.

B. Li-ion battery model

A 1-R battery cell model composed of a voltage source Voc

and an internal resistance rcell is used to compute the current
and the voltage of the battery pack as follows

Ibat =
Np

(
Voc −

√
V 2
oc − 4·rcell·Pbat

Ns×Np

)
2× rcell

, (5)

Ubat = Ns

(
Voc − rcell ×

Ibat
Np

)
, (6)

where Pbat is the power delivered or absorbed by the battery
pack. Voc and rcell depend on the state of charge SoC and
temperature T , Ns and Np are respectively number of cells
in series and parallel branches in the pack. Battery state of
charge SoC and state of energy SoE are needed to compute
DC bus voltage and the remaining energy in the pack during
the mission. They are written in (7) and (8)

SoC(t) = SOC(t0)−
∫ t

t0

Ibat(t)

Qbat
dt, (7)

SoE(t) = SoE(t0)−
∫ t

t0

Pbat(t)

Ebat
dt, (8)

where Ebat = Qbat ·
∫ SoC

0

Voc(SoC) dSoC and Qbat are

respectively battery pack energy and capacity.

C. Power profile modelling

The race car driving cycle relies on data recording campaign
of a reference car, which provides vehicle speed v, acceleration
a and helps to compute its required torque at wheel Γwheel

and angular speed ωwheel as follows

Γwheel(t) = mveh

(
a(t) + g cosϕ(t)Cr

+
1

2
ρ
Aveh

mveh
Cdv

2(t) + g sinϕ(t)
)
×Rwheel

(9)

ωwheel(t) =
v(t)

Rwheel
, (10)

where mveh is the mass of vehicle, ϕ is the road’s slope angle,
g is the gravity acceleration, ρ denotes the air density, Aveh

is the vehicle frontal area, Cd is the drag coefficient, Cr is
the rolling friction resistance, and Rwheel denotes the wheel
radius. As the car power profile might change with respect to
its mass, let’s assume the following assumption to adapt the
torque of the designed car to the one of the reference vehicle:

Assumption 1: the ratio
Aveh

mveh
evolves according to a scaling

law in the general form of

Adesign
veh

mdesign
veh

=

(
Aref

veh

mref
veh

)s

, (11)

where s is the scaling factor, and superscripts design and ref
are respectively related to the designed and reference car. □
Hence, by setting s = 1, we can express the torque at wheel
of the the designed car as

Γdesign
wheel (t) =

mdesign
veh

mref
veh

Γref
wheel(t). (12)

Finally, the mechanical power is

Pmech(t) =
1

ηt
Γdesign
wheel (t)× ωwheel(t), (13)

where ηt is the powertrain’s efficiency.



III. PMS OPTIMIZATION PROBLEM

A. Mathematical formulation

The implemented power management system aims to find
the optimal fuel cell current trajectory that reduces hydrogen
consumption over the vehicle mission. Its associated optimiza-
tion problem is formulated as follows

min
IFC

Fobj =

∫ tf

t0

mH2
(t)

s.t.
1

ηm
Pmech(t) + Paux(t) = PoutDC

(t) + Pbat(t),

d

dt
Pstack(t) ≤ dFC ,

mH2 |
tf
t0 ≤MH2tank

,

⌊Pbat⌋ ≤ Pbat(t) ≤ ⌈Pbat⌉,
⌊SoE⌋ ≤ SoE(t) ≤ ⌈SoE⌉,
SoE(tf ) = SoE⋆

where dFC and MH2tank
are respectively the maximum dy-

namic of power increase of the fuel cell and the total mass
of hydrogen filled in the tank, ηm denotes the motorization
group efficiency, Paux is the power consumption of auxiliary
components, and SoE⋆ is the state of energy targeted at
the end of the mission. ⌊X⌋ and ⌈X⌉ are respectively the
minimum and the maximum value of variable X .

B. Problem modelling

To cope with model non-linearity and a discrete time power
profile, the optimization problem is written in a combinatorial
form in order to be solved with a MILP method. This approach
requires a discretization of the control variable IFC .

1) Objective function: Let us introduce a new control
variable ξ such that

ξ(t) = (ξ1(t), · · · , ξu(t), · · · , ξnc
(t)), u ∈ [1, nc]

ξu(t) ∈ [0, 1]
nc∑
u=1

ξu(t) = 1,

(14)
(15)

(16)

where nc = dim(ξ) is the number of elements of vector
ξ. Hence, fuel cell current can be expressed as a linear
combination of coefficients ξu

IFC(t) =

nc∑
u=1

(
ξu(t)× IFC(u)

)
, (17)

where IFC(u) is the value of fuel cell current associated with
the control variable ξu(t) and is expressed by a logarithmic
function

IFC(u) = logc(β × (u− h)), (18)

where c =
(nc − h

1− h

) 1
IFCmax

−IFCmin and β =
( 1

1− h

)
×

cIFCmin . IFCmin
and IFCmax

denote respectively the mini-
mum and the maximum current delivered by fuel cell system.
This non-uniform discretization is preferred to a linear one

to have a coarse discretization in the vicinity of low current
values which are generally not solution and an accurate one
elsewhere by tuning coefficient h, (h < 1). The objective
function is then written as follows

Fobj = ζ ·
tf∑

t=t0

nc∑
u=1

(
ξu(t)× IFC(u)

)
× δt, (19)

where ζ =
MH2

× StH2
×Nstack

2F
and δt = 100 ms is the

sampling time.
2) Fuel cell system constraints: Fuel cell power dynamic

constraint is expressed linearly at each time as follows
nc∑
u=1

(
ξu(t+ 1)× IFC(u)× fUFC

(IFC(u))
)

−
nc∑
u=1

(
ξu(t)× IFC(u)× fUFC

(IFC(u))
)
≤ dFC × δt.

(20)

Hydrogen consumption limitation is written in (21)

ζ ·
tf∑

t=t0

nc∑
u=1

(
ξu(t)× IFC(u)

)
× δt ≤MH2tank

. (21)

3) Battery pack constraints: Battery pack constraints are
charge and discharge power limitations and control of its state
variable SoE. The power balance between sources and loads
helps to write battery power in a linear combination form

Pbat(t) =
1

ηm
Pmech(t) + Paux(t)

− ηconv ×
nc∑
u=1

(
ξu(t)× IFC(u)× fUFC

(IFC(u), t)
)

(22)

Using (8), battery pack SoE boundary constraint and final
value constraint are respectively written in (23) and (24)

⌊SoE⌋ ≤ SoE(t0)−
1

Ebat

t∑
t0

Pbat(t)δt ≤ ⌈SoE⌉ (23)∣∣∣SoE(t0)− 1
Ebat

∑tf
t0
Pbat(t)δt− SoE⋆

∣∣∣
SoE⋆

≤ ϵSoE , (24)

where ϵSoE is the admitted relative error between the final
state SoE(tf ) and its target SoE⋆.

IV. SOLVING TECHNIQUES

We write the problem modelled in Section III-B in the gen-
eral form of A ·x ≤ b, were A is the problem matrix, x is the
decision variable, and b is the constraint vector. The purpose
of the techniques developed below is to reduce the number
of elements Prbsize in matrix A, which is function of the
number of evaluated combinations Ncomb. For combinatorial
approaches, this number grows exponentially and is expressed
in (26)

Prbsize = rows(A)× columns(A) (25)

Ncomb = nHp
c , (26)



where the horizon Hp is the number of time steps of the
considered power profile.

A. Low frequency and sequential optimization approach

Since we cannot solve at once the problem formulated due
to memory limitations, we propose a first technique detailed
in Algorithm 1. It consists at a first step in defining a global
trajectory of battery’s SoE by using a low-frequency filtered
power profile, which is undersampled with a larger sampling
time ∆t = α×δt, and where α ≥ 1 is the sampling coefficient.
The second step consists in splitting the original power profile
Po into nseq sequences seqi of acceptable length Hi such that

Po =

nseq⋃
i=1

seqi, (27)

Hp =

nseq∑
i=1

Hi. (28)

In order to solve those sequences iteratively by ensuring
continuity of the battery’s states, constraints based on (24)
are added and expressed as follows

SoEseqi(tf ) = SoElf (t
⋆
f ) (29)

SoEseqi+1(t0) = SoEseqi(tf ), (30)

where subscript lf stands for ”low frequency” and t⋆f is
the corresponding time step of tf when using the filtered
undersampled power profile.

Algorithm 1 Two steps optimization technique

Require: Power profile and components data
∆t← α× δt
A ← Alf

b← blf
Ensure: A · x ≤ b

return x
xlf ← x
return SoElf

N ← nseq

H ← Hi

for i=1:N do
A ← Ai

b← bi
Ensure:A · x ≤ b andSoEseqi(tf ) = SoElf (t

⋆
f )

Returnx
xi ← x
SoEseqi+1(t0)← SoEseqi(tf )
H ← Hi+1

end for
return Solution

B. SoE constraint relaxation

By imposing a trajectory of battery SoE in advance with
the technique described in Section IV-A, we do not need
to continuously add in the original problem SoE boundary

constraint written in (23), which is memory intensive as it
requires to store in matrix A all previous battery states. The
technique detailed in Algotithm 2 consists in removing that
constraint while solving for each sequence the optimization
problem. This constraint is reevaluated if only if battery states
are checked outside the loop and go beyond the defined SoE
interval limits.

Algorithm 2 Conditional SoE boundary implementation tech-
nique

Require: ⌈SoE⌉ and ⌊SoE⌋
N ← nseq

H ← Hi

for i=1:N do
A ← A⋆

i ▷ superscript ⋆ inX⋆ stands for ”matrix X
without SoE constraint”

b← b⋆i
Ensure:A · x ≤ b
Returnx
ReturnSoEvecti

if ⌊SoE⌋ ≤ SoEk ≤ ⌈SoE⌉ is false, SoEk ∈ SoEvecti

then
A ← Ai

b← bi
Ensure:A · x ≤ b
Returnx

end if
xi ← x
i← i+ 1

end for
return Solution

V. RESULTS AND DISCUSSION

A. General results

Table I summarizes optimization parameters selected to
validate the developed method for fixed components sizing of
battery pack and fuel cell elements. A Gaussian filter is used to
get a low frequency signal of the original power profile, which
is undersampled and displayed in Fig. 3a. The optimization
problem solution returned by Gurobi solver for battery pack
and fuel cell system is illustrated at Fig. 3b and Fig. 3c. Fuel
cell system generally works near its maximum efficiency to
reduce hydrogen consumption, and is assisted by batteries to
store or compensate energy during low and high frequency
power demand phases.

TABLE I: Simulation parameters

Optimization parameters
nc 30 α 50 Hi 2400

Battery pack fixed parameters
Ns 305 Np 6 SoEinit 0.7

Fuel cell fixed parameters
Astack[m

2] 0.08 Nstack 350 MH2tank
[kg] 21
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Fig. 3: Power management results

Fig. 4 makes a comparison between power management
strategies returned by optimization problems using the true
power profile and the filtered one. As the filtered power profile
requires less energy, it shows that fuel cell and batteries energy
consumption of the associated problem are smaller than the
one solved with the original profile.
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Fig. 4: Comparisons of initial and reduced optimization prob-
lem results

B. Sensitivity analysis

To objectively set optimization parameters, a sensitivity
analysis is performed to show their impact on the objective
function and the size of the problem. Fig. 5 shows the
evolution of hydrogen consumption and the size of the problem
with respect to the number of discrete control variables nc,

which corresponds to fuel cell current discretization. For a
fixed horizon Hi = 1000 time steps, we observe a negligible
drop of hydrogen mass needed for mission while the size of
the problem increases.
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Fig. 5: PMS sensitivity to nc

For a fixed value of nc = 30, the effect of the se-
quence horizon on the optimization problem size and its
solution is displayed in Fig.6a. By increasing the length of
the sub-problems sequences, we improve slightly the fuel
consumption. In counterpart, the size of the problem increases
exponentially until we run out of memory. Fig.6b shows that
the SoE trajectories exhibits low relative errors compared to
the one obtained with the filtered power profile. The more
Hi increases and the higher aberrant values are, as SoE final
value constraints are applied only at the end of each sequence.
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Fig. 6: PMS sensitivity to Hi

Table II summarizes major gains obtained by decreasing
either nc or Hi parameter values. It shows that decreasing
these two parameters leads to non-negligible computation time
savings, which is correlated to the problem size.

TABLE II: Influence of nc and Hi parameters

Parameter Value H2conso [kg] Prbsize CPU time [s]
nc for 100 16.3429 4e8 449.1

Hi = 1000 30 16.3475 1.2e8 121.4
Gain [%] -70 +0.0281 -87.2371 -72.968
Hi for 2800 16.2990 9.4e8 1525.7
nc = 30 1000 16.3775 1.2e8 121.4

Gain [%] -64.2857 +0.2976 -69.9958 -92.0430

Additionally, a parameter which affects the power man-
agement strategy is the trajectory following maximum error
ϵSoE . Contrary to expectations, hydrogen consumption and
battery pack solicitations decrease with the increase of the
error. Hence, ϵSoE is the parameter that defines the degree
of freedom of the battery power management strategy with
respect to the predefined trajectory. Nevertheless, the model
becomes infeasible if ϵSoE increases more. These errors ac-
cumulate while solving iteratively each sequence and battery
states diverge from the low frequency SoE trajectory.

VI. CONCLUSION

We proposed in this paper a combinatorial method to
optimize power management strategy between fuel cells and
batteries in a hybrid electric racing car. Obtained results show
good performances as only few minutes are needed to solve the
optimization problem over 60000 time steps of power profile.
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Fig. 7: PMS sensitivity to ϵSoE

It appears that the optimality of the result depends not only
on the discretization of the control variable, but also on the
length of sequences and battery pack state of energy trajectory.
A sensitivity analysis shows the impact of theses parameters
on the optimization problem size and helps to find a good
compromise between the computation time and the accuracy
of the solution. Future perspectives to accelerate computation
will be to run optimization of the sequences in parallel by
tuning the SoE trajectory following error. The final purpose
of the proposed method is to easily couple components sizing
optimization with an optimal control law.
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